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Abstract—Rotation of vectors through fixed and known an-
gles has wide applications in robotics, digital signal processing,

graphics, games, and animation. But, we do not find any opti-

mized coordinate rotation digital computer (CORDIC) design for
vector-rotation through specific angles. Therefore, in this paper, we

present optimization schemes and CORDIC circuits for fixed and

known rotations with different levels of accuracy. For reducing
the area- and time-complexities, we have proposed a hardwired

pre-shifting scheme in barrel-shifters of the proposed circuits.

Two dedicated CORDIC cells are proposed for the fixed-angle
rotations. In one of those cells, micro-rotations and scaling are

interleaved, and in the other they are implemented in two separate

stages. Pipelined schemes are suggested further for cascading
dedicated single-rotation units and bi-rotation CORDIC units for

high-throughput and reduced latency implementations. We have

obtained the optimized set of micro-rotations for fixed and known
angles. The optimized scale-factors are also derived and dedicated

shift-add circuits are designed to implement the scaling. The

fixed-point mean-squared-error of the proposed CORDIC circuit
is analyzed statistically, and strategies for reducing the error

are given. We have synthesized the proposed CORDIC cells by

Synopsys Design Compiler using TSMC 90-nm library, and shown
that the proposed designs offer higher throughput, less latency

and less area-delay product than the reference CORDIC design

for fixed and known angles of rotation. We find similar results
of synthesis for different Xilinx field-programmable gate-array

platforms.

Index Terms—Coordinate rotation digital computer (CORDIC),
digital arithmetic, digital signal processing (DSP) chip, VLSI.

I. INTRODUCTION

C ORDIC stands for coordinate rotation digital computer.

The key concept of CORDIC arithmetic is based on the

simple and ancient principles of 2-D geometry. But the iterative

formulation of a computational algorithm for its implementation

was first described in 1959 by Volder [1], [2] for the compu-

tation of trigonometric functions, multiplication, and division.

Not only a wide variety of applications of CORDIC have been

suggested over the time, but also a lot of progress has taken

place in the area of algorithm design and development of archi-

tectures for high-performance and low-cost hardware solutions

[3]–[12].

Rotation of vectors through a fixed and known angle has

wide applications in robotics, graphics, games, and animation

[4], [13], [14]. Locomotion of robots is very often performed

by successive rotations through small fixed angles and trans-

lations of the links. The translation operations are realized by
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simple additions of coordinate values while the new coordinates

of a rotational step could be accomplished by suitable succes-

sive rotations through a small fixed angle which could be per-

formed by a CORDIC circuit for fixed rotation [4]. Similarly,

interpolation of orientations between key-frames in computer

graphics and animation could be performed by fixed CORDIC

rotations [14]. There are plenty of examples of uniform rotation

starting from electrons inside an atom to the planets and satel-

lites. A simple example of uniform rotations is the hands of an

animated mechanical clock which perform one degree rotation

each time. There are several cases where high-speed constant ro-

tation is required in games, graphic, and animation. The objects

with constant rotations are very often used in simulation, model-

ling, games, and animation. Efficient implementation of rotation

through a known small angle to be used in these areas could be

implemented efficiently by simple and dedicated CORDIC cir-

cuits. Similarly, the multiplication of complex number with a

known complex constant (which is the same as the rotation of

vectors through a fixed and known angle) is often encountered

in communication, signal processing and many other scientific

and engineering applications. In some early works, CORDIC

circuits have been developed for the implementation of complex

multiplications to be used for digital signal processing (DSP)

applications [16]–[18], but we do not find any detailed study

pertaining to efficient CORDIC realization of fixed and known-

angle rotations and constant complex multiplication.

Latency of computation is the major issue with the imple-

mentation of CORDIC algorithm due to its linear-rate conver-

gence [19]. It requires iterations to have -bit preci-

sion of the output. Overall latency of computation increases

linearly with the product of the word-length and the CORDIC

iteration period. The speed of CORDIC operations is, there-

fore, constrained either by the precision requirement (iteration

count) or the duration of the clock period. The angle recoding

(AR) schemes [5]–[9] could be applied for reducing the iteration

count for CORDIC implementation of constant complex multi-

plications by encoding the angle of rotation as a linear com-

bination of a set of selected elementary angles of micro-rota-

tions. In the conventional CORDIC, any given rotation angle

is expressed as a linear combination of values of elemen-

tary angles that belong to the set

to obtain an -bit value of

. However, in AR methods, this

constraint is relaxed by adding zero into the linear combina-

tion to obtain the desired angle using relatively fewer terms of

the form for . The elemen-

tary-angle-set (EAS) used by AR scheme is given by

.

Hu and Naganathan [5] have proposed an AR method based on

the greedy algorithm that tries to represent the remaining angle

using the closest elementary angle . Using this re-
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coding schemes the total number of iterations could be reduced

to less than half of the conventional CORDIC algorithm for the

same accuracy. Wu et al. [7] have suggested an AR scheme

based on an extended elementary-angle-set (EEAS), that pro-

vides a more flexible way of decomposing the target rotation

angle. In the EEAS approach, the set of the elementary-

angle set is extended further to

and

. EEAS has better recoding efficiency in terms of the number

of iterations and can yield better error performance than the AR

scheme based on EAS. But the iteration period for EEAS is

longer, and involves double the numbers of adders/subtractors

in the CORDIC cell compared with that of the other. Most of

the advantages gained in the AR schemes are cancelled out by

the hardware and time involved in scaling the pseudo-rotated

vector.

