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Synopsis The importance of associations between microorganisms and their invertebrate hosts is becoming increasingly

apparent. An emerging field, driven by the necessity to understand the microbial relationships that both maximize coral

health and cause coral disease, is the study of coral–bacteria interactions. In this article, we review our current under-

standing of the diversity, specificity, development, and functions of coral-associated bacteria. We also summarize what is

known regarding the role of coral microbiota in the health and disease of coral. We conduct a meta-analysis to determine

whether the presence of unique taxa correlates with the state of coral health (i.e. healthy, diseased or bleached), as well as

whether coral reef habitats harbor clusters of distinct taxa. We find that healthy and bleached corals harbor similar

dominant taxa, although bleached corals had higher proportions of Vibrio and Acidobacteria. Diseased corals generally

had more Rhodobacter, Clostridia, and Cyanobacteria sequences, and fewer Oceanospirillum sequences. We caution, how-

ever, that while 16S rRNA is useful for microbial species identification, it is a poor predictor of habitat or lifestyle, and

care should be taken in interpretation of 16S rRNA surveys to identify potential pathogens amongst complex coral–

microbial assemblages. Finally, we highlight evidence that coral–bacterial assemblages could be sensitive to the effects of

climatic change. We suggest that the relationship between coral and their bacterial associates represents a valuable model

that can be applied to the broader discipline of invertebrate–microbial interactions.

Introduction

The close associations between animals and their

microbiota have shaped the evolutionary paths of

both host and symbiont alike. While interactions be-

tween microorganisms and vertebrates have been

well studied, relatively little attention has been

given to the examination of microbial–invertebrate

associations. A frontier of invertebrate biology is

the interaction between microorganisms and their

hosts. Indeed, many of the biologically active com-

pounds ascribed to marine invertebrates, like sponges

(Flatt et al. 2005; Ridley et al. 2005) and bryozoans

(Hildebrand et al. 2004) have been found to be pro-

duced by their bacterial associates. Increasingly, these

associations show strong functional significance. For

instance, the bacterial symbionts of sponges and

bryozoans produce chemicals that protect their

hosts from heterospecific settlement of larvae

(Ridley et al. 2005) and from predation (Lopanik

et al. 2004), respectively. Research on coral-

associated bacteria is revealing important symbiotic

functions, similar to that on other sessile inverte-

brates, and this system is emerging as one of the

best-studied examples of invertebrate–microbial

interactions. While corals have been found to

harbor a wide variety of microbes, including hetero-

trophic eukaryotes, bacteria, archaea and viruses, the

majority of studies thus far have centered on bacteria

associated with coral.

The coral organism is a complex host that forms

associations with both external and internal micro-

biota. The coral animal, its intracellular algal
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symbionts, and the diverse microorganisms found in

association with coral tissues and exudates have been

termed the ‘‘holobiont’’ (Rohwer et al. 2002; Reshef

et al. 2006). While it has long been known that the

algal symbiont is an obligate partner supplying up to

95% of the host’s metabolic requirements for carbon

and contributing to formation of the skeleton

(Muscatine 1973), the roles of coral-associated bac-

teria have not been well elucidated. The structure of

the coral host provides a multifaceted habitat, with

distinct and diverse bacteria residing in the host skel-

eton, tissues, and surface mucus layer. As in terres-

trial ecosystems, where bacterial assemblages play an

essential role in ecosystem functioning (Balser et al.

2006), coral-associated bacteria are likely to drive

biochemical and ecological processes within the reef

environment. In this article, we review the literature

concerning coral-associated bacteria, summarizing

the diversity, specificity, development, and functional

roles of coral microbiota. We also consider the rela-

tionship between coral-associated microorganisms

and disease, conducting a meta-analysis to determine

whether diseased or bleached coral harbor unique

taxa, as well as whether clusters of taxa are distinct

to the coral reef habitat. Finally, we examine evi-

dence that these populations have the potential to

be disrupted by climatic change. While this review

focuses on coral-associated bacteria, we suggest it

contains themes useful for a broader consideration

of the importance of invertebrate–microbial

interactions.

Diversity and specificity of
coral-associated bacteria

Sequence-based assessments of microbial assem-

blages, which involve random sampling of bacterial

rRNA genes amplified from nucleic acid (Olsen et al.

