CORDS: Automatic Discovery of Correlations
and Soft Functional Dependencies

Ihab F. llyast Volker Markl?

! Purdue University
250 N. University Street
West Lafayette, Indiana, 47906

ilyas@cs.purdue.edu

ABSTRACT

The rich dependency structure found in the columns of real-world
relational databases can be exploited to great advantage, but can
also cause query optimizers—which usually assume that columns
are statistically independent—to underestimate the selectivities
of conjunctive predicates by orders of magnitude. We introduce
CORDS, an efficient and scalable tool for automatic discovery of
correlations and soft functional dependencies between columns.
CORDS searches for column pairs that might have interesting and
useful dependency relations by systematically enumerating can-
didate pairs and simultaneously pruning unpromising candidates
using a flexible set of heuristics. A robust chi-squared analysis is
applied to a sample of column values in order to identify correla-
tions, and the number of distinct values in the sampled columns
is analyzed to detect soft functional dependencies. CORDS can be
used as a data mining tool, producing dependency graphs that
are of intrinsic interest. We focus primarily on the use of CORDS
in query optimization. Specifically, CORDS recommends groups
of columns on which to maintain certain simple joint statistics.
These “column-group” statistics are then used by the optimizer
to avoid naive selectivity estimates based on inappropriate inde-
pendence assumptions. This approach, because of its simplicity
and judicious use of sampling, is relatively easy to implement in
existing commercial systems, has very low overhead, and scales
well to the large numbers of columns and large table sizes found in
real-world databases. Experiments with a prototype implementa-
tion show that the use of CORDS in query optimization can speed
up query execution times by an order of magnitude. CORDS can
be used in tandem with query feedback systems such as the LEO
learning optimizer, leveraging the infrastructure of such systems
to correct bad selectivity estimates and ameliorating the poor
performance of feedback systems during slow learning phases.

1. INTRODUCTION

When a query optimizer in a commercial relational DBMS
chooses a horrible query plan, the cause of the disaster is
usually an inappropriate independence assumption that the
optimizer has imposed on two or more columns. Indepen-

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, or
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD 2004, June 13-18, 2004, Paris, France.

Copyright 2004 ACM 1-58113-859-8/04/085.00.

Peter Haas?

Paul Brown? Ashraf Aboulnaga?

2 IBM Almaden Research Center

650 Harry Road, K55/B1
San Jose, CA, 95139

marklv,phaas,pbrownl,aashraf@us.ibm.com

dence assumptions are used in virtually all query optimizers
because they greatly simplify selectivity estimation: e.g., if
p1 and p2 are predicates on respective columns C; and Ca,
then the selectivity of the conjunctive predicate pi A p2 is
estimated by simply multiplying together the individual se-
lectivities of p1 and p2. This approach, however, ignores the
rich dependency structure that is present in most real-world
data. Indeed, our experience indicates that dependency be-
tween columns is the rule, rather than the exception, in the
real world.

This paper introduces CORDS (CORrelation Detection via
Sampling), an efficient and scalable tool for automatically
discovering statistical correlations and “soft” functional de-
pendencies (FDs) between columns. By “correlations,” we
mean general statistical dependencies, not merely approxi-
mate linear relationships as measured, for example, by the
Pearson correlation coefficient [7, p. 265]. By a soft FD be-
tween columns C and C2, we mean a generalization of the
classical notion of a “hard” FD in which the value of C; com-
pletely determines the value of C2. In a soft FD (denoted
by Ci1 = C2), the value of Cy determines the value of Cs
not with certainty, but merely with high probability. An
example of a hard FD is given by Country and Continent;
the former completely determines the latter. On the other
hand, for cars, Make is determined by Model via a soft depen-
dency: given that Model = 323, we know that Make = Mazda
with high probability, but there is also a small chance that
Make = BMW.

CORDS both builds upon and significantly modifies the
technology of the B-HUNT system as described in [12]. As
with B-HUNT, CORDS searches for column pairs that might
have interesting and useful correlations by systematically
enumerating candidate pairs and simultaneously pruning
unpromising candidates using a flexible set of heuristics.
Also as with B-HUNT, CORDS analyses a sample of rows in
order to ensure scalability to very large tables. The sim-
ilarities end here, however. Whereas B-HUNT uses “bump
hunting” techniques to discover soft algebraic relationships
between numerical attributes, CORDS employs a robust chi-
squared analysis to identify correlations between both nu-
merical and categorical attributes, and an analysis of the
number of distinct values in the sampled columns to detect
soft FDs. The sample size required for the chi-squared anal-
ysis is essentially independent of the database size, so that
the algorithm is highly scalable.

CORDS can serve as a data mining tool, e.g., its output
can be converted to a dependency graph as in Figure 6.

Such graphs are of intrinsic interest. Our primary focus,
however, is on the application of CORDS in query optimiza-
tion. Our proposed scheme uses the output of CORDS to
recommend groups of columns on which to maintain cer-
tain simple joint statistics, such as the number of distinct
combinations of values in the columns. An optimizer can
then use such “column-group” (CaQ) statistics to avoid in-
accurate selectivity estimates caused by naive independence
assumptions. CORDS can be used in conjunction with a query
feedback system, leveraging the infrastructure of such a sys-
tem to correct bad selectivity estimates and ameliorating the
poor performance of feedback systems during slow learning
phases.

CORDS currently considers only pairs of columns, and not
triples, quadruples, and so forth. This restriction vastly re-
duces the complexity of the algorithm, and our experiments
(see Section 5.3) indicate that most of the benefit in query
performance is obtained by maintaining the CG statistics
of order 2. The CORDS approach, because of its simplicity,
restriction to column pairs, and judicious use of sampling,
is relatively easy to implement in existing commercial sys-
tems, has very low overhead, and scales well to the large
numbers of columns and large table sizes found in real-world
databases.

The rest of the paper is organized as follows. Section 2
gives an overview of recent technology for relaxing the in-
dependence assumption in query optimization, and relates
the results in the current paper to this body of work. Sec-
tion 3 describes the CORDS detection algorithm in detail,
including generation of candidate column pairs, pruning of
unpromising candidates, sampling-based chi-squared analy-
sis of correlation, and discovery of soft FDs. In Section 4,
we discuss our simple but effective method for using the
output of CORDS to improve an optimizer’s selectivity esti-
mates and hence its choice of query plans. Section 5 contains
an experimental evaluation of CORDS in which we validate
the correlation detection algorithm using a database with
known correlations. We also explore the effect of varying
the sampling rate and of using higher-order CG statistics,
and demonstrate the speedup in query execution times that
can result from the use of CORDS. In Section 6 we describe an
application of CORDS to several real-world and benchmark
databases. Section 7 contains our conclusions and recom-
mendations for future work.

2. RELATED WORK

Recent years have witnessed a large body of work aimed at
relaxing the independence assumption in selectivity estima-
tion. As in [12], we can distinguish between “data driven”
and “query driven” approaches to detecting and exploiting
dependencies among database columns.

2.1 Query-Driven Approaches

Some query-driven approaches focus on information con-
tained in a query workload, i.e., a list of relevant queries. For
example, Bruno and Chaudhuri [4] use the query workload
together with optimizer estimates of query execution times
to determine a beneficial set of “SITs” to retain. SITs are
statistics (typically multidimensional histograms) on query
expressions that can be used to avoid large selectivity esti-
mation errors due to independence assumptions.

