

MAA CR-163337 Tits ard Sublish Compressor Exit Stage Study Volume IV - Data and Performance Report for the Best Stage Configuration Performing Organization Ocde Performing Organization Name and Address Performing Organization Name and Address I. Contract Company Accreate Engine Business Group Clansmati, Ohito 45215 Someoring Agency Name and Address Mada Research Center 21000 Brookpark Read Someoring Agency Name and Address Device Compresson Exit Stage Study Program is to develop rear stage blading design that have lower loses in their endvall bundary layer regions. This report describes the feet data and performance results for the Best Stage Study Program is to develop rear stage blading design that have lower loses in their endvall bundary layer regions. This report describes the feet data and performance results for the Best Stage Study Program is to develop rear stage blading design that have lower loses in their endvall bundary layer regions. This report describes the feet data and performance results for the Best Stage configuration consisting of Rotor B tunning densarial Electric's Low Speed Research Compresor as the principal investigation tool. Tests were- obtained in two ways: (1) using four latentical stage of blading so that com- parison with the multitage environment and (2) using a single stage of blading so that com- parison with the multitage test result could be much as the efficient of increased rotor tip clearances and circumferential groove casing treatment were also evaluated. 18. Distribution Statement Compressor Enviril 19. Sturity Cleaff. (of this pept) Uncleaseified 10. No. of Pepen 10.	1. Report No.	2. Government Access	ion No.	3. Recipient's Cetelo	g No
4. Title and Sublitie 8. Report Date Core Compressor Exit Stage Study April 1981 Volume IV - Date and Performance Report April 1981 for the Rest Stage Configuration 8. Performing Organization Report No. ROMARCELL 8. Performing Organization Report No. ROMARCELL 10. Work Unit No. Romarcel Electric Company 11. Contract or Grant No. Aftersaft Engine Business Group 11. Contract or Grant No. Claveland, Ohio 44215 13. Type of Report and Period Covered Date Resport Date Report NASA-Levis Research Center 11. Someoring Agency Code Claveland, Ohio 44135 13. Type of Report and Period Covered Division, MaSA-Levis Research Center 14. Sponnoring Agency Code Claveland, Ohio 44135 13. Supermentary Nose Projective of the Core Groepresor Exit Stage Study Program is to develop rear stage blading design that have lover losses in their endvall buondary layer regions. This report describes the orde Coverses as the principal investigation tool. Tracts were conducted in two ways: 10 using Formal technical stage of blading so that comparison with the multistage test results could be made. The effects of increased rotor tip classing treatment were also evaluated. 17. Key Words (Supported by Author(s)) 14. Distribuition Statement	NASA CR-165357			-	
Volume IV - Jaka and Performance Adoption 8. Performing Organization Gode Jor the Rest Stage Configuration 8. Performing Organization Report No. RODADC314 J. Author(s) 0. C. Misler 10. Work Unit No. B. Performing Organization Name and Address 10. Work Unit No. General Electric Company 11. Contract or Grant No. Aitroraft Engine Business Group 11. Contract or Grant No. VASA-Loads Research Conter 12. Sponnering Agency Name and Address NASA-Loads Research Conter 13. Type of Report and Period Covered Division, NASA-Lewis Research Center, Cleveland, Ohio 44135 14. Sponnering Agency Code The objective of the Core Compressor Exit Stage Study Program is to develop rear stage blading designs that have lover losses in their endvall boundary layer regions. This report describes the protective's Low Speed Research Compressor as the principal investigation tool. Teste were conducted in two ways: (1) using sour identical stage of blading so that test data would be obtained in a true multiatege environment and (2) using a single stage of blading so that were also evaluated. 17. Key Works (Suppered by Author(s)) 18. Distribution Statement 18. secondary Flow 19. Security Casef. (of this page) 19. Security Casef. (of this report) 20. Security Casef. (of this page) 19. Security Casef. (of this report) 20. Security Casef. (of this page)	4. Title and Subtitle Core Compressor Exit Stage Study	y		5. Report Date April 1981	
7. Author(s) 2. Performing Organization Resport No. REGARDAL 9. Performing Organization Name and Address 10. Work Unit No. General Electric Company 11. Context of Grant No. REGARDAL Atteract Engine Buschases Oroup 11. Context of Grant No. REGARDAL Clinciannati, Ohio 45215 13. Type of Report and Period Covered Data Resport 14. Sponnoring Agency Name and Address NASA-Levis Research Canter 14. Sponnoring Agency Code Claveland, Ohio 44135 14. Sponnoring Agency Code 15. Supplementary Nome 14. Sponnoring Agency Code Project Manager, Dr. Wojciech Rostafinski, Fluid Mechanics and Accustics 14. Sponnoring Agency Code Division, NASA-Levis Research Center, Cleveland, Ohio 44135 14. Sponnoring Agency Code 16. Abstract The objective of the Core Compressor Exit Stage Study Program is to develop rear stage Diading designs that have lower losses in their endwall boundary layer regions. This report describes the test data and performator Compressor as the principal investigation tools at test data would be obtained in a true militatege environment and (2) using a single stage of blading so that test comparisation which the multitage rest creasits could be made. The effects of increased rotor tip claarances and circumferential groove pasing treatment were also evaluated. 17. Key Words (Suggetted by Author(s)) 18. Distribution Statement Compressor Inclassified	volume 1V Data and Performance for the Best Stage (a Report Configuration		6. Performing Organ	ization Code
8. Performing Organization Name and Address 10. Work Unit No. 9. Performing Organization Name and Address 11. Contract or Grant No. Alteraft Englise Buschasses Group 11. Contract or Grant No. Clincinnati, Ohio 45213 13. Type of Report and Period Cowered Data Resport 14.5 NASA-Levis Research Center 14.5 Cleveland, Ohio 44135 14.5 16. Supplementary Notes 14.5 Project Wanager, Dr. Wojciech Rostafinski, Fluid Mechanics and Accoustics 14.5 Division, NASA-Levis Research Center, Cleveland, Ohio 44135 15. 16. Abstreat The objective of the Core Compressor Exit Stage Study Program is to develop rear stage blading designs that have lower losses in their andwall boundary layer regions. This report describes the treet data mould be Described in this efficiency inprovement program utilises conducted in two ways: (1) using four inpressor as the principal investigation coll Tests were obtained in a true multistage event scale steage of blading so that comparison with the multistage event scale steage of blading so that comparison with the multistage event scale steage of blading so that comparison with the multistage event scale steage of blading so that comparison with the multistage event scale steage of blading so that comparison with the multistage event scale steage of blading so that comparison with the multistage event scale scale steage of blading so that comparison with the multistage event scale steage of undiage evaluated. 17. Key Words (Supperted by Author	7. Author(s)			8. Performing Organ R80AEG314	zation Report No.
			ŀ	10 Martin I Jula Mar	
General Electric Company Atcraft Engine Business Group Cincinnal, Ohto 43215 11. Contract or Grant No. NA3-20070 12. Sponsoring Agency Name and Address NAA-Lewis Research Center 21000 Brookpark Rad Claveland, Ohto 44135 13. Type of Report and Period Covered Data Report 15. Supplementary Notes Project Manager, Dr. Nojciech Rostafinski, Fluid Mechanics and Acoustics Division, MSA-Lewis Research Center, Cleveland, Ohto 44135 14. Sponsoring Agency Code 16. Abstract 16. Abstract 16. Abstract 17. Abstract The objective of the Core Compressor Exit Stage Study Program is to develop rear stage blading designs that have lower losses in their endwall boundary layer regions. This report describes the cent data and performance results for the Best Stage configuration consisting of Rotor B running with Stator B. The overall technical approach in this efficiency improvement program utilizes Central Listesge environment and (2) using a single stage of blading so that case parison with the multistage test results could be made. The effects of increased rotor tip clearances and circumferential groove casing treatment were also evaluated. 17. Key Words (Suggested by Author(9)) 18. Distribution Statement Unclassified – Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this pege) 21. No. of Pages 12. Price*	9. Performing Organization Name and Address			TO, WORK ONK NO.	
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Data Report NASA-Lawis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 14. Sponsoring Agency Code 18. Supplementary Notes 14. Sponsoring Agency Code Project Manager, Dr. Wojciech Rostafinaki, Fluid Mechanics and Acoustics 14. Sponsoring Agency Code Division, NASA-Lewis Research Center, Cleveland, Ohio 44135 14. Sponsoring Agency Code 18. Abetret The objective of the Core Compressor Exit Stage Study Program is to develop rear stage blading designs that have lower losses in their endvall boundary layer regions. This report describes the test data and performance results for the Best Stage configuration consisting of Rotor B running with Stator B. The overall testincial atgress of blading so that test data would be obtained in two ways: (1) using four identical stages of blading so that test data would be obtained in a true multistage environment and (2) using a single stage of blading so that comparison with the multistage environment and (2) using a single stage of blading so that complexity of the Grow pressor Exits of increased rotor tip clearances and circumferential groove casing treatment were also evaluated. 17. Key Words (Suggetted by Author(s)) 18. Distribution Statement Compressor Endwall Unclassified - Unlimited 18. Security Caseff. (of this report) 20. Security Cleaseff. (of this page) 21. No. of Pages 22. Price*	General Electric Company Aircraft Engine Business Group Cincinnati, Ohio 45215	.•	-	11. Contract or Gran NAS3-20070	t No.
12. Sponwords Research Center Data Report 14. Sponwords Research Center 14. Sponwords Agency Code 15. Supplementary Notes 14. Sponwords Agency Code 16. Supplementary Notes Project Manager, Dr. Wojciech Rostafinski, Fluid Mechanics and Acoustics Division, NASA-Lewis Research Center, Cleveland, Ohio 44135 18. Abstract The objective of the Core Compressor Exit Stage Study Program is to develop rear stage blading designs that have lower losses in their endwell boundary layer regions. This report describes the test data and performance results for the Best Stage configuration consisting of Rotor B running with Stator B. The overall technical approach in this efficiency improvement program utilizes General Electric's Low Speed Research Compressor as the principal investigation tool. Tests were conducted in two ways: (1) using four identical stages of blading so that comparison with the multistage test results could be made. The effects of increased rotor tip clearances and circumferential groove pasing treatment were also evaluated. 17. Key Words (Suppended by Author(s)) 18. Distribution Statement 18. Security Cassif. (of this report) 20. Security Cleast, (of this page) 21. No. of Pages 22. Prist				13, Type of Report a	nd Period Covered
NASA-Levis Research Center 14. Sponsoring Agency Code Cloop Brockpark Road 11. Supplementary Notes Project Manager, Dr. Wojciech Rostafinski, Fluid Machanics and Acoustics 11. Supplementary Notes Project Manager, Dr. Wojciech Rostafinski, Fluid Machanics and Acoustics 11. Sponsoring Agency Code 18. Supplementary Notes Project Manager, Dr. Wojciech Rostafinski, Fluid Machanics and Acoustics 19. Abstract The objective of the Core Compressor Exit Stage Study Program is to develop rear stage blading designs that have lower losses in their endwall boundary layer regions. This report describes the cest data and performance results for the Beet Stage configuration consisting of Rotor B running with Stator B. The overall technical approach in this efficiency improvement program utilizes General Electric's Low Speet Research Compressor as the principal investigation tool. Tests were conducted in two ways: (1) using four identical stage of blading so that cent data would be obtained in a true multistage environment and (2) using a single stage of blading so that comparison with the multistage test results could be made. The effects of increased rotor tip clearances and circumferential groove casing treatment were also evaluated. 11. Key Words (Suggested by Author(s)) 11. Distribution Statement Compressor Ended Unclassified - Unlimited 19. Security Cassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Pics ⁻¹	12. Sponsoring Agency Name and Address			Data Report	
15. Suppermentary Notes Project Manager, Dr. Wojciech Rostafinski, Fluid Mechanics and Acoustics Division, NASA-Lewis Research Center, Cleveland, Ohio 44135 18. Abstract The objective of the Core Compressor Exit Stage Study Program is to develop rear stage blading designs that have lower losses in their endwall boundary layer regions. This report describes the test data and performance results for the Best Stage configuration consisting of Rotor B running with Stator B. The overall technical approach in this efficiency improvement program utilizes Ceneral Electric's Low Speed Research Compressor as the principal investigation tool. Tests were conducted in two ways: (1) using four identical stages of blading so that test data would be obtained in a true multistage test results could be made. The effects of increased rotor tip clearances and circumferential groove casing treatment were also evaluated. 17. Key Words (Suppested by Author(s)) 18. Distribution Statement Unclassified - Unlimited 18. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Paget 22. Pics*	NASA-Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135			14. Sponsoring Agence	y Code
Project Manager, Dr. Wojciech Rostafinski, Fluid Mechanics and Acoustics. Division, NASA-Lewis Research Center, Cleveland, Ohio 44135 18. Abstract The objective of the Core Compressor Exit Stage Study Program is to develop rear stage blading designs that have lower losses in their endwall boundary layer regions. This report describes the test data and performance results for the Best Stage configuration consisting of Rotor B running with Stator B. The overall technical approach in this efficiency improvement program utilizes General Electric's Low Speed Research Compressor as the principal investigation tool. Tests were conducted in two ways: (1) using four identical stages of blading so that cest data would be obtained in a true multistage test results could be made. The effects of loading so that comparison with the multistage test results could be made. The effects of increased rotor tip clearances and circumferential groove casing treatment were also evaluated. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow unclassified - Unlimited 18. Security Cassif. (of this report) 20. Security Cleasif. (of this page) 21. No. of Pages 22. Price*	15. Supplementary Notes				
18. Abstract The objective of the Core Compressor Exit Stage Study Program is to develop rear stage blading designs that have lower losses in their endwall boundary layer regions. This report describes the set data and performance results for the Best Stage configuration consisting of Rotor B running with Stator B. The overall technical approach in this efficiency improvement program utilizes General Electric's Low Speed Research Compressor as the principal investigation tool. Tests were conducted in two ways: (1) using four identical stages of blading so that test data would be obtained in a true multistage environment and (2) using a single stage of blading so that comparison with the multistage test results could be made. The effects of increased rotor tip clearances and circumferential groove pasing treatment were also evaluated. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 18. Security Cassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	Project Manager, Dr. Wojciech Ros Division, NASA-Lewis Research Cer	stafinski, Fluid M nter, Cleveland, (Mechanics and Acoust Ohio 44135	ics.	•
test data and performance results for the Best Stage configuration consisting of Rotor B running with Stator B. The overall technical approach in this efficiency improvement program utilizes General Electric's Low Speed Research Compressor as the principal stage of blading so that test data would be obtained in a true multistage environment and (2) using a single stage of blading so that comparison with the multistage test results could be made. The effects of increased rotor tip clearances and circumferential groove rasing treatment were also evaluated. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow 19. Security Classif. (of this report) 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	The objective of the Core Co designs that have lower losses in	ompressor Exit Sta h their endwall be	age Study Program is oundary layer region	to develop rea	r stage blading
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow Unclassified - Unlimited 18. Distribution Statement Unclassified - Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 192 192	with Stator B. The overall techn General Electric's Low Speed Rese conducted in two ways: (1) using obtained in a true multistage env parison with the multistage test clearances and circumferential gr	nical approach in earch Compressor (g four identical a vironment and (2) results could be coove casing treat	this efficiency imp as the principal inv stages of blading so using a single stag made. The effects tment were also eval	estigation tool that test data of blading so of increased ro uated.	a utilizes . Tests were would be that com- tor tip
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow 18. Distribution Statement 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 19.2					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow Unclassified - Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 192					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow Unclassified - Unlimited 19. Security Classified 20. Security Classified 21. No. of Pages 22. Price* Unclassified 192					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow Unclassified = Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified 19.2					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow Unclassified - Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 192					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow Unclassified - Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 192					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow Unclassified - Unlimited 19. Security Classified 20. Security Classified 21. No. of Pages 22. Price* Unclassified Unclassified 192					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow Unclassified - Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 192					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 192					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Compressor Endwall Secondary Flow 18. Distribution Statement 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified 19.2					
Compressor Endwall Secondary Flów 19. Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	17. Key Words (Suggested by Author(s))		18. Distribution Statement	·	
Secondary Flów 19. Security Classif. (of this report) Unclassified Unclassified 20. Security Classif. (of this page) Unclassified 21. No. of Pages 22. Price* Unclassified 192	Compréssor Endwall				
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 192	Secondary Flow		Unclassified	- Unlimited	
Unclassified 192	10 Converter (Terrif (of this convert)				
		20. Security Classif to	f this negel	21 No. of Person	22 Price*