1986), provide high taxonomic resolution for envi-

ronmental samples across large datasets based on

nucleotide heterogeneity. While cultivation-based

approaches provide important information on the

metabolism of some microorganisms, the vast major-

ity (499%) of marine microorganisms do not grow

on enriched media (Azam 1998). In coral, 16S rRNA

surveys of bacteria have elucidated an astonishing

diversity of bacterial ribotypes, many of which are

not closely related to cultivated or uncultivated

microorganisms identified in previous studies. For

instance, Rohwer et al. (2002) characterized the bac-

terial assemblage of three Caribbean species and

estimated the presence of 6000 ribotypes in libraries

from 14 coral samples. Additional studies examining

bacterial assemblages from multiple coral species

and geographic regions have found similar results

(Rohwer et al. 2001; Bourne and Munn 2005;

Klaus et al. 2005; Koren and Rosenberg 2006; Sekar

et al. 2006; Kapley et al. 2007; Wegley et al. 2007;

Koren and Rosenberg 2008; Lampert et al. 2008;

Hong et al. 2009; Littman et al. 2009b; Reis et al.

2009). Like most microbial assemblages in marine

ecosystems, coral-associated microbial assemblages

contain microdiverse clusters (i.e. organisms varying

by a handful of nucleotides across entire 16S rRNA

genes) of closely related taxa, where rarely is exactly

the same sequence retrieved twice in surveys.

Microbial assemblages in corals, like plankton com-

munities, are dominated by a few different taxonom-

ic units with a long tail of the species-distribution

curve (Rohwer et al. 2002), suggesting that much of

the diversity within the coral microbiome exists

within the ‘‘rare’’ biosphere (Sogin et al. 2006).

A central question in microbial ecology is whether

microorganisms fill defined niches within complex

communities, or whether communities are com-

prised of functionally redundant, neutrally-selected

taxa leading to random assemblages (Fuhrman

et al. 2006). In marine plankton, microbial assem-

blages are heterogeneous between geochemical and

productivity-defined habitats (Moeseneder et al.

2001; Hewson and Fuhrman 2004), yet in richer hab-

itats, like sediments, spatially distinct communities in

the same habitat type are more similar to each other

than to those in adjacent habitats (Hewson et al.

2007). It is, therefore, not surprising to see a similar

pattern in studies of coral-associated bacteria, which

presumably inhabit a productive environment, with

similar bacterial ribotypes associated with the same

coral species, but distinct from those in surrounding

seawater and sediments (Frias-Lopez et al. 2002;

Rohwer et al. 2002; Bourne and Munn 2005;

Pantos and Bythell 2006; Littman et al. 2009b; Reis

et al. 2009). This is supported by the observation

that some bacterial ribotypes form host-species–

specific with coral (Rohwer et al. 2001; Frias-Lopez

et al. 2002; Rohwer et al. 2002; Bourne 2005; Klaus

et al. 2005; Sekar et al. 2006; Lampert et al. 2008;

Reis et al. 2009). It is hypothesized that this specifi-

city is indicative of the importance of certain inter-

actions to holobiont functioning, and that these

interactions are structured in ways that maximize

the health of the holobiont (Rohwer et al. 2002;

Reshef et al. 2006).

While the existence of such coral–bacterial (and

therefore microbial habitat) specificity is widely ac-

cepted, the spatial and temporal stability of these

interactions is debated. In seawater, for example,

bacterial assemblages can be heterogeneous within
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the same habitat at spatial scales ranging from

micrometers to kilometers (Long and Azam 2001;

Hewson et al. 2006a, 2006b). In coral, some studies

have shown that species-specific bacteria are geo-

graphically consistent (Rohwer et al. 2001, 2002).