Alternatively, a query feedback system (QFS) uses feedback
from query execution to increase optimizer accuracy. LEO,

the DB2 learning optimizer [20], is a typical example of a
QFS. LEO compares the actual selectivities of query results
with the optimizer’s estimated selectivities. In this way, LEO
can detect errors caused by faulty independence assumptions
and create adjustment factors which can be applied in the
future to improve the optimizer’s selectivity estimates.

In [1, 5], query feedback is used to incrementally build a
multidimensional histogram that can be used to estimate the
selectivity of conjunctive predicates. The algorithms in [1, 5]
do not discover correlation between columns, however: the
set of columns over which to build the histogram must be
specified a priori.

The sasH algorithm [14] decomposes the set of columns
in a table into disjoint clusters. Columns within a clus-
ter are considered correlated and a multidimensional his-
togram is maintained for these columns. Columns in differ-
ent clusters are treated as independent. In other words, SASH
approximates the full joint distribution of the columns by
maintaining detailed histograms on certain low-dimensional
marginals in accordance with a high-level statistical inter-
action model-—namely, a Markov network model—and then
computing joint frequencies as a product of the marginals.
SASH uses query feedback together with a steepest-descent
method to incrementally adjust both the structure of the
high-level model and the frequency counts in the various
histogram buckets.

The advantage of query-driven approaches is that they
are efficient, scale well, and result in immediate performance
gains, since they focus their efforts on columns that appear
in actual queries. The disadvantage is that the system can
produce poor estimates—and hence choose poor plans—if it
has not yet received enough feedback, either during the ini-
tial start-up period or after a sudden change in the workload.
Indeed, during one of these slow learning phases the opti-
mizer is likely to avoid query plans with accurate feedback-
based cost estimates in favor of more expensive plans that
appear to be cheap due to cost estimates based on limited
real data and faulty independence assumptions.

2.2 Data-Driven Approaches

Data-driven methods analyze the base data to discover
correlations between database columns, usually without con-
sidering the query workload. These methods can comple-
ment the query-driven approaches by identifying correla-
tions between columns that have not yet been referenced
in the workload. By proactively gathering information, a
data-driven method can mitigate the poor performance of a
query-driven method during a slow learning phase.

Most data-driven methods use discovered correlations to
construct and maintain a synopsis (lossy compressed repre-
sentation) of the joint distribution of all the attributes. In
some methods, the synopsis takes the form of a graphical
statistical model. Getoor, et al. [10], for example, use prob-
abilistic relational models—which extend Bayesian network
models to the relational setting—for selectivity estimation.
Deshpande, et al. [8] provide a technique that, similarly
to SASH, combines a Markov network model with a set of
low-dimensional histograms. In [8], however, the synopsis
is constructed based on a full scan of the base data rather
than from query feedback. Both of the foregoing techniques
search through the space of possible models and evaluate
them according to a scoring function. Because the num-
ber of possible models is exponential in the number of at-

tributes,! efficient search techniques and pruning heuristics
are essential ingredients of these approaches.

The method of Cheng, et al. [6] typifies a slightly dif-
ferent approach to constructing a synopsis (specifically, a
Bayesian network model) from the base data. Instead of
searching through a space of possible models as in [8, 10],
the method assesses the dependency between pairs of col-
umns by using conditional independence tests based on a
“mutual information” measure. The method requires that
all attributes be discrete and that there be no missing data
values. The method also requires processing of the entire
dataset and has a complexity of O(K*) with respect to K,
the number of attributes.

As discussed in [12] and references therein, there has also
been a great deal of work related to mining of hard FDs
and related dependencies. The focus has been on obtaining
exact or almost-exact results, and so the amount of work
required by these algorithms is much greater than in our
setting, where probabilistic results suffice.

Another related body of work concerns the mining of as-
sociation rules and semantic integrity constraints; see, for
example, [18, 19]. These dependencies, however, involve re-
lationships between a few specific values of a pair of at-
tributes, rather than an overall relationship between the
attributes themselves. For example, an association might
assert that 10% of married people between age 50 and 60
have at least 2 cars. This rule concerns specific values of the
MartialStatus, Age, and NumberOfCars attributes.

2.3 Relation of CORDS to Previous Work

In terms of the above taxonomy, CORDS is fundamentally
a data-driven method, taking as input the base data as well
as certain database catalog statistics that are maintained
in virtually every commercial database system. We note,
however, that CORDS can also exploit workload information
to limit the search space of possible column pairs; indeed,
CORDS can also exploit schema constraints or semantics pro-
vided by users. The CORDS approach is well-suited to inte-
gration with a QFs such as LEO, and can potentially be used
to initialize a more elaborate data-driven algorithm, such
as that in [8]. Unlike some of the schemes discussed above,
CORDS can handle either numerical or categorical data.

Because CORDS merely identifies correlated columns in-
stead of producing detailed approximations to the joint at-
tribute frequency distribution, the method’s overhead typ-
ically is much lower than that of the more elaborate tech-
niques in [6, 8, 10]. The use of sampling in CORDS further re-
duces its overhead relative to other methods, so that CORDS
is well-suited to real-world databases having thousands of
tables and hundreds of columns per table. CORDS can also
deal relatively well with data that is continually changing,
since rechecking column pairs for correlation is much less
expensive than updating a synopsis. Implementing CORDS
and integrating CORDS with existing commercial optimizers
is also much easier than for the more elaborate schemes.
The downside is that the optimizer tends to exploit the de-
pendency information provided by CORDS in a much coarser
manner than would be the case with a joint-distribution
synopsis—as discussed in Section 4.1, the LEO optimizer in
essence replaces a rather crude selectivity estimate by a less-

1E.g., even though Deshpande, et al. limit their search to “decom-
posable” models, it can be shown that the number of such models
corresponding to five attributes is 1,233.

crude one. On the other hand, our experiments indicate that
even this simple approach can yield dramatic improvements
in worst-case query performance.

CORDS may not detect column pairs in which only cer-
tain subsets of the rows are correlated. Such detailed rela-
tionships are more effectively detected via query feedback.
CORDS is designed to quickly obtain a global picture of the
data relationships, which can then be refined by a QFs.

3. DISCOVERING DEPENDENCIES

In this section, we describe how CORDS discovers corre-
lations and soft FDs. As in the B-HUNT algorithm in [12],
the first step is to generate candidate column pairs that po-
tentially have interesting and useful dependencies. For each
candidate, the actual dependencies, if any, are detected us-
ing both catalog statistics and sampled values from the col-
umns.

3.1 Generating Candidates

Similarly to [12], we define a candidate as a triple
(a1,az2, P), where a; (i = 1, 2) is an attribute (column) of the
form R.c, such as EMPLOYEES.ID or ACCOUNTS.Balance. The
quantity P is a “pairing rule” that specifies which particu-
lar a; values get paired with which particular a2 values to
form the set of pairs of potentially correlated values. When
the columns lie in the same table R and each a; value is
paired with the a2 value in the same row, the pairing rule
is then trivial and we denote it by the symbol ()g. CORDS
also allows columns a1 and a2 to lie in different tables, say
R and S, where R and S might plausibly be joined during
query processing. A pairing rule P in this case is simply a
two-table join predicate between R and S.2

CORDS proceeds similarly to B-HUNT, first generating all
candidates having a trivial pairing rule. CORDS then finds all
nontrivial pairing rules that “look like” a key-to-foreign-key
join predicate, since such join predicates are likely to occur
in query workloads. Each nontrivial pairing rule P connects
a pair of tables R and S, and CORDS generates all candidates
of the form (R.a, S.b, P). To find the nontrivial pairing rules,
CORDsS first identifies the set K comprising columns that are
either declared primary or unique keys, together with each
column a not of these two types such that

#distinct Values(a)
#rows(a)

(Here € is a parameter of the algorithm.) For each column
a € K, CORDS examines every other column in the schema
to find potential matches. A column b is considered a match
for column a if either (1) column a is a declared primary key
and column b is a declared foreign key for the primary key,
or (2) every data value in a sample from column b has a
matching value in column a.® The sample used to check the
condition in (2) need not be large; in our implementation
the sample size was set at a few hundred rows.