Since the angle of rotation for the fixed rotation case is known

a priori, it is desirable to perform exhaustive search to obtain

an optimal EAS instead of greedy search. Moreover, it is ob-

served that the hardware-complexity of barrel-shifters alone is

nearly half of that of a CORDIC circuit.We therefore aim at sug-

gesting some techniques to minimize the complexity of barrel

shifters. CORDIC computation is inherently sequential. There-

fore, CORDIC is not suitable for parallel implementation, while

it is a natural candidate for pipeline implementation. But, the ef-

ficient pipelined realization of CORDIC for fixed-angle vector

rotations is yet to be exploited.

Keeping these in view, in this paper, we present the optimiza-

tion schemes for reducing the number of micro-rotations and

for reducing the complexity of barrel-shifters for fixed-angle

vector-rotation. We also derive a cascaded pipelined circuit for

this class of problemwhich is faster and involves less area-delay

complexity than the existing approaches. The contributions of

this paper are as follows.

1) Optimized set of micro-rotations are derived for the imple-

mentation of fixed-angle vector-rotation.

2) Shift-add operations for corresponding scaling circuits are

derived.

3) A novel hardware pre-shifting scheme is suggested for re-

duction of barrel-shifter complexity.

4) Single-rotation and bi-rotation CORDIC circuits are de-

signed and used to derive cascaded CORDIC for high-

speed fixed-angle vector rotations.

5) The fixed-point mean-squared-error (MSE) of the pro-

posed CORDIC circuit is analyzed, and an efficient

strategy for reducing the error is described.

The remainder of this paper is organized as follows.

Section II deals with the optimization of elementary angle set

for different accuracies of implementation. Efficient circuits

for implementation of micro-rotations for fixed rotations are

presented in Section III. Implementation of scaling is discussed

in Section IV. Section V analyzes the MSE of the proposed

CORDIC. Hardware and time complexities are given and

synthesis results of the proposed designs are compared with the

conventional and a reference design in Section VI. Conclusions

are presented in Section VII.

Fig. 1. Reference CORDIC circuit for fixed rotations.

II. OPTIMIZATION OF ELEMENTARY ANGLE SET

The rotation-mode CORDIC algorithm to rotate a vector

through an angle to obtain a rotated vector

is given by [1], [2]

(1a)

(1b)

(1c)

such that when is sufficiently large

(1d)

where if and otherwise, and is the

scale-factor of the CORDIC algorithm, given by

(2)

In case of fixed rotation, could be pre-computed and the

sign-bits corresponding to could be stored in a sign-bit reg-

ister (SBR) in CORDIC circuit. The CORDIC circuit therefore

need not compute the remaining angle during the CORDIC

iterations [3].

A reference CORDIC circuit for fixed rotations according to

(1a) and (1b) is shown in Fig. 1. and are fed as set/reset

input to the pair of input registers and the successive feedback

values and at the iteration are fed in parallel to the

input registers. Note that conventionally we feed the pair of

input registers with the initial values and as well as the

feedback values and through a pair of multiplexers.

We show here that for rotation of a vector through a known

and fixed angle of rotation using a rotation-mode CORDIC cir-

cuit, we can find a set of a small number of predetermined el-

ementary angles for , where

is the elementary angle to be used for the th

micro-rotation in the CORDIC algorithm (1), and is the min-

imum necessary number of micro-rotations. Meanwhile, it is

well known that the rotation through any angle,

can be mapped into a positive rotation through

without any extra arithmetic operations [10]. Hence, as a first

step of optimization, we perform the rotation mapping so that

the rotation angle lies in the range of . In the
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next step, we minimize the number of elementary angles in the

set according to the accuracy requirements. The rotation

mode CORDIC algorithm of (1), therefore, can be modified ac-

cordingly to have

(3a)

such that for a minimum number

(3b)

The scale-factor now depends on the set . The accu-

racy of CORDIC algorithm depends on how closely the resul-

tant rotation due to all the micro-rotations in (1) approxi-

mates to the desired rotation angle , which in turn determines

the deviation of actual rotation vector from the estimated value.

We show here that only a few elementary angles are sufficient

to have a CORDIC rotation in the range , and different

sets of elementary angles can be chosen according to the accu-

racy requirement.

The simple pseudo code to optimize a set of micro-rotations is

described inAlgorithm 1. If the maximum accuracy which is

defined as the maximum tolerable error between desired angle

and approximated angle is given as an input, the optimization

algorithm searches the parameters and that can mini-

mize an objective function . The algorithm starts with the

single micro-rotation, i.e., , then if the micro-rotation

that has smaller angle of deviation than cannot be found,

the number of micro-rotations is increased by one and the opti-

mization algorithm is run again. Exhaustive search is employed

in the optimization algorithm to search the entire parameter

space for all the combinations of and . Based on the ob-

tained micro-rotations, the parameters for scaling operation can

be searched with the different objective function, which is de-

scribed in Section IV. The sub-optimal set of micro-rotations

may be used in some cases, if the optimal set of micro-rotations

cannot satisfy the design constraint for scaling. We have used

sub-optimal solutions particularly for the rotation with the angle

of 31 and 35 in Table I since the scaling requires more terms

in these two cases if optimal solutions are used.