For instance, Rohwer et al. (2002) showed that bac-

teria associated with three coral species in Panama

contained similar ribotypes to those of the same

coral species in Bermuda. The opposite trend has

also been observed, in which bacterial assemblages

contained different ribotypes between geographic lo-

cations, but similar corals were inhabited by similar

ribotypes (Klaus et al. 2005; Guppy and Bythell 2006;

Littman et al. 2009b). Trends observed by sequence

library surveys of uncultivated communities are gen-

erally consistent with those using fingerprinting

approaches, which have lower taxonomic resolution,

but provide greater qualitative assessment of large

numbers of samples or assemblages. These discrep-

ancies could be explained, in part, by differences in

methods (clone sequencing versus terminal restric-

tion fragment length polymorphism [T-RFLP] and

denaturing gradient gel electrophoresis [DGGE]),

coral taxonomic resolution (comparing coral species

within the same genus versus different genera) and

the operator-defined taxonomic resolution of se-

quence analyses (‘‘cutoffs’’ of sequence identity de-

fining operational taxonomic units to permit

comparisons between communities) (Rohwer et al.

2001, 2002; Klaus et al. 2005; Guppy and Bythell

2006; Littman et al. 2009b). Microbial taxonomic

resolution influences similarity between assemblages

based on sequencing; it is currently unclear which

nucleotide identity cutoffs are appropriate for defin-

ing ecologically meaningful taxonomic levels. The

varied trends over geographic scales and with host

species may also reflect differential species responses

(host and/or microbiota) to site-specific factors

(Hong et al. 2009; Littman et al. 2009b). Taken to-

gether, differences between studies highlight the mul-

tifaceted and dynamic nature of coral-associated

microbiota, and caution should be taken not to

over-simplify or over-generalize the nature of these

associations.

The onset of coral–bacterial associations

Determining when and how coral–microbial assem-

blages are established is fundamental to a better un-

derstanding of the coral holobiont. Apprill et al.

(2009) examined the onset of microbial associations

in the coral, Pocillopora meandrina, by comparing

bacterial T-RFLP profiles between pre-spawned

oocyte bundles, spawned eggs, and week old

planulae. They found that there were distinct ribo-

types present within each stage, but that bacterial

cells were not internally incorporated until the plan-

ulae were fully developed (Apprill et al. 2009). This

suggests that, unlike the zooxanthellae, which are

vertically transmitted in this system, bacteria that

form associations with P. meandrina are acquired

via horizontal uptake. As bacteria are internally in-

corporated during late development of the planulae,

it is possible that bacteria play a role in processes

specific to this life stage, such as benthic settlement

(Apprill et al. 2009).

There is also evidence that coral-associated bacte-

ria differ between adults and juveniles of coral.

Nonmetric multidimensional scaling (nMDS) repre-

sentations of bacterial profiles assessed through

random sequencing of clone libraries, DGGE, and

T-RFLP, were all consistent in demonstrating that

adult Acropora tenuis and Acropora millepora dis-

played tight grouping, whereas there was no apparent

relationship between profiles of juveniles (Littman

et al. 2009a). The bacterial complement of juvenile

corals was also more diverse, and while there was

some conservation in bacterial ribotypes between

adult and juvenile corals, the vast majority of

adult-associated bacterial ribotypes were not found

in juveniles. This suggests a successional process

whereby associates of adult corals gradually replace

the diverse bacterial consortia of juveniles (Littman

et al. 2009a). Future studies are required to examine

this successional process throughout the ontogeny

of the coral to determine when and how species-

specificity is established and whether these factors

differ among coral species.

The role of coral-associated bacteria

While the presence of coral-associated bacteria has

long been established (Di Salvo and Gundersen

1971), little is known about how these microorgan-

isms contribute to the functioning of the coral holo-

biont. There is increasing evidence that coral

microbiota are crucial to at least two aspects of the

host’s physiology: biogeochemical cycling and path-

ogen resistance. The tight nutrient cycling that en-

ables corals to thrive in oligotrophic waters was

originally attributed to the mutualism between the

coral host and its photosynthetic dinoflagellates.

Recently, however, both culture-dependent and inde-

pendent techniques have demonstrated that coral

microbiota likely play a role in coral reef biogeo-

chemistry (Williams et al. 1987; Szmant et al. 1990;

Shashar et al. 1994; Ferrier-Pages et al. 2000; Lesser

et al. 2007; Wegley et al. 2007; Chimetto et al. 2008;
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Olson et al. 2009; Raina et al. 2009; Kimes et al.

2010). For example, nitrogen fixation within the

coral holobiont has been documented using acetylene

reduction assays (Williams et al. 1987; Shashar et al.