The number of potential candidates is typically quite
large for a complex schema with a large number of col-
umns. Therefore CORDS, like B-HUNT, applies a flexible set
of heuristic pruning rules to reduce the search space. Some
useful types of pruning rules are as follows.

>1—e

2We allow tables R and S to coincide, so that P can be a self-join
predicate.

3As in [12], this procedure can be extended to handle certain com-
pound keys.

e Type Constraints: Prune candidate columns whose
data type does not belong to a specified set, for ex-
ample, columns whose data are not either integers or
strings of less than 100 characters.

e Statistical Constraints: Prune tables and columns that
do not have specified statistical properties, for exam-
ple, columns having a small number of distinct values
or tables having too few rows. See [12] for further
discussion.

e Pairing Constraints: Prune candidates whose pairing
rules fail to meet specified criteria. For example, only
allow pairing rules that correspond to explicitly de-
clared primary-key-to-foreign-key relationships. This
constraint would rule out a semantically meaningless
join condition such as CAR.ID = OWNER.ID on rela-
tions CAR(ID, OwnerID,...) and OWNER(ID,...).

e Workload Constraints: Prune candidate columns that
do not appear at least once in an equality predicate in
a query workload. These and similar constraints can
dramatically reduce the size of the search space.

The experiments in Section 5 indicate that even if none
of these pruning rules are applied, so that the search space
consists of all possible column pairs, the overhead incurred
by CORDS may still be acceptable in many cases.

3.2 Sampling-Based Testing for Correlation

Each candidate (ai,a2,P) generated by CORDS corre-
sponds to a set—call it Q2—containing N (> 1) column-value
pairs of the form (z1,x2), where the domain of z; comprises
d; distinct values (i = 1,2). In this section, we describe
how CORDs detects the presence of correlation between the
columns based on a random sample of pairs from Q.* Our
key observation is that the sample size required for a speci-
fied degree of accuracy is essentially independent of the size
of the database, so that the correlation-detection algorithm
is highly scalable. We provide a closed-form approximate
expression for the required sample size.

Suppose initially that di and d2 are not too large, and
without loss of generality suppose that the ith domain is
D, = {1,2,...,d; }; we assume throughout that the do-
main is known, e.g., from the system catalog. Also suppose
initially that the sample used for correlation detection is
a simple random sample drawn with replacement from €2;
because the sampling rate is typically very low, the with-
replacement sampling assumption has a negligible effect on
our analysis.

There are many different measures of association between
two attributes: see [11] for some classical statistical mea-
sures of association and [3, 17] for some general families
of association measures that include Chernov, Kolmogorov,
and Kullback-Leibler distances. We measure association us-
ing the mean-square contingency [7, p.282]:

di do 2
Yy)
4.5 '

zlgl

4When the pairing rule P is trivial, this sample is obtained by sam-
pling from the table that contains the two columns. Otherwise, CORDS
samples from the table containing the “foreign-key” column in the
key-to-foreign-key join condition specified by P and then, for each
sampled row, finds the unique matching row in the table containing
the key column.

Here d = min(di,d2) and, for each ¢ € D, and j € Da, the
quantity 7;; is the fraction of the N (x1,x2)-pairs for which
x1 = ¢ and z2 = j, and the quantities 7;. and 7.; denote
marginal totals: 7. = }°, mij and m.; = >, mi;. We use this
measure because it is convenient and has been well studied;
our basic techniques can be adapted to other measures of
association. As shown in [7], 0 < ¢? < 1. The case ¢* = 0
corresponds to complete factorizability of the joint frequency
distribution: m;; = m;.m.; for all 4 and j. If the factorizability
condition holds and we sample a column-value pair (X1, X2)
at random from €2, then X is statistically independent of X2
inthat P{Xi =iand Xo=j}=P{X:i =i} P{Xo=j}
for all ¢ € Dy and j € Dy. With a slight (and standard)
abuse of terminology, we therefore often use the term “inde-
pendence” instead of “factorizability” when describing the
relationship between such attributes. The case ¢? = 1 cor-
responds to a hard FD.°

In real-world datasets—or even synthetic datasets where
column values are generated “independently” using pseudo-
random number generators—the measure ¢ will never be
exactly equal to 0, so we consider the attributes indepen-
dent if ¢* < e for some small € > 0. One plausible way
of choosing a value of € is to consider a hypothetical set
of N data pairs such that the data is generated according
to a random mechanism under which the two components
are truly statistically independent, and then to choose € so
that ¢? exceeds € with a probability that is small, say, less
than 0.01. It is well known that under our model the quan-
tity (d—1)N¢? has approximately a chi-squared distribution
with v = (d1—1)(d2—1) degrees of freedom; see, e.g., [7, 16].
Denoting the cumulative distribution function (CDF) of such
a random variable by GG, and the inverse of this function by
G,', we have e = G, '(0.99)/(N(d — 1)). The quantity e
is typically very small; e.g., for d = 20 we have ¢ =~ 20/N,
where N typically exceeds 106

To test for correlation, , to test whether ¢? > ¢, we
take a random sample of n palrs from 2 and con51der d) ,
the sample estimate of ¢>. This estimate is defined as qb
x*/(n(d — 1)), where

di dg 2
n”—mnj) (1
ZZ ;M. ’

=1 j=1

~—

ni; is the number of pairs (z1,z2) in the sample for which
z1 =1 and z2 = j, and n;. and n.; are the corresponding
marginal totals. Our test reJects the hypothesis that the
attributes are independent if ¢*> > w, where u is a speci-
fied constant; equivalently, our test criterion is of the form
x2 > t. We choose t so that the worst-case probability of in-
correctly rejecting the independence hypothesis is smaller
than a prespecified value p. By “worst-case,” we mean
the scenario in which the independence hypothesis “barely
holds” in that ¢? = e. When ¢? = ¢, the test statistic
x? has approximately a noncentral chi-squared distribution
with v degrees of freedom and noncentrality parameter equal
to n(d — 1)¢; see, e.g., [16].6 Because € is very small, we

5The mean-square contingency is not well suited to direct testing for
FDs, however, because the value of ¢2 does not determine which of the
attributes depends on the other. Moreover, as discussed in the sequel,
we often bucketize the data, in which case ¢? is typically strictly less
than 1 even in the presence of a hard Fp.

SIn general, a noncentral chi-squared distribution with v degrees of
freedom and noncentrality parameter A is characterized as the distri-

10000 : : ,
& 1000+ 1
)
Q
[=%
g
& 100 F 4
©
o
=1
5
g 10t 4
dy=dy=10 —
dy=dy=50
1 n Lo a il n P L Lo il n PR
1e-06 1e05 0.0001 0.001 0.01

Maximum Allowed Error Probability (p)

Figure 1: Required sample size for correlation de-
tection (4 = 0.005).

can approximate the distribution of x? by an ordinary chi-
squared distribution with v degrees of freedom. Thus we set
t=G,'(1-p).