Algorithm 1 Obtains the Optimal Micro-Rotations.

1:

2: do

3:

is nonnegative integer.

4:

5: while

end while

In the experiment with the maximum input angular de-

viation , we found that a set of four selected

micro-rotations is enough. In Table I, it is shown that rotations

through any angle in the range (in odd integer

degrees) could be achieved with maximum angular deviation

radian , where .

Using a maximum of two selected micro-rotations, the rota-

TABLE I
OPTIMIZATION OF FULL ROTATIONSWITH FOURMICRO-ROTATIONS

TABLE II
OPTIMIZATION OF SMALL ROTATIONSWITH FOURMICRO-ROTATIONS

tions could be achieved with maximum angular deviation with

(0.033 radian). In case of six micro-rotations,

angular deviation could be reduced to .

In Table II, it is shown further that rotations through

in an interval of 0.1 could be obtained by four

micro-rotations with angular deviation, . Here we can

make an observation that we can always achieve higher accu-

racy with more number of micro-rotations. From Table II, we

find that higher accuracy could be achieved in case of small ro-

tation angles like 1 or 2 , compared to the most of the larger

angles when the same number of micro-rotations is used.

III. IMPLEMENTATION OF MICRO-ROTATIONS

Since the elementary angles and direction of micro-rotations

are predetermined for the given angle of rotation, the angle es-
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Fig. 2. CORDIC cell for constant complex multiplications.

Fig. 3. Hardwired pre-shifting in basic CORDIC module.

timation data-path is not required in the CORDIC circuit for

fixed and known rotations. Moreover, because only a few ele-

mentary angles are involved in this case, the corresponding con-

trol-bits could be stored in a ROM of few words. A CORDIC

circuit for complex constant multiplications is shown in Fig. 2.

The ROM contains the control-bits for the number of shifts

corresponding the micro-rotations to be implemented by the

barrel-shifter and the directions of micro-rotations are stored in

the sign-bit register (SBR). The major contributors to the hard-

ware-complexity in the implementation of a CORDIC circuit

are the barrel-shifters and the adders. There are several options

for the implementation of adders [22], from which a designer

can always choose depending on the constraints and require-

ments of the application. But, we have some scope to develop

techniques for reducing the complexity of barrel-shifters over

the conventional designs as discussed in the followings.

1) Minimization of Barrel-Shifter Complexity by Hardwired

Pre-Shifting: A barrel-shifter for maximum of shifts for

word-length is implemented by -stages of

demultiplexors, where each stage requires number of 1:2 line

MUXes. The hardware-complexity of barrel-shifter, therefore,

increases linearly with the word-length and logarithmically

with the maximum number of shifts. We can reduce the ef-

fective word-length in the MUXes of the barrel-shifters, and

so also the number of stages of MUXes by simple hardwired

pre-shifting as shown in Fig. 3. If is the minimum number of

shifts in the set of selected micro-rotations, we can load only

the more-significant bits (MSBs) of an input word from

the registers to the barrel-shifters, since the less significant bits

(LSBs) would get truncated during shifting. The barrel-shifter,

therefore, needs to implement a maximum of shifts only,

where is the maximum number of shifts in the set of selected

micro-rotations. The output of the barrel-shifters are loaded as

the LSBs to the add/subtract units, and the MSBs of

Fig. 4. Hardwired pre-shifted bi-rotation CORDIC circuit. SBR is sign-bit reg-
ister of 2-bits size. indicates right-shift by bit-locations.

the corresponding operand of add/subtract unit are hardwired to

0. Therefore, the hardware-complexity of a barrel-shifter could

be reduced by the hardwired pre-shifting approach. The time

involved in a barrel-shifter could also be reduced by hardwired

pre-shifting, since the delay of the barrel-shifter is proportional

to the number of stages of MUXes, and it also be possible to

reduce the number stages by hardwired pre-shifting.

In Table I, we find that the minimum number of shifts is

greater than one in more than 75% of the cases. Similarly, in

Table II, we find that is always greater than 5 except the angle

1.5 . Using hardwired pre-shifting, it would therefore be pos-

sible to considerably reduce the total number of shifts to be im-

plemented by barrel-shifters, so as to substantially reduce the

hardware-complexity and delay of the barrel-shifters. A conven-

tional barrel-shifter for maximum of shifts is implemented by

-stages of 2:1 MUXes. But, when the number of

shifts is known a priori, one can design the barrel-shifter to in-

clude the specific shifts. For implementing four discrete shifts

(see Table I) irrespective of the maximum number of shifts, the

barrel-shifter would require three stages of 2:1 MUXes by hard-

wiring the shifts.