1994; Lesser et al. 2007; Chimetto et al. 2008) and

bacteria possessing genes for nitrogen fixation have

been identified within multiple coral species from

varying geographic regions (Lesser et al. 2004;

Wegley et al. 2007; Olson et al. 2009; Kimes et al.

2010). In addition, recent studies have found evi-

dence that members of coral-associated microbiota

may also be involved in additional nitrogen cycling

processes, including nitrification, ammonium assim-

ilation, ammonification, and denitrification (Wegley

et al. 2007; Kimes et al. 2010). There is also evidence

that coral-associated microbial assemblages function

in carbon and sulfur cycling (Ferrier-Pages et al.

1998; Ferrier-Pages et al. 2000; Wegley et al. 2007;

Raina et al. 2009; Kimes et al. 2010). Genes that

regulate carbon fixation, carbon degradation, and

methanogenesis have been detected in coral-

associated bacteria (Wegley et al. 2007; Kimes et al.

2010), as have those that regulate assimilation of

organic and inorganic sulfur sources (Wegley et al.

2007; Raina et al. 2009; Kimes et al. 2010). The abil-

ity of microbes to subsize the nutrient budgets of

their coral host is likely a driver in the establish-

ment of coral-associated microbial assemblages.

Furthermore, niche partitioning of bacterial assem-

blages is likely to be controlled by availability of nu-

trients at the microscale of the coral host structure

(van Duyl and Gast 2001; Scheffers et al. 2005; Raina

et al. 2009; Ainsworth et al. 2010). However, it

should be noted that the presence of a functional

gene or gene fragment does not necessearily imply

functionality, and that additional in situ or

expression-based studies are required to elucidate

the role that microbes play in driving nutrient cy-

cling on coral reefs. The role of microbes in biogeo-

chemical cycling and their distribution at the scale of

the holobiont micro-niche are important areas of

future research.

It has also been hypothesized that coral-associated

bacteria play a role in resistance to disease (Ritchie

and Smith 2004; Rohwer and Kelley 2004; Reshef

et al. 2006) via competition for nutrients and/or

space, and/or production of antibiotics (Rohwer

and Kelley 2004). Several studies have demonstrated

the antibacterial activity of isolates of coral mucus

against indicator bacteria (e.g. Escherichia coli,

Staphylococcus aureus), potentially invasive microbes

(from Florida Keys canal water, African dust, and

surrounding seawater) and putative pathogens of

coral (Vibrio shiloi, V. coralliilyticus, and Serratia

marsecens) (Ritchie 2006; Nissimov et al. 2009;

Rypien et al. 2009; Shnit-Orland and Kushmaro

2009). It has also been shown that the antibacterial

properties of coral mucus select for a discrete set of

commensal bacteria (Ritchie 2006) and that antago-

nistic interactions are prevalent among co-occurring

coral-associated microbes (Rypien et al. 2009).

However, it should also be noted that coral mucus

contains very high concentrations of organic and in-

organic matter, leading to typically rare, r-selected

(i.e. fast growing and nutrient sensitive) bacteria in

seawater recruiting to the mucus matrix and increas-

ing rapidly in abundance (Allers et al. 2008). These

findings suggest that the coral-associated microbiota

are dynamic and selfregulating and have the capacity

to prevent settlement of exogenous bacteria, includ-

ing pathogens. Future studies should focus on the

factors that enable pathogens to become established,

as well as the additional roles (e.g. competition and

niche occupation) that symbiotic bacteria play in

preventing colonization by pathogens.

Coral disease and coral-associated
bacteria

Over the past several decades, coral reef ecosystems

have been degrading at an alarming rate (Hughes

et al. 2003; Baker et al. 2008). This degradation, in

part, is a consequence of coral disease (Harvell et al.

1999; Harvell 2004), for which prevalence, severity,

and host and geographic range have all been increas-

ing (Harvell 2004; Weil et al. 2006; Harvell et al.

2007). Like their terrestrial counterparts, marine epi-

zootics cause marked declines in populations, alter

community structure, and therefore threaten biodi-

versity (Harvell et al. 2002). To date, there are more

than 20 described coral diseases (Rosenberg et al.

2007). However, due to the difficulties of isolating

and culturing putative pathogens and of aseptic cul-

tivation of host tissues, there are only six diseases

for which a causative agent has been identified

(Rosenberg et al. 2007; Bourne et al. 2009).