Note that our procedure is equivalent to computing the
quantity p* = 1 — G, (x?) and rejecting the independence
hypothesis if p* is less than a cutoff value p. The quantity
p*, which is called the p-value of the test, is the probabil-
ity of seeing a value of x? as large as (or larger than) the
value actually observed, assuming that the attributes are
truly independent. Thus the smaller the p-value, the more
likely that the columns are correlated. The cutoff value p is
the maximum allowable probability of incorrectly asserting
correlation in the presence of independence.

To determine the sample size n, we fix a small constant
8 > € and take enough samples so that, whenever ¢? > 4,
the test will correctly reject the independence hypothesis
with probability at least 1 — p. That is, we choose n such
that G, A(t) = p. Here G, » denotes the CDF of a noncen-
tral chi-squared distribution with v degrees of freedom and
noncentrality parameter A\, with A depending on n via the
relation A = n(d—1)J. Observe that, as asserted earlier, the
sample size is essentially independent of the database size
N. For the case § = 0.005, Figure 1 displays the required
sample size n as a function of p and of the domain sizes
di and d2. It can be seen that the sample size is relatively
insensitive to the values of these parameters. The following
approximation can be used to determine n from p, di, and
dz:

N [~16 v log(pv2r)] 12 _ 8log(pv/2m))
" 1.690(d — 1)y—0071)

Here v = (di — 1)(d2 — 1) and d = min(di, d2) as before.
This approximation is accurate to within roughly 2% for
107% < p <1072 and 361 < v < 2401, and to within roughly
5% for 107® < p < 1072 and 81 < v < 2401. We obtain
the approximation by using the fact [16] that a noncentral
chi-squared random variable can be viewed as the sum of v

bution of the sum of v independent squared normal random variables,
the ith normal random variable having mean p; and variance 1. Here
A=pl+-+pl

i.i.d. squared normal random variables. Thus

x—(u—i—)\))
V2v+4x)’

when v is large, where ® denotes the CDF of a standard
normal random variable. We then use a standard normal
tail estimate [9, p. 175] to approximate ®'. Finally, we
apply a small empirical correction factor of v%-07! /1.69.

The foregoing discussion suggests that a sample of several
thousand rows should yield acceptable results, regardless of
the database size. In Section 5.2 we empirically evaluate the
effect of sample size on accuracy and execution time.

There are a couple of important issues that must be ad-
dressed when applying the foregoing chi-squared analysis in
practice. One potential problem occurs whenever many of
the n;;’s are equal to 0 because the corresponding ;;’s are
nonzero but very small; in this case the chi-squared test,
whose derivation assumes a large sample, tends to be unre-
liable. Indeed, one rule of thumb asserts that chi-squared
results cannot be trusted unless at least 80% of n;;’s exceed
5. The n;;’s can be too small if either of the domains D; or
D5 is very large. CORDS deals with this situation by decom-
posing each large domain into a relatively small number of
disjoint categories. The data is then bucketized accordingly,
so that di and d2 now represent the number of categories for
the two columns, and n;; is now interpreted as the number
of pairs (z1,z2) such that z1 (resp., z2) belongs to cate-
gory i (resp., j). To help ensure that each n;; is sufficiently
large, CORDS examines the frequent-value statistics found in
most database system catalogs. Specifically, CORDS checks
whether the frequent values of a column account for most of
the data, so that the data distribution is noticeably skewed.
If so, CORDS uses these frequent values as the column cate-
gories (see Section 3.3 for details). Otherwise, CORDS buck-
etizes the data by hashing, in effect creating categories by
dividing the domain into equal size subsets. CORDS also uses
the bucketization approach to deal with real-valued data; in
this case the categories correspond to disjoint subintervals
of the real line.

Another issue concerns structural zeros, that is, (4, j) pairs
for which m;; = 0. The chi-squared test is not designed to
deal with structural zeros. This problem is partially alle-
viated by the bucketization procedure described above. If
many zero-valued n;;’s are still present after bucketization,
then CORDS considers these to be structural zeros, and takes
the presence of such zeros as direct evidence of correlation
between the columns.

3.3 The Detection Algorithm

Figure 2 displays the complete CORDS detection algorithm.
The algorithm, besides detecting correlations between col-
umns, also identifies soft FDs and soft keys. For ease of
exposition, we give the algorithm for the case in which the
two columns of interest both lie in some table R and are
related via the trivial pairing rule @r. The modifications
required to handle the case of a nontrivial pairing rule P
are straightforward; in effect, one simply needs to view ta-
ble R as the result of executing the join query specified by
P. We also restrict the discussion to the case of categorical
or discrete-valued data—see [15] for a discussion of how to
apply the chi-squared test to real-valued data.

In the algorithm, |C|r denotes the number of distinct val-
ues in column C of table T and |T'| denotes the number of

Gua(z) = <I>(

ALGORITHM DetectCorrelation
INPUT : A column pair Cq,C2 with |Ci|g > |C2|r

Discover Trivial Cases
l.a. IF|Cilr > (1 —e1)|R|fori=1ori=2
THEN C; is a soft key; RETURN.
b. IF|Cilgp=1fori=1ori=2
THEN C; is a trivial column; RETURN.

Sampling
2. Sample R to produce a reduced table S.

Detect Soft Functional Dependencies in the Sample
3. a. Query S to get |C1]s, |C2|s and |C1,C2]s.
b. IF |C1,C2|s < €2|S]
AND |Ci|s 2 (1 = €3)|C1,Cals
THEN C7 = C2; RETURN.

Skew Handling for Chi-Squared Test

4. FORi=1,2
a. IF YN R > (1-e)lR|
THEN
SKEW; = TRUE;
d; = Ny;
FILTER = “C; IN {Vi1,...,Vin,}”
ELSE

SKEW, = FALSE;
d; = min(|ci‘R7 dmax);
FILTER = NULL.

b. Apply FILTER.

Sampling-Based Chi-Squared Test
5. a. Initialize each n;j, n;., and n.; to 0.
b. FOR EACH column-value pair (z1,z2)
t = Category (1,x1,d1, SKEW1);
j = Category (2, x2,d2, SKEW3);
Increment n;;, n;., and n.; by 1;
c. TFY{, Y92, IsZero(nij) > esdids
THEN C7 and Cq are correlated; RETURN.
d. Compute x? as in (1); set v = (d1 — 1)(d2 — 1)
and t = G, 1 (1 —p).
e. IFx2>t
THEN C; and C32 are correlated; RETURN.
ELSE C7 and C2 are independent; RETURN.

Figure 2: The correlation detection algorithm.

rows in table T'. Similarly, |C1, C2|r denotes the number of
distinct values in the concatenation of columns C; and Cs in
table T'. We denote the jth most frequent value in a column
C; by V;; and the corresponding frequency of the value by
Fi;; we denote by N; the number of frequent values for C;
that are stored in the system catalog. Finally, we denote
by d; the number of distinct categories for the C; values in
the chi-squared test. Recall that we write C1 = C2 to de-
note a soft FD of C2 on C;. The algorithm parameters €;
through €5 are small positive constants lying between 0 and
1. The parameter p is the maximum allowed probability of
a false-positive or false-negative result for the chi-squared
test. Some key details of the algorithm are as follows.