2) Bi-Rotation CORDIC Cell: We find that using only two

micro-rotations, it is possible to get an accuracy up to 0.033

radian. Although the accuracy achieved by two micro-rotations

is inadequate in many situations, but can be used for some

applications where the outputs are quantized, e.g., in case

of speech and image compression, etc., [23], [24]. Besides,

the rotations with four and six micro-rotations can also be

implemented successively by two and three pairs of micro-rota-

tions, respectively. Therefore, we design an efficient CORDIC

circuit to implement a pair of micro-rotations, and named as

“bi-rotation CORDIC”. The proposed circuit for bi-rotation

CORDIC is shown in Fig. 4. It consists of an adder-module,

two 2:1 multiplexers and a sign-bit register (SBR) of two bit

size. The adder-module consists of a pair of adders/subtrac-

tors. The adders/subtractors perform additions or subtractions

according to the sign-bit available from the SBR. The com-

ponents of the input vector (real and the imaginary parts of

the input complex operand) are loaded to the input-registers

through set/reset input. The output of the registers are sent in

two lines where the content of the register is fed to one of the

adders/subtractors directly while that in the other line is loaded
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Fig. 5. (a) Multi-stage single-rotation cascaded CORDIC circuit. (b) Structure
of th rotation module. indicates right-shift by bit-locations.

to the barrel-shifter pre-shifted by bit-locations to right

by hardwired pre-shifting technique. The output of the adders

are loaded back to the input registers for the second CORDIC

iteration. The bi-rotation CORDIC involves only a pair of

barrel-shifters consisting of only one stage of 2:1 MUXes. The

control-bit for the barrel-shifters is 0 for the first micro-rotation

(no shift) and 1 for the second micro-rotation (shift through

). The control bits are generated by a T flip-flop,

since they are 1 and 0 in each alternate cycle.

3) High-Throughput Implementation Using Cascaded

Multi-Stage CORDIC: For the implementation of small rota-

tions (the remaining angle after the first two micro-rotations),

as shown in Table II, except the angle 1.5 . Similarly,

in Table I, we can notice that the second half of the micro-ro-

tations has the minimum shifts . It would be possible

to take the best advantage of hardwired-pre-shifting, if the

micro-rotations are implemented in more than one CORDIC

modules in separate stages in a cascade. Moreover, since the

cascade of CORDIC modules is inherently pipelined, it would

provide high-throughput pipelined implementation. To im-

plement the CORDIC rotations with higher accuracy without

affecting the throughput of computation, we can therefore have

cascaded-multi-stage CORDIC consisting of single-rotation

cells and bi-rotation CORDIC as described in the followings.

Cascaded CORDIC with Single-Rotation Cells: A

multi-stage-cascaded pipelined-CORDIC circuit consisting

of single-rotation modules is shown in Fig. 5. Each stage of

the cascaded design consists of a dedicated rotation-module

that performs a specific micro-rotation. The structure and

function of a rotation-module is depicted in Fig. 5(b). Each

rotation-module consists of a pair of adders or subtractors (de-

pending on the direction of micro-rotation which it is required

to implement). Each of the adders/subtractors loads one of the

pair of inputs directly and loads the other input in a pre-shifted

form at LSB locations, where is the number

of right-shifts required to be performed to implement the th

micro-rotation. The MSB locations are hardwired to be

zero. The rotation-module in this case does not require input

from SBR since each adder module always performs either ad-

dition or subtraction. It also does not require barrel-shifter since

it has to implement only one fixed micro-rotation. The output

of each stage is latched to the input of its succeeding stage as

shown in the figure. The critical-path in this case amounts to

only one addition/subtraction operation in the adder module.

Total latency of -stage single-rotation cascade amounts to

, where and , are the addition/subtraction

time and D flip-flop delay, respectively.

We find that in more than two-third of the rotation angles as

shown in Table I, only three micro-rotations are adequate to

have the maximum deviation of up to 0.04 . The complex

multiplications involving three such micro-rotations could be

implemented by three-stage-cascaded CORDIC circuit shown

in Fig. 5 (for ). The rotation using 4 and 6 micro-rotations,

similarly, would require 4 and 6 stages of rotation module for

pipelined implementation. This can also be implemented in non-

pipelined form using carry-propagate adders with total

latency of , where and , are,

respectively, the time required for -bit addition-time and full-

adder delay, being word-length of implementation. is the

number of shifts of the th stages.

Cascaded CORDIC with Bi-Rotation Cells: For reduction of

adder complexity over the cascaded single-rotation CORDIC,

the micro-rotations could be implemented by a cascaded

bi-rotation CORDIC circuit. A two-stage cascaded bi-rotation

CORDIC is shown in Fig. 6. The first two of the micro-rotations

as shown in Table I out of the four-optimized micro-rotations

could be implemented by stage-1, while the rest two are per-

formed by stage-2. The structure and function of the bi-rotation

CORDIC is shown in Fig. 4. For implementing six selected

micro-rotations, we can use a three-stage-cascade of bi-rotation

CORDIC cells. The three-stage bi-rotation cells could however

be extended further when higher accuracy is required.

IV. SCALING OPTIMIZATION AND IMPLEMENTATION

We discuss here the optimization of scaling to match with the

optimized set of elementary angles for the micro-rotations.