 * For sale by the National Technical Information Service, Springfield, Virginia 22151

NASA-C-168 (Rev. 6-71)

Į.

10 A. 10

ì

the to be added.

2

Í

ويعند معريد فتد

PRECEDING PAGE BLANK NOT FILMED

111

TABLE OF CONTENTS

Bection		Page
1.0 .	SUMMARY	1
2.0	INTRODUCTION	2
3.0	TEST APPARATUS AND PROCEDURE	3
	 3.1 Low Speed Research Compressor 3.2 Test Stage 3.3 Instrumentation 3.4 Test Procedure 3.5 Data Reduction and Analysis Methods 	3 3 4 4
4.0	RESULTS AND DISCUSSION	5
	4.1 Overall Performance	5
	4.1.1 Four-Stage Configuration (Third Stage as Test Stage) 4.1.2 Four-Stage Configuration + Increased Poten	5
	4.1.3 Four-Stage Configuration - Increased Rotor Tip Clearance 4.1.3 Four-Stage Configuration - Increased Rotor	6
	Stages 4.1.4 Single-Stage Configuration	6 6
	4.2 Blade and Vane Surface Static Pressure Test Results	8
	4.2.1 Four-Stage Configuration (Third Stage as Test Stage)	8
	4.2.2 Four-Stage Configuration - Increased Rotor Tip Clearance 4.2.3 Four-Stage Configuration - Increased Rotor	9
	Tip Clearance and Casing Treatment on All Stages	9
	4.2.4 Single-Stage Configuration	9
	4.2.5 Comparison of Rotor Tip Clearance Effects 4.2.6 Comparison with Potential Flow (CASC)	10
	4.3 Blade Element and Wall Boundary Layer Test Results	11
	4.3.1 Four-Stage Configuration (Third Stage as Test Stage)	11
	4.3.2 Four-Stage Configuration - Increased Rotor Tip Clearance	14
	4.3.3 Four-Stage Configuration - Increased Rotor Tip Clearance and Casing Treatment on All Stages	15
	4.3.4 Single-Stage Configuration	16

TABLE OF CONTENTS (Concluded)

Section		Page
5.0	CONCLUSIONS	18
6.0	LIST OF SYMBOLS AND ACRONYMS	19
7.0	FIGURES	22
8.0	TABLES	134
9.0	REFERENCES	185
10.0	DISTRIBUTION LIST	187

Figure		Page
1.	Four-Stage Compressor Configuration Tested in the NASA- GE Core Compressor Exit Stage Study.	23
2.	Photograph of the Low Speed Research Compressor.	24
3.	Cross Section of 0.85 Radius Ratio Compressor Stage.	25
4.	Overall Performance of the Rotor B/Stage B Four-Stage Configuration Compared with That of Rotor A/Stator A.	26
5. ·	Comparison Showing the Effects of Increased Rotor Tip Clearance on Overall Compressor Performance, Rotor B/ Stator B Four-Stage Configuration.	27
6.	Comparison Showing the Effects of Increased Rotor Tip Clearance and Casing Treatment on Overall Compressor Performance, Rotor B/Stator B Four-Stage Configuration.	28
7.	Overall Performance of the Single-Stage Rotor B/Stator B Configuration.	29
8	Comparison of Individual Stage Characteristics for the Single-Stage and Four-Stage Configurations, Rotor B Running with Stator B.	30
9.	Rotor Blade Surface Static Pressure Measurements for the Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	31
10	Stator Vane Surface Static Pressure Measurements for the Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	32
11.	Rotor Blade Surface Static Pressure Measurements for the Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	33
12.	Stator Vane Surface Static Pressure Measurements for the Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	34
13.	Rotor Blade Surface Static Pressure Measurements for the Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treat- ment on All Stages.	35

Ŷ

Figure		Page
14.	Stator Vane Surface Static Pressure Measurements for the Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment on All Stages.	36
15.	Rotor Blade Surface Static Pressure Measurements for the Rotor B/Stator B Single-Stage Configuration.	37
16.	Stator Vane Surface Static Pressure Measurements for the Rotor B/Stator B Single-Stage Configuration.	38
17.	Static Pressure Measurements on the Blade Surface Near the Tip of Rotor B, Four-Stage Configuration, Third Stage Tested.	39
18.	Rotor Blade Surface Velocity Distributions for Rotor B Opera- ting Near the Design Point - Measurements Compared with Poten- tial Flow CASC Solutions.	- 40
19.	Stator Vane Surface Velocity Distributions for Stator B Opera- ting Near the Design Point - Measurements Compared with Poten- tial Flow CASC Solutions.	- 41
20.	Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Open Throttle.	42 .
21.	Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Design Foint Throttle.	43
22.	Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.	44
23.	Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise/Near Stall Throttle.	45
24.	Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Open Throttle.	46
25.	Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration. Third Stage Tested. Design Point Throttle.	47

d

ji V

ંક્ર સંસ્થળ

A.

4 .

		Page
<u>26.</u>	Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Peak Efficiency Throttle.	48
27.	Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Peak Pressure Rise/Near Stall Throttle.	49
28.	Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested.	50
29.	Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested.	51
30.	_Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Open Throttle.	52
31.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Design Point Throttle.	53
32.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Peak Efficiency Throttle.	54
33.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Peak Pressure Rise/Near Stall Throttle.	55
34.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Open Throttle.	56
35.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Design Point Throttle.	57
36.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle	. 58

- s., er .::

nadiča čuska z rota u značena se

Figure		Page
37.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise/ Near Stall Throttle.	<u>5</u> 9
38.	Rotor Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	60
39.	Stator Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	61
40.	Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	62
41.	Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	63
42.	Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	64
43.	Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	65
44.	Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	66
45.	Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	67
46.	Diffusion Factor, Loss Coefficient and Deviation Angle Versus Incidence Angle, Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested.	68
47.	Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Open Throttle.	69

Figure

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

1

4

	rage
Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Design Point Throttle.	- 70
Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/ Near Stall Throttle.	71
Absolute Flow Angles for fotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Open Throttle.	72
Absolute Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Design Point Throttle.	73
Absolute Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/Near Stall Throttle.	74
Absolute Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	75
Absolute Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	76.
Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Open Throttle.	7.7.
Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Design Point Throttle.	78
Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/Near Stall Throttle.	79

Page

ix

والمراجب والمحاد ممسادية والا

Figure

62.

63. .

64.

65.

66.

6.7..

1

Figure		Page
58.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Open Throttle.	80
59.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Design Point Throttle.	81
60.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/Near Stall Throttle.	82
61	Rotor Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	83
62.	Stator Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	84
63.	Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	85
64.	Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	86
55.	Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third-Stage Tested, Increased Rotor Tip Clearance.	87
i6.	Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	88
7	Stator Vector Piagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	89

X

1. .

4 7 7

ì

. . .

ž

1

-ς

1.1

68. Stator-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	90
69Diffusion Factor, Loss Coefficient and Deviation Angle Versus Incidence Angle, Rotor B/Stator B Four-Stage Con- figuration, Increased Rotor Tip Clearance.	91
70. Comparison Showing the Effects of Increased Rotor Tip Clearance on Blade Element Performance.	92
71. Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Open Throttle.	93
72. Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Design Point Throttle. 9)4
73. Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Peak Pressure Rise/Near Stall Throttle. 9	5
74. Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Increased Rotor Tip Clear- ance and Casing Treatment, Open Throttle.	6
75. Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Increased Rotor Tip Clear- ance and Casing Treatment, Design Point Throttle. 97	7
76. Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Increased Rotor Tip Clear- ance and Casing Treatment, Peak Pressure Rise/Near Stall Throttle.	2
77. Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Increased Rotor Tip Clear- ance, and Casing Treatment. 99)

xi

٠Ì

Figure		Page
78.	Absolute Flow Angles for Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Increased Rotor Tip Clear- ance, and Casing Treatment.	100
79.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Increased Rotor Tip Clear- ance and Casing Treatment, Open Throttle.	101
80.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Increased Rotor Tip Clear- ance and Casing Treatment, Design Point Throttle.	102
81.	Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Con- figuration, Third Stage Tested, Increased Rotor Tip Clear- ance and Casing Treatment, Peak Pressure Rise/Near Stall Throttle.	103
82.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Open Throttle.	104
83.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Design Point Throttle.	105
84.	Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Peak Pressure Rise/Near Stall Throttle.	106
85.	Rotor Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.	107

Figure		Page
86.	Stator Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor B/Stator B, Four-Stage Coufiguration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.	108
87.	Rotor-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Testad, Increased Rotor Tip Clearance and Casing Treatment.	109
88.	Rotor-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.	110
89.	Rotor-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.	111.
90.	Stator-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.	112
91.	Stator-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.	113
92.	Stator-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.	114
93.	Diffusion Factor, Loss Coefficient, and Deviation Angle Versus Incidence Angle, Rotor B/Stator B Four-Stage Con- figuration, Increased Tip Clearance and Casing Treatment.	115
94.	Comparison Shewing the Effects of Increased Rotor Tip- Clearance and Casing Treatment on Blade Element Per- formance.	116
95.	Normalized Absolute Total Pressure and Static Pressure for Rotor B/Stator B Single-Stage Configuration, Design Point Throttle.	117
96.	Normalized Absolute 'fotal Pressure and Static Pressure for Rotor B/Stator B Single-Stage Configuration, Peak Effi- ciency Throttle.	118

Ì

Figure		Page
97.	Normalized Absolute Total Pressure and Static Pressure for Rotor B/Stator B Single-Stage Configuration, Peak Pressure Rise/Near Stall Throttle.	119
98.	Absolute Flow Angles for Rotor B/Stator B Single-Stage Con- figuration, Design Point Throttle.	120
99.	Absolute Flow Angles for Rotor B/Stator B Single-Stage Con- figuration, Peak Efficiency Throttle.	121
100.	Absolute Flow Angles for Rotor B/Stator B Single-Stage Con- figuration, Peak Pressure Rise/Near Stall Throttle.	122
101.	Circumferential Variation of Normalized Absolute Total Pres- sure and Static Pressure, Rotor B/Stator B Single-Stage Configuration, Design Point Throttle.	123
102.	Circumferential Variation of Normalized Absolute Total Pres- sure and Static Pressure, Rotor B/Stator B Single-Stage Con- figuration, Peak Efficiency Throttle.	124
103.	Circumferential Variation of Normalized Absolute Total Pres- sure and Static Pressure, Rotor B/Stator B Single-Stage Con- figuration, Peak Pressure Rise/Near Stall Throttle.	125
104.	Stator Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor B/Stator B Single-Stage Configuration.	126
105.	Rotor-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Single-Stage Configuration.	127
106.	Rotor-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Single-Stage Configuration.	128
107.	Rotor-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Single-Stage Configuration.	129
108.	Stator-Vector Diagram Quantities Versus Fercent Immersion, Rotor B/Stator B Single-Stage Configuration.	130
109.	Stator-Vector Diagram Quantities Versus Percent Immersion, Botor B/Stator B Single-Stage Configuration	131

1044

Figure		Page
110.	Stator-Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Single-Stage Configuration.	132
111.	Diffusion Factor, Loss Coefficient and Deviation Angle Versus Incidence Angle, Rotor B/Stator B Single-Stage Configuration.	133

١

き マート

a de la cale

Table		Page
1.	Instrumentation for the Test Program.	135
2.	Overall Test Plan Outline for Complete Program.	136
3.	Preview Data for Rotor B/Stator B Four-Stage Configuration.	137
4	Preview Data for Rotor B/Stator B, a) Four-Stage Configura- tion, Increased Rotor Tip Clearance, b) Four Stage Configura- tion, Increased Rotor Tip Clearance and Casing Treatment, c) Single-Stage Configuration.	138
5.	Blade Surface Static Pressures, Rotor B/Stator B Four-Stage Configuration, Third Stage is Test Stage.	139
6.	Vane Surface Static Pressures, Rotor B/Stator B Four-Stage Configuration, Third Stage is Test Stage.	140
7.	Blade Surface Static Pressures, Rotor B/Stator B Four-Stage Configuration, Increased Rotor Tip Clearance.	141
8.	Vane Surface Static Pressures, Rotor B/Stator B Four-Stage Configuration, Increased Rotor Tip Clearance.	142
9.	Blade Surface Static Pressures, Rotor B/Stator B Four-Stage Configuration, Increased Rotor Tip Clearance and Casing Treatment.	143
10.	Vane Surface Static Pressures, Rotor B/Stator B Four-Stage Configuration, Increased Rotor Tip Clearance and Casing Treatment.	144
11.	Blade Surface Static Pressures, Rotor B/Stator B Single- Stage Configuration.	145
12.	Vane Surface Static Pressures, Rotor B/Stator B Single- Stage Configuration.	146
13.	Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.	147
14.	Rotor Loss Coefficients Determined from Relative Total Pres- sure Measurements, Rotor B/Stator B Four-Stage Configuration Third Stage Tested.	' 149

Ĵ

.