Step 1. The quantities |C;|r and |R| are obtained from
the system catalog. If the number of distinct values in a
column Cj is close to the table cardinality |R|, then this
column is “almost” a key, and we call such a column a soft
key. A soft key column is trivially statistically correlated

with every other column in R because the value of C; with
high probability determines the row, and hence the value
in any other column. Therefore, CORDS prunes any column
pair for which at least one column is a soft key. CORDS
similarly prunes pairs in which at least one column is single-
valued, because if |Ci|r = 1, then each column C; with j # i
functionally determines C} in a trivial manner.

Step 2. Many commercial systems use either a row-level
or page-level Bernoulli sampling scheme. Although these
schemes differ somewhat from the simple random sampling
scheme assumed in the sample size analysis of Section 3.2,
both theoretical and empirical considerations nonetheless
continue to support the conclusion that a relatively small
fixed sample size—independent of the table cardinality—is
adequate for the chi-squared analysis. This is a crucial fea-
ture that allows CORDS to scale to large databases. Soft FDs
are harder to detect from a sample because, as discussed
below, such detection requires accurate sampling-based es-
timates of the number of distinct values in the two columns
and in the concatenation of the two columns. Such estima-
tion is notoriously difficult [13], and the required sample size
for a specified degree of accuracy is determined as a percent-
age of the table cardinality. Fortunately, CORDS usually cor-
rectly detects correlation between two columns even when
it fails to detect a ¥D, and correlation detection suffices for
the purpose of recommending CG statistics.

Step 3. If, in table R, column C, functionally determines
Ca, then |C1|r/|C1,C2|r = 1. Therefore, CORDS asserts the
existence of a soft FD C1 = Cb if |C1]s/|C1, C2|s is “close”
to 1 (specifically, within a distance of €3). Because determin-
ing FDs from samples is somewhat risky, CORDS only tests
for a soft FD if the reduced table S contains enough “infor-
mation” in the sense that |S| > |C1,C2|s. Intuitively, if
the sample S is so small that most column-value pairs (z,y)
in the sample are distinct, then a spurious ¥D will likely be
detected. We define the strength of a soft FD C1 = C as
|C1|r/|C1, C2|r. This strength is always less than or equal
to 1, and a soft FD with strength equal to 1 coincides with a
hard functional dependency. CORDS estimates the strength
of a soft FD by |C1|s/|C1,C2|s. Note that CORDS, because
it works from a sample, can never assert with complete cer-
tainty that a discovered FD is a hard dependency.

Step 4. As discussed previously, CORDS uses each frequent
value in a column as a category for the chi-squared test when
the data distribution is highly skewed; in this case d;, the
number of categories, is equal to N;, the number of frequent
values in the system catalog. In effect, the chi-squared anal-
ysis is applied to a reduced table that is obtained by elim-
inating infrequent values. Note that the filtering process is
not determined by properties of the sample, so that the sta-
tistical properties of the test are not distorted. When the
data is not skewed, the number of categories is equal to the
number of distinct column values, up to a specified limit
dmax-

Step 5. In Step 5.b, CORDS bucketizes the data, if neces-
sary, and creates the “contingency table” for the chi-squared
test—i.e., the two-dimensional array of n;; values along with
the marginal row (n;.) and column (n.;) totals. Figure 3
displays the function Category that is used for this compu-
tation. In the figure, Hash is a specified integer-valued hash
function.® In Step 5.c, CORDS declares columns C7 and Ca

"Our implementation uses a value of dpyax = 50.
8When |Ci|r < dmax, Hash can be taken as a simple 1-to-1 mapping

FUNCTION Category (i, z,d, SKEW)

IF SKEW = TRUE
THEN RETURN j such that z = V;;
ELSE RETURN 1+4[Hash(x) mod d].

Figure 3: Assigning column values to categories for
the chi-squared test.

to be correlated if there are too many zeros in the contin-
gency table, essentially considering these zeros to be struc-
tural zeros because they have persisted in the presence of
bucketization. The function IsZero that is used in Step 5.c
returns 1 if its argument is 0 and returns 0 otherwise.

3.4 Displaying the Results Graphically

Especially in the context of data mining, it can be illumi-
nating to display the output of CORDS as a dependency graph
in which nodes correspond to columns and arcs correspond
to correlation or soft FD relationships; see, for example, Fig-
ures 6, 11, and 14 below. Indeed, the name CORDS was
partially inspired by the visual “cords” that connect corre-
lated columns. The thickness of the arcs (or, alternatively,
the color) can be used to show the strength of the relation-
ships. For soft functional dependencies, the thickness can
be an increasing function of the estimated strength, as de-
fined in Section 3.3. For correlations, the thickness can be a
decreasing function of the p-value or an increasing function
of the estimated mean-square contingency.

4. CORDS AND QUERY OPTIMIZATION

In this section we describe one possible scheme for using
CORDS to improve the accuracy of a query optimizer. In
this scheme, CORDS recommends a set of CG statistics for
the optimizer to maintain.

4.1 Use of Column-Group Statistics

Consider two columns C; and C2 from some specified ta-
ble, and suppose that we wish to estimate the selectivity of
a conjunctive predicate p1 A p2, where each p; is an equality
predicate of the form “C; = v;.” A simple and commonly-
used selectivity estimate is obtained by first estimating the
selectivity of each p; as Sp, = 1/|C;|, where |C;| is the num-
ber of distinct values in C;, and then obtaining the final
selectivity estimate as Sp,ap, = Sp; - Sps = 1/|C1| - 1/|C2|.

The foregoing estimate usually suffers from two sources of
error. First, the selectivity estimates for the individual pred-
icates p1 and p2 assume that the data values in each column
are uniformly distributed. Second, the selectivity estimate
for pi1 Ap2 assumes that C; and Cs are independent. This lat-
ter assumption often results in underestimation of the true
selectivity by orders of magnitude. Query optimizers typ-
ically impose uniformity assumptions when detailed distri-
butional statistics on individual columns are not available in
the system catalog, and impose independence assumptions
when statistics are available only for individual columns and
not for groups of columns.

from the set of distinct C; values to {1,2,...,|C;|r}. Of course,
neither mapping nor hashing may be needed when the data is integer-
valued.

ID Make Model
1 Honda Accord
2 Honda Civic
3 | Toyota Camry
4 | Nissan | Sentra
5 | Toyota | Corolla
6 BMW 323
7 Mazda 323
8 Saab 95i
9 Ford F150
10 Mazda 323

Figure 4: A table with correlated columns.

We focus on ameliorating the latter type of error; errors
caused by inappropriate independence assumptions often
dominate the total error when estimating the selectivity of
a conjunctive predicate. Our approach uses CORDS to iden-
tify a set of column pairs that are strongly correlated; for
each such pair (C1, C2), the optimizer collects the CG statis-
tic |C1, C2|, the number of distinct combinations of values in
the two columns. The optimizer then produces the improved
selectivity estimate Sj, rp, = 1/|C1, Cal.

CORDS can profitably be used in conjunction with a QFS,
such as LEO, that stores and applies a set of multiplicative
adjustment factors to the optimizer’s selectivity estimates.
E.g., in an enhanced version of LEO, an adjustment factor
may be derived either from query feedback or from informa-
tion provided by CORDS. In this way the strengths of both
query-driven and data-driven approaches can be combined.
For our particular example, the adjustment factor for Sp, ap,
is simply |C1]||C2|/|C1, C2|. This adjustment factor equals 1
when the columns are truly independent and grows larger as
the correlation between the two columns becomes stronger.

