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In the last decade, CORDIC algorithm has drawn wide attention from academia and industry for various applications such as
DSP, biomedical signal processing, software defined radio, neural networks, and MIMO systems to mention just a few. It is an
iterative algorithm, requiring simple shift and addition operations, for hardware realization of basic elementary functions. Since
CORDIC is used as a building block in various single chip solutions, the critical aspects to be considered are high speed, low
power, and low area, for achieving reasonable overall performance. In this paper, we first classify the CORDIC algorithm based
on the number system and discuss its importance in the implementation of CORDIC algorithm. Then, we present systematic and
comprehensive taxonomy of rotational CORDIC algorithms, which are subsequently discussed in depth. Special attention has been
devoted to the higher radix and flat techniques proposed in the literature for reducing the latency. Finally, detailed comparison of
various algorithms is presented, which can provide a first-order information to designers looking for either further improvement
of performance or selection of rotational CORDIC for a specific application.

1. Introduction

The current research in the design of high speed VLSI
architectures for real-time digital signal processing (DSP)
algorithms has been directed by the advances in the VLSI
technology, which have provided the designers with signif-
icant impetus for porting algorithm into architecture. Many
of the algorithms used in DSP and matrix arithmetic require
elementary functions such as trigonometric, inverse trigono-
metric, logarithm, exponential, multiplication, and division
functions. The commonly used software solutions for the
digital implementation of these functions are table lookup
method and polynomial expansions, requiring number of
multiplication and additions/subtractions. However, digit-
by-digit methods exist for the evaluation of these elementary
functions, which compute faster than software solutions.

Some of the digit-by-digit methods for the computation
of the above mentioned elementary functions were described
by Henry Briggs in 1624 in “Arithmetica Logarithmica”
[1, 2]. These are iterative pseudo division and pseudo
multiplication processes, which resemble repeated-addition
multiplication and repeated-subtraction division. In 1959,

Volder has proposed a special purpose digital computing
unit known as COordinate Rotation DIgital Computer
(CORDIC), while building a real time navigational computer
for use in an aircraft [3, 4]. This algorithm was initially
developed for trigonometric functions which were expressed
in terms of basic plane rotations.

The conventional method of implementation of 2D
vector rotation shown in Figure 1 using Givens rotation
transform is represented by the equations

xout = xin cos θ − yin sin θ,

yout = xin sin θ + yin cos θ,
(1)

where (xin, yin) and (xout, yout) are the initial and final
coordinates of the vector, respectively. The hardware real-
ization of these equations require four multiplications,
two additions/subtractions and accessing the table stored
in memory for trigonometric coefficients. The CORDIC
algorithm computes 2D rotation using iterative equations
employing shift and add operations. The versatility of
CORDIC is enhanced by developing algorithms on the same
basis to convert between binary to binary coded decimal
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(BCD) number representation by Daggett in 1959 [5]. These
iterative methods were described using decimal radix for
the design of powerful small machines by Meggitt in 1962
[6]. Subsequently, Walther in 1971 [7, 8] has proposed a
unified algorithm to compute rotation in circular, linear,
and hyperbolic coordinate systems using the same CORDIC
algorithm, embedding coordinate systems as a parameter.

During the last 50 years of the CORDIC algorithm a
wide variety of applications have emerged. The CORDIC
algorithm has received increased attention after an unified
approach is proposed for its implementation [7]. Thereafter,
CORDIC based computing has been the choice for scientific
calculator applications and HP-2152A co-processor, HP-
9100 desktop calculator, HP-35 calculator are a few such
devices based on the CORDIC algorithm [1, 8]. The
CORDIC arithmetic processor chip is designed and imple-
mented to perform various functions possible in rotation
and vectoring mode of circular, linear, and hyperbolic
coordinate systems [9]. Since then, CORDIC technique has
been used in many applications [10], such as single chip
CORDIC processor for DSP applications [11–15], linear
transformations [16–21], digital filters [17], [22–24], and
matrix based signal processing algorithms [25, 26]. More
recently, the advances in the VLSI technology and the advent
of EDA tools have extended the application of CORDIC
algorithm to the field of biomedical signal processing [27],
neural networks [28], software defined radio [29], and
MIMO systems [30] to mention a few.

Although CORDIC may not be the fastest technique to
perform these operations, it is attractive due to its potential
for efficient and low cost implementation of a large class of
applications. Several modifications have been proposed in
the literature for the CORDIC algorithm during the last two
decades to provide high performance and low cost hardware
solutions for real time computation of a two dimensional
vector rotation and transcendental functions.

A new type of arithmetic operation called fast rotations
or orthonormal µ-rotations over a set of fixed angles is
proposed [31]. These orthonormal µ-rotations are based
on the idea of CORDIC and share the property that
performing the rotation requires a minimal number of shift-
add operations. These fast rotations methods form a viable
low cost alternative to the CORDIC arithmetic for certain
applications such as FIR filter banks for image processing,
the generation of spherical sample rays in 3D graphics, and
the computation of eigenvalue decomposition and singular
value decomposition.

We have carried out the critical study of different
architectures proposed in the literature for 2D rotational
CORDIC in circular coordinate system, to initiate the work
for further latency reduction or throughput improvement.
In this paper, we will review the architectures proposed
for rotational CORDIC. Specifically, we focus on redundant
unfolded architectures, employing techniques suitable to
increase throughput and reduce latency.

The rest of the paper is organized as follows. In
Section 2, the basics of redundant arithmetic are presented.
In Section 3, we present a review of generalized CORDIC
algorithm, radix-2 and radix-4 CORDIC algorithms. In
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Figure 1: Two dimensional vector rotation.

Section 4, general architectures being employed in literature
for the implementation of the CORDIC algorithm are
discussed. In Section 5, the complete taxonomy of rotational
CORDIC algorithms is presented. Section 6 presents the
low latency nonredundant CORDIC algorithm. Sections 7–
9 provide different redundant CORDIC algorithms along
with the architectures being proposed in the literature for the
rotational CORDIC, followed by the comparison of different
methods in Section 10. Finally, conclusions are presented in
Section 11.

2. Redundant Arithmetic [32, 33]

A nonredundant radix-ρ number system has the set
{0, 1, . . . , ρ−1} and all numbers can be uniquely represented.
To avoid carry propagation delay in addition, redundant
binary number system is employed. The two common redun-
dant number systems employed in CORDIC arithmetic
are the signed-digit (SD) [34–37] and the carry-save (CS)
[38] number systems. In a SD number system for radix
ρ, the numbers are represented with digit set {−β,−β +
1, . . . ,−1, 0, +1, . . . ,α}, where α ≤ (ρ − 1) and (1 ≤ β ≤
(ρ−1)). For symmetric digit set, α = β, and each digit s of SD
number system is represented as (s+, s−) by (p,n) encoding
such that (s+ − s− = s). In the radix-2 SD number system,
numbers are represented with digits {−1, 0, 1}. In the carry-
save number system, numbers are represented with digit set
{0, 1, 2}. It may be observed that, in both SD and CS number
systems each number can be represented in multiple ways.
The redundancy in SD and CS number representation limits
the carry propagation from each stage to its immediate more
significant bit position only. In both the SD/CS adders, all
sum bits are generated with two full adder delay independent
of the word length. Hence, the application of redundant
arithmetic can accelerate the additions/subtractions due to
carry-free or limited carry-propagation.