A. Scaling Approximation for Fixed Rotations

The generalized expression for the scale-factor given by (2)

can be expressed explicitly for the selected set of micro-

rotations as

(4)

where for is the number of shifts in the th

micro-rotation. Except for (i.e., rotation by 45 ), by

binomial expansion, any term in (4) can be written as

(5)
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Fig. 6. Two-stage cascaded bi-rotation CORDIC circuit. SBR is sign-bit reg-
ister of 2-bits size.

where , being the number of shifts in a micro-rota-

tion, and can be expressed alternatively in terms of as

(6)

Replacing each term in (4) by the expression of (6), we can ob-

tain an approximate scale-factor as a product of shift-add terms

of form

(7)

where is the number of shifts performed for the th iteration

of scaling, , and is maximum number of scaling

iterations required for the approximation.

The number of terms of (6), those are required to be accounted

for to obtain the approximate scale-factor [given by (7)] can

be estimated according to value of and the desired output ac-

curacy which is limited by the number of micro-rotations used

for the pseudorotation. The number of shifts-add/subtract terms

in the expression of (7) is therefore minimized separately for

the CORDIC implementations by four micro-rotations and six

micro-rotations for different angles of rotation. It can be found

that for four micro-rotation CORDIC implementation, where

the error in is , only the first two terms in (6) con-

tribute for , while up to the third and the fifth terms

contribute for and , respectively. Sim-

ilarly, for six micro-rotation CORDIC implementation, where

the error in is , the first two terms in (6) contribute

for , while up to the third, fourth and fifth terms con-

tribute for , , and , respec-

TABLE III
OPTIMIZED SHIFTS TO IMPLEMENT SCALING FOR THE CASE OF ROTATION

WITH FOUR MICRO-ROTATIONS

tively. Accordingly, we have obtained the recursive shift-add

expressions of scale-factor in the form of (7).

Algorithm 2 describes the optimization scheme to search the

parameters and . Once the set of micro-rotations is ob-

tained by Algorithm 1, the ideal scaling factor can be calcu-

lated using (4). The objective function is defined as devia-

tion of from 1, i.e., . The algorithm

starts with the single term of scaling, then the number of scaling

terms is increased by one until is smaller than the given

maximum deviation , which needs to be set as the same value

as in the Algorithm 1 since and contribute equally

to the overall approximation error. In the experiment, we need

three terms in the expression of (7) as listed in Table III in the

range of 1 to 41 when is set as which is the

same value as used to obtain the Table I after conversion of

0.04 to radian.

Algorithm 2 Obtains the Optimal Shifts for Scaling.

1:

2:

3: do

4:

is nonnegative integer.

5:

6: while

end while

We derive here the expression of scale factors separately for

43 and 45 rotations to get scaling with desired accuracy with

less number of iterations compared with the above approach.
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Fig. 7. Shift-add scaling circuit using hardwired pre-shifted loading.

To have an accuracy up to , the scale-factor for

rotation through 43 and 45 can be expressed as

(8)

Equation (8) can be expressed in recursive shift-add forms

(9)

B. Implementation of Scaling

Scaling and micro-rotations could be implemented either in

the same circuit in interleaved manner or in two separate stages.

The implementation of scaling as well as the micro-rotation

would however depend on the level of desired accuracy, and the

implementation of scaling also depends on the implementation

of micro-rotations. Therefore, we discuss here the realization of

the scaling circuits corresponding to different implementations

of micro-rotations.

1) Generalized Implementation of Scaling: The shift-add cir-

cuit for scaling according to (7) is shown in Fig. 7. The scaling

circuit of Fig. 7 can use hardwired pre-shifting for minimizing

barrel-shifter complexity and could be placed after the CORDIC

cell of Fig. 2 to perform micro-rotation and scaling in two sep-

arate stages. The generalized CORDIC circuit for fixed rota-

tion to perform the micro-rotation and the scaling in interleaved

manner in alternate cycles is shown in Fig. 8. The circuit of

Fig. 8 is similar to that of Fig. 2. It involves only an addi-

tional line-changer circuit to change the path of unshifted (di-

rect) input. The structure and function of line-changer is shown

in Fig. 8(b). The line-changer is placed on the unshifted input

data line to keep the critical path the same as that of Fig. 2.

2) Implementation of Scaling for Bi-Rotation CORDIC:

The scaling and micro-rotations for the proposed bi-rotation

CORDIC could be implemented in two separate pipelined

stages, where the pair of micro-rotations are implemented by

the CORDIC circuit of Fig. 4, and scaling is implemented

by a shift-add circuit. The scale factor for this case can be

represented by two shift-add terms as

(10)

The two-factor scaling of (10) can be implemented by the

shift-add circuit of Fig. 9. It consists of a pair of adders/subtrac-

tors and a pair of single-stage barrel-shifters. Each barrel-shifter

consists of only one stage of 2:1 MUXes. The input of each of

the barrel-shifters is hardwired pre-shifted by locations to

right. Each of the barrel-shifters shifts the input through

Fig. 8. CORDIC circuit for interleaved implementation of micro-rotations as
well as scaling circuit. (a) The CORDIC circuit. (b) Structure and function of
line-changer. For control-bit it performs micro-rotations and for control-bit

it performs the shift-add operations for scaling.

Fig. 9. Shift-add circuit of two-factor scaling using hardwired pre-shifting.

locations to right, when the control-bit is 1. No additional

shifts are required when control-bit is 0. The control-bit can be

generated by a T flip-flop since it toggles in each cycle. The

add-subtract cell performs addition if and performs sub-

traction if , which could be controlled through a two-bit

SBR.