Table		Page
15.	Vector Diagram Parameters for Rotor B/Stator B Four- Stage Configuration, Third Stage Tested, Open Throttle.	150
16.	Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Design Point Throttle.	151
17.	Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.	152
18.	Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise/Near Stall Throttle.	153
19.	Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Open Throttle.	154
20.	Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Design Point Throttle.	155
21.	Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Peak Effi- ciency Throttle.	156
22.	Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Peak Pres- sure Rise/Near Stall Throttle.	157
23.	Design Intent Performance for Rotor B/Stator B Computed for $U_t = 65.73 \text{ mps} (215.64 \text{ fps})$.	158.
24.	Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.	159
25.	Rotor Loss Coefficients Determined from Relative Total Pres- sure Measurements, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Clearance.	
26.	Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Open Throttle.	162

Table		Page
27.	Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Design Point Throttle.	163
28.	Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/Near Stall Throttle.	164
29.	Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Open Throttle.	165
30.	Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Design Point Throttle.	166.
31.	Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/Near Stall Throttle.	167
32.	Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.	168
33.	Rotor Loss Coefficients Determined from Relative Total Pres- sure Measurements, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.	170
34.	Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Open Throttle.	171
35.	Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Design Point Throttle.	172
36.	Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Peak Pressure Rise/Near Stall Throttle.	173

Table		Page
37.	Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Open Throttle.	174
38.	Blade and Vane Element Ferformance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Design Point Throttle.	175
39.	Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Peak Pressure Rise/Near Stall Throttle.	176
40.	Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor B/Stator B Single-Stage Configuration.	177
41.	Vector Diagram Parameters for Rotor B/Stator B, Single-Stage Configuration, Design Point Throttle.	179
42.	Vector Diagram Parameters for Rotor B/Stator B, Single-Stage Configuration, Peak Efficiency Throttle.	180
43.	Vector Diagram Parameters for Rotor B/Stator B, Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.	181 .
44.	Blade and Vane Element Performance for Rotor B/Stator B, Single-Stage Configuration, Design Point Throttle.	182
45.	Blade and Vane Element Performance for Rotor B/Stator B, Single-Stage Configuration, Peak Efficiency Throttle.	183
46.	Blade and Vane Element Performance for Rotor B/Stator B, Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.	184

1.0 SUMMARY

The Core Compressor Exit Stage Study Program has the primary objective of developing rear stage blade designs that have improved efficiency by virtue of having lower losses in their endwall boundary layer regions. Blading concepts that offer promise of reducing endwall losses have been evaluated in a multistage environment. This report describes the test data and the performance results for the Best Stage Configuration, consisting of Rotor B/Stator B, that was tested in the General Electric Low Speed Research Compressor. The aerodynamic design of this stage is described in Volume I of this report (Reference 1).

Overall performance data and various types of detailed performance data are presented for the Rotor B/Stator B configuration along with the resulting vector diagrams, loss coefficients, and diffusion factors. Both multistage and single-stage configurations were tested. Also the effects of increased rotor tip clearance and casing treatment on compressor performance were evaluated. The following test results were obtained:

- Rotor B cested with Stator B showed a 0.3 to 0.4 point improvement in efficiency at the design point and a significant improvement in the pressure-flow characteristic near stall relative to the baseline Rotor A/Stator A.
- Increasing the rotor tip clearance from 1.38% clearance-to-bladeheight to 2.80% costs 1.49 points in peak efficiency, 9.7% in peak pressure rise, and 11% in stalling flow coefficient.
- Adding casing treatment to all stages at the increased rotor tip clearance gave a slight increase in peak efficiency and peak pressure rise at the design point but gave a 3.0% decrease in pressure rise at stall.
- Using single-stage test results to evaluate multistage compressor performance can prevent some difficulties.

Evaluation and comparisons of these data will be presented in the final report.

2.0 INTRODUCTION

Recent preliminary design studies of advanced turbofan core compressors (Reference 2) have indicated that such compressors must have very high efficiencies, as well as the advantages of compactness, light weight, and low cost, in order for advanced overall engine/aircraft systems to have an improved economic payoff. Loss mechanism assessments, such as those of Reference 3, suggest that approximately half of the total loss in a multistage compressor rear stage is associated with the endwall boundary layers. Since only a relatively small amount of past research has been dedicated to the problem of finding improved airfoil shapes for operation in multistage compressor endwall boundary layers, it is believed that substantial improvements in that area are likely. Accordingly, a goal of a 15% reduction in rear stage endwall boundary layer losses, compared to current technology levels, has been set. The Core Compressor Exit Stage Study Program is directed toward achieving this goal. Blading concepts that offer a promise of reducing endwall losses relative to a baseline design have been evaluated in a multistage environment. The test data and performance results for this Best-Stage Configuration are described in this report.

2

ì

3.0 TEST APPARATUS AND PROCEDURE

3.1 LOW SPEED RESEARCH COMPRESSOR

The General Electric Low Speed Research Compressor (LSRC) facility, described in more detail in Volume II (Reference 4), was used for this test program. The LSRC configuration, used in the test program and shown schematically in Figure 1, consisted of four identical compressor stages having a constant casing diameter of 1.524 m (60 in.) and a radius ratio of 0.85. A photograph of the LSRC is shown in Figure 2. A detailed cross section of one stage is shown in Figure 3. The airfoils are 11.43 cm (4.5 in.) in span and approximately 9 cm (3.5 in.) in chord; large enough that blade edge and surface contours can be closely controlled during manufacture. The blade and vane construction described in Volume II (Reference 4) resulted in hydraulically smooth surfaces at the Reynolds numbers necessary to simulate highspeed compressor performance. A single-stage configuration was also tested.

The average rotor tip-clearance-to-blade-height was 1.36% and the average stator seal-clearance-to-blade-height was 0.78%. Circumferential groove casing treatment was applied over the tip of only the first rotor to assure that Stage 1 would not be the stall limiting blading.

3.2 TEST STAGE

The test stage consisted of Rotor B and Stator B. The Rotor B/Stator B designs are presented in Volume I (Reference 1). A brief summary of these designs is given below.

Rotor B was designed to the same set of vector diagrams as Rotor A but uses a type of meanline in the tip region that unloads the leading edge and loads the trailing edge relative to Rotor A. The modification to the tip region of Rotor B was blended into the pitchline so that Rotor A and Rotor B are identical from the pitchline to the hub. Stator B embodies blade sections twisted closed locally in the endwall regions similar to those used in a highly loaded NASA single stage that had rather good performance for its loading level (Reference 6).

Ĵ.

3.3 INSTRUMENTATION

The instrumentation used at various locations in the compressor for the Rotor B/Stator B test series is presented in Table 1. Standard total pressure rakes and wall static pressure taps were used. In addition, static pressure taps located on the blade and vane surfaces were used to determine the distribution of static pressure on the suction and pressure surfaces. For rotors, the pressures measured with a rotating rake were read by a pressure transducer/slipring device.

Details about the instrumentation and the data recording equipment are given in Volume II (Reference 4).

3.4 TEST PROCEDURE

The overall test program was divided into four parts as outlined in Table 2. The first part involved extensive testing of the baseline blading, Stage A (Rotor A/Stator A), in both four-stage and single-stage configurations. The test results can be found in Volume II (Reference 4) of this series. The second part involved a series of short screening tests to select the best rotor design and the best stator design based on tests in four-stage configurations. These test results can be found in Volume III (Reference 5). The third part, described in this report, involves extensive testing of the best rotor and best stator designs in combination using a four-stage compressor configuration. The final part of the test program will consist of extensive testing of a new Rotor C design in a four-stage configuration with Stator B and will be presented in Volume V.

Six types of data were taken during the Rotor B/Stator B tests: preview data, stall determination data, standard data, blade element data, blade surface pressure data, and detailed wall boundary layer data. A brief description of each of these types of data is presented in Volume II (Reference 4).

3.5 DATA REDUCTION AND ANALYSIS METHODS

The data analysis procedures used in processing test data are described in Volume II (Reference 4).

4.0 RESULTS AND DISCUSSION

Based on the Screening Test results presented in Reference 5, the Rotor B/Stator B Configuration was selected as the "Best Stage" to undergo detailed testing because of the possible beneficial effect of the Rotor B tip section at higher Mach numbers. In the detailed testing, the following four configurations were tested: (1) a four-stage configuration at a nominal rotor tip clearance having the third stage as the test stage, (2) a four-stage configuration with increased rotor tip clearance, (3) a four-stage configuration with both increased rotor tip clearance and circumferential groove casing treatment on all stages, and (4) a single-stage configuration at nominal clearance. The average rotor tip-clearance-to-blade-height ratio for the nominal clearance configurations was 1.36% and that for the increased clearance configuration was 2.80%. The average stator seal-clearance-to-bladeheight ratio for all tests was 0.78%. The test Reynolds number was 3.6 x 10^5 . As discussed in Reference 4, casing treatment was applied over the tip of the first rotor only for Tests (1) and (2) above to assure that Stage 1 would not be the limiting blading. No casing treatment was used for Test (4) above in order to make comparisons with the test stage (third stage) of the four-stage configuration.

4.1 OVERALL PERFORMANCE

The overall performance of the Best Stage Configuration, which consisted of Rotor B running with Stator B, was determined from Preview Data and Standard Data. These test data are presented as graphs of pressure coefficient, work coefficient, and torque efficiency plotted as a function of flow coefficient.

4.1.1 Four-Stage Configuration (Third Stage as Test Stage)

The overall performance data from the four-stage Rotor B/Stator B configuration is shown in Figure 4 and tabulated in Table 3. The data show a peak efficiency of 0.9047, an efficiency at the design point of 0.9033, a peak pressure coefficient of 0.6335, and a stalling flow coefficient of 0.338.

When compared with the Rotor A/Stator A baseline, Rotor B/Stator B showed: (1) a 0.3 to 0.4 point improvement in efficiency at the design point and (2) a significant improvement in the pressure-flow characteristic near stall. The 2.8% improvement in peak pressure coefficient and the 5.4% improvement in flow range from the design point to the peak pressure point result from a more faborable pressure distribution on the airfoil, especially near the hub.

4.1.2 Four-Stage Configuration, Increased Rotor Tip Clearance

Overall performance of the Rotor B/Stator B Four-Stage Configuration was obtained at an increased tip-clearance-to-blade-height ratio of 2.80%; the results are presented in Figure 5 and Table 4. Peak efficiency is 0.8898, peak pressure coefficient is 0.572, and stalling flow coefficient is 0.372. The increase in tip clearance costs 1.49 points in peak efficiency, 11.0% loss in stalling flow coefficient and 9.70% loss in peak pressure rise relative to the nominal clearance.

4.1.3 Four-Stage Configuration, Increased Rotor Tip Clearance and Casing Treatment on All Stages

Overall performance was obtained with both increased tip clearance and casing treatment on all four stages. The results, presented in Figure 6 and Table 4, show a peak efficiency of 0.8915, a peak pressure coefficient of 0.563, and a stalling flow coefficient of 0.3708. This gives a loss of 1.32 points in peak efficiency, a loss of 10.7% in stalling flow coefficient, and a loss of 11.1% in peak pressure rise relative to the nominal Rotor B/Stator B configuration described in Section 4.1.1. Apparently casing treatment at open clearances gave a small performance improvement at the design point but hurt performance near stall.

4.1.4 Single-Stage Configuration

The overall performance of the single-stage Rotor B/Stator B Configuration is presented in Figures 7 and 8 and in Table 4. This configuration was tested without casing treatment over the rotor tip in order to make comparisons with the test stage (third stage) of the four-stage configuration. The

data in Figure 7 show a peak efficiency of 0.8934, a peak pressure coefficient of 0.660, and a stalling flow coefficient of 0.353. The single-stage configuration is pumping more flow and achieves a higher peak pressure coefficient than the four-stage average. However, the peak efficiency of the single-stage configuration is 1.13 points lower than that of the four-stage configuration.

It is somewhat surprising that the single-stage efficiency should be so low compared to the four-stage efficiency. Much of this difference is probably due to inaccuracies in measurement/evaluation of the tare torque of the single-stage configuration relative to that of the four-stage configuration. Typical values of measured torque and tare torque for the single-stage configuration are 2050 in.-1b and 160 in.-1b, respectively. Thus 20 in.-1b of tare torque is worth about one point in efficiency. For comparison, typical values of torque and tare torque for the four-stage configuration are 8200 in.-1b and 60 in.-1b, respectively; 20 in.-1b of tare torque is worth a quarter of a point in efficiency.

The individual characteristics of the single-stage and four-stage configurations are compared in Figure 8. The single-stage characteristic is not quite so steep as the first-stage characteristic. Compared to the Stage 3 characteristic of the four-stage configuration, the single-stage characteristic has about the same slope but is operating at about 2% higher flow and about 4% higher pressure coefficients. Both the single stage and the first stage of the multistage configuration achieve higher peak pressures than those of the other stages. This difference probably results from the cleaner, more constant inlet conditions at the first rotor inlet. During throttling, the first rotor inlet is not subjected to the thickened wakes, increased deviation angles, and separated flow that the downstream stages feel. Perhaps even more striking is the higher pressure achieved by the first stage of the four-stage configuration compared to that of the single-stage configuration. This could result from the casing treatment or from the stabilizing influence of the downstream stages pulling on the first stage of a multistage configuration.