3. CORDIC Algorithm

The CORDIC algorithm involves rotation of a vector v on
the XY-plane in circular, linear and hyperbolic coordinate
systems depending on the function to be evaluated. Tra-
jectories for the vector vi for successive CORDIC iterations
are shown in Figure 2. This is an iterative convergence
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algorithm that performs a rotation iteratively using a series
of specific incremental rotation angles selected so that each
iteration is performed by shift and add operation. The
norm of a vector in these coordinate systems is defined

as
√
x2 + my2, where m ∈ {1, 0,−1} represents a circular,

linear or hyperbolic coordinate system respectively. The
norm preserving rotation trajectory is a circle defined by x2 +
y2 = 1 in the circular coordinate system. Similarly, the norm
preserving rotation trajectory in the hyperbolic and linear
coordinate systems is defined by the function x2− y2 = 1 and
x = 1, respectively. The CORDIC method can be employed
in two different modes, namely, the rotation mode and the
vectoring mode. The rotation mode is used to perform the
general rotation by a given angle θ. The vectoring mode
computes unknown angle θ of a vector by performing a finite
number of microrotations.

3.1. Generalized CORDIC Algorithm. The generalized equa-
tions of the CORDIC algorithm for an iteration can be
written as [7]

xi+1 = xi −mσiyiρ
−Sm,i ,

yi+1 = σixiρ−Sm,i + yi,

zi+1 = zi − σiαm,i,

(2)

where σi represents either clockwise or counter clockwise
direction of rotation, ρ represents the radix of the number
system, m steers the choice of circular (m = 1), linear
(m = 0) or hyperbolic (m = −1) coordinate systems, Sm,i

is the nondecreasing integer shift sequence, and αm,i is the
elementary rotation angle. The latter directly depends on Sm,i

through the relation

αm,i =
1√
m

tan−1
(√

mρ−Sm,i

)
. (3)

The shift sequence Sm,i depends on the coordinate system and
the radix of number system. Sm,i affects the convergence of
the algorithm and n affects the accuracy of the final result.
A detailed discussion on these is presented later. The value
of σi depends on the radix of the number system and is
determined by the following equation assuming that vector
is either in the first or in the fourth quadrant:

σi =

⎧⎨
⎩

sign(zi), for rotation mode,

− sign
(
yi
)
, for vectoring mode,

(4)

where z and y are the steering variables in rotation and
vectoring mode respectively. The required microrotations are
not perfect and increase the length of the vector. In order to
maintain a constant vector length, the obtained results have
to be scaled by the scale factor

K =
∏

i

ki,

ki =
√

1 + mσ2
i ρ
−2Sm,i ,

(5)

where ki denotes the elementary scaling factor of the ith
iteration, and K is the resultant scaling factor after n
iterations. The computation of scale factor and its compen-
sation increases the computational overhead and hardware
depending on the number system employed in the CORDIC
arithmetic.

With the appropriate initial values of x, y, and z, both
rotation and vectoring modes can be used to compute
commonly used elementary functions [39] given in Table 1.

3.2. CORDIC Algorithm for Circular Coordinate System. We
present in this section the detailed description of 2D plane
rotation in circular coordinate system, since this is used
in many applications. The CORDIC algorithm calculates
trigonometric functions, rotation of a vector and angle of
a vector by realizing two dimensional vector rotation in
circular coordinate systems. Figure 3 shows the rotation of
a vector with length Min by a sequence of microrotations
through the elementary angles αi. Equation (2) represents the
iterative rotation by an angle αi in circular coordinate system
for m = 1 and is given by

xi+1 = xi − σiyiρ
−i,

yi+1 = σixiρ
−i + yi,

zi+1 = zi − σiαi .

(6)

The values of αi are chosen such that tan (αi) = ρ−i and
the multiplication of tangent term is reduced to simple
shift operation. It may observed that the norm of vector
in (i + 1)th iteration is extended compared to that in

ith rotation, that is Mi+1 = Mi

√
1 + tan2α. The increase

in magnitude of the vector in every iteration depends on
the radix of the number system and number of iterations
and is represented by the scale factor K . The direction of
iterative rotation is determined using zi or yi depending on
rotation mode or vectoring mode respectively. The number
of microrotations to be performed in both the modes
depends on the desired computing accuracy and can be
constant for a particular computer of finite word length. The
number of microrotations in turn decides the number of
elementary angles. The iterative equations of the CORDIC
algorithm for radix-2 and radix-4 number systems will be
presented in the following sections.

3.2.1. Rotation Mode. In rotation mode, the input angle θ
will be decomposed using a finite number of elementary
angles [3]

θ = σ0α0 + σ1α1 + · · · + σn−1αn−1, (7)

where n indicates the number of microrotations, αi is the
elementary angle for ith iteration and σi is the direction
of ith microrotation. In rotation mode, z0 is the angle
accumulator initialized with the input rotation angle. The
direction of vector in every iteration must be determined
to reduce the magnitude of the residual angle in the angle
accumulator. Therefore, the direction of rotation in any
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Table 1: Realization of some functions using CORDIC Algorithm.

m Mode Initialization Output

1 (Circular) Rotation

x0 = xin xn = Km · (xin cos θ − yin sin θ)

y0 = yin yn = Km · (yin cos θ + xin sin θ)

z0 = θ zn = 0

x0 = 1/Km xn = cos θ

y0 = 0 yn = sin θ

z0 = θ zn = 0

x0 = 1 xn =
√

1 + a2

y0 = a yn = sin θ

z0 = π/2 zn = 0

1 (Circular) Vectoring

x0 = xin xn = Km · sign(x0) · (x2
in + y2

in)1/2

y0 = yin yn = 0

z0 = 0 zn = tan−1(yin/xin)

0 (Linear) Rotation

x0 = xin xn = xin

y0 = yin yn = yin + xin · z

z0 = z zn = 0

0 (Linear) Vectoring

x0 = xin xn = xin

y0 = yin yn = 0

z0 = z zn = z + yin/xin

−1 (Hyperbolic) Rotation

x0 = xin xn = Km · (xin cosh θ + yin sinh θ)

y0 = yin yn = Km · (yin cosh θ + xin sinh θ)

z0 = θ zn = 0

x0 = 1/Km xn = cosh θ

y0 = 0, z0 = θ zn = 0, yn = sinh θ

x0 = a xn = aeθ

y0 = a, z0 = θ zn = 0, yn = aeθ

−1 (Hyperbolic) Vectoring
x0 = xin xn = Km · sign(x0) · (x2

in − y2
in)1/2

y0 = yin yn = 0, zn = θ + tanh−1(yin/xin)

x0 = a xn =
√
a2 − 1

y0 = 0 yn = 0, zn = coth−1a

x0 = a + 1 xn = 2
√
a

y0 = a− 1 yn = 0, zn = 0.5 ln(a)

x0 = a + b xn = 2
√
ab

y0 = a− b yn = 0, zn = 0.5 ln(a/b)
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Figure 2: Rotation in various coordinate systems.

O x

y

θ

M
in

(xout, yout)

(xin, yin)

(a)

θ =

∑∞
i=0 αi

ROT(θ) =
∏∞

i=0 ROT(αi)

(b)

y

O xXi+1 Xi

Yi+1

Yi

M
i
√ (1

+
ta

n
2 α
i)

Mi tanαi

Mi
αi

Q

(c)

Figure 3: CORDIC algorithm based 2D vector rotation.

iteration is determined using the sign of the residual angle
obtained in the previous iteration. The coordinates of a
vector obtained after n microrotations are

xn = K
(
xin cos θ − yin sin θ

)
,

yn = K
(
xin sin θ + yin cos θ

)
,

zn −→ 0.