3) Implementation of Scaling for Cascaded Single-Rotation

CORDIC: The shift-add circuit for single-rotation-cascaded

CORDIC is shown in Fig. 10. It consists of a pair of dedi-

cated adders-subtractors. It does not require any multiplexer

or sign-bit register. A pair of input is fed to the adder/sub-

tractor from the register, where one of the inputs is obtained

directly from the content of the registers, while the other input

is shifted by locations to right before being fed to the

adder/subtractor. The choice of adder or subtractor depends on

the sign-factor in the shift-add term to be implemented by the

circuit.

4) Implementation of Scaling for Cascaded Bi-Rotation

CORDIC: The cascaded bi-rotation CORDIC could either

be used for implementing in two or three stages for four

and six micro-rotations, respectively. For scaling by three

shift-add-factors as shown in Table III, we can use one
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Fig. 10. Shift-add circuit for single-rotation-cascaded-scaling using hardwired
pre-shifting.

Fig. 11. Time-multiplexed shift-add circuit for one-factor scaling.

Fig. 12. Scaling circuit for 43 and 45 rotation. (a) and 1correspond
to addition and subtraction, respectively. and 1correspond to two right-
shifts and four right-shifts, respectively, in the barrel-shifter.

two-factor-scaling circuit of Fig. 9 and the third scaling factor

could be implemented by a multiplexed shift-add circuit of

Fig. 11. The scaling for six micro-rations, which involves five

shift-add factors, could be implemented by a pair of two-factor

scaling circuit and a multiplexed circuit.

5) Implementation of Scaling for Large Rotations: The

scaling circuit for rotation through 43 and 45 based on (9)

is shown in Fig. 12. We can implement this scaling also by

simple modifications of cascaded forms of single-factor scaling

circuit, two-factor scaling circuits and time-multiplexed scaling

circuits of Figs. 9–11.

V. ANALYSIS OF ERROR

There are two types of error encountered during the rotation

mode CORDIC iterations. Those are: approximation error and

round-off error. Approximation error arises due to approxima-

tion of angle of rotation and scaling factor, while the round-off

error arises due to the finite word-length of the output compo-

nents. We derive the expression for these two errors in the fol-

lowing subsections.

Fig. 13. Proposed CORDIC operation and approximation error.

A. Approximation Error

Fig. 13 illustrates the CORDIC iteration which consists of a

pseudo-micro-rotations and a scaling. In the figure, is an input

vector to be rotated through angle . It is assumed that scaling

and micro-rotations are implemented in two separate stages.

be the rotated vector after micro-rotations given by

(11)

The rotation matrix is given by (3). The th scaling factor

is given by

(12)

such that after iterations of scaling we get

(13)

After the micro-rotations, there is a discrepancy between

the desired angle and the resultant angle due to the limited

number of micro-rotations. Moreover, cannot reach on

the circle after the scaling since is an approximated value

which is not same as the required given as (4). Similar to the

method used in [20], the approximation error is evaluated as a

distance between the desired output and the actual CORDIC

output as follows:

(14)

Without loss of generality, is assumed to be greater than

zero and is greater than one as shown in Fig. 13. Then

(15)

If is sufficiently small

(16)

Since

(17)
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For the known and fixed angle, an expectation of the approxi-

mation error can be estimated once we know the input statistics

as

(18)

It can be seen that the accuracy of CORDIC depends on how

closely the angle difference approximates to zero, and also

the ratio of scale-factors approximates to one.

B. Round-off Error

As the CORDIC iteration progresses through shift-add op-

erations, the word-length increases, and consequently requires

rounding after each CORDIC iteration. Let be the round-off

error. The magnitude of round-off error depends on the word-

length in a data-path, especially the length of fractional bits

which is denoted as . The mean and variance of are esti-

mated separately and added to obtain as

(19)

where . When a data with fractional bits is

shifted by , the mean and variance of resultant round-off error

are calculated in [21] as

(20a)

(20b)

respectively. The round-off error generated from each micro-

rotation and scaling is propagated forward through the CORDIC

iterations, and get accumulated in the output vector . The

magnitude of accumulated round-off error in the estimation of

vector after micro-rotations is

(21a)

(21b)

The final round-off error accumulated in the output vector

after scaling is calculated by using (22)

(22a)

(22b)

TABLE IV
MINIMUM CLOCK PERIOD OF DIFFERENT ARCHITECTURES

C. Error of the Proposed CORDIC

For the case of and , all the necessary values

in (18) and (22) can be obtained from Tables I and III. Addition-

ally, the number of fractional bit and average power

are needed for the estimation of round-off and approximation

error, respectively. Equation (22) is valid only for the case when

the micro-rotations and scaling are performed in two separated

stages. If the micro-rotations and scaling are deployed in inter-

leaved manner, the sequence of and in (21) and (22)

should be changed accordingly in order to represent the transfer

function in interleaved manner.

If we want to reduce the total error, and the approximation

error is dominant error source, it would be a better strategy to

increase the number of micro-rotations and scaling iterations. It

would make and/or approach to zero. If the

round-off error is greater than approximation error, we need to

increase the number of fractional bits in order to reduce the

total error.