4.2 BLADE AND VANE SURFACE STATIC PRESSURE TEST RESULTS

The measurements of static pressure on the blade and vane surfaces are presented in Figures 9 through 16 and in Tables 5 through 12 for (1) the fourstage configuration with the third stage as test stage, (2) the four-stage configuration with increased rotor tip clearance, (3) the four-stage configuration with both increased rotor tip clearance and casing treatment on all stages, and (4) the single-stage configuration. The measured pressures have been normalized by the dynamic head based on tip speed, $1/2 \rho_{ref} U_t^2$. Suction surface measurements are presented as solid lines and pressure surface measurements as dashed lines.

4.2.1 Four-Stage Configuration (Third Stage as Test Stage)

The pressure measurements on the blade and vane surfaces are presented in Figures 9 and 10 and in Tables 5 and 6. These figures have been discussed in detail in Section 4.2 of Reference 5 and will be discussed only briefly here.

The rotor data in Figure 9 indicate that the principal feature of Rotor B, its increased diffusion rate at the trailing edge near the tip, was successfully accomplished. The continuous diffusion from the location of the peak suction surface velocity (minimum static pressure) to the trailing edge for all blade sections from the pitchline to the tip and for all throttle settings indicates that the trailing edge region was able to take this increased aft loading without flow separation (Figure 9a, b, c). Evidence of flow separation near the hub can be seen in the distinct change in slope of the static pressure distribution on the suction surface at 70% chord for the peak pressure rise throttle (Figure 9e).

There is evidence of the effects of secondary flow and tip leakage on the suction surface pressure distribution over the first 25% of chord (Figure 9a). This is seen as an increase in static pressure on the suction surface from zero to about 8% chord followed by a decrease in static pressure from 8% to about 40% chord.

The stator data in Figure 10 indicate: (1) a Stator B leading edge loading that is slightly lower than that obtained for Stator A, and (2) a diffusion pattern on the suction surface of Stator B which is more favorable near the hub than that obtained for Stator A, although strong evidence of flow separation at the hub still exists for the peak pressure rise throttle (Figures 10d and 10e).

4.2.2 Four-Stage Configuration, Increased Rotor Tip Clearance

The pressure measurements on the blade and vane surfaces which incorporate the effects of increased rotor tip clearance are presented in Figures 11 and 12 and Tables 7 and 8. The qualitative look of the data is similar to that seen in Figures 9 and 10, although the loading levels are somewhat lower. Comparisons showing the effects of clearance will be presented in Section 4.2.5.

4.2.3 Four-Stage Configuration - Increased Rotor Tip Clearance and Casing Treatment on All Stages

The static pressure measurements on the blade and vane surfaces which incorporate the effects of increased rotor tip clearance and casing treatment on all stages are presented in Figures 13 and 14 and Tables 9 and 10. The qualitative look of the data is again similar to that shown in Figures 9 and 10. Further comparisons will be presented in Section 4.2.5.

4.2.4 Single-Stage Configuration

The normalized static pressure measurements on the blade and value surfaces are shown in Figures 15 and 16 and Tables 11 and 12, respectively, for the single-stage configuration. This configuration was run without casing treatment over the rotor tip so that the stage geometry of the single stage matched that of the third stage of the four-stage configuration as closely as possible.

The rotor data in Figure 15 show a uniform diffusion from about 40% chord to the trailing edge for all throttles at 5%, 20%, and 50% immersions (Figures 15a, b, and c). No evidence of flow separation is apparent. However, for

80% and 90% immersions, Figures 15d and e, there is a decrease in the rate of diffusion for all throttles beginning at about 70% immersion in Figure 15d and from 50% to 70% immersion, depending upon throttle, in Figure 15e.

There is again evidence in Figure 15a of the effects of secondary flow and tip leakage on the suction surface pressure distribution of the rotor over the first 30% of the chord.

The stator data in Figure 16 indicate that, for all throttles and all immersions, there is a continuous diffusion from the point of minimum static pressure on the suction surface to the trailing edge, although there is a change in the rate of diffusion near the hub.

4.2.5 Comparison of Rotor Tip Clearance Effects

A comparison showing the effects of rotor tip clearance and casing treatment on the blade surface static pressures is shown in Figure 17 for the tip section. There is a reduction in blade loading over the first 40% of chord, a rearward shift of peak suction surface velocity and a reduced pressure on the pressure surface for both the increased clearance configuration and the increased clearance with casing treatment configuration. At increased clearance, casing treatment does appear to give a larger blade loading from 50% chord to the trailing edge.

4.2.6 Comparisons With Potential Flow (CASC) Solutions

The comparisons of the experimentally determined surface velocities with the CASC velocities for Rotor B are shown in Figure 18. The tests are in quantitative agreement with CASC except at the tip section. The peak suction surface velocities occur about as intended.

The significant differences that are observed on the suction surface near the tip in Figure 18 are attributed to secondary flow/tip leakage effects. The suction surface velocity tends to be low from 5% to about 30% chord and high from 30% to 60%. These velocity perturbations are probably induced by the tip clearance vortex which moves away from the suction surface and away from the casing as percent chord increases.

·)

The comparisons of the experimentally determined surface velocities with the CASC velocities for Stator B are shown in Figure 19. The test results for the velocity distribution on the pressure surface are in qualitative agreement with CASC. The leading edge loadings for Stator B are lower than those for Stator A, especially near the hub, although they are still somewhat larger than intended. This could explain the improvement in the pressure-flow characteristic near stall obtained with Stator B. Airfoil loading is again less than predicted on the aft portion of the vane.

4.3 BLADE ELEMENT AND WALL BOUNDARY LAYER TEST RESULTS

4

Blade element data and wall boundary layer data provide vector diagram quantities from measured values of total pressure, static pressure, and flow angles in a matrix of circumferential and radial locations across a blade pitch. The radial surveys of pressure and flow angle, taken between adjacent stators, are used to fix the shape of the radial distribution; circumferential surveys are used to fix the absolute level of the distribution. The measurements are taken at the rotor inlet and at the rotor and stator discharges of the test stage. The bars in the figures indicate the variation of measured values across the circumferential blade spacing. The detailed wall boundary layer data are included in the radial profiles.

4.3.1 Four-Stage Configuration (Third Stage As Test Stage) Pressures

Detailed surveys of normalized absolute total and static pressures at the third rotor inlet (Plane 3.0), third rotor exit (Plane 3.5), and third stator exit (Plane 4.0) are presented in Figures 20 through 23 and in Table 13 for open throttle, the design point throttle, the peak efficiency throttle, and the peak pressure rise/near stall throttle. The difference between the total pressure at Plane 3.5 and 3.0 represents the total pressure rise across the rotor. The difference between the total pressures at Plane 3.5 and 4.0 represents the loss across the stator. The region of end-wall loss in the stator from 0% to 20% immersion and from 80% to 100% immersion is evident.

The static pressure rise across the rotor is seen as the difference between the measured pressures in Planes 3.0 and 3.5 and that across the

stator as the difference between Planes 3.5 and 4.0. This gives a pitch-line reaction at the design point throttle of about 64%.

Flow Angles

Detailed surveys of absolute air angles at the third rotor inlet, third rotor exit, and third stator exit are presented in Figures 24 through 29 and in Table 13 for the design point throttle, the peak efficiency throttle, the peak pressure rise and the near stall throttles. A small correction factor to the flow angles, which is needed because of the geometry of the measuring system, was used in the data analysis. This correction would yield true flow angles that were about 0.5° larger than observed at 100% immersion and about 1.1° larger at zero percent immersion. The correction factor to the flow angles has not been incorporated into the data shown in the figures but has been incorporated in the data shown in the tables. The leading and trailing edge metal angles for the stator are shown in the figures so that the incidence and deviation angles are easily seen.

The data in Figure 25 indicate that the design intent swirl distribution has been achieved at the exit plane of the third stator. The increase in incidence and deviation angles as the compressor is throttled to stall is evident in Figures 24 through 27.

Total Pressure Circumferential Surveys and Loss Coefficients

Relative total pressure measurements across a circumferential blade spacing were obtained at 11 radial immersions using the rotating rake. The results are presented in Figures 30 through 33 for the various throttles. The rotor wake is clearly evident as is the increased size of this wake near stall, particularly near the hub (Figure 33). An interesting feature of these circumferential surveys is the shape of the distribution near the tip of the blade. Both the loss region due to the wake and the loss region due to tip clearance/secondary flow effects can be seen.

Absolute total pressure measurements across a circumferential stator vane spacing were obtained at 19 radial immersions, including the immersions for the boundary layer surveys. Representative samples of these measurements are

shown in Figures 34 through 37 for 11 of the 19 immersions. The distribution of static and total pressures shown in Figures 20 through 23 were obtained by computing the average, minimum, and maximum value of pressure shown in Figures 34 through 37 at each radial immersion. The large stator wakes in the vicinity of the hub near stall are clearly evident.

These detailed measurements were used to determine rotor and stator loss coefficients. The rotor loss coefficients computed from the relative total pressure measurements are presented in Figure 38 and Table 14. The stator loss coefficients computed from absolute total pressure measurements are presented in Figure 39. Both are in reasonable agreement with design intent. The total loss shown is the sum of the wake loss, the tip clearance vortex loss, free-stream loss, and miscellaneous losses.

Vector Diagram Quantities

Complete vector diagram quantities as well as loss coefficients, loss parameters, diffusion factors, incidence and deviation angles were computed from the quantities measured in the absolute frame of reference. The results are tabulated in Tables 15 through 23 for the various throttle settings. Several of these performance parameters have been plotted as a function of percent immersion in Figures 40 through 46. The design point intent is also plotted on each figure for reference. In most cases over the midportion of the span, the vector diagram quantities computed from measurements are in reasonable agreement with design intent for the design point throttle setting. The rotor loss coefficients and D-factors and the stator incidence angles are somewhat larger than those used in designing the stage. In the end-wall region (particularly the outer diameter) the velocities are lower, and air angles, incidence angles, deviation angles, losses, and D-factors are larger than the design values.

The rotor total loss coefficients, computed from measurements made in the absolute frame of reference (Figure 42), are smaller at the design point than the design intent and the loss coefficients computed from measurements made in the relative frame using the rotating rake (Figure 38). Since the rotor loss coefficients obtained from the relative frame measurements do not depend upon

inaccuracies in flow angle measurements (particularly in the end-wall regions) and in vector diagram calculations, it is believed that they are the more reliable of the two.

As the compressor is throttled toward stall, there is a general decrease in velocity levels and an increase in air angles, flow turning, incidence angles, deviation angles, and D-factors. The region of end-wall flow is distinctly defined by the data.

4.3.2 Four-Stage Configuration (Increased Rotor Tip Clearance)

Pressures

Detailed surveys of normalized total and static pressures at the rotor inlet (Plane 3.0), rotor exit (Plane 3.5), and the stator exit (Plane 4.0) are presented in Figures 47 through 49 and in Table 24 for the open throttle, the design point throttle, and the peak pressure rise/near stall throttle. A description of these figures is qualitatively the same as that for the fourstage configuration in Section 4.3.1.

Flow Angles

Detailed surveys of absolute air angles at the rotor inlet, rotor exit, and stator exit are presented in Figures 50 through 54 and in Table 24 for the open, the design point, and the peak pressure rise/near stall throttle. Again, the description of these figures is similar to that for the four-stage configuration in Section 4.3.1.

Total Pressure Circumferential Surveys and Loss Coefficients

Relative total pressure measurements across a circumferential blade spacing were obtained at 11 immersions using the rotating rake. These results are shown in Figures 55 through 57 for the various throttles. The loss region due to the rotor wake and the loss region due to tip clearance/secondary flow effects can be seen.

Absolute total pressure measurements across a circumferential vane spacing were obtained and the results, including boundary layer surveys, are presented in Figures 58 through 60. These detailed measurements were used to determine the rotor and stator loss coefficients presented in Figures 61 and 62 and in Table 25.

Vector Diagram Quantities

Complete vector diagram quantities, loss coefficients, loss parameters, diffusion factors, incidence angles, and deviation angles were computed from the measured quantities; the results are given in Tables 26 through 31 for the various throttle settings. Several of the performance parameters have been plotted as a function of percent immersion in Figures 63 through 69.

Comparisons showing the effects of increased rotor tip clearance on blade element performance are presented in Figure 70. An increase in rotor tip clearance from 1.4% tip-clearance-to-blade-height ratio to 2.8% produces increases in absolute air angles at the rotor exit, in stator incidence angles, and in rotor D-factors and loss coefficients from a 0% to 10% immersion. Increases of 5° in absolute air angles and incidence angles were observed. D-factors increased slightly to values over 0.70 and total pressure loss coefficients increased from about 0.125 to 0.2.

4.3.3 Four-Stage Configuration (Increased Rotor Tip Clearance and Casing Treatment on All Stages)

Pressures

Detailed surveys of normalized total and static pressures at the rotor inlet (Plane 3.0), rotor exit (Plane 3.5), and the stator exit (Plane 4.0) are presented in Figures 71 through 73 and in Table 32 for the open throttle, the design point throttle, and the peak pressure rise/near stall throttle. A description of these figures is qualitatively the same as that for the fourstage configuration in Section 4.3.1.

Flow Angles

Detailed surveys of absolute air angles at the rotor inlet, rotor exit, and stator exit are presented in Figures 74 through 78 and in Table 32 for the same throttles. Again, the description of these figures is similar to that for the four-stage configuration in Section 4.3.1.

Total Pressure Circumferential Surveys and Loss Coefficients

Relative total pressure measurements across a circumferential blade spacing were obtained for the single-stage configuration at 11 immersions using the rotating rake. These results are shown in Figures 79 through 81 for the various throttles. The loss region due to the rotor wake and the loss region due to tip clearance/secondary flow effects can be seen.

Absolute total pressure measurements across a circumferential vane spacing were obtained and the results, including boundary layer surveys, are presented in Figures 82 through 84.

These detailed measurements were used to determine the rotor and stator loss coefficients presented in Figures 85 and 86 and in Table 33.

Vector Diagram Quantities

Complete vector diagram quantities, loss coefficients, loss parameters, diffusion factors, incidence angles, and deviation angles were computed from the measured quantities; the results are given in Tables 34 through 39 for the various throttle settings. Several of the performance parameters have been plotted as a function of percent immersion in Figures 87 through 93.

Comparisons showing the effects of increased rotor tip clearance and casing treatment are shown in Figure 94. The addition of casing treatment at increased clearance produces a significant increase of 13° in absolute air angle and stator incidence angle relative to the nominal clearance case. Near the tip the flow is nearly tangential with air angles of about 83°. Increases in D-factor and loss coefficient were also observed. Generally, the effects are observed from 0% to 10% immersion.