(8)

3.2.2. Vectoring Mode. In vectoring mode, the unknown
angle of a vector is determined by performing a finite number
of microrotations satisfying the relation [3]

−θ = σ0α0 + σ1α1 + · · · + σn−1αn−1. (9)

The vectoring mode rotates the input vector through a
predetermined set of n elementary angles so as to reduce the
y coordinate of the final vector to zero as closely as possible.
Therefore, the direction of rotation in every iteration must
be determined based on the sign of residual y coordinate
obtained in the previous iteration. The coordinates obtained
in vectoring mode after n iterations are given by

xn = K
√
x2

in + y2
in,

yn −→ 0,

zn = tan−1

(
yin

xin

)
.

(10)

3.2.3. Radix-2 CORDIC Algorithm. The iteration equations
of the radix-2 CORDIC algorithm [7] in rotation mode of
circular coordinate system at the (i + 1)th step are obtained
by using ρ = 2 in (6) and are given by

xi+1 = xi − σi2
−iyi,

yi+1 = σi2
−ixi + yi,

zi+1 = zi − σiαi,

(11)

where αi = tan−1(2−i) and

σi =

⎧⎨
⎩
−1, for zi < 0,

1, otherwise.
(12)

In order to maintain a constant vector length, the obtained
results have to be scaled by the scale factor K given by

K =
n−1∏

i=0

√
1 + 2−2i. (13)

For radix-2 CORDIC, K ≈ 1.65. The major drawback of the
conventional CORDIC algorithm is its relatively high latency
and low throughput due to the sequential nature of the
iteration process with carry propagate addition and variable
shifting in every iteration. To overcome these drawbacks,
pipelined implementations are proposed [40, 41]. However,
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the carry propagate addition remained a bottleneck for
further throughput improvement. Two major methodologies
have been employed in the literature to increase the speed
of CORDIC implementation. One reduces the delay of
each iteration by adopting redundant arithmetic to radix-
2 CORDIC [42] to eliminate carry propagate addition. The
other technique involves reducing the number of iterations
by increasing the radix employed for the implementation of
CORDIC algorithm [43].

The redundant radix-2 CORDIC [42] is proposed by
employing redundant arithmetic. The direction of rotations
σi, are selected from the set {−1, 0, 1} in contrast to {−1, 1}
employed in the conventional CORDIC. These σi values are
computed by evaluating a few most significant digits of zi,
since the determination of sign of a redundant number takes
long time. This redundant CORDIC algorithm performs no
rotation extension for σi = 0 and affects the value of scaling
factor K , thus making it data-dependent. Therefore, K has
to be calculated for each microrotation. This calculation and
correction increases the computation time and hardware.

3.2.4. Redundant Radix-4 CORDIC Algorithm. As men-
tioned above, the speed of CORDIC algorithm implementa-
tion can be improved by reducing the number of iterations.
The iteration equations for the radix-4 CORDIC algorithm
in rotation mode derived at the (i + 1)th step by using ρ = 4
in (6) and are given by

xi+1 = xi − σi4
−iyi,

yi+1 = σi4
−ixi + yi,

wi+1 = wi − tan−1
(
σi4

−i
)

,

(14)

where σi ∈ {−2,−1, 0, 1, 2}. The final x and y coordinates
are scaled by

K =
∏

i≥0

ki =
∏

i≥0

(
1 + σ2

i 4−2i
)1/2

. (15)

Here, the scale factor K depends on the values of σi and
hence, has to be computed in every iteration. The range of
K is (1, 2.52) for radix-4 CORDIC. In this CORDIC, the
direction of rotation is computed based on the estimated
value of wi [43]. The w path involves the computation
of estimated wi and evaluation of selection function to
determine σi resulting in increase of the iteration delay
compared to that of radix-2. However, the number of
iterations required for radix-2 CORDIC can be halved by
employing the radix-4 CORDIC algorithm.

The Scale factor computation and compensation,
CORDIC algorithm convergence and accuracy aspects are
presented in following sections.

3.2.5. Scale Factor Computation. The CORDIC rotation steps
change the length of the vector in every iteration resulting in
the distortion of the norm of the vector as shown in Figure 3
and is given by (5). In nonredundant radix-2 CORDIC, K is
constant since σ = ±1. However, K is no longer constant for

nonredundant radix higher than 2, and redundant number
system. For radix-2, the scale factor needs to be computed for
n/2 iterations as ki =

√
1 + 2−2i becomes unity for i > n/2+1.

In redundant radix-4 CORDIC [43], scale factor (15) is not
constant. In addition, it is sufficient to compute K for n/4
iterations as ki =

√
1 + 4−2i becomes unity thereafter.

3.2.6. Scale Factor Compensation. The scale factor compen-
sation technique involves scaling of the final coordinates
(xn, yn) with 1/K . The most direct method for scaling
operation is the multiplication of (xn, yn) by 1/K using
the CORDIC module in linear mode [7]. This can realized
using the CORDIC module in linear mode [7]. However,
this method requires n shift and add operations which are
comparable to the computational effort of the CORDIC
algorithm itself. Since K−1 is constant for radix-2, the
computational overhead can be reduced by using CSD
recoded multiplier. On an average, the number of nonzero
digits can be reduced to n/3 using CSD representation
[32] and hence, the effort for multiplication using CSD
recoded multiplier is approximately one third that required
using conventional multiplier. Further, scaling can also be
implemented using a Wallace tree by fully parallelizing
multiplication and is preferred for applications aiming for
low latency at the expense of more silicon area [44].

Scaling may be done by extending the sequence of
CORDIC iterations [9, 16, 17] to avoid additional hardware
required in the direct method. A comparison of several scale
factor compensation techniques proposed in the literature
along with two additional methods, additive and multi-
plicative decomposition approaches, for radix-2 CORDIC is
presented in [44]. It is observed from the presented results
that additive technique offers a low latency solution and
multiplicative technique offers an area economical solution
for applications of CORDIC employing array and pipelined
architectures. An algorithm is proposed [45] to performs
scale factor compensation in parallel with the CORDIC
rotation using nonredundant and redundant arithmetic,
thereby, eliminating the final multiplication [3] or additional
scaling iterations [9, 16, 17].

3.2.7. Convergence. The CORDIC algorithm involves the
rotation of a vector to reduce the z or y coordinate of the
final vector as closely as possible to zero for rotation or
vectoring mode respectively. The maximum value of rotation
angle by which the vector can be rotated depends on the shift
sequence [7]. The expected results of the CORDIC algorithm
can be obtained if the z or y coordinate is driven sufficiently
close to zero. In addition, it can be guaranteed to drive z or y
to zero, if the initial values of a vector (xin, yin, zin) or (xin, yin)
lies within the permissible range. These ranges define the
domain of convergence of the CORDIC algorithm.

For n-bit precision, the given rotation angle can be
decomposed as

θ =
n−1∑

i=0

σiαi + ϕ, (16)
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where ϕ is an angle approximation error such that |ϕ| < αn−1

and is negligible in practical computation [7]. This angle
approximation error in rotation and vectoring mode can be
computed as

ϕ(rotation) = tan−1(zn),

ϕ
(
vectoring

)
= tan−1

(
yn
xn

)
.

(17)

The magnitude of elementary angle for the given shift
sequence may be predetermined using

αi = tan−1ρ−Sm,i , (18)

where ρ is the radix of the number system. The direction
of rotation σi must be selected to drive z or y towards
zero for rotation or vectoring respectively. The range of σi
depends on the radix and digit set being used for the number
system. Since the number of iterations and elementary angles
to be traversed by the vector during these iterations are
predetermined, the range of θ for which CORDIC algorithm
can be used, called domain of convergence, is given by [7]

|θ| =
n−1∑

i=0

αi + αn−1. (19)

The convergence range of CORDIC algorithm can be defined
for rotation mode as

zin ≤
n−1∑

i=0

αi + αn−1 (20)

and for vectoring mode as

tan−1

(
yin

xin

)
≤

n−1∑

i=0

αi + αn−1. (21)

The expected final results cannot be obtained, if the given
initial values xin, yin and zin do not satisfy these convergence
values. The range of convergence of the CORDIC algorithm
can be extended from ±π/2 to ±π using preprocessing
techniques [7, 27, 46].