VI. COMPLEXITY CONSIDERATIONS

We discuss here the hardware and time complexities of the

proposed design. In the existing literature we do not find sim-

ilar work on CORDIC implementation of known and fixed rota-

tions. Therefore, we compare the proposed design with the con-

ventional CORDIC design for the rotation of unknown angle.

We have used the basic CORDIC processor in [3, Fig. 2] for

the implementation of conventional CORDIC. In addition, we

have designed a reference architecture (see Fig. 1) for straight-

forward implementation of fixed rotations, and we have com-

pared the complexities and speed performance of the proposed

design with the conventional and reference design. The max-

imum deviation of amounting to is assumed to be

accuracy level-1 (AL-1) and that amounting to is

assumed to be accuracy level-2 (AL-2), so that AL-1 and AL-2

would correspond to the proposed CORDIC implementations of

rotation through four and six micro-rotations, respectively.

A. Complexity of the Conventional and Reference CORDIC

The conventional rotation-mode CORDIC requires three

-bit adders, three -bit registers, two barrel-shifters and

four MUXes, where is the word-length. The complexity

of barrel-shifter, however, depends on the accuracy of imple-

mentation. Considering that the rotations are mapped to the

first quadrant, the conventional CORDIC would involve 11

iterations and 17 iterations, respectively, for AL-1 and AL-2.

Each of its pair of barrel-shifters would thus involve four and

five stages, where each stage requires 2:1 MUXes, for AL-1
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TABLE V
AREA AND TIME COMPLEXITIES OF DIFFERENT ARCHITECTURES

TABLE VI
AREA-TIME COMPLEXITIES OF DIFFERENT ARCHITECTURES BASED ON SYNTHESIS RESULT USING TSMC 90-nm LIBRARY

TABLE VII
RELATIVE ADVANTAGES OF PROPOSED DESIGNS OVER THE REFERENCE

DESIGN FOR FIXED ROTATIONS

and AL-2, respectively. Apart from that, all the three input

registers are to be loaded through MUXes to allow direct input

as well as the input through the feedback path. The ROM needs

to store bits angles for 11 and 17 iterations for AL-1

and AL-2, respectively. The duration of minimum clock period

in conventional CORDIC is and

for AL-1 and AL-2, where , , and

are the -bit addition-time, D flip flop delay and delays

of 2:1 MUX, respectively.

The reference CORDIC for the fixed rotation (shown

in Fig. 1), consists of two adders, two barrel-shifters, one

sign-bit-register and two input registers with MUXes. The

MUXes accompanied by the input registers are, however, not

shown in the reference as well as the proposed designs (as

discussed in Section II for the description of Fig. 1). We assume

that the rotation is mapped to half quadrant range so that for

accuracy of AL-1 and AL-2, it requires 10 and 16 iterations. It

has the same barrel-shifter complexity and time-complexity as

the conventional CORDIC.

B. Complexity of the Proposed CORDIC Designs

Each of the proposed CORDIC designs involves a latency of

7 cycles and 11 cycles for accuracy level-1 and 2, respectively.

But the hardware requirement, duration of clock period and

throughput rate differ from one another. We discuss these

complexities of proposed CORDIC designs in four categories:

1) single CORDIC cell with interleaved-scaling; 2) single

CORDIC cell with separate-scaling; 3) single-rotation cascade;

and 4) bi-rotation cascade.

1) Cordic Cell With Interleaved Scaling and Micro-Rota-

tions: As shown in Fig. 8, the CORDIC implementation by in-

terleaved scaling requires an additional ROM and a line changer

over that of reference design of Fig. 1. The line changer re-

quires number of tri-state buffers and a T flip flop to gen-

erate the control-bit. Using hardwired pre-shifting, each of the

pair of barrel-shifters involves 4 stages of 2:1 MUXes for im-

plementing all the necessary shifts for micro-rotations as well

as scaling for both accuracy levels. Accordingly, the duration of

minimum clock period for the proposed interleaved CORDIC

can be found to be for both the accuracy

levels. It involves 7 and 11 iterations for AL-1 and AL-2, re-

spectively, to implement both scaling and micro-rotations. The

ROM therefore needs to store 7 and 11 control words of 4-bit

size to be used by the barrel-shifter, and the SBR is of 7 and 11

bit size for AL-1 and AL-2, respectively.

2) CORDIC Cell With Separate Scaling and Micro-Rotation

Stages: CORDIC implementation of fixed rotation could be

performed in two pipelined stages, where micro-rotations are

implemented by Fig. 2 and scaling is implemented by Fig. 7.
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TABLE VIII
AREA AND TIME COMPLEXITIES COMPARISON OF DIFFERENT ARCHITECTURES ON FPGA

Using hardwired pre-shifting, the barrel-shifter involves 3 and

4 stages of 2:1 MUXes to implement the necessary shifts for

micro-rotation and 2 and 4 stages for scaling for accuracy

levels-1 and -2, respectively. The ROM therefore needs to store

4 control words of 3 bit size for micro-rotation and 3 control

words of 2 bit size for scaling to be used by the barrel-shifter

for AL-1 and 11 control words of 4 bit size for AL-2, along

with SBR of 7 and 11 bit size for AL-1 and AL-2, respectively.