4.3.4 Single-Stage Configuration

Pressures

Detailed surveys of normalized total and static pressures at the rotor inlet (Plane 1.0), rotor exit (Plane 1.5), and the stator exit (Plane 2.0) are presented in Figures 95 through 97 and in Table 40 for the design point throttle, the peak efficiency throttle, and the peak pressure rise/near stall

throttle. A description of these figures is qualitatively the same as that for the four-stage configuration discussed in Section 4.3.1.

Flow Angles

Detailed surveys of absolute air angles are presented in Figures 98 through 100 and in Table 40 for the design point, the peak efficiency point, and the peak pressure rise/near stall throttles.

Total Pressure Circumferential Surveys and Loss Coefficients

Circumferential surveys of total pressure, including boundary layer surveys, are presented in Figures 101 through 103. The loss coefficients determined from these measurements are shown in Figure 104.

Vector Diagram Quantities

Complete vector diagram quantities, loss coefficients, loss parameters, diffusion factors, incidence angles, and deviation angles were computed from the measured quantities; the results are given in Table 41 through 46 for the various throttle settings. Several of the performance parameters have been plotted as a function of percent immersion in Figures 105 through 111.

The rotor loss coefficients shown in Figure 110 should be compared with those shown in Figure 42. Although these loss coefficients are computed from fixed rake data and the levels may therefore be somewhat suspect, the radial profile comparisons should be meaningful.

Generally, the discussion follows that of Section 4.3.1, vector diagram quantities for the four-stage configuration, and is not repeated here. It should be noted that a single stage reacts differently to throttling than an embedded stage. This can be seen by comparing the differences in axial velocities shown in Figures 40 and 105.
The Rotor B/Stator B, Best Stage Configuration was tested in General Electric's Low Speed Research Compressor test facility. Four configurations were tested: (1) the four-stage configuration with the third stage as test stage, (2) the four-stage configuration with increased rotor tip clearance, (3) the four-stage configuration with both increased rotor tip clearance and casing treatment on all stages, and (4) the single-stage configuration.

Overall performance data and various types of detailed performance data are presented for the Rotor B/Stator B configuration flong with the resulting vector diagrams, loss coefficients, and diffusion factors. These data provide the basis for the evaluation and comparisons of the configurations which will be presented in the Final Report.

Several overall test results are discussed below:

- Rotor B tested with Stator B showed a 0.3 to 0.4 point improvement in efficiency at the design point and a significant improvement in the pressure-flow characteristic near stall relative to the baseline Rotor A/Stator A.
- Increasing the rotor tip clearance from 1.38% clearance-to-bladeheight to 2.80% costs 1.49 points in peak efficiency, 9.7% in peak pressure rise, and 11% in stalling flow coefficient.
- Adding casing treatment to all stages at the increased rotor tip clearance gave a slight increase in peak efficiency and peak pressure rise at the design point but gave a 3.0% decrease in pressure rise at stall.
- Using data from single-stage tests to evaluate multistage performance can present some difficulties as will be discussed in the final report.

6.0 LIST OF SYMBOLS AND ACRONYMS

Symbol	Definition
A	Annulus area of the compressor
Alpha	Absolute air angle
AMAC	Advanced multistage axial flow compressor
Beta	Relative air angle
c	Stator shroud seal clearance
C	Absolute velocity
CU	Absolute tangential velocity
C2.	Axial velocity
CAFD	Circumferential average flow determination
Δ CAM	Changing Camber
CASC	Cascade analysis by streamline curvature
F _C	Compresibility correction factor
h	Annulus height
ID	Inside diameter
IGV	Inlet guide vane
LSRC	Low speed research compressor
ÓD	Outside diameter
P.	Pressure
Ps	Blade surface static pressure = $P_{surface} - (P_B + P_{ref})$
Ps ₁	Upstream static pressure
P _{T1}	Total Pressure
QU	Normalizing quantity = $1/2 \rho_{ref} U_t^2$

Ì

2

6.0 LIST OF SYMBOLS AND ACRONYMS Continued)

Symbol	Definition			
R	Radius			
Re	Reynolds number			
T	Measured torque corrected for windage/bearing friction			
U _t	Wheel speed at tip			
v	Air velocity			
W	Relative velocity			
WU	Relative tangential velocity			
3	Rotor tip clearance			
ή	Torque efficiency			
ρ	Density			
ρ	Average density across annulus			
¢	Flow coefficient			
ψ	Work coefficient			
ψ†	Pressure coefficient			
ω	Loss coefficient			

Subscript

1.7

• •

ì

В	Barometer	
Ċ	Casing	
н	Hub	
ref	Reference	
S	Static properties	
т	Total properties	

6.0 LIST OF SYMBOLS AND ACRONYMS (Concluded)

Symbol.	Definition			
t	Tip			
1.	Upstream conditions			
2	Downstream conditions			
β1*	Inlet metal angle			
β2 [*]	Exit metal angle			

h.

۱

Y

7.0 FIGURES

ì

Figure 1. Four-Stage Compressor Configuration

EOLDOUT FRAME

. The server of

or Configuration Tested in the NASA-GE Core Compressor Exit Stage Study.

FOLDOUT FRAME

ORIGINAL PAGE IS OF POUR QUALITY

Figure 2. Photograph of the Low Speed Research Compressor.

Ì

£ 22...

مر میں دور در مرد د مرد مرد مرد در مرد د

Figure 3. Cross Section of 0.85 Radius Ratio Compressor Stage.

Figure 4. Overall Performance of Rotor B/Stator B Four-Stage Configuration Compared with that of Rotor A/Stator A.

Ì

Figure 5. Comparison Showing the Effects of Increased Rotor Tip Clearance on Overall Compressor Performance, Rotor B/Stator B_Four-Stage Configuration.

Figure 6. Comparison Showing the Effects of Increased Rotor Tip Clearance and Casing Treatment on Overall Compressor Performance, Rotor B/ Stator B Four-Stage Configuration.

Figure 7. Overall Performance of the Single-Stage Rotor B/Stator B Configuration.

Comparison of Individual Stage Figure 8. Characteristics for the Single-Stage and Four-Stage Configurations, Rotor B Running with Stator B.

į

ł

Figure 9. Rotor Blade Surfacé Static Pressure Measurements for the Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.

Figure 11. Rotor Blade Surface Static Pressure Measurements for the Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.

Figure 13. Rotor Blade Surface Static Pressure Measurements for the Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment on All Stages.

Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment on All Stages.

Figure 15. Rotor Blade Surface Static Pressure Measurements for the Rotor B/Stator B Single-Stage Configuration.

Figure 16. Stator Vane Surface Static Pressure Measurements for the Rotor B/Stator B Single-Stage Configuration.

Figure 17. Static Pressure Measurements on the Blade Surface Near the Tip of Rotor B, Four-Stage Configuration, Third Stage Tested.

Figure 18. Rotor Blade Surface Velocity Distributions for Rotor B Operating Near the Design Point -Measurements Compared with Potential Flow CASC Solutions.

Figure 19. Stator Vane Surface Velocity Distributions for Stator B Operating Near the Design Point -Measurements Compared with Potential Flow CASC Solutions.

OPICITIAL PAGE IS OF FOUR QUALITY

42

Ĭ

....

Ì

and the second se

ì

Peak Pressure Rise/Near Stall Throttle

Figure 29. Absolute Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.

Figure 30. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Open Throttle.
ORIGINAL PAGE IS OF POOR QUALITY

mar in the

Figure 31. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Design Point Throttle.

Figure 32. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.

Figure 33. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise/Near Stall Throttle.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 35. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Design Point Throttle.

Figure 36. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.

Figure 37. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise/Near Stall Throttle.

Figure 40. Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.

Figure 41. Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.

*Computed from Stationary Rake Data

Figure 42. Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.

Figure 43. Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.

Figure 44. Stator Vector Diagram Quantities Percent Immérsion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.

Figure 45. Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.

Figure 46. Diffusion Factor, Loss Coefficient and Deviation Angle Versus Incidence Angle, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested.

ì

A second second

1

A NAME AND ADDRESS OF

Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/Near Stall Throttle.

Throttle.

7.3

ORIGINAL PAGE IS OF POOR QUALITY

Peak Pressure Rise/Near Stall Throttle

e 56. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Tip Clearance, Design Point Throttle.

C-2

Pressure at Rotor Exit, Rotor B/Stator B Four=Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/Near Stall Throttle.

gure 58. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Open Throttle.

Figure 59. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Design Point Throttle.

Figure 60. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/Near Stall Throttle.

Loss Coefficients for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.

Wake Loss Coefficients for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.

Figure 63. Rotor Vector Diagram Quantities Versus Percent Immersion Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.

Figure 64. Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.

*Computed from Stationary Rake Data

ł

Figure 65. Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.

Figure 66. Stator Vector Diagram Quantities Versus Percent Innersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearnace.

ì

Figure 67. Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration Third Stage Tested, Increased Rotor Tip Clearance.

Figure 68. Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.

and the second

ल सम्बद्धाः संस्थान

Figure 69. Diffusion Factor, Loss Coefficient and Deviation Angle Versus Incidence Angle, Rotor B/Stator B Four-Stage Configuration, Increased Rotor Tip Clearance.

ORIGINAL PAGE IS OF POOR QUALITY

.

Figure 70. Comparison Showing the Effects of Increased Rotor Tip Clearance on Blade Element Performance.

Figure 71. Normalized Absolute Total Pressures and Static Pressures for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance.and Casing Treatment, Open Throttle.

Absolute Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Peak Pressure Rise/Near Stall Throttle.

<u>99</u>

Peak Pressure Rise/Near Stall Throttle

Figure 78. Absolute Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Stage Clearance, and Casing Treatment.

100

)

Figure 79. Circumferential Variation of Normalized Relative Total Pressure at Rotor Exit Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance Casing Treatment. Open Throttle.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 80. Circumferential Variation of Normalized Total Pressure at Rotor Exit, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Design Point Throttle.

ORIGINAL PAGE IS OF POOR QUALITY .

....

Figure 82. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Open Throttle.

Circumferential Variation of Normalized Absolute Total Pressure Figure 83. and Static Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Design Point Throttle.

90 100

R. 9

1.8

1.6

1.4

1.2

Circumferential Variation of Normalized Absolute Total Pressure Figure 84. and Statie Pressure, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Peak Pressure Rise/Near Stall Throttle...

Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment. Rotor Total Loss Coefficients, Wake Loss Coefficients, and Total Minus Wake Loss Coefficients for Rotor B/Stator B Four-Stage Configuration, Figure 85.

Figure 87. Rôtôr Vectór Diagram Quantities Versus Percent Immérsión, Rotor B/Stator B Four-Stage Configuration, Third Stage Téstéd, Increased Rótór Tip Cléarance and Cásing Treatment.

Figure 88. Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.

11Ö

*Computed from Stationary Rake Data

Figure 89. Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.

. ..

Figure 90. Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance Treatment.

Figure 91. Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.

Figure 92. Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment.

Figure 93. Diffusion Factor, Loss Coefficient, and Deviation Angle Versus Incidence Angle, Rotor B/Stator B Four-Stage Configuration, Increased Tip Clearance and Casing Treatment.

Figure 94. Comparison Showing the Effects of Increased Rotor Tip Clearance and Casing Treatment on Blade Element Performance.

Absolute Flow Angles for Rotor B/Stator B Single-Stage Configuration, Peak Efficiency Throttle.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 101. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B. Single-Stage Configuration, Design Point Throttle.

Figure 102. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Single-Stage Configuration, Peak Efficiency Throttle.
ORIGINAL PAGE IS OF POOR QUALITY

Figure 103. Circumferential Variation of Normalized Absolute Total Pressure and Static Pressure, Rotor B/Stator B Single-Stage Configuration, Peak Pressure Rise/Near Stall Throttle.

Figure 105. Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Single-Stage Configuration.

Figure 106. Rotor Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Single-Stage Configuration.

Figure 107. Rotor Vector Diagram Quantities Versus Porcent Immersion, Rotor B/Stator B Single-Stage Configuration.

Figure 108. Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Single-Stage Configuration.

Figure 109. Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Single-Stage Configuration.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 110. Stator Vector Diagram Quantities Versus Percent Immersion, Rotor B/Stator B Single-Stage Configuration.

132

ં તે વિદ્યુ ⊪ારા____

Figure 111. Diffusion Factor, Loss Coefficient and Deviation Angle Versus Incidence Angle, Rötor B/Stator B Single-Stage Configuration.

8.0 TABLES

Table 1. Instrumentation for the Test Program.

10

						FLane	LOCAL LUL	-			•
		0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.4	5.0
	0.1	ICV	E I	SI	82	S2	2	S3	Z	Å	Compressor
Instrument at ion	Bellmouth	Inlet	Inlet	Inlet	Inlet	Inlet	Inlet	Inlet	Inlet	Inlet	Discharge
atic Pressure		-				•	· · · · · ·	~			
eing Statice Equally-Spaced Tape	Ħ	N	×	×	×	×	×	×	×	M	M
b Statica Equally-Spaced Tapa	Ħ	M .	×					······			M . 1
b Seal Cavity atic Pressures				. M	M	×	×	H .	M	M	
ngle Element averse Probe ⁴			• ~								
ade or Vame Surface atic Pressure Taps							9	83			
stal Pressure								,			
t Element dial Take			M				×	×	м		M
ingle Element sverse Probe ^s							M	×	×		
tating dial Rake								M			
ow Angle											
ngle El em ent averse Probe ^s											
# Probe [#]											

n li

135

I. Tests Using Stage A Blading (Reported in Ref. 1) A. Shakedown Test 5 data points B. 4-Stage Configuration (Third Stage as Test Stage) 1. Preview Data 15 data points 2. Stall Determination As Appropriate Casing Treatment Data
 Reynolds Number Data
 Standard Data 15 data pointa 30 data points. 4 data points 6. Blade Element Data 4 data points 7. Blade Surface Pressure Data 2 data points 8. Detailed Wall Boundary Layer Data 2 data points C. 1-Stage Configuration 1. Preview Data 15 data points 2. Stall Determination As Appropriate 3. Standard Data 4 data points 4. Blade Element Data 4 data points 5. Blade Surface Pressure Data 4 data points 6. Detailed Wall Boundary Layer Data 2 data_points D. 4-Stage Configuration (First Stage as Test Stage) 1. Blade Element Data 4 data points 2. Blade Surface Pressure Data 4 data points 3. Detailed Wall Boundary Layer Data 2 data points II. Screen Tests A. 4-Stage Configuration with Rotor B and Stator A 1. Preview Data 15 dată points. 2. Stall Determination As Appropriate 3. Standard Data 4 data points 4. Bladg. Surface Pressure Data 4 data points B. 4-Stage Configuration with Stator B and Rotor A (Same Data as II.A.) C. 4-Stage Configuration with Stator C and Rotor A (Same Data as II.A.) D. 4-Stage Configuration with Rotor B and Stator B (Šame Dátá as II.A.) III. Tests Using Rotor B and Stator B Designs A. 4-Stage Configuration, Third Stage as Test Stage 1. Same Data as I.B., Except Delete I.B.3. and 4. 2. Rotor Tip Clearance Data, Casement Treatment 4 Stages 3. Rotor Tip Clearance Data, Casing Treatment Stage 1. B. 1-Stage Configuration . Same Data as I.C., Except Delête I.C.4. 1. (Rotor Tip Clearance Data) IV. Tests Using Rotor C/Stator B Designs A. 4-Stage Configuration, Third Stage as Test Stage 1. Samé Data as I.B., Except Deléte I.B.3. and 4.