3.3. Accuracy. The accuracy of the CORDIC algorithm is
affected by two primary sources of error, namely, angle
approximation and rounding error. The error bounds for
these two sources of error are derived by performing the
detailed numerical analysis of the CORDIC algorithm [47].
The approximation error and the rounding error derived
are combined to yield the overall quantization error in the
CORDIC computation. The overall quantization error can be
assured to be within the range by considering an additional
log2n guard bits in the implementation of the CORDIC
algorithm [7].

3.3.1. Angle Approximation Error. Theoretically, the rotation
angle θ is decomposed into infinite number of elementary
angles as shown in Figure 3. For practical implementation,

CORDIC
architecture

Folded Unfolded

Bit serial Word serial Pipelined Parallel

Figure 4: Taxonomy of CORDIC architectures.

a finite number of microrotations n are considered. Hence,
the input rotation angle θ can only be approximated resulting
in an angle approximation error ϕ

∣∣ϕ
∣∣ < αn−1, (22)

where αn−1 is the residual angle after n microrotations.
Hence, the accuracy of the output of the nth iteration is
principally limited by the magnitude of the last rotation
angle.

3.3.2. Rounding Error. The second type of error called
rounding error is due to the truncation of CORDIC internal
variables by the finite length of storage elements. In addition
scale factor compensation also contributes to this error. In a
binary code, the truncation of intermediate results after every
iteration introduces maximum rounding error of log2n bits.
To achieve a final accuracy of 1 bit in n bits, an additional
log2n guard bits must be considered in implementation of
this algorithm [7].

4. CORDIC Architectures

In this section, a few architectures for mapping the CORDIC
algorithm into hardware are presented. In general, the
architectures can be broadly classified as folded and unfolded
as shown in Figure 4, based upon the realization of the three
iterative equations (6). Folded architectures are obtained by
duplicating each of the difference equations of the CORDIC
algorithm into hardware and time multiplexing all the
iterations into a single functional unit. Folding provides
a means for trading area for time in signal processing
architectures. The folded architectures can be categorized
into bit-serial and word-serial architectures depending on
whether the functional unit implements the logic for one bit
or one word of each iteration of the CORDIC algorithm.

The CORDIC algorithm has traditionally been imple-
mented using bit serial architecture with all iterations
executed in the same hardware [3]. This slows down the
computational device and hence, is not suitable for high
speed implementation. The word serial architecture [7, 48]
is an iterative CORDIC architecture obtained by realizing
the iteration equations (6). In this architecture, the shifters
are modified in each iteration to cause the desired shift
for the iteration. The appropriate elementary angles, αi are
accessed from a lookup table. The most dominating speed
factors during the iterations of word serial architecture are
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carry/borrow propagate addition/subtraction and variable
shifting operations, rendering the conventional CORDIC
[7] implementation slow for high speed applications. These
drawbacks were overcome by unfolding the iteration process
[41, 48], so that each of the processing elements always
perform the same iteration as shown in Figure 5. The main
advantage of the unfolded pipelined architecture compared
to folded architecture is high throughput due to the hard-
wired shifts rather than time and area consuming barrel
shifters and elimination of ROM. It may be noted that the
pipelined architecture offers throughput improvement by a
factor of n for n-bit precision at the expense of increasing the
hardware by a factor less than n.

5. CORDIC Taxonomy

The implementation of CORDIC algorithm has evolved
over the years to suit varying requirements of applications
from conventional nonredundant to redundant nature.
The unfolded implementation with redundant arithmetic
initiated the efforts to address high latency in conventional
CORDIC. Subsequently, several modifications have been
proposed for redundant CORDIC algorithm to achieve
reduction in iteration delay, latency, area and power. The
evolution of the unfolded rotational CORDIC algorithms
is shown in Figure 6. As this taxonomy is fairly rich, the
remainder of the review presents taxonomy in top-down
approach.

CORDIC is broadly classified as nonredundant CORDIC
and redundant CORDIC based on the number system
being employed. The major drawback of the conventional
CORDIC algorithm [3, 7] was low throughput and high
latency due to the carry propagate adder used for the
implementation of iterative equations. This contradicted the
simplicity and novelty of the CORDIC algorithm attracting
the attention of several researchers to device methods to
increase the speed of execution. The obvious solution is to
reduce the time for each iteration or the number of iterations
or both. The redundant arithmetic has been employed
to reduce the time for each iteration of the conventional
CORDIC. We have analyzed and presented in the following
Sections, features of different pipelined and nonpipelined
unfolded implementations of the rotational CORDIC.

6. Low Latency Nonredundant
Radix-2 CORDIC [49]

A significant improvement for the conventional rotational
CORDIC algorithm in circular coordinate system is pro-
posed [50], employing linear approximation to the rotation
when the remaining angle is small. This remaining angle is
chosen such that a first order Taylor series approximation
of sin θr and cos θr , calling θr the remaining angle, may be
employed as sin θr ≈ θr and cos θr ≈ 1. The architecture for
the implementation of this algorithm using nonredundant
arithmetic is presented in [49]. The iteration equations of
this algorithm for the first n/2 + 1 microrotations are same
as those for the conventional CORDIC algorithm (11). The

σi values for the first n/3 iterations are determined itera-
tively using the sign of angle accumulator zi. The rotation
directions from iteration n/3 + 1 onwards can be generated
in parallel, since the conventional circular arc tangent radix
values approach the radix-2 coefficients progressively for
increasing values of CORDIC iteration index as evident from
the expression

lim
k→∞

tan
(

2−k
)

2−k
= 1. (23)

For the range of iterations (n/3 + 1) ≤ i ≤ (n/2 + 1), all
σi values are determined from the recoded representation
of remaining angle z(n/3+1). These σi values are used to
obtain z(n/2+1) from z(n/3+1). For i > (n/2 + 1), the CORDIC
microrotations are replaced by a single rotation using the
remaining angle z(n/2+1). Thus, (11) is modified as

x f = x(n/2+2) = k(n/2+1)

(
x(n/2+1) − θr y(n/2+1)

)
,

y f = y(n/2+2) = k(n/2+1)

(
θrx(n/2+1) + y(n/2+1)

)
,

(24)

where θr = z(n/2+1), k(n/2+1) is the scale factor in the (n/2+1)th
iteration and (x f , y f ) are the scaled final coordinates.

Scale Factor. The low latency nonredundant radix-2
CORDIC algorithm achieves constant scale factor since
σi ∈ {−1, 1} and performs the scale factor compensation
concurrently with the computation of x and y coordinates,
using two multipliers in parallel [49]. This is in contrast to
two series multiplications required in the algorithm [50].

7. Constant Scale Factor Redundant
Radix-2 CORDIC

Redundant radix-2 CORDIC methods can be classified as
variable and constant scale factor methods based on the
dependence of scale factor on the input angle. In redundant
radix-2 CORDIC [42], σi ∈ {−1, 0, 1} and hence scale factor
K is data-dependent. Therefore, K has to be calculated for
each microrotation. This calculation and correction increases
the computation time and hardware. Several redundant
CORDIC algorithms with constant scale factor are available
in the literature [51–53] to address data dependency of
the scale factor as shown in Figure 7. In these methods,
the iterative rotations of a point around the origin on the
XY-plane are considered (see Figure 1). The direction of
each rotation depends on the sign of steering variable zi,
which represents the remaining angle of rotation. Since
the computation of the sign of redundant number requires
more time, estimated value of zi (ẑi) is used to determine
the direction of rotation. The estimated value is computed
based on the value of the three most significant digits of
zi. Constant scale factor is achieved by restricting σi to
the set {−1, 1}, thus facilitating a faster implementation.
The constant scale factor methods can be classified based
on the arithmetic employed as redundant radix-2 CORDIC
with signed digit arithmetic and carry save arithmetic (see
Figure 7).
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Figure 5: Unfolded pipelined CORDIC architecture.