Knowledge of coral disease reservoirs, transmission,

and pathogenesis is limited, as is the role that

coral-associated microbial assemblages play in the

health and disease of coral.

To gain a better understanding of how variation in

microbial assemblages associated with corals may

lead to the onset of disease, numerous studies have

compared bacterial assemblages between healthy and

diseased coral. These studies have shown that both

the composition and function of microbiota associ-

ated with healthy and diseased corals are distinct

(Ritchie and Smith 1995; Cooney et al. 2002;
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Frias-Lopez et al. 2002; Pantos et al. 2003; Bourne

2005; Gil-Agudelo et al. 2006; Pantos and Bythell

2006; Sekar et al. 2006; Barneah et al. 2007;

Gil-Agudelo et al. 2007; Voss et al. 2007; Sekar

et al. 2008; Reis et al. 2009; Sunagawa et al. 2009).

Furthermore, differences between the microbiota of

healthy and diseased corals appear to be systemic in

some cases (Pantos et al. 2003; Breitbart et al. 2005;

Pantos and Bythell 2006). That is, the bacterial as-

semblage of the entire diseased colony is the same

and distinct from that of healthy colonies, even

though only a small portion of the colony shows

signs of disease. These results reinforce the idea

that apparently healthy tissues of diseased colonies

should not be used as control references, and that

this systemic effect could be used as a diagnostic tool

to identify stressed colonies susceptible to disease

(Pantos et al. 2003).

There are several hypotheses for the observed var-

iability in the structure of bacterial assemblages as-

sociated with disease. (1) Changes in environmental

conditions directly or indirectly alter the microbiota

of healthy coral. For instance, increases in nutrients

(e.g. nitrogen, dissolved organic carbon) may ‘‘fertil-

ize’’ nutrient-limited, r-selected, potentially patho-

genic taxa, enabling them to dominate the

community (Bruno et al. 2003; Kline et al. 2006;

Smith et al. 2006; Voss and Richardson 2006).

Nutrient increases may also play a more indirect

role by compromising normal function of beneficial

coral residents, thereby leading to overgrowth of

pathogenic taxa (Kline et al. 2006). (2) Changes in

environmental conditions alter host physiology, sub-

sequently leading to variable microbiota. For exam-

ple, because coral mucus provides an important

carbon source for coral-associated bacteria

(Ferrier-Pages et al. 2000; Brown and Bythell 2005;

Wegley et al. 2007; Allers et al. 2008; Kimes et al.

2010), changes in production rates of mucus due to

abiotic factors (e.g. temperature and/or irradiance)

(Piggot et al. 2009) could also lead to variable struc-

ture of coral microbiota. (3) Colonization by patho-

gens directly or indirectly causes variation in the

normal bacterial assemblage. For example, pathogens

may directly alter community structure by outcom-

peting resident bacteria if they have a higher affinity

for available substrates and/or are capable of produc-

ing antibiotics (Rypien et al. 2009). Pathogens may

also indirectly cause variability in coral microbiota

via degradation of host tissues, creating a

nutrient-rich microenvironment that is readily colo-

nized from surrounding waters by secondary

r-selected invaders (Cooney et al. 2002; Frias-Lopez

et al. 2002; Pantos et al. 2003; Bourne 2005; Pantos

and Bythell 2006; Reis et al. 2009). In the tail of

the species-distribution curve of bacterioplankton

communities, there are many such r-selected taxa

that maintain low abundances until prevailing con-

ditions arise. A classical example of rare yet

r-selected taxa that are present in bacterioplankton

are marine Vibrio, which are easily cultivated on en-

riched solid media from seawater (Giovannoni and

Stingl 2005). Given that coral reef ecosystems are

defined by complex multi-partner relationships and

dynamic environmental conditions, it is likely that

these hypotheses are not mutually exclusive and that

a combination of factors ultimately leads to the onset

of coral disease. It is equally likely that coral disease

is elicited by networks of interacting bacteria, and that

interactions with physicochemical features of their

habitat are complex and not easily disentangled by

methods currently used in coral microbial ecology.