Table 2. Overall Test Plan Outline for Complete Program.

ك فكالك أبن كالمقالة بحين من كان الحر المكان المكران الكاني

unde unde fast en exempte alle de la fast de la fast de la fast de la de la

139513 R. 201 (2 . . . X

Ì

CONTRACTOR AND ALL AND A

Table 3. Préview Data for Rotor B/ Stator B, Four-Stage Configuration.

TORQUE . WORK, P COEF FLOW EFFICI COEF COEF CASING 0.86285 0.51058 0.45895 0,44056 0.53303 0.87662 0.46727 0.44975 0,54861 0. 88345 0.44289 0.48467 0.50421 0.89164 0.56549 0.43570 0.58308 0.89758 0.52337 0.42765 0.90115 0,60229 0.41852 .0.54276 0.55137 0.56076 0.61068 0,90288 0.41417 0.62045 0.90379 0.40893 0.90381 0.62991 0.40437 0,56931 0.57875 0,63969 0.90473 0.39893 0.65035 0.90554 0.39322 0.38801 0.58892 <u>0.90491</u> 0.66041 0.59761 0.60761 0.67227 0.90381 0.38186 0,90280 ..0,68228 0,37615 0.61596 0,90050 0.62467 0,69369 Ò..36939 0.89462 0.63039 0.70464 0.36253 0.71612 0.88442 0.35373 0.63335 0.63210 0.72413 0.87291 0.34520 0.72566 0.87046 0.34246 0.63166 0.88436 0.49290 0.55736 0.43867 0.62751 0,90038 0.56500 0.40490 0.90073 0.66470 0.38516 0.59872 0.62865 0,88760 0.70826 0,35938 0.55518 0.88799 0.44011 0.49388 0.90386 0.56722 0.62756 0.40627 0.66368 0,90267 0.59908 0,38662 0.89140 0.36097 0.63014

Test 66A.2 Four-Stage Configuration

Preview Data for Rotor B/Stator B, (a) Four-Stage Configuration Increased Rotor Tip Clearance, (b) Four-Stage Configuration, Increased Rotor Tip Clearance and Casing Treatment, (c) Single-Stage Configuration. 4. Table

ì

0.84370 0.84940 0.85443 0.85348 0.85348 0.85479 0.85527 0.85588 0.85588 0.85632 0.85450 0.85163 0.84958 0.83731 0.82335 0.83158 0.84074 0.84603 0.85156 0.85638 0.85637 0.85637 0.85637 0.85827 0.858203 0.858203 0.858203 0.858203 0.858203 0.85827 0.85721 0.65435 0.85379 0.85379 0.84294 0.82032 0.83041 0.84242 0.84644 0.85344 0.85447 85277 0.83464 0.85470 0.85213 0.82482 0.85108 85674 0.85636 0.83781 TOROUE EFFICI 84731 (c) Single-Stage Configuration ó Ó 0.69810 0.70893 0.72045 0.73179 0.74477 <u>0.73675</u> 0.76874 0.77472 0.78866 0.58735 0.60327 0.62230 0.63932 0.65610 0.65610 0.68508 0.68508 0.70656 0.71910 0.73074 0.74117 0.75325 0.771651 0.771651 0.771651 0.78692 0.60399 0.62333 0.63859 0.63859 0.65605 0.67488 0.68535 74563 0.75750 0.76802 60136 62139 69703 67707. .71949 .73209 .77578 67553 68644 63784 0.65608 58492 HORK . ö o. ö 00 60 00 Ó a 0.59672 0.60633 0.61662 0.62699 0.63776 0.65819 0.56036 0.50167 0.52319 0.52319 0.55871 0.558713 0.59713 0.6316 0.6312 0.63612 0.63612 0.63612 0.65861 0.65861 0.65861 0.65861 0.65861 0.65861 0.48146 0.50156 0.5223 0.60639 0.61614 0.62571 0.63585 0.64555 0.65445 0.53877 0.55725 0.57664 0.64664 0.65468 0.65733 0.65882 0.50192 0.52347 0.58493 0.59539 0.53989 0.55838 0.57652 0.58654 0.48245 COEF CASING ۵. 0.43968 0.43276 0.41650 0.41650 0.41650 0.41650 0.41650 0.38360 0.38360 0.35548 0.35548 0.44769 0.43564 0.43328 0.41732 0.43328 0.41732 0.41732 0.41738 0.41738 0.41738 0.41738 0.41738 0.41738 0.41738 0.47783 0.37058 0.35588 0.37058 0.44747 0.43928 0.43255 0.42504 0.41649 0.41178 0.40671 0.40143 0.39580 0.38995 0.38395 0.38343 0.367676 .36434 0.45461 FLOW 0.87943 0.88571 0.89088 0.88996 0.88797 0.88797 0.86769 0.86490 0.85346 0.85575 0.88575 0.88575 0.88575 0.887955 0.887955 0.87955 0.87159 0.88762 0.88795 0.88795 0.88795 0.88462 0.88792 0.89091 0.88945 0.88678 0.87742 0.86641 0.86385 0.87123 0.89136 86385 TORQUE 0.85930 0.88904 0.89123 EFFICI Increased Rotor Tip Clearance (b) Four-Stage Configuration 55625 0.61781 0.62654 0.63413 0.63913 0.64349 0.64491 0.51680 0.51680 0.55545 0.57386 0.59117 0.60921 0.61799 0.62726 0.63424 0.64335 0.64490 0.51546 0.54010 0.55501 0.57330 0.57330 0.59109 0.60859 63294 64286 64452 WORK, COEF 60885 61684 62515 51544 53902 0.59073 63831 and Casing Treatment 00 o. <u>.</u> 00 0 o. 0.54270 0.55039 0.55760 0.52647 0.55112 0.55112 0.55883 0.55883 0.55883 0.55832 0.55307 0.55877 0.55168 0.55778 0.55778 0.44365 0.46986 0.48894 0.50831 0.48767 0.50715 0.52484 0.52484 0.48918 0.50767 56128 56007 55698 55677 0.44292 0.50767 0.47096 54975 0.56309 55605 0.44311 COEF CASING ۵. ö o. 00 0
 0.45604

 0.45604

 0.45504

 0.45504

 0.44653

 0.42308

 0.435508

 0.415308

 0.33610

 0.33611

 0.33613

 0.337837

 0.33613

 0.33613

 0.33613

 0.337837

 0.337611

 0.337611

 0.337611

 0.337837

 0.337611

 0.337611

 0.337611

 0.44536

 0.44538

 0.44538

 0.44538

 0.44538

 0.44538

 0.44538

 0.44538

 0.44538

 0.44538

 0.44538

 0.44558

 0.44538

 0.45538

 0.45538

 0.44538

 0.44538

 0.44538

 0.44538

 0.44538

 0.44538

 0.445538

 0.44538

 FLOW 0.85863 0.87225 0.87387 0.88497 0.83823 0.88988 0.38928 0.87057 0.88691 0.88895 0.88895 0.88895 0.88630 0.88551 0.85806 0.87193 0.87862 0.87308 0.87308 0.87854 0.88409 0.38806 .86569 83772 88551 0.87149 0.85923 0.83280 0.87776 0.87128 0.88216 0.88678 0.86609 0.87687 0.88038 TORQUE Increased Rotor Tip Clearance EFFICI Configuration ò o 0.63376 0.64194 0.64964 0.65642 0.65642 0.60855 0.61732 0.61732 0.53558 0.53014 0.60788 0.61716 0.51642 0.53819 0.55470 0.55470 0.63473 0.53801 0.60581 0.61511 0.61511 0.61513 0.63194 0.61038 0.61038 0.53812 0.55473 0.57222 WORK, COEF 0.51729 0.51553 63969 0. 62630 0.60533 0.61347 572.84 0.62311 63313 0.64651 0.65362 0 ó ló (a) Four-Stage 0.56157 0.56629 0.56965 0.57146 0.57146 0.52427 0.54873 0.55572 0.44312 0.46926 0.48737 0.50520 0.55520 0.57408 0.55408 0.55408 0.55408 56065 56463 56748 56748 56949 0.46983 0.48755 0.50589 0.56758 0.56988 0.54378 53913 0 44-116 0.47666 0.43921 50595 0.52-118 0.5409.1 0.55539 0.56206 0.44296 52304 54080 50315 COEF CASING Ó, Ö ö ö ó o. ó o. ó 0.30574 0.38794 0.38187 0.37553 0.37553 0.41219 0.40719 0.40719 0.35330 0.45650 0.45650 0.43934 0.43934 0.43147 0.43147 0.43147 0.41261 0.41261 0.40746 0.40746 0.40753 0.33581 0.38241 0.37634 0.45707 0.414012 0.414012 0.42289 0.41289 0.46725 0.40156 0.44712 0.43996 0.43167 FLOW CUEF 0.45705 0.42263 0.41294 0.40777 0.40204 0.39538 0.38947 0.08273 11766 37670 ö

ORIGINAL PAGE IS POOR QUALITY OF

83591

0

78815

O

datum abdi manana di analan karatan ang ang ang ang ang

Blade Surface Static Pressures, Rotor B/Stator B Four-Stage Configuratiou, v Table

----ŧ

ì

	Stage.
	Test
	Is
	Stage
	Third
ĥ	
U	

2	1.4464	1 4928	1.3209	1 5319	1.5114	1665-1	1.3310	1202		١		<u>1 1704</u>	0.6476	0, 8503	0.8735	0.7935		1.0751	1 1665	2443	1.3482	1.4031	1,4503																										
ž	1 3259	1.2011	1.4493 1.4493		1.4022	1.5029	1.4869	1.45.66				0 /020	0.0106	0.6039	0.8429	0.6296			1421		1.2736	1.3547	1.3925																										
	1.1169	1.2984	5055 L		3300	1.4076	8760.1	1.3869	C765.1		u L	0.8748	0.7740	0.7408	0.7471	0.7553	0.7831	0.125.0		0202		1. 2502	1.3099																										
2	0 2655	1.1258	1.2103	5007.L	0500	1 2927	1.2936	1.2797	1.2922		ò	0.8870	0.7005	0.6567	0.6517	0.6457	0.6698	0.6837	0.7405	0.0033		1.1071	1.1625	-						1.4960	1.501	1.4024	1.4969		1.5012	1.4712	1.5807	2	0.7453	0.0203	0.0722	0.9065	0.9528	1.0101	1.0693	1 2003	1.2845	1.3513	
UNFACE	10.0	0.7614	0.9195	0.9563	0.9680	100	0003	0600.1	0.9643	JRFACE	0	0.7879	0.6087	0.0110	0.4145	0 3959	0.4056	0.4112	0.4465	0.4978	0.0703	0.97070	0.479								1.4235	1.4303	1.4275		1.4107	1.4130	1.3951	KLL	0.7602	0.6163		0.8362	0.8614	0.9049	0.9774	1.0500	2407	1.2947	
PRESSURE S	XCHORD	00 Q	20.00	30.00	45.00	00.00		00.00	95.00	ALICTION SI	TCHORD	2 50	8.00	13.00	20.02	00 00	35.00	40.06	50.00	60.00	70.00	8.0	00 00	20.0E					1	1.1966	EEBZ 1	1.3166	1.3141	1.3361	1 3371	1.3348	1.3076	34	0.6181	0.7717	0.7246	0.7100	0.7241	0.7781	0.6222	0.9252	1.0054	1014	
L SN	4515	5099	3447	. 5641	. 5691	5564	2023	00000				NS	0.8240	0.9479	0.000	0.9240	0.7719	0.9533	0.9864	1.0450	1.1184	1.1997	1272	1.4760			9 6 - 1 5j		- 0	0.9980		1.1772	1.2039	1.21.96	5151.1	0167	1.1905	2	0.8015	0 7174	0. 6520	0.6085	0.001	0.6370	0.6868	0.7722	0.8551	19190	
PPR	1.3161 1	1.4100	4965	2043	1.6105	1 5259 1	1.5358	1.2036				PPR	0.6633	0.9047	0.0593	0.004.0	0.0754	0.9052	0 9155	0.9833	1.0522	1, 1313	1.2360				I MMERS I ON	SURFACE	ð	0.4692	0 0372	0.9130	0.9669	0 9858	0.9907	1006.0	0.0503	SURFACE	0 7413	0.5620	0.4879	0.4172	0/82 0	0.414 C	0.4305	0.5027	0.5924	0.6991	
<u>b</u> E	1.0019	1.2655	1 4702		1.3667	1 4400	1.4095	1.3951				54	0.8760	0.8623	0.6143	0.7944	2000	0.7652	0.0070	0.6466	0.9316	0.9818	1.0847	1.1949		× 7	•	PBFSSURF	XCHORD	2.50	9 9	20.00	20.05	60.00	70.00	9 0.00		SUCTION	ACHORU A		13.00	20.00	25.00	80.00	20'00 90'00	00.05	60.00	70.00	
2	0. 8249	1.1114	1.1693	2022	1 2732	1.2825	1.2764	1.2732				8	0.8264	0.7877	0.7312	0.6832	0.6/43	0.6597	0.6731	0.7145	0.7722	0.8230	0.9233	1.0433						. 4705	7694.1	1.5025	1,4926	5270	1.4995	1.4057	1,4548	ŝ	0.7580	0 8308		0.0970	0.9072	0.9718	1.0135	9999	3327	1.3744	
URFACE	- 0 - 0 - 0	0.6245	0 9518	0.9795	1.0036		1.0623	1.0650				JRFACE	2027	0.6627	0 5909	0 5257	0.4962	0.4780	0.4769	1 4003	0.5241	0.5800	0 6812	0.8334	0.9602					4140	1 4506	1.4589	1.4725	1.4765	1 1220	1.4510	1.4044	X d d	0 7789	0.0318	0.7928	0.0130	0. 8665	0.9046	0.9931	1.0525	1.1871	3187	
NESSINE S	ACHORD		20 00	30.00	11.00			00.00				SUCTION SI	ACHORU		00.01	20 00	23.00	30 00	35.00	40.00		20.00	00 00	50.00	83.00				PE	1.1937	1772.1	1 3369	1 3547	1.2703	1 3653	3465	1.3206	4	0.6420	5 7609	0.7139	N 1 80 . 0		0.720	0 0049	0.9074	1,0090	1.1161	
		N5 4260	4495	5053	8118	5475	1946	9326	. 5664	5563		N3	0 8725	0.9672			0.8320	0.0388	0.9113	6966 0	1.0964	1.1913	1.2966	1.4556					90	0.9611	1.1169	1 1001	1.2209	1.21:8	124.3	1074	1.1961	ę	0 0173	0 7295	0.6456	0.6133	1965.0	0.6084	0.6687	3554.0	0.8489	9159 0	
			2930	1 4387	1.4846	1 5013	1 4961		1.8137	1 5007		894	0. 8513	0 9314	0. 8933		727	0.0100	0.0502	0 9457	1.0344	1.1315	1.2262	1.3384			I MUERS LONG	SUBSACE.	0	0.3663	0 81.63	0 9351	0.9613	1 0030	1 0231	1.0188	0144	URFACE	10.0	0 6203	0.4966	0.4209	0 3974	0680 0	0.405.0	1157 0	0 55/2	0 6168	
		PE 	1 1516	1 3242	1 3692	1 4176	1 4136	E26E 1	157	1 2664		ä	0 6065	1200 0	0 8437	0 0000	0 /345	0.7226	0.7669	0 8263	0.9083	0.9900	1.0917	1.2133				101122100	THE JOHN	2.50	00	20 00		60.09	70 00	00 00		SUCTION	SCHORD		00 01	20.00	25.00	30 00	35.00	10 00	100	00 02	
- C		à	9196 0			2002	23/3	1 3076	1.302.1	1 2766		į	2413	0.62.0	0.7955	0 7360	0 6735		0.000	19190	1224	0 0373	0 9392	9100	1.1304																								
MILERS I CINE	168.66	10	- g 0	ò			1	1 08/15	9760 1	110		UNP'ACE		A 6002	0 6461	0 54/1	0 3471	0.52.0	0 4863		0.010		0 6590	0 79:45	8698 0	-							-	-															
-	10110		2	10	20 00		000	20 00	00 02			S HOLLORS			33	22	C 67	00.06	36.30	00 0 0	0			9	30 58																								