Scale Factor. The scale factor need not be computed for the
implementation of all the constant scale factor techniques
discussed in this section. In these methods, no specific
scale factor compensation technique is considered. It may
be noted that a specific compensation technique can be
considered depending on the application.

7.1. Constant Scale Factor Redundant CORDIC Using SD
Arithmetic. The redundant radix-2 CORDIC using SD
arithmetic can be further classified based on the tech-
nique employed to achieve constant scale factor (see
Figure 7). These methods are implemented using the
basic CORDIC iteration recurrences (11) with necessary
transformations.

7.1.1. Double Rotation Method [51]. The double rotation
method performs two rotation-extensions for each elemen-
tary angle during the first n/2 iterations for n bit precision
to achieve constant scale factor independent of the operand.
One rotation extension is performed for every elementary
angle for iterations greater than n/2. A negative rotation
is performed by two negative subrotations, and a positive
rotation by two positive subrotations. A nonrotation is
performed by one negative and one positive subrotation.
Hence, 50% additional iterations are required compared to
the redundant CORDIC [42].

7.1.2. Correcting Rotation Method [51]. This is another
method proposed to achieve constant scale factor for the
computation of sine and cosine functions. This method
avoids rotation corresponding to σi = 0 and performs one
rotation extension in every iteration depending on the ẑi.
Further, extra rotation extensions are performed at fixed
intervals for correcting the error introduced by avoiding
σi = 0 and to assure convergence. If b fractional bits are
used to estimate zi, the interval between correcting iterations
should be less than or equal to (b − 2) [54]. This method
also requires 50% additional iterations, if three or four most
significant digits are used for sign estimation. The increase in
latency of rotational CORDIC due to these double rotation
and correcting iteration methods is reduced using branching
algorithm [52].

7.1.3. Branching Method [52]. This method implements
CORDIC algorithm using SD arithmetic, restricting the
direction of rotations σi to ±1, without the need for extra
rotations. This requires two modules in parallel to perform
two conventional CORDIC iterations, such that, the correct
result is retained at the end of each iteration. Two modules
perform the rotation in the same direction if the sign of
corresponding zi can be determined. Otherwise, branching
is performed by making one CORDIC module (z+) perform
rotation with σi = +1 and another module (z−) perform
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Figure 6: Taxonomy of CORDIC algorithms.
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Figure 7: Taxonomy of constant scale factor redundant radix-2 CORDIC methods.

rotation with σi = −1. The direction of rotation in the next
subsequent rotation is decided by the sign of that zi module
whose value is small. In every iteration i, angle accumulator
(z+ or z−) computes the remaining angle (z+

i or z−i ) to
determine the direction of rotation for the next iteration. The
direction of rotation is determined by examining window of
three digits of z+

i or z−i .
The disadvantage of branching method is the necessity

of performing two conventional CORDIC iterations in
parallel which requires almost two fold effort in terms of
implementation complexity. In addition, one of the modules
will not be utilized when branching does not take place.
However, this method offers faster implementation than
double and correcting rotation methods [51], since, it does
not require additional iterations to achieve constant scale
factor.

7.1.4. Double Step Branching Method [53]. The performance
of branching algorithm is enhanced by the double step
branching method to improve utilization of hardware. This
method involves determining two distinct σi values in
each step with some additional hardware compared to the
branching method, where the two modules do different
computations only when branching takes place. Double
step branching method determines the two direction of
rotations by examining the six most significant digits to do a
double step. These six digits are divided into two subgroups
of three digits each, and each subgroup is handled in
parallel, to generate the required σi using zeroing modules (z
path). Although double stepping method introduces a small
hardware overhead compared to the branching method, it is
better than the latter since it increases the utilization of x/y
rotator modules.

7.2. Constant Scale Factor Redundant CORDIC Using CS
Arithmetic. It is worth discussing here one more classifi-
cation related to constant scale factor redundant radix-2
CORDIC (see Figure 7). The implementation of redundant
CORDIC with constant scale factor using signed arithmetic
results in an increase in the chip area [51–53] and latency
[51] by at least 50% compared to redundant radix-2
CORDIC [42]. Low latency CORDIC algorithm [55] and
differential CORDIC algorithm [56, 57] with constant scale

factor using CS arithmetic have been proposed to reduce this
overhead, the details of which are discussed below.

7.2.1. Low Latency Redundant CORDIC [55]. This algorithm
is proposed to reduce the latency of redundant CORDIC
[51] by subdividing the n iterations into different groups and
using different techniques for each of these groups. For all the
iterations, if σi = ±1, conventional iteration equations (11)
are used. This method avoids σi = 0 for iterations between
0 ≤ i ≤ (n − 3)/4 and employs correcting rotation method
[51]. For iterations (n − 3)/4 < i ≤ (n + 1)/2, σi = 0 is
considered as a valid choice. Since for this group of iterations
ki =

√
1 + 2−2i = 1 + 2−2i−1 holds within n-bit precision,

vector is not rotated for σi = 0. However, the length of
the vector is increased by the scale factor for that iteration,
as the final coordinates are scaled assuming constant scale
factor. For the iterations i > (n + 1)/2, no correcting factor is
required as the scale factor becomes unity.

7.2.2. DCORDIC [56]. In the sign estimation methods [51–
53], half of the computational effort in the x/y/z data
paths of rotational CORDIC is required to allow for the
correction of possible errors, as the sign estimation is not
entirely perfect. This problem is reduced by high speed
bit-level pipelining technique with CS arithmetic proposed
in [57]. This algorithm involves the transformation of the
conventional CORDIC iteration equations (11) into partially
fixed iteration equations, given by

∣∣ẑi+1

∣∣ =
∣∣∣∣ẑi

∣∣− αi
∣∣,

xi+1 = xi − sign(zi)2−iyi ,

yi+1 = sign(zi)2−ixi + yi.

(25)

It is clear from these expressions that the computation of
x and y requires the actual sign of zi, while the angle
accumulator requires only the absolute value of ẑi. The
actual sign of zi (σi) can be determined by taking into
account the initial sign of z0 and providing information
about sign changes during the absolute value computation of
ẑi. Similarly, all σi values are computed recursively. Later this
technique is implemented with SD arithmetic and proposed
as Differential CORDIC (DCORDIC) algorithm [56]. Since
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Figure 8: Classification of CORDIC algorithms based on the radix.

the sign calculation of steering variable (ẑi) during absolute
value computation takes long time, most significant digit
first absolute value technique is employed. This technique
replaces the word level sign dependence by a bit level
dependence, reducing the overall computation time. The
bit level pipelined architecture is proposed to implement
these transformed iteration sequences, thus allowing high
operational speed.

8. Higher Radix Redundant CORDIC

As mentioned earlier, throughput and latency are important
performance attributes in CORDIC based systems. The
various radix-2 CORDIC algorithms presented so far may
be used to reduce the iteration delay, thereby improving
the throughput, with constant scale factor. Higher radix
CORDIC algorithms using SD arithmetic [54, 58] and
CS arithmetic [43, 59] are proposed to address latency
reduction. This is possible, since higher radix representation
reduces the number of iterations. The classification of redun-
dant CORDIC algorithms proposed in the literature based
on the radix of the number system is shown in Figure 8. The
application of radix-4 rotations in the CORDIC algorithm
was initially proposed in [54] to accelerate the radix-2
algorithm.