ExAMPLE 1. Consider the automobile data in Figure 4,
along with a query having a selection predicate pi1 Ap2, where
p1 = “Make = Honda” and p2 = “Model = Accord”. The
true selectivity of this predicate is op; Ap, = 1/10. The naive
estimate is Sp, ap, = 1/|Make|-1/|Model| =1/7-1/8 = 1/56,
which underestimates the true selectivity by a factor of
5.6, or about —82%. After applying a correction factor of
|Make| |Model|/|Make, Model| = 56/9, we obtain an adjusted
estimate of Sy, r,, = 1/9, which has an error of only 11%;
this residual error is caused by departures from the unifor-
mity assumption. Thus, by using a CG statistic, we have
removed the major source of the estimation error. O

Of course, the output of CORDS can be used in more so-
phisticated ways. For example the optimizer, prompted by
CORDS, might collect a more detailed set of cG statistics
comprising not only distinct-value information, but also the
frequencies for the k most frequent values, along with quan-
tiles. This additional information can be used to alleviate
selectivity-estimation errors arising from the uniformity as-
sumption. CORDS can potentially provide guidance when
maintaining more complex synopses such as those in [1, 8,
14]. As indicated by the foregoing example and the ex-
periments in Section 5, however, even the simple approach
described above can result in dramatic reductions in query
processing time. This approach has the important practical
advantage of being relatively easy to implement in existing
commercial optimizers.

ALGORITHM RecommendCGS
INPUT: Discovered correlations and soft FDs

1. Sort correlated pairs, (C;, Cj) in ascending order
of p-value

2. Sort soft FDs in descending order of estimated
strength

3. Break ties by sorting in descending order of the
adjustment factor |C;||C}|/|Cy, Cjl.

4. Recommend the top ki correlated column pairs
and the top kg soft FDs to the optimizer

Figure 5: Ranking Correlations and Soft FDs.

4.2 Recommending Column-Group Statistics

Real-world databases typically contain large numbers of
correlated column pairs. Maintaining CG statistics on each
pair for purposes of optimization is usually too expensive
and increases the complexity of the selectivity estimation
process to an unacceptable degree. This raises the question
of exactly which of the discovered pairs should be recom-
mended to the optimizer.

Suppose that, based on storage and processing con-
straints, the user is willing to store CG statistics for k1 cor-
related column pairs and k2 soft FDs. Then the algorithm in
Figure 4.2 can be used to recommend a set of CG statistics to
the optimizer. In Step 1, we can alternatively sort the cor-
related pairs in descending order of estimated mean-square
contingency; either choice ensures that the higher the rank
of a column pair, the stronger the correlation between the
columns. The tie-breaking rule attempts to select the ca
statistics that will have the biggest impact on the optimizer
selectivity estimates via the adjustment factor (as described
in Section 4.1). Indeed, the adjustment factor may be used
as the primary ranking criterion and not just as a tie breaker.
Finally, we note that more sophisticated methods, e.g., in
the spirit of [4], can potentially be used to decide the set of
CG statistics to maintain.

5. EXPERIMENTAL EVALUATION

We implemented a CORDS prototype as an application pro-
gram on top of DB2 V8.1 and applied CORDS to several syn-
thetic, real-world, and benchmark databases. In this sec-
tion, we describe the validation of CORDS using a synthetic
database having known correlations and soft FDs. We also
examine the effects of changing the sample size and of using
higher-order CG statistics, as well as the overall impact of
CORDS on query execution times. All experiments were per-
formed on a UNIX machine with two 400 MHz processors
and 1 GB of RAM.

In our experiments, we applied a subset of the pruning
rules discussed in Section 3.1. Specifically, we excluded col-
umns having data types comprised of very many bits and
limited pairing rules to joins between columns having a de-
clared primary-key-to-foreign-key relationship. We also con-
ducted experiments in which CORDS did not use any pruning
rules, in order to test scalability.

5.1 Validation

When generating the synthetic database, we created a pre-
determined set of correlations and soft FDs. We could then

analyze the accuracy of CORDS by comparing the set of cor-
relations and soft FDs discovered by the algorithm to the
true set.

The schema of the Accidents database that we gener-
ated contains four relations: CAR, OWNER, DEMOGRAPHICS, and
ACCIDENTS. Several primary-key-to-foreign-key relationships
exist between the tables, and a number of soft FDs between
attributes, such as Make and Model, are inherent in the at-
tribute definitions. We also generated correlations between
columns in a table and between columns in different tables
by manipulating the joint frequency distribution. For ex-
ample, we created a correlation between Model and Color:
most of the Accords are Silver, and so forth. The size of the
synthetic database is around 1 GB. This size is relatively
unimportant, at least with respect to the chi-squared anal-
ysis, because CORDS works from a sample and, as discussed
previously, the accuracy depends only on the absolute sam-
ple size.

We did not explicitly declare any of the primary-key-to-
foreign-key relationships in the Accidents database, which
had the effect of restricting CORDS to discover correlations
and soft FDs only between columns in the same table. Such
relationships are the most important with respect to the
scheme in Section 4.1 for improving selectivity estimates,
because optimizers typically do not maintain CcG statistics
for columns in different tables.

CORDS, using a sample of 4000 rows from each table, dis-
covered all of the synthetically generated correlations and
soft FDs, and did not incorrectly detect any spurious rela-
tionships. Figure 6 displays the dependency graph for each
of the tables in the Accidents database. In the figure, the
thickness of a solid line (“cord”) that represents a correla-
tion increases as the p-value decreases, and each dashed ar-
row that represents a soft FD is labeled with the estimated
strength of the FD as defined in Section 3.3.

The graph shows a soft FD Model = Make with an esti-
mated strength® of 0.92. That the estimated strength of this
soft FD is strictly less than 1—and would be less than 1 even
for a sampling rate of 100%—is expected since certain mod-
els share the same make (e.g., Mazda 323 and BMW 323).
The soft FDs in the dependency graph for the OWNER relation
accurately reflect the hierarchies in the data: City = State,
State = Country, and the transitive closure of these FDs.
There were no trivial columns in this example, but CORDS
identified a number of soft keys. For example, CORDS iden-
tified the columns ID and Name in OWNER table as soft keys.
Note that ID is an actual key; Name is not a key, but has a
large number of distinct values close to the relation cardi-
nality, so that any functional dependency or correlation that
involves Name is likely to be spurious.

5.2 The Effect of Sample Size

Our implementation of CORDS exploits the efficient page-
level Bernoulli sampling technique supported by DB2. For
the sample sizes considered, the cost of retrieving a sample is
approximately a linear function of the sample size, and is in-
dependent of the size of the database. Figure 7 displays the
overall execution time of CORDS as a function of the sample
size. As can be seen, the execution time of CORDS increases

9The actual strength was 0.9236. CORDS estimated the strengths of
each soft FD in the Accidents database to within 0.5%. Although this
result is encouraging, the accuracy when estimating soft FDs depends
in general on the size of both the database and the sample.

. SoftKey
- Trivial Column)

- Correlation cms
Soft FD - =

CEALARYD

DEMOGRAPHICS

Figure 6: Dependency graph for the Accidents database.