Meta-analysis of coral-associated
bacterial assemblages

To gain insight into the extent to which the states of

coral health are correlated with the composition of

their microbial assemblages, we analyzed 16S rRNA

sequence accessions to GenBank produced in 32

studies of coral microbial ecology. A summary of

the studies, the methods employed, and the

number and source of 16S rRNA sequences can be

found in the Supplementary Material (Table S1).

Our analysis is not a quantitative assessment of the

composition of microbial assemblages, since different

studies used distinctly different approaches (targeted

16S sequencing of DGGE amplicons to fully random

sequencing of entire assemblages), with different

approaches used in different compartments of the

reef (e.g. coral, seawater). Note that the comparison

between different habitat types is biased by variable

numbers of sequences and approaches, making stan-

dardization difficult at this level of analysis. It is also

important to point out that these data represent an

inherent bias based on research interest. For instance,

easily identifiable diseases (e.g. black band) and

dominant reef species (e.g. Montastrea spp.) are sam-

pled more often than are their less distinguishable,

less dominant counterparts. This analysis does not

include sequences derived from pyrosequencing tech-

nologies recently applied to coral microbiology (e.g.

Sunagawa et al. 2010), which will likely provide ex-

tensive information on the ‘‘tail’’ of the species dis-

tribution curve not sampled by Sanger-sequenced

libraries.

Coral microbiota 16S rRNA sequences were dom-

inated mostly by bacteria (�80–90%), with both
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healthy and bleached corals harboring similar dom-

inant taxa (Fig. 1). However, in diseased corals, there

were generally more Rhodobacter, Clostridia, and

Cyanobacteria sequences, and fewer Oceanospirillum

sequences. Interestingly, the abundance of

Rhodobacter sequences in diseased corals is not asso-

ciated with a single disease or geographic locale.

Rather, Rhodobacter seems to be abundant under

many different conditions in many different locales,

including assemblages associated with black band

disease from the Caribbean, Red Sea, and Great

Barrier Reef (Cooney et al. 2002; Frias-Lopez et al.

2002; Bourne 2005; Sekar et al. 2006; Barneah et al.

2007; Sato et al. 2009), white plague and white band

disease from the Caribbean (Pantos et al. 2003;

Pantos and Bythell 2006; Sunagawa et al. 2009),

and two conditions, atramentous necrosis and cya-

nobacterial patches, from the Great Barrier Reef

(Bourne 2005; Sato et al. 2009). Surveys of bleached

coral had a higher proportion of the r-selected

opportunist genera, Vibrio and Acidobacteria, than

did surveys of healthy coral. It is unclear whether

bacterial sequence types detected in high abundance

on the surface of diseased or bleached tissues repre-

sent pathogens driving the diseased state, or are

merely opportunists taking advantage of shifts in

the bacterial assemblage or in host physiology that

are associated with bleaching and disease.

Despite these observations, it is important to note

that 16S rRNA is a poor predictor of habitat or life-

style, where closely related taxa can occupy disparate

environments and carry out different functions

within communities. For example, in our analysis,

some sequences of a-Proteobacteria associated with

disease were also closely related to those found in

disparate environments, like deep-sea sediments

and open-ocean plankton (Fig. 2). While other ribo-

types were distinct to diseased tissues (i.e. their close

relatives were found only in association with dis-

ease), our analysis emphasizes that care must be

taken in interpretation of 16S rRNA surveys for

identifying potential pathogens amongst complex

microbial assemblages in association with corals.

While informative, comparative studies of

coral-associated microbial assemblages are unable to

answer a key question: are shifts in community

Fig. 1 Analysis of coral reef-derived 16S rRNA sequence accessions to GenBank associated with healthy (n¼ 4271 sequences),

bleached (n¼ 254 sequences), and diseased (n¼ 524 sequences) coral and overlying seawater (n¼ 662 sequences). Sequence

accessions were classified using the Bayesian classifier tool at the Ribosomal Database Project II. Unclassified sequences within

each class are not included. Only orders representing 41% of all sequence accessions are shown.
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structure the cause or the effect of the disease?