Scale factor need not be computed for the constant
scale factor algorithms to be discussed in this section.
Since no specific scale factor compensation technique is
considered for these methods, a compensation technique can
be considered depending on the application.

8.1. Pipelined Radix-4 CORDIC [58]. The generalized
CORDIC algorithm for any radix in three coordinate systems
and implementation of the same in rotation mode of
circular coordinate system using radix-4 pipelined CORDIC
processor is presented in [58]. This algorithm performs two
successive radix-2 microrotations with the same microrota-
tion angle using the iteration equations

xi+1 = xi −
(
σi,1 + σi,2

)
4−iyi − σi,1σi,24−2ixi,

yi+1 =
(
σi,1 + σi,2

)
4−ixi + yi − σi,1σi,24−2iyi,

zi+1 = zi −
(
σi,1 + σi,2

)
αi,

(26)

where σi,1 and σi,2 are two redundant radix-2 coefficients
to decompose radix-4 coefficient σi ∈ {−2,−1, 0, +1, +2}
satisfying the relation (σi = σi,1 + σi,2). The value of αi is
selected as α0 = 2−1 and αi = 4−i for 1 ≤ i ≤ n − 1. The

selection function for σi is determined using the five most
significant digits of z-coordinate, ensuring the convergence
of this algorithm. This algorithm is designed using SD
arithmetic and requires two adders/subtractors for each stage
of x/y data path in contrast to one adder/subtractor required
in radix-2 CORDIC [42], for i < n/4. However, the number
of additions required are reduced during the last n/4 stages.

Scale Factor Computation. The scale factor K in radix-4
CORDIC algorithm is variable, since σi takes values from the
digit set {−2,−1, 0, +1, +2}. K is computed in each iteration
using the combinational circuit by realizing the expression

K =
n/2−1∏

i=0

ki =
n/2−1∏

i=0

(
1 +

∣∣σi,1
∣∣4−2i

)1/2(
1 +

∣∣σi,2
∣∣4−2i

)1/2
.

(27)

8.2. Redundant Radix 2-4 CORDIC [59]. The number of
rotations in a redundant radix-2 CORDIC rotation unit is
reduced by about 25% by expressing the direction of rota-
tions in radix-2 and radix-4 [54]. This algorithm employs
different modified CORDIC algorithms using CS arithmetic
for different subsets of iterations. For the iterations 1 ≤ i <
n/4, nonredundant radix-2 CORDIC algorithm with σi =
{−1, 1} is employed. For n/4 ≤ i ≤ (n/2 + 1), correcting
iteration method [51] is employed. For i > (n/2 + 1),
redundant radix-4 CORDIC algorithm is employed, thus,
halving the number of iterations. An unified architecture is
proposed for the implementation of this algorithm to operate
in rotation/vectoring mode of circular and hyperbolic coor-
dinate systems.

Scale Factor Computation. This algorithm achieves constant
scale factor, since the rotation corresponding to σ = 0 is
avoided for i ≤ n/2 + 1. Fori > n/2 + 1 scale factor need
not be computed as ki =

√
1 + 4−2i ∼ 1.

8.3. Radix-4 CORDIC [43]. A redundant radix-4 CORDIC
algorithm is proposed using CS arithmetic, to reduce the
latency compared to redundant radix-2 CORDIC [42].
This algorithm (14) computes σi values using two different
techniques. For the microrotations in the range 0 ≤ i < (n/6),
σi is determined sequentially using angle accumulator. For
the microrotations in the range i ≥ (n/6), the σi values are
predicted from the the remaining angle after the first n/6
[60]. Thus, the complexity of the w path is n/6, compared to
n in the other architectures [42–53] presented in the previous
sections. For the range 0 ≤ i < (n/6), microrotations are
pipelined in two stages to increase the throughput. A 32-bit
pipelined architecture is proposed for the implementation of
the radix-4 CORDIC algorithm using CS arithmetic.

Scale Factor Computation. The possible scale factors are
precomputed and stored in a ROM. The number of possible
scale factors for σ2

i ∈ {0, 1, 4} is 3n/4+1. The size of ROM and
access time increases with n. Hence, the scale factors for some
iterations are stored in ROM and these values are used to
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Figure 9: Taxonomy of direction prediction based CORDIC
algorithms.

compute the scale factor for remaining iterations with the
combinational logic. This is designed by realizing the first
few terms of Taylor series expansion of scale factor. For this
redundant radix-4 implementation, the number of iterations
are reduced at the expense of adding hardware for computing
the scale factor.

9. Parallel CORDIC Algorithms

The CORDIC algorithms discussed so far have represented θ
using a set of elementary angles αi called arc tangent radix set
[3]

θ = σ0α0 + σ1α1 + · · · + σn−1αn−1, (28)

where αi = tan−1(2−i) and σi ∈ {−1, 1}, satisfying the
convergence theorem [7]

αi −
n−1∑

j=i+1

α j < αn−1 (29)

in contrast to the representation using a normal radix

θ = σ020 + σ12−1 + · · · + σn−12−n+1. (30)

The direction of rotation σi for the ith iteration is determined
after computing the (i−1) iterations sequentially. It is evident
from this sequential dependence of the radix system that the
speed of CORDIC algorithm can be improved by avoiding
the sequential behavior in the computation of σi values or x/y
coordinates. The various redundant CORDIC algorithms
proposed in the literature employing either one or both these
techniques are shown in Figure 9 and are discussed in the
following sections.

9.1. Low Latency Radix-2 CORDIC [55]. The low latency
parallel radix-2 CORDIC architecture presented for the
rotation mode [55] predicts σi’s by eliminating sequential
dependency of the z path. In order to minimize the
prediction error, directions are predicted for a group of

iterations at a time rather than for all iterations together.
This architecture does not allow rotation for index i = 0.
Hence, the convergence range of this architecture is less
than (−π/2, +π/2). On the other hand, the requirement
of redundant to binary conversions of intermediate results
in the z path restricts the pipelined implementation of
this architecture. In order to reduce the latency of this
parallelizing scheme further, termination algorithm and
booth encoding method have been proposed.

9.2. P-CORDIC [61]. The sequential procedure in the com-
putation of direction of rotations of the CORDIC algorithm
is eliminated by the P-CORDIC algorithm, while main-
taining a constant scale factor. This algorithm precomputes
the direction of microrotations before the actual CORDIC
rotation starts iteratively in the x/y path. This is obtained
by deriving a relation between the constructed binary
representation of direction of rotations d, and rotation angle
θ [40, 62] given by

σ = 0.5θ + 0.5c1 + sign(θ)ǫ0 + δ, (31)

where c1 = 2 −
∑∞

i=0(2−i − tan−1(2−i)), δ =
∑n/3

i=1(σiǫi),
ǫ0 = 1 − tan−1(1), and ǫi = 2−i − tan−1(2−i). Here, δ is
computed using the partial offset ǫi and the corresponding
direction bit σi for the first n/3 iterations, since the value
of ǫi decreases by a factor of 8 beyond n/3 iterations. The
direction of rotations for any input angle θ in binary form are
obtained by realizing this expression taking a variable offset
δ from ROM. The unfolded architecture proposed for the
implementation of this algorithm eliminates the z path and
reduces the area of the implementation. This architecture
achieves latency and hardware reduction over the radix-2
unfolded parallel architecture [55].

Scale Factor. The scale factor in the implementation of P-
CORDIC algorithm remains constant, as σi ∈ {−1, 1} being
generated for the implementation of x/y path. The scale
factor compensation is implemented using constant factor
multiplication technique as discussed in Section 3.2.6.