ORIGINAL PAGE IS OF POOR QUALITY

139

ORIGINAL PAGE IS OF POOR QUALITY

and a second second

				NS 7064	1 7624		1.7791	8764-1	1.7030	1.7629	54	1.2707	1.3310	1.3695	1 1330	1.4641	1.4946	1.6109		1.7096	1.7207																				
stage				New 1	1.6849	1.7075	1.7242	1.7447	1.7373	1.7216		1.2705	1.2859	1.3096	1.3624	1.3949	1.4240	1.5335	1.6903	1.6666	1.6941	•																			
[hird				PE 1 5360	1.5349	1.5545	1.5938	1.6178	1.6230 1.6151	1.5986	ł	1.2117	1.176)	1.1845	1.2207	1.2437	1.2669	1.3755	4299	1.5280	1.5519																				
ion,		0• 20		DP	1.3723	1.4116	1.4594	1.4897	1.4937	1.4664	90	1.1719	1.0954	1.0544	1.0012	1.0898	1.1052	1.2124	1.2723	1.3930	1.4217	•.		1	.7603	. 7467	. 7622	1.7029	2054	1.7726	. 7405	ļ	. 2752	5662	. 3625	1.4160	.4907	1.5510	1.6222	1.6670	1.6800
igurat		MERSION(1	The Life	00 0	1.0510	1.1252	1.1867	1.2246	1.2303	1.2069	RFACE	1.0619	0.9144 D.8565	0.0140	0. 8027 0. 8001	0.8068	0.6108	0.9013	0.9679	1.1100	1.1463	÷			- 1969 .	.6900	. 7072	7214	66E/ .	1.7224	1.6952	•	1.243I	1.2453	1.2600	1.3106	1.3094	1.3303	1.5609	1.6215	1.6396
e Conf		-		SCHORD SU	9.90 9.00	20.00 30.00	46.00	70.00	00.00	99.00	UCTION SUI	2.50	6 .00	20.00	25.00 30.00	35.00	80	60.00	70.00	90.00	92.00			1	1.5076	1.5165	1.5715	1.5905	1.6131	. 6002	1.5693		1.2140	1.1609	1.1000	1.1760	1.2297	1.2606	1.3655	1.4398	1.5097
			F	2000 2000	7748	7994		9150	. 0023	ł	ñ	NS	2893	. 3543	2665	4492	.4831 5183	5/69	.6430	7133	. 7260		0+ 95	2	1.3319	1.3692	1.4364	1.4554	1.4809	1.4789	1.4417		0P 1. 1490	1.0740	1.0461	1.0457	1.0661	1.1092	1.2284	1.2657	1.3696
B Four				7134	7134 1	7272 1	7602	7621 1	. 7470			PPR	1 0116	3129	3004	3901	4532	- 0219	. 5035	6614 1	6780 1		MERS ON (3	JRFACE	0. 9119	1.0642	1.1349	1.1879	1.2151	1.2139	1.1701	RFACE	0P 1.0274	0.9012	0.6490	0.8065	0.8113 0.6157	0.8260	0.9231	0.9075	1.1122
tator				PE 5360	. 5716 1	. 5871 1 5064 1	.6265	6306	.6167 1			PE	2072	1933	21/2	2469 1	. 2691) 3039]	13594	4253	5234	. 5350 1 . 6376 1		-	RESSURE SI	XCHORD 2.50	00.0	8 8	45.00	70.00	00.00	95.00	UCTION SU	2.50	6.00	13.00	25.00	90.00 90.00	40.00	50. UU 60. 00	20.00	00.00
or B/S		• 20		. 3662	1.3014	1.4506	000	1.5022	1.4876 1			90	1,1061	1.0705	1.0839	9660.1	1.1165	1991	1.2552	1.3705	1.4072			A.	8220 7665	7621	7640	7846	7881	7765		NS_	1954	3142	3706	9666	4084	5933	. 6365	6600	. 6678
, Rote		HERSION	RFACE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0700	1.1684	1.2190	1.2299	1.2105		5115		1.0230	0.8635	0.8411	0.8233	0.8275	0.8779	1.0209	1.0751	1.1306			PPR	. 7135 1	6970 1	7043 1	7291	7365 1	. 7239 1		add	1 0001	2586 1	. 3026 1	. 3245	3941	1 0001	. 5455 5444	6262 1	. 6436
ssures		ñ	ESSURE SU	ACHORD 2. 50	00.00 • 00	30.00	60.00	90.00	. 00.06		and motton	SCHORD	2 CQ	20.00	20.00	30.00	35.00	50.00	6 0.00	88	90.00 95.00			PE	5215 1	1000	5707 1	6014	61.6	6013 1		34	. 1065	1475	1.1656 1	2016	2335	1.3129	1.3660	1.4686	1.5155
ic Pre			5	NS	7729	7826	0107	1315	7360	7961	5	NS 2954 21	3547	4067	4367	4730	. 535)	535T	. 6685	7253	7321		0	00	. 3340		4357	4735	4834	4732	C104.	8	1.1434	1.0395	1.0410	0431	1.0037	1.1013	1.2108	3238	1.4009
e Stat	•			RPR	7383	1 6024	7652	7791	7804 1	. 7393		2848 1	3222	3334	3812 1	3696	1 2127	9265	6364 1	6612 1	6804		MERSIONCE	OP	0.8970	1312	1.1622	1.2090	1.2250	1.2131	1.1804	FACE	1.0373	0.8314	0: 0030	0. 7862 0. 7866	0.7990	0.0043	0.9012	0. 9633	1. 1225
urfact				76	1 90.55	1 26/2	6191	6338	6442	6052		PE 2227 1	1622	. 2230	2453	2424	. 3230	3795	1.4963	1.5240	. 3478		E	 SCHORD SU	2.50	20.00	00 00	60 G	00 00	00.06	00.48	ICTION SUR	5.90	000	20.00	25.00 25.00	33.00	40.00	60.00	800	90.00 95.00
Vane S Te Tee		:		- 5	0.3800	1361	1 600r 1	5017 0110	0140			DP 1 1523	1.1262	0972		1074	1.1604	1 2169	1776.1	1 3646	1.4199			 5			ļ		1			ฮ		ļ				-			
e 6.			h.r51.	RFACE	1808 0	1.1370	1.2014	2213	1.2366	1 1996	FACE	0000	0 9246	0 8758	0 8-194	0.0502	0. 0632	0 90.00	1.0351	1.0950	1.1515																				
Tabl			Ē	PRESSURE SU	550	20.00	0000	50 00 70 00	00	000	SUCTION SUR	ALC: MARD	00.0	20 CO	8 8	99 99	40.00	50 00	20 00	00 00	00 56																				

ion,				РРЯ	1.2117	1.2613	1.2856	0 + n + n + n + n + n + n + n + n + n +	1.3205	1.3163	1.2802		PPK 0.8318	0.7630	0.7033	0.0556	0 6814	0.7367	0. 7948	0.8740	0.9483	1.1481	1.2020																									
figurat		Z)= 50		90	0.6925	1.1540	1.1756	1402.1	1.2247	1.2226 1.2086	1.1635		0. 8362	0.6913	0.6527	0.5563	0.5835	0.6479	0.6782	0.7462	0.8452	1.0339	1.0995			••																						
age Con		MMERSION	LIDEACE	9 0	0.2124	0.9288	0.9648	0.9944	1.0215	1.0223	0.9977	JRFACE	0P 0.8201	0.6134	0.5148	0.4141	0.4003	0.4125	0.4711	0.5106	0.5601	0.6112	0.8770					PPR	1.1876	1.2317	1.2463	1.2743	1.2858	1.2/40	1.2477		APR	0 6310	0.7560	0.5889	0.6639	0.6648	0.7055	0.7524	0 9395	1.0272	1 10/2	1 1020
our-Sta		-	01-12-01-12-2	XCHO100	8.50 8.50	20.00	30.00	45.00 50.00	70.00	80. no	92.00 95.00	SUCTION SI	ZCHORD 2.50	8.00	13.00	20.00	30.00	35.00	20.00 20.00	60.00	70 00	0000	00 S6		:	06 - (X		0P 0	1.0914	1.1456	1.1470	1 1859	1.1774	1.1722	1.0817		aŭ	0.80%1	0.6938	0.6380	0.5619	0.5712	0.6207	0.6303	0.7208	0.9074	1.0156	
ator B]				12.18	2123	1007	2608	26.97		2623	'		PPR	66.40	7440	2112	7051	7206	75:50	7794	8298	67 H3	08-10	1520		IMMERSION	SURFACE	90	0.6121	0.8976	0.9204	0.9536	n. 9792	0.9749	0.9318		SUHLACE	0.7435	0.5920	0.4674	0.444)	0.3804	0.4143	0.4176	0.4670	0.6661	0.7310	0 04//
or B/St		- 20		DP AA14	0803	151	1809	.1860 1.3	2026 1	1.963				7366 0.	. 7225 0.	6827 0.	6292 0.	6261 0.	6342 0. 6437 0.	.67.4 0.	.7109 0.	. 7715 0. . 866 8 0.	.9767 1.	.0576 1.			PRESSURE	XCHORD	00.2 8	20.00	30.00	45.00 60 00	70.00	80.00	00 00 00		SUCTION :	ACINORU 2 50	8.00	13.00	20.00 25.00	20.00	35.00	40.00	50.00	70.00	80.00	00 05
es, Rot	e.	ERSION(X)	FACE	0P 4574	. 8537	9480	00200	.0280	03/4	1 2620	w.		ACE	0. 7430 0	0.6467 0	0.5675 0	0.4857 0	0.4778 0	0.4757 0	0.4779 0	0.5083 0	0.5563 0 0.5356 0	0.7655 0	0.8565 1			œ	138		053	6-16	818 875	B 84	673	445	Į	PR 250	2CZ	846	316	491	587	106	100	068	109	751	983
Pressur	learanc	JW I	I SSURE SUR	XCHORD	00	20.00	30.00	60.00	20.00	00.00			CTION SURF	2 50 (8.00	13.00	25.00	30.00	35.00	50.00	60.00	00.00	90.00	52°00	80		P	0.1 926	1.12 1.12 1.12	1.23	1.24 1.20	(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	138 1 2	1.21 8161	1755 1.2		е С	9183 0.6	1 20 0 6	5325 0.6	1829 D.G	5818 U.9 2.00 0.00	5230 U.O	5025 0.8	6.0 800a	3887 1.0 1.0	1.1 5160	1322 1.1
Static	r Tip (ة ا				2 9	2		5	ون ي	1	ns No	ا وابع	2	5	0	12	3		20	9	 2		=(1)4(1)=			524 0.0	3137 1.0	4109 1 1	1.1 1.1e	0585 1.2	0086 1.1	1.1 6000	9844 1.1	l J	CP CP	/877 0.1	0 0 0 0	1302 0	3965 0.	3572 0.3		10 101	0 961		6004 1.0	1 8016
urface	ed Roto	n		922	964 1 6	8 1 40	6	1.245	1 20	0 1.26	7 1.317		dd .		200	4 0.75		0.54	0.65	91.8.0	0.920	61.0 81	1 16 <u>4</u>		IMMER		ADD SUNT	50	00	3 3 8 8	30	00.0		00	00	ION SURFA	IORD	20		30	0	0	8		00	00	00	с 00
ilade Su	ncreas	= (X) NO		2	1 1.015	1 1 087	471 - C	8 1.196	1.190	1.204	0 1.21		43		4 0 707	12.0 6	0 1/2		8 0 564	0 0 0	7 0.773	0.064	1.066	-			N ANA		Ð	e e e e	19	60.	04	06	. 2 5	SUCT	ACI ACI	N.		202	25	30	8	96	60	<u>6</u>	30	36
e 7. B	. ==1	 Mas F Rt-10		C SURFACE	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000	126 D	256 0		200	840 I		10 Jb			0 6113	00	1.50.0	0.475	0 - 10	0.433	0.618	0.849																									
Table				PRESSUR	2.50	8	20.00 20.00	45.00	00 00	00 00	90. 60 00	20.02	NUNSK	2 20		20 00	25 00		40.00	20.00	70.60	60.00	90 06 83 00	} }																								