Future comparative studies should focus on the tem-

poral dynamics of bacterial replacement. In addition,

the use of metagenomics, as opposed to 16S rRNA

techniques, can provide concurrent information con-

cerning both community function and structure,

which could be useful in identifying potential path-

ogens through virulence genes and/or culturing con-

ditions of putative pathogens based on physiological

function (Wegley et al. 2007; Thurber et al. 2009;

Ainsworth et al. 2010). Perhaps most importantly,

however, these studies should follow up with active

inoculations to determine the mechanisms under-

lying pathogen colonization and pathogenesis, and

how the coral-associated microbial assemblage is

altered via these mechanisms.

The potential impacts of climatic
change on coral-associated bacteria

Climatic change is having measurable effects on

marine and terrestrial ecosystems alike. In the

Fig. 2 Phylogenetic analysis of 93 disease-associated a-Proteobacteria and their closest matches from genome sequences, the

Global Ocean Survey of bacterioplankton, and the non-redundant database at the National Center for Biotechnology Information.

Branches have been collapsed where multiple sequences have been recovered. The tree was produced using neighbor-joining based on

a 395 base pair alignment produced using the Ribosomal Database Project II. Scale bar¼ 0.1 substitutions per site. Non-reef sequences

included, for example, those from deep-sea sediments, salt marsh sediments, and pelagic bacterioplankton.
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ocean, anthropogenically-driven increases in atmo-

spheric concentrations of carbon dioxide contribute

to both ocean warming and acidification (Harvell

et al. 2007; Doney et al. 2009; Feely et al. 2009).

Warming and acidification alone, and synergistically,

have the potential to not only alter coral physiology

directly (Hoegh-Guldberg et al. 2007; De’ath et al.

2009; Kleypas and Yates 2009), but also indirectly

through impacts on coral-associated microorganisms,

thereby potentially disrupting the normal function of

the coral holobiont. This loss of function, in turn,

may impact coral reef ecosystems as a whole.

The hypothesis developed to explain variability in

coral–bacteria assemblages as a result of disease,

namely that environmental factors can directly or

indirectly affect the microbiota and/or host physiol-

ogy, can also be used to predict the effects of ocean

warming and acidification on the coral holobiont.

While it is possible that increasing temperatures

and decreasing pH of the sea surface will alter the

biogeochemical role that coral microbiota potentially

play, there is a paucity of research investigating this

phenomenon. However, there is considerably more

data concerning how climatic change, and more spe-

cifically, increasing temperatures, will affect the role

that coral-associated microbiota play in disease.

Increases in seawater temperature can directly alter

coral-associated bacterial structure and function,

potentially leading to disease. Vega Thurber et al.

(2009) demonstrated that elevated temperatures

shifted the microbiome of Porites compressa to a

more disease-associated state. That is, both the

number of genes encoding virulence pathways and

the abundance of ribosomal sequences associated

with diseased organisms were greater in the micro-

bial assemblage of corals exposed to elevated temper-

atures. Indeed, for a number of coral diseases,

growth rates and/or virulence of pathogens are

temperature-dependent (Alker et al. 2001;

Ben-Haim et al. 2003; Cervino et al. 2004;

Rosenberg and Falkovitz 2004; Remily and

Richardson 2006; Ward et al. 2007). Therefore, in-

creases in seawater temperature could potentially

shift coral-associated microbial assemblages by select-

ing for more pathogenic taxa.

There is also evidence that increases in tempera-

ture can indirectly alter coral microbiota by

compromising function of beneficial members that

structure healthy communities. Several studies have

demonstrated that antibacterial activity of

mucus-associated bacteria is impaired under elevated

temperatures (Ritchie 2006; Rypien et al. 2009;

Shnit-Orland and Kushmaro 2009). For instance,

Ritchie (2006) found that the antibacterial activity

of apparently healthy Acropora palmata mucus was

lost when corals were exposed to higher sea surface

temperatures. Furthermore, culturable isolates from

the mucus were dominated by Vibrios, while this

genus was far less abundant in mucus sampled

prior to the thermal event. These results suggest

that increased temperatures can shift coral-associated

microbial assemblages away from species that regu-

late unaffected communities toward dominance by

potential pathogens.

Temperature-driven changes in host physiology

could also affect coral-associated microbiota.