9.3. Hybrid CORDIC Algorithm. For n-bit fixed point
CORDIC processor in circular coordinate system, nearly n/3
iterations must be computed sequentially. This is true for
both generation of direction and rotation without affecting
accuracy [60]. The subsequent rotation directions for the
last 2n/3 iterations can be generated in parallel since the
conventional circular ATR values approach the radix-2
coefficients progressively with increasing iteration index, that
is,

lim
k→+∞

tan 2−k

2−k
= 1. (32)

This behavior is exploited by introducing the hybrid
CORDIC algorithms to speed up the conventional CORDIC
rotator. This algorithm involves partitioning θ into θH and
θL. The rotation by θH are performed as in the conventional
CORDIC algorithm and the iterations related to θL can be
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simplified as in linear coordinate system. This algorithm led
to the development of several parallel CORDIC algorithms
[63–65]. These can be categorized broadly as mixed-hybrid
CORDIC and partitioned-hybrid CORDIC algorithms. In
mixed-hybrid CORDIC algorithms [65], the input angle θ
and initial coordinates (xin, yin) are used to compute the
rotations for the first n/3 iterations as in the conventional
CORDIC. The remaining angle after these first n/3 iteration
is used for computing directions for the last 2n/3 iterations.
The implementation is designed to keep the fast timing
characteristics of redundant arithmetic in the x/y path of
the CORDIC processing. In the partitioned-hybrid CORDIC
[63, 64], the first n/3 direction of rotations are generated
using the first n/3 bits of θ and last 2n/3 direction of rotations
are predicted using the 2n/3 least significant bits of θ.

9.3.1. Flat CORDIC [63]. The flat CORDIC algorithm is
proposed to eliminate iterative nature in the x/y path for
reducing the total computation time. This algorithm trans-
forms x/y recurrences (11) of the conventional CORDIC into
a parallelized version by successive substitution to express
the final vectors in terms of the initial vectors, resulting in a
single equation for n-bit precision. The expressions for final
coordinates of 16-bit sine/cosine generator are

x16 =
[
1−

{(
σ1σ22−12−2 − · · · − σ1σ232−12−23

− σ2σ32−22−3 − · · · − σ9σ102−92−10
)

+
(
σ1σ2σ3σ42−12−22−32−4 + · · ·

+ σ2σ3σ4σ52−22−32−42−5 + · · ·

+σ3σ4σ6σ72−32−42−62−7
)

+ EC−X
}]

,

y16 =
[
σ12−1 + σ22−2 + · · · + σ162−16

−
(
σ1σ2σ32−12−22−3 − · · · − σ5σ7σ82−52−72−8

)

+
(
σ1σ2σ3σ4σ52−12−22−32−42−5 + · · ·

+σ2σ3σ4σ5σ62−22−32−42−52−6
)

+ EC−Y
]
,

(33)

where EC−X and EC−Y are the error compensation factors
in x16 and y16, respectively. xin and yin are initialized with
1/K and 0 respectively. The 16 sign digits (σ1, σ2, . . . , σ15, σ16)
for 16-bit precision represents the polarity of 16 microrota-
tions required to achieve the target angle. These equations
demonstrate the complete parallelization of the conventional
CORDIC algorithm. This technique precomputes σi which
takes values from the set {−1, 1} to achieve constant scale
factor. The σi’s for the first n/3 iterations are precomputed
employing a technique, called Split Decomposition Algo-
rithm (SDA), which limits the input angle range to (0,π/4)
[66]. The last 2n/3 number of σi’s are predicted from the
remaining angle of n/3 iterations. The internal word length
of the architecture proposed for this technique is considered
as (n + log2n) for n-bit external accuracy [47]. It may be
noted that the complete parallelization of x/y iterations lead
to the exponential increase of terms to be flattened, affecting

the circuit complexity. In addition, the implementation of
flat CORDIC needs complex combinational hardware blocks
with poor scalability.

Scale Factor. The scale factor in the implementation of the
flat CORDIC algorithm is maintained constant, since σi ∈
{−1, 1}. The scale factor compensation is implemented using
a multiplier designed with CS adder tree.

9.3.2. Para-CORDIC [64]. The Para-CORDIC parallelizes
the generation of direction of rotations σ from the binary
value of the input angle θ by employing binary to bipolar
representation (BBR) and microrotation angle recoding
(MAR) techniques. This algorithm computes x/y coordi-
nates iteratively while eliminating iterative z path completely.
The input angle θ is divided into the higher part θH and
lower part θL. The two’s complement binary representation
of input angle θ is

θ = (−d0) +
l−1∑

i=1

di2
−i +

n∑

i=l
di2

−i, (34)

where di ∈ {0, 1} and l = (n − log23)/3. The (l − 1) bits
of input angle are converted into BBR, and MAR technique
is employed to determine the direction of rotations σ1 to
σl−1. Since tan−12−i /= 2−i, this method performs additional
microrotations for every iteration depending on each posi-
tional binary weight 2−i for i = 1, 2, . . . , l − 1. The remaining
angle after the first (l−1) rotations is added to θL. The values
of σl to σn+1 are obtained from BBR of the corrected θL.
This method eliminates ROM for storing the predetermined
direction of rotations. However, it requires additional x/y
stages for the repetition of a certain microrotations and array
of adders to compute the corrected θL.

9.3.3. Semi-Flat CORDIC [65]. The iterative nature in the
implementation of the conventional CORDIC algorithm is
partially eliminated by semi flat algorithm. This is designed
for the semi parallelization of the x/y/z recurrences, to
improve the speed of a rotational unfolded CORDIC without
increasing the area requirements. The internal precision is
taken higher than the required external precision in order to
reduce the quantization error encountered in the CORDIC
algorithm as discussed in Section 3.2.6. For the first λ bits
of σi, x/y recurrences are computed iteratively using the
double rotation method [51] resulting in xλ−1/yλ−1. Then,
xn−1/yn−1 can be expressed in terms of these xλ−1/yλ−1, if
all σi’s are predicted. The σi’s for (nint/3 − λ) bits (nint

= internal precision) of input angle are precomputed and
stored in ROM, which is addressed by (nint/3 − λ) bits of
input angle. The remaining (2nint/3) number of σi’s are
predicted from rotation angle [60]. It may be noted that
neither the description nor the reference is provided for split
decomposition method employed to precompute (nint/3−λ)
number of σi’s.

The computation time and area of the chip are affected
by the choice of λ, which is clear from the simulation
results presented in [65]. It is observed from these simulation
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results that the best trade-off is obtained with λ = 6 and
λ = 8 for a 16-bit CORDIC (internal precision 22 bits)
and 32-bit CORDIC (internal precision 39 bits) respectively.
After λ iterations, all the terms of (xn/yn) were added using
the Wallace tree, flattening the x/y path. However, this
architecture has poor scalability.

Scale Factor. This algorithm achieves constant scale factor,
since σi takes value from the set {−1, 1}.

10. Comparison

We have presented a latency estimate comparison of
unfolded architectures available in the literature for 2D
rotational CORDIC in Table 2. Latency is defined as sum
of the delays for the computation of redundant x/y coor-
dinates, scale factor compensation and redundant to binary
conversion of final x/y coordinates. The design detail of scale
factor compensation and redundant to binary conversion
stages is not made available in the literature for all the
architectures as discussed in the previous sections (Sections
6–9). Hence, we have compared all the CORDIC algorithms
with respect to the latency required for the rotation computa-
tion, excluding the scale factor compensation and redundant
to binary conversion stages. All the architectures presented
in this table are implemented using redundant arithmetic
except the conventional CORDIC [3] and the Low latency
nonredundant CORDIC [49].