10000

1000

o
=}

o

CORDS Execution Time (Seconds)

T
100 1000 10000 100000 1000000 10000000

Sample Size (Rows)

Figure 7: Effect of sample size on execution time.

in a slightly sublinear manner as the sample size increases
from 1000 rows to the entire database (no sampling). For a
sample size of few thousand rows, CORDS takes less than a
minute to complete, regardless of the size of the database.
The next set of experiments explores the effect of sample
size on the quality of the results. Note that CORDS can com-
mit four types of errors. A false positive correlation occurs
when CORDS erroneously identifies an independent column
pair as correlated, and a false negative correlation occurs
when CORDS erroneously identifies a correlated column pair
as independent. False positive and false negative FDs are
defined in an analogous manner. Figure 8 displays the fre-
quencies of the four types of errors for various sample sizes.
The number of false positive correlations drops substan-
tially as the sample size increases from 1000 or 2000 rows
to 4000 rows. Increasing the sample size beyond 4000 rows
does not improve the results. The number of false positive
FDs is equal to 0 even for small sample sizes because of the
conservative criterion that CORDS uses to detect FDs—see
Step 3.b of the algorithm in Figure 2. Although the number

Sample Size

w1000
©@2000
%4000
8000
216000
264000

Number of Errors

False Positive False Negative False Positive False Negative
Correlation Correlation FD FD
Type of Error

Figure 8: Accuracy versus sample size.

of errors at sample sizes of 1000 and 2000 rows may seem rel-
atively large at first, the situation—at least from the point
of view of query optimization—is actually not so bad. Ob-
serve that a soft FD is a special type of correlation between
two columns. Although CORDS misses some soft FDs when
there is not enough data (i.e., at small sample sizes), CORDS
nonetheless identifies these soft FDs as general correlations.
Although each such misclassification results in both a false
negative FD and a false positive correlation, CORDS correctly
recommends that the optimizer maintain CG statistics on the
column pair, so that the two errors cancel out. Thus, if we
follow the dotted lines in Figure 8 and subtract the number
of false negative FDs from the number of false positive corre-
lations, then we find that the accuracy of CORDS at sample
sizes of 1000 and 2000 rows is comparable to the accuracy
at larger sample sizes.

6000

5000 A

4000

3000 A

2000

Worst-case Error Factor

1000 +

1) T

Single Colurn

—

2 Columns
Order of CG Statistics

3 Columns

Figure 9: Effect of column-group order on accuracy
of selectivity estimates.

5.3 Higher-Order CG Statistics

CORDS discovers correlations only between pairs of col-
umns. The rationale behind this approach is that such pairs
can be identified in a fast and highly scalable fashion, and
the resulting CG statistics can be used to correct for most
of the errors in selectivity estimation. We tested the lat-
ter assumption by measuring the selectivity estimation error
when there are either (1) statistics on single columns only,
so that the independence assumption is used throughout,
(2) ca statistics on column pairs, or (3) CG statistics on col-
umn triples. The workload consisted of 300 queries, where
each query had a set of three or more equality predicates on
correlated columns. The CG statistics for column pairs were
obtained by running CORDS, and the CG statistics for column
triples were computed for all triples that appeared in at least
one predicate in the query workload.!® For each of the three
scenarios, we computed the error factor in selectivity esti-
mation for each query, that is, the ratio of the true to the
estimated selectivity. Figure 9 displays the worst-case error
factors. As can be seen, maintaining CG statistics on column
pairs reduces the worst-case error by an order of magnitude.
The figure also clearly shows the diminishing return from
maintaining higher order CG statistics, and provides some
justification for our approach.

5.4 Performance Benefit for Query Execution

To evaluate the overall benefit of using CORDS in the con-
text of query optimization, we ran a workload of 300 queries
on the Accidents database, both with and without the ca
statistics recommended by CORDS. Each query joins the four
tables in the schema and applies multiple local predicates on
correlated columns. Figures 10(a) and (b) display the box
plot and scatter plot for the workload in these two scenar-
ios. As can be seen from Figure 10(a), there is a slight de-
crease in the median query execution time, and a dramatic
decrease—by an order of magnitude—in the worst-case ex-
ecution time. Inspection of the scatter plot in Figure 10(b)
shows that almost all of the plotted points lie below the 45
degree line, i.e., almost all of the queries benefitted from
the use of CORDS. Many queries benefitted significantly. In-
creases in query execution times, when present, were small,
and resulted from small inaccuracies in the optimizer’s cost
model.

1OPresumably an extension of CORDS to column triples would recom-
mend some subset of the cG statistics that we used.

6. CORDS IN ACTION

This section reports some results that were obtained
by applying CORDS to several real-world and benchmark
databases. We first explored a subset of the Census database
comprising a single table having 123 columns. We then
looked at the Auto database; this real-world database con-
tains motor vehicle information and has over 20 tables and
hundreds of columns. As indicated previously, a sample size
of a few thousand rows suffices for query optimization. For
purposes of data mining, where we would like to more accu-
rately capture soft FDs, initial experiments found a sample
size of 10,000 rows to suffice. We therefore use a sample size
of either 2000 or 10,000 rows throughout.

As seen from the dependency graph!'! for the Census
database, based on 2000 rows and displayed in Figure 11,
correlations and FDs abound in real-world databases. Fig-
ure 12(a) shows the number of discovered correlations cor-
responding to various upper cutoff levels for the p-value and
lower cutoff levels for the adjustment factor (defined as in
Section 4.1). Figure 12(b) shows the number of discovered
soft FDs corresponding to various lower cutoff levels for the
estimated strength and the adjustment factor. Figure 13 is
analogous to Figure 12, but based on a sample of 10,000
rows from the Auto database. The foregoing figures show
how real-world databases can contain large numbers of cor-
relations that will likely cause huge errors in selectivity esti-
mation. For example, in the Auto database, there are more
than 150 correlated pairs that can cause selectivity estima-
tion errors by a factor exceeding 256.

We also applied CORDS to the TPC-H benchmark data-
base. CORDS discovered various associations between col-
umns that resulted from the data generation process, as
well as from naturally arising primary-key-to-foreign-key re-
lationships and FDs. For example, based on a sample of
10,000 rows, CORDS identified two clusters of attributes in
the LINEITEM table; see Figure 14. The first cluster pertains
to an order, while the second cluster pertains to a supplier.
These hidden correlations can result in order-of-magnitude
errors in estimated selectivities, and hence query plans that
run in hours instead of seconds. We emphasize that the
clusters were discovered without requiring any explicit se-
mantic knowledge about the application domain—CORDS is
completely data-driven.

7. CONCLUSIONS AND FUTURE WORK

CORDS is a fast and scalable technique for detecting cor-
relations and soft FDs between attributes in a relational
database. By combining the candidate-generation frame-
work from the B-HUNT system with robust chi-squared anal-
ysis and a judicious use of sampling, CORDS can discover
correlations in a fast, efficient and highly scalable manner.
Indeed, our experiments show that CORDS can discover cor-
relations and soft FDs in very large databases in a matter
of minutes. Our empirical study also shows that real-world
databases are rich in such statistical relationships.

CORDS can be used as a standalone database mining tool.
Indeed, CORDS is well suited to visualization, because the
output of CORDS can easily be transformed into a depen-
dency graph. An interesting topic for future research is how
best to display the relationships between database attributes

' The dependency graphs in this section have the same legend as that
for Figure 6.