Perhaps one of the most striking changes in the

physiology of the host is bleaching. Coral bleaching

is the breakdown of the symbiotic relationship be-

tween corals and their intracellular algae, leading to

the loss of the algae and/or its photosynthetic pig-

ments. Bleaching can be caused by a variety of fac-

tors (e.g. heavy metals, sediment, pathogens) (Coles

and Brown 2003), but is most commonly caused by

increases in sea surface temperatures that disrupt

algal photosynthesis (Hoegh-Guldberg 1999; Hughes

et al. 2003). Not surprisingly, variability in the struc-

ture of bacterial assemblages also occurs during

bleaching (Ritchie 2006; Bourne et al. 2008; Koren

and Rosenberg 2008). It is hypothesized that bleach-

ing leaves the coral host more susceptible to disease,

presumably due to alterations in both its physiology

and its coral-associated microbial assemblages.

Several studies have documented a link between

bleaching events and subsequent outbreaks of disease

(Guzman and Guevara 1998; Harvell et al. 2001;

Muller et al. 2008; Brandt and McManus 2009;

Croquer and Weil 2009; McClanahan et al. 2009;

Miller et al. 2009), further supporting this hypothesis.

To date, little work has been done to assess the

role that ocean acidification will have on coral

microbiota. The pH of the coral microenvironment

is dynamic, changing in both space and in time. For

instance, intracellular pH in the coral Stylophora pis-

tillata ranges from 7.13 in the light to 7.41 in the

dark (Venn et al. 2009), while the pH of the coral

surface in Favia sp. varies from 7.3 in the dark to 8.5

in the light (Kuhl et al. 1995). Thus, bacteria that

colonize the coral microhabitat must be able to with-

stand diurnal fluctuations in pH associated with algal

photosynthesis.

Despite being exposed to a large range of pH,

there is some evidence that increasing acidity leads

to variability in coral-associated microbiota. Similar

to increasing temperatures, Vega Thurber (2009)

found that decreasing the pH of seawater to 7.4

shifted the microbiome of P. compressa to a more

disease-associated state. The mechanisms driving
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this shift are unknown, but like other environmental

processes that drive changes in the structure of

coral-associated bacterial assemblages, a complex in-

teraction between direct and indirect effects on the

coral holobiont is hypothesized. For instance, pH is

an important factor regulating virulence pathways in

other pathogens (Nakayama and Watanabe 1995; Li

et al. 2007; Fuentes et al. 2009; Gong et al. 2009;

Werbrouck et al. 2009), and while this has not

been investigated in corals, it has been shown that

some pathogens of corals have an optimal growth

rate within the range of the pH occurring in the

coral microhabitat (Remily and Richardson 2006;

Rasoulouniriana et al. 2009). Furthermore, other

than decreasing accretion rates, it is unknown how

ocean acidification will alter the physiology and sus-

ceptibility to disease of the host. It is also possible

that synergisms between increasing temperatures and

decreasing pH could cause variation in coral–bacteria

assemblages. For instance, Remily and Richardson

(2006) found that increasing temperatures expanded

the tolerance to pH of Aurantimonas coralicida, the

causative agent of white plague II in the Caribbean.

Therefore, the synergisms between the two environ-

mental factors may enable niche expansion of poten-

tially pathogenic bacteria.

Conclusions

Coral–microorganism interactions represent a useful

model for the types of associations that are likely

important for many marine invertebrates. Coral–bac-

teria assemblages have been relatively well studied

because of the recognized role of bacteria in the

biology of the coral holobiont, and the large

climate-mediated stress coral reef ecosystems have

suffered. From this emerging area we now know

that (1) corals associate with a diverse array of

bacteria, and some of these associations are species-

specific; (2) bacteria can contribute both antibiotic

resistance and some nutrient-cycling capabilities to

their coral host; (3) there are differences in bacterial

associations between healthy corals and those that

are bleached and/or diseased; and (4) climate-driven

temperature stress can alter coral–bacteria assem-

blages to become more characteristic of those

found in diseased corals. However, huge gaps in

knowledge remain regarding the function of coral–

bacteria associations, the specificity of these associa-

tions, and the anticipated impact of climatic change.

The potential exists for very small modifications in

temperature or pH associated with climatic change

to increase the variability of coral–bacterial

populations and in turn affect the health, life history,

and species composition of coral reefs.

Supplementary Data

Supplementary data are available at ICB online.
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