The nonpipelined and pipelined implementation of the
conventional radix-2 CORDIC algorithm [3, 7] requires
n iterations to compute x/y coordinates iteratively. The
iteration delay depends on the fast carry propagate adder,
which is the bottleneck to increase throughput and reduce
latency.

The application of redundant arithmetic [42] to the
conventional CORDIC makes σi to take values from the
set {−1, 0, 1} instead of the set {−1, 1}. The σi values are
computed iteratively and the choice of σi = 0 resulted in the
variability of the usually constant scale factor. The variable
scale factor increases the area and delay for scale factor
computation. The latency of this implementation is ntstage,
where tstage is the iteration stage delay in terms of full adder
delay tFA.

The double rotation and correcting rotation redundant
CORDIC methods using SD arithmetic are proposed in
[51], to reduce the cost of the scale factor computation.
The nonpipelined and pipelined implementation of these
methods require latency of 1.5ntstage to compute final x/y
coordinates iteratively. These methods achieve constant
scale factor, increasing the latency by 50% compared to
[42].

Low latency CORDIC algorithm [55] reduces the latency
to ((9n − 3)/8)tstage compared to that 1.5ntstage in [51]. This
algorithm computes iteratively the direction of rotations and
x/y coordinates. In addition, a nonpipelined architecture is
also proposed in this paper using prediction technique. The
latency of this architecture is (n + log3n− 1)tstage.

Branching algorithm using signed digit arithmetic is
proposed to achieve constant scale factor. The latency of non-
pipelined and pipelined implementation of this algorithm
is ntstage. This algorithm achieves 50% latency improvement
over [51] to compute final x/y coordinates iteratively.
However, it requires double the hardware as two sets of x/y/z
modules are employed.

The direction of rotations computed using the sign
estimation methods [51, 52, 55] may not be accurate,
therefore, half of the computational effort is required for
correction. DCORDIC algorithm is proposed to determine
the direction of rotations iteratively using the sign of steering
variable. However, this method requires an initial latency
of ntFA before the CORDIC rotation starts, to obtain the
first direction of rotation. The signs are obtained for the
remaining iterations with one full adder delay using bit level
pipelined architecture with n stages. This implementation
requires latency of ntstage + (n + 1)tFA to compute the final
x/y coordinates iteratively. In addition, this method requires
2.5n initial register rows for skewing of input data.

All the methods presented so far reduce the latency by
decreasing the iteration delay using redundant arithmetic.
Since the latency reduction can also be obtained by reduc-
ing the number of iterations, the same has motivated to
implement radix-4 pipelined CORDIC processor [58], which
results in latency of (3n/4 + 1)tstage.

The mixed radix CORDIC algorithm [59] is proposed
using radix-2 and radix-4 rotations for designing a pipelined
processor to operate in rotation and vectoring modes of
circular and hyperbolic coordinate systems. The latency of
this pipelined architecture requires (3n/4 + 1) stages with
three different stage delays (tstage) as 31tNAND(1 ≤ i < n/4),
34tNAND(n/4 ≤ i ≤ (n/2 + 1)) and 36tNAND(i > (n/2 + 1)).
This architecture takes more stage delay as this is designed
for various modes of operation.

The advantage of applying radix-4 rotations for all
iteration stages is exploited in [43] with less number of
adders as compared to [58]. For the microrotations in the
range 0 ≤ i < (n/6), the pipelined architecture proposed
for this algorithm implementation determines σi values
sequentially using angle accumulator. For the microrotations
in the range i ≥ (n/6), the σi values are determined from
the remaining angle after n/6 iterations. The latency of this
architecture to compute the final x/y coordinates iteratively
is (2n/3 + 2)tstage.

In [61], P-CORDIC algorithm is proposed to eliminate z
path completely, using a linear relation between the rotation
angle θ and the corresponding direction of all microrotations
for rotation mode. This algorithm computes the x/y coordi-
nates iteratively. The latency of the nonpipelined architecture
proposed to implement this algorithm for n-bit precision is
(n/12 + log2n + 1.75 + 2n)tFA.

The iterative nature in the x/y/z path is eliminated
at the cost of scalability by the flat CORDIC algorithm
[63]. This algorithm transforms x/y recurrences (11) of
the conventional CORDIC into a parallelized version, by
successive substitution to express the final vectors in terms
of the initial vectors, resulting in a single equation for n-
bit precision. The direction of rotations are precomputed
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before initiating the computation of x/y coordinates. The
final x/y coordinates are computed using combinational
blocks with the latency of 34tFA/16-bit and 50tFA/32-bit. The
expressions for x and y variables need to be derived and
combinational building blocks have to be redesigned with
change in precision.

In [64], Para-CORDIC algorithm is proposed to pre-
compute the direction of rotations without using ROM,
while eliminating iterative z path completely. This method
uses additional x/y stages for the repetition of a certain
microrotations to predict the direction of rotations in
contrast to ROM employed in [61, 63, 65]. The latency of this
Para-CORDIC is ((2(s(n) + n/2− l + 2) + ⌈log1.5n + 2⌉))tFA,
where l = (n− log23)/3 and s(n) represents the total number
of microrotations required in MAR recoding of (l−1) bits of
the input angle. The values of s(n) for 16/32/64-bit precision
are 5, 18, 52 respectively.

The semiflat technique is proposed in [65], to partially
eliminate the iterative nature in x/y/z paths for the (n −
λ) iterations (λ = 6 for a 16-bit CORDIC and λ = 8
for a 32-bit CORDIC, respectively). The latency of the
nonpipelined implementation of this algorithm is 33tFA/16-
bit and 49tFA/32-bit, respectively. It is observed that this
architecture is combinational after λ iterations and has poor
scalability.

In [49], the x/y coordinates are computed iteratively for
the (n/2 + 1) iterations using (n/2 + 1) number of fast adders.
These values are used to compute the final x/y coordinates
using two multipliers in parallel and one adder resulting in
the latency of ((n/2 + 2)tadder + tmultiplier). The σi values for the
first (n/3 + 1) iterations are determined iteratively using the
sign of angle accumulator zi. For the range (n/3 + 1) < i ≤
(n/2 + 1), the rotation directions are generated in parallel.

11. Conclusions

In this paper, we have surveyed the algorithms for unfolded
implementation of 2D rotational CORDIC algorithms.
Special attention has been devoted to the systematic and
comprehensive classification of solutions proposed in the
literature. In addition to the pipelined implementation of
nonredundant radix-2 CORDIC algorithm that has received
wide attention in the past, we have discussed the impor-
tance of redundant and higher radix algorithms. We have
also stressed the importance of prediction algorithms to
precompute the directions of rotations and parallelization of
x/y path. It is worth noting that the considered algorithms
should not be implemented as alternatives over the others,
rather they should be integrated depending on the design
constraints of a specific application.

We can draw final conclusions about the different
algorithms to achieve efficient implementation of applica-
tion specific rotational CORDIC algorithm. As far as the
application of redundant arithmetic to the pipelined imple-
mentation of the conventional radix-2 CORDIC algorithm
is concerned, area is doubled with reduction in the adder
delay of each stage from (log2n)tFA to 2tFA. Similarly, the
hardware and iteration delay of redundant radix-2 CORDIC

can be reduced by employing prediction technique for
the precomputation of direction of rotations. Further, the
latency reduction of this can be achieved by integrating the
prediction technique with the redundant radix-4 arithmetic
trading the area for variable scale factor computation.
Another important observation about the solutions pro-
posed with fully parallelization of x/y path is that it affects
the modularity and regularity of the architecture leading to
a poor scalable implementation. Finally, we conclude that
the solution which can allow the design of scalable archi-
tecture, employing prediction and x/y path parallelization
techniques to redundant CORDIC algorithm can achieve
both latency reduction and throughput improvement.
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