800
700 +
600 +
500 +
400 +
300 1
200 +
100 +

Query Execution Time (Seconds)

1 —]
Without CORDS With CORDS

Query Execution Scenario

(a) Box Plot

Execution Time with CORDS

1000

Degradation
100 -
SA..
- e N tum Cans
10
Improvement
1 4= ‘ ‘ ‘
1 10 100 1000

Execution Time without CORDS

(b) Scatter Plot

Figure 10: Effect of CORDS on query execution time.

using linewidth, texture, color, and so forth. Although we
have presented static dependency graphs, one can envision
a dynamic graphical front end that permits the user to dis-
play first the strongest relationships, then the next strongest
relationships, and so forth, by manipulating, e.g., a slider
bar. CORDS can also complement current database min-
ers to permit more efficient pruning during the traditional
association-rule discovery process. Finally, CORDS can facili-
tate the preliminary phases of schema discovery and schema
design.

We have shown the potential of CORDS as a practical
tool for relaxing the independence assumption used by com-
mercial query optimizers when estimating selectivities. We
found CORDS relatively easy to prototype in a commercial
DBMS, and our experiments show that the use of CORDS can
lead to order-of-magnitude improvements both in the accu-
racy of selectivity estimates and in the resulting query execu-
tion times. Moreover, by simultaneously using both CORDS
and LEO-style feedback algorithms as a basis for recommend-
ing CG statistics to the optimizer, we can potentially obtain
the best features of both data- and query-driven methods.

Although CcORDS discovers only pairwise correlations, our
experiments indicate that exploiting such correlations can
remove most of the correlation-induced selectivity estima-
tion errors, though perhaps the discovery and exploitation
of three-way correlations may be worthwhile. We suspect
however that, for most data-driven methods, the increase
in accuracy obtained by capturing high-dimensional joint
distributions does not justify the resulting increase in exe-
cution cost and programming complexity. A better strategy
is to use CORDS as a bootstrapping technique for a QFs if
higher-order cG statistics are needed.

In future work, we plan to investigate techniques for ex-
tending CORDS to detect three-way correlations, and to see
if such an extension is worthwhile for query optimization;
one possible approach to this problem is to replace the chi-
squared analysis by a more general log-linear analysis as
described in [2]. We will also investigate extensions for facil-
itating schema discovery, for example, discovering soft com-
posite keys and soft FDs of the form X, .., Y = Z. We believe
that the CORDs technique can be applied in contexts other
than relational databases, for example, discovering relation-
ships and schema information in XML data.

8. REFERENCES

[1] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms:

(2l
(3]

(4]

5]

6]

(7]

8

9l

(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]

(18]

(19]

[20]

Building histograms without looking at data. In Proc. 1999
ACM SIGMOD, pages 181-192. ACM Press, 1999.

A. Agresti. Categorical Data Analysis. Wiley, second edition,
2002.

S. M. Ali and S. D. Silvey. A general class of coefficients of
divergence of one distribution from another. J. Royal Statist.
Soc. Ser. B, 28:131-142, 1966.

N. Bruno and S. Chaudhuri. Exploiting statistics on query
expressions for optimization. In Proc. 2002 ACM SIGMOD,
pages 263-274. ACM Press, 2002.

N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: a
multidimensional workload-aware histogram. In Proc. 2001
ACM SIGMOD, pages 211-222. ACM Press, 2001.

J. Cheng, D. A. Bell, and W. Liu. Learning belief networks
from data: An information theory based approach. In Proc.
ACM Conf. Info. Knowledge Mgmt. (CIKM ’97), pages
325-331, 1997.

H. Cramér. Mathematical Methods of Statistics. Princeton,
1948.

A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is
good: dependency-based histogram synopses for
high-dimensional data. In Proc. 2001 ACM SIGMOD, pages
199-210. ACM Press, 2001.

W. Feller. An Introduction to Probability Theory and Its
Applications, Volume I. Wiley, 1968.

L. Getoor, B. Taskar, and D. Koller. Selectivity estimation
using probabilistic models. In Proc. 2001 ACM SIGMOD,
pages 461-472. ACM Press, 2001.

L. A. Goodman and W. H. Kruskal. Measures of association for
cross-classifications. J. Amer. Statist. Assoc., 49:733-763,
1954.

P. J. Haas and P. G. Brown. BHUNT: Automatic discovery of
fuzzy algebraic constraints in relational data. In Proc. 29th
VLDB, pages 668-679. Morgan Kaufmann, 2003.

P. J. Haas and L. Stokes. Estimating the number of classes in a
finite population. J. Amer. Statist. Assoc., 93:1475-1487, 1998.
L. Lim, M. Wang, and J. S. Vitter. SASH: A self-adaptive
histogram set for dynamically changing workloads. In Proc.
29th VLDB, pages 369-380. Morgan Kaufmann, 2003.

H. B. Mann and A. Wald. On the choice of the number of class
intervals in the application of the chi-square test. Ann. Math.
Statist., 13:306-317, 1942.

P. B. Patnaik. The non-central XQ— and F'-distributions and
their applications. Biometrika, 36:202-232, 1949.

T. R. C. Read and N. A. C. Cressie. Goodness-of-Fit Statistics
for Discrete Multivariate Data. Springer, 1988.

M. Siegel, E. Sciore, and S. Salveter. A method for automatic
rule derivation to support semantic query optimization. ACM
Trans. Database Syst., 17:563—600, 1992.

R. Srikant and R. Agrawal. Mining quantitative association
rules in large relational tables. In Proc. 1996 ACM SIGMOD,
pages 1-12. ACM Press, 1996.

M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO —
DB2’s LEarning Optimizer. In Proc. 27th VLDB, pages 19-28.
Morgan Kaufmann, 2001.

Number ofRecommended FDS

Number of Recommended FDS

o o o o
§ 8 g g = = S=22388gg =0
o .
o} o % .
2] = < Q
g 4 : § :
o n
& : =
SR g
(=] g = A S £
Q o
=8 g = 0 e
2 = R =) U
2 [} Q [} <
el 2 »n < - -
] s o~ ® ~ e
h <~ o gzl QO =
< — =) f— "
@ =) =
S @
2 R -
2t
w & 5]
C Q & 7]
¢ - s o
0 5. el e =
=] =] o I
+ S] E
o Su o n
) 2 0 3 =
o o m z S
NN =
RS NN <= o=
NN 2 € «
3 ¥/ »@ « —_ [5)
N 2 g 5 2
o : : . 2 0
3
W = o _ 3
=1 3 = 3)
5) a T g d 2
S 5
1m 1000000] g g g
a = &
0 100000 g = g g 2
& g 5 g
De 10000 £ g 4
Q
" (EANLE 5 S
— A " MW 7 " m
- o m =] ¥z m O
£ = g 9
=] « © Al < &
) =) (0]
w.o = Q = Ne
& 5 2 s £
- O g ., O 3
g = 2 i =z 7
-, <
gm0 S A £
e | % a £ ©
R E 2 o
e ® o 5 S
waadd 8 o z g
@ \Mwmwlﬁm“ .- M uu.o o .m.b
i = 2 c 285 88 ° i 8 §E8E¢8%S 2
g Hom o - = I - =
w\\ papUsSWW o8y papuswwossy 5540 Jquiny

S9034018qunN

in TPC-H.

Dependency graph for the LINEITEM table

14

igure

F