1+1 ł ų ċ ÷ Ê ρ 5 6 F

Ì

141

ORIGINAL PAGE IS OF POOR QUALITY

ron,			000	1.1649	1.4197	1.4613	1.5031	1.5212	1.5265	1.5192	1.4881	000	1.1776	1.1246	1.1055	1.11.4	1.1327	1.1561	2287	1.28-8	1.7459	1.3978	1.1434																										
Ilgurat		()= 2U	ŝ	1 2265	1.2906	1.3507	1.4018	1.4213	1.4323	1.4314	1.4132	1	1795	1.0723	1.0308	1.0135	1.0196	1.0369	1.0490	1.1559	1.2154	1.2759	1.3377	30.06.1																									
age Con		DHO ISU MM	URI ALF	OP 0 X686	1.0205	1.0985	1.1653	1.1913	1.2050	1.2054	1,1881	RFACE	05 10	0.9043	0.8416	0.7967	0.7909	0.7838	0.7887	0.8.30	0.9453	1.0158	1.0876	1.1252					PPR	1.3246	1 45.15	1.4755	1.4990	1.010/	1.5237	1.5127		0	1.1927	1.11.1	1.0900	01000	1.1118	1.1352	1.1509	7170.1	1.33-18	1.3778	1.1312
Four-St		-	PRESSINGE S		00.0	20.00	30.00	60.00	70.00		95.00	SUCTION SU	SCHORD	00.8	13.00	20.00	30.00	35.00	40.00	20.00	20,00	80.00	90.00	00.00			()= 62		90	1.1839	1.2892	1.3/51	1, 3792	1.4197	1.4214	1.4155		ŝ	1 1.479	1.0:524	1.0150	1.00.1	18101	1.0304	1.0503	1.1612	1.2217	1.2711	1 3500
ator B			PPR	. 5065	.4906	4996	.5143 5330	5390	5364	PC2C.	•		000	0516	. 1051	. 1122	. 1685	. 1866	.2110	243/	.3583	.4073	4405	. 4576			MULERSION(SURFACE	ō	0.7981	1.0345	1.1394	1.1664	1.1890	1,1970	1.1859	1.10/4	URFACE	- 05 - 14	0.199.0	0, 8389	0.8034	0.7920	0.7947	0.8052	0.8404	0.9623	1.0190	1.0914
or B/St		50	DP	. 3340 1	1 0200	1 9666	4147 1	432	.4442 1	4314 1			1	0764 1	1.0592	1.0367	0543	1.0613	1.0817	1.1048	1.2115	1.2702	1.3245 1	1.3584 1 1.3719 1			-	PRESCURE	XCHORD	2.50	9.00	20.00	45.00	60.00		90.00	90.00	SUCTION SI	XCHORD	00.8	13.00	20.00	20.00	35.00	40.00	50.00	20.02	80.00	90.00 95.00
es, Rot ce.		MERSION(X)	OP OP	0.9494 1	1.0552	1 1492	1.1771	1.2020	1.2116	1.2014			FACE	0 001	0.9011	0.8461	0.8263 0.8159	0.8109	0.9152	0. 8301	0.8684 0 9265	0.9914	1.0560	1.1141				830	3391	4010	4606	4519	5211	5295	5345	5012		PPR	. 1841	0813	0856	606U .	. 1072	1518	2050	.2671	3535	4219	. 4.15.3
Pressur Clearan			ACHORD	2.50	9 00 9 00 9 00	30.00	45.00	60.00 70.00	80.00	90.00			UCTION SUR	ACHORD	9.00 9	13.00	20.00	30.00	35.00	40.00	50.00	00.02	00.00	90.00 e5 00	2	80	•	00	1929 1.	2844	.35.56 1.	3789	4231	4321	1.4356	1. 3987		0P	1.1542 1	0552	1 0000	0.0958 1	1.0054 1	1.0252	1.0877	1.1.47	1.2058	1.3161	1.3445 1
Static	4	×	-	PR	5537 5004	5029	5171	531 9	5527	5518	5133	1	PPR S	0476	1267	1653	1926	2122	2733	3275	3772		4566	4677		NEDG LAN (3)		RFACE	0 8078	1.0143	1.1064 1	1.1369	1.1062	1.2020	1.2073	1.1678	-	EACE OP	1.0437	0. 8943	0.8255 0.7905	0.7732	0.7696	0.7808	0.7848	0.8771	0.9391	1.0655	1.1012
Surface	ION DOCE	01		0P	3897 1.5	3891 1 1985	4074 1.5	4295 1.1	4554 1.1	4581 1.4	446/ 1.1		DP	0374 1.	05453	0574 1.	0752 1.	0650	1313 1.	1814 1.	2364 1.	2934	3622	3738 1.				RESSURE SU	SCHORD		20.00	30.00	45.00	20.00	B 0. CO	90.00 95.00		uctión sur Temard	2.50	8,00	13.00	20.00	30.00	35.00	40.00	60.00 60.00	70.00	90.00	95.00
Vane S	TILLE	RSION(3)=	ACF.	0	0326 1.	1336 1.	1630 1.	1900	221.3 1	2249 1.	2:24 1. 1043 1.	5	d do	9614 1.	9078 7.	8503 1.	8468 1.	8589 1.	. 8030 1.	9022 1.	9525 1.	.0223	.0765	1371 1.				ž									1	ũ							1			I	
Table 8.		1 Mile	2012 S1195	ECHORD	2.50 1.	00.00	30.00	45.00 1.	20 00 20 00	8 0.00	90.00 51.00		ACHORD	2.50 0	0.00	20.000	25.00	30.00	33.00 40.00	50.00	60.00 0	70.00	90.00	92.00		**																							

and the second secon

L C ç P F

·

ì

142

ORIGINAL PAGE IS OF POOR QUALITY

TT', 'TT'

and the second sheet of the second second

Configuration	4
otor B/Stator B Four-Stage (Casing Treatment.
Blade Surface Static Pressures, R	Increased Rotor Tip Clearance and
Table 9.	

.....

ì

PRESSURE SURFACE PPR PRESSURE SURFACE DP 1 1 1 1 1 0 <td< th=""><th>Ň</th><th>20 = (2)</th><th></th><th></th><th>I MMERS I ON (</th><th>(X)= 20</th><th></th><th></th><th>I MMERS I ON (</th><th>(X)= 20</th><th></th></td<>	Ň	20 = (2)			I MMERS I ON ((X)= 20			I MMERS I ON ((X)= 20	
TFR TUIORD OP DP PPR PRESSURE SURF SURF SURF SURF SURF SURF SURF SURF				PRESSURE 5	SURFACE						
PFR 2. 50 0.4327 0.6602 1.1089 XCH0RD 0P P 70/0 70 0.6396 1.0343 1.2336 2.500 0.7346 1.0741 0.7413 0.7411 0.7413 0.7411 </th <th></th> <th></th> <th></th> <th>XCHORD</th> <th>9</th> <th>DР</th> <th>РРВ</th> <th>PRESSURE</th> <th>SURFACE</th> <th>1</th> <th></th>				XCHORD	9	DР	РРВ	PRESSURE	SURFACE	1	
1/58 8.00 0.8056 1.0943 1.1936 1.2347 2.50 0.72381 1.7475 0.3 20:00 0.9124 1.2139 1.2347 8.00 0.9332 1.1736 1.3 21:66 60.00 1.0124 1.2139 1.2476 45.00 0.9332 1.1736 1.3 21:66 60.00 1.0124 1.2149 1.2476 45.00 0.9332 1.1736 1.3 21:66 60.00 1.0124 1.2149 1.2476 45.00 1.2056 1.2476 21:01 1.0219 1.2734 1.2476 1.219 1.2193 1.2193 1.2193 1.2193 1.2193 1.2193 1.2193 1.2111 1.2056 1.2111 1.2056 1.2111 1.2056 1.2111 1.2056 1.2111 1.2056 1.2111 1.2056 1.2111 1.2056 1.2111 1.2056 1.2111 1.2056 1.2213 1.2111 20.00 0.2056 1.2341 1.2056 1.2341 1.2056	5		урк	2.50	0.4327	0.8802	1.1089	XCHORD	6	5	PPR
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.9911 1.	_	1/58	8,00	0.8396	1.09- 3 3	1.1938	2.50	0.2381	0.7475	0.9686
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 0.11	ſ	1665	20.00	0.9437	1.1209	1.2347	9.00	0.7948	1.0361	1.1694
CC76 45.00 1.0124 1.2149 1.2475 45.00 0.0124 1.2149 1.2476 45.00 0.0997 1.2056 1.2175 1.2476 1.2476 1.2056	1 1230 1.2	-	0/0	30.00	0.9769	1.1935	1.2410	20.00	0.9332	1.1738	1.2260
1166 60.00 1.0345 1.2524 1.2715 10.00 1.0319 1.27216 1.2711 10.00 1.0226 1.2345 0.2345	1.1543 1.2		2226	45.00	1.0124	1.2149	1.2423	30.00	0.9733	1.1979	1.2420
3.33 70. un 1.0519 1.27.b 1.2592 60. 00 1.0196 1.2154 1.2592 1.2552 1.254 1.2541 1.2541 1.2541 1.2541 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 1.2542 <td>1.1991 1.2</td> <td></td> <td>991:</td> <td>60.00</td> <td>1.0345</td> <td>1.2254</td> <td>1.2476</td> <td>45.00</td> <td>0.9997</td> <td>1.2056</td> <td>1.2560</td>	1.1991 1.2		991:	60.00	1.0345	1.2254	1.2476	45.00	0.9997	1.2056	1.2560
2882 60.00 1.0280 1.2519 1.2519 1.2513 1.2513 1.2513 1.2553 1.2554 1.00226 1.2554 1.2 501 00 1.0226 1.2219 1.2653 90.00 1.0226 1.2341 1.2 501 00 1.0226 1.2019 1.2653 90.00 1.0226 1.2341 1.2 645 00 01 00225 1.2079 1.2 95.00 1.2231 1.2 913 200 07 736 0.7935 0.6680 0.7436 0.7259 0.7451 0.7259 0.7451 0.7259 0.7451 0.7259 0.7451 0.7259 0.7451 0.7259 0.7451 0.7259 0.7451 0.7253 0.7451 0.7253 0.7451 0.7253 0.7451 0.7253 0.7451 0.7253 0.7451 0.7253 0.7451 0.7253 0.7451 0.7554 0.7451 0.7554 0.7451 0.7554 0.7451 0.7554 0.7451 0.7554	1.2316 1.2	1.2	333	70.00	1.0519	1.22.38	1.2592.	60.00	1.0196	1.2194	1.2703
503 90.00 1.0226 1.2343 1.3 701 701 1.0226 1.2343 1.3 701 701 90.00 1.0226 1.2343 1.3 701 701 700 1.0226 1.2343 1.3 701 701 701 7025 1.2011 1.2 701 701 701 7025 1.2017 1.2 1.	1.2246 1.2	1.2	282	80.00	1.0431	1.2308	1.2711	70.00	1.0280	1.2352	1.2773
701 90.00 1.0200 1.2231 1.1 PR SUCTION SURFACE 95.00 1.0025 1.2079 1.2 PR SUCTION SURFACE SUCTION SURFACE 50.00 1.0025 1.2079 1.2 133 2.50 0.7436 0.7935 0.6880 6.00 0.0735 0.7457 0.7457 0.7457 0.7457 0.7457 0.7457 0.7457 0.7457 0.7451 0.7457 0.7451 0.7451 0.7457 0.7451 0	1.2233 1.2	Ň	533	00 06	1.0281	1.2219	1.2654	80.00	1.0226	1.2341	1.2775
Present 95.00 1.0025 1.2079 1.2 Present SUCTION SURFACE 95.00 1.0025 1.2079 1.2 Present SUCTION SURFACE D 7436 0.7955 0.6400 0.7	1.2326 1.2	~	201					<u>90.00</u>	1.0200	1.2231	9/92.1
R SUCTION SURFACE SUCTION SURFACE CHORD OP T 31: X CHORD OP DP PPR Z CHORD OP DP T 31: X CHORD OP DP PPR Z CHORD OP DP T 7:0 0 0 0.7955 0.6880 0.010.6151 0.7259 0.1 30:0 0.6353 0.73743 0.7380 13.00 0.66219 0.7359 0.1 31:7 20:0 0.6395 0.7744 20.00 0.4266 0.1 0.6039 0.6030 0.7634 0.1 0.7635 0.1 0.7753 0.0 0.4266 0.1 0.1 0.7755 0.6030 0.7657 0.6039 0.1 0.7655 0.1 0.77555 0.6100 0.4125 0.6030 0.7654 0.1 0.7654 0.1 0.7654 0.7654 0.7654 0.7654 0.7654 0.7654 0.7654 0.7654 0.7654 0.7654 0.7654 0.7654 <td>1.2202 1.26</td> <td>1.26</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>95.00</td> <td>1.0025</td> <td>1.2079</td> <td>1.2.136</td>	1.2202 1.26	1.26	2					95.00	1.0025	1.2079	1.2.136
PR SUCTION SURFACE DP PPR XCHORD OP DP