Accordingly, the duration of minimum clock period for this

implementation is found to be and

for both accuracy levels-1 and 2,

respectively. Although it involves 3 and 5 iterations for scaling,

it involves 4 and 6 iterations for micro-rotations for AL-1 and

AL-2, respectively. Therefore, the iteration count in this case

is 4 and 6 for these two cases.

3) Single-Rotation Cascade: The single-rotation cascaded

CORDIC for fixed-angle rotation is shown in Fig. 5. For ac-

curacy level-1 it involves seven stages out of which four stages

perform the micro-rotations and the three remaining stages per-

form scaling. The rotation modules are modified to implement

shift operations for scaling. Each stage requires two adders and

two pipelining registers (except that the last stage does not re-

quire pipeline register). All the shiftings are hardwired and there

is no feed-back path in this circuit. Therefore, it does not require

any ROM, SBR, barrel-shifters orMUXes. The duration of min-

imum clock period for this implementation is for both

accuracy levels and produces one output in each cycle.

4) Bi-Rotation Cascade: For accuracy level-1, it requires a

cascaded two-stage bi-rotation CORDIC as shown in Fig. 6 for

micro-rotation. To implement scaling, it requires a two-factor

scaling circuit of Fig. 9 and time-multiplexed circuit of Fig. 11

for one-factor scaling. For accuracy level-2, it requires a cas-

caded three-stage bi-rotation CORDIC (see Fig. 6) for micro-ro-

tation. To implement scaling, it requires three cascaded stages

consisting of two stages of two-factor scaling circuit of Fig. 9

and one stage of a time-multiplexed circuit of Fig. 11. The du-

ration of minimum clock period for both the accuracy-levels is

and it gives an output in every alter-

nate cycle.

C. Comparative Performances

The expressions of clock periods of the architectures are

listed in Table IV. The single-rotation CORDIC has the min-

imum of clock period of one addition-time and bi-rotation

CORDIC has slightly higher clock period. The hardware and

time-complexities of different architectures are listed compre-

hensively in Table V. The CORDIC algorithms are written in

hardware description language and synthesized by Synopsys

Design Compiler using the TSMC 90-nm library to obtain the

complexities of proposed and the reference designs. Word size

and 32 are used for accuracy level-1 and -2, respec-

tively. The area, clock period, latency, throughput, average

computation time (ACT), and area-delay product (ADP) are

listed in Table VI.

The reference design has the same clock-period as the con-

ventional CORDIC but yields more throughput and in-

volves less area, less latency and less

area-delay product (ADP), over the conventional one, in av-

erage over the two levels of accuracy. The proposed design of

single CORDIC cell with interleaved-scaling has more

area but offers more throughput and involves

less latency and less ADP, in average over both the

levels of accuracy, compared to the reference design. The pro-

posed design of single CORDIC unit with separate-scaling sim-

ilarly, has nearly more area but offers nearly 2.7 time

the throughput and involves less ADP and two-third of

the latency over the reference design. The relative advantages

of single-rotation cascade and bi-rotation cascade are shown

in Table VII. In average over both the levels of accuracy, the

single-rotation and bi-rotation cascades, respectively, involve

nearly 3.6 times and 2.9 times more area over the reference de-

sign, but offer nearly 16.3 times and 7.0 times more throughput,

and involve 4.6 and 2.5 times less ADP with nearly half and

two-third less latency over the other.

The reference and proposed designs are also implemented on

the field-programmable gate-array (FPGA) platform of Xilinx

devices. The number of slices (NOS), maximum operating

frequency (MUF), and slice-delay product (SDP) using two

different devices of Spartan-3A (XC3SD1800A-4FG676) and

Virtex-4 (XC4VSX35–10FF668) are listed in Table VIII. The

proposed design of single-rotation cascade involves smaller

number of slices and faster operating frequency over the con-

ventional and reference designs for two devices. In average

over both levels of accuracy and devices, the single-rotation

cascade offers nearly 23.5 and 32.2 less SDP over the

reference design and conventional design, respectively.

VII. CONCLUSION

The number of micro-rotations for rotation of vectors through

known and fixed angles are optimized and several possible
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dedicated circuits are explored for rotation-mode CORDIC

processing with different levels of accuracy. The proposed

CORDIC cell with interleaved scaling involves more

area, but offers more throughput and involves nearly

less latency and less ADP, than the reference

design for known and fixed rotations. The proposed single-rota-

tion cascade and birotation cascade require, respectively,

and times more area over the reference design, but offer

nearly 16.3 and 7.0 times more throughput, and involve nearly

4.6 and 2.5 times less ADP with nearly half and two-thirds of

the latency of the other. With progressing scaling trends, since

the silicon area is getting continually cheaper, it appears to be

a good idea to use the cascaded designs for their potential for

high-throughput and low-latency implementation. It is found

that higher accuracy could be achieved in case of smaller angles

of rotation when the same number of micro-rotations are used.

The small angle rotators could therefore be very much useful

for shape design and curve tracing for animation and gaming

devices. The fixed-angle CORDIC rotation would have wide

applications in signal processing, games, animation, graphics

and robotics, as well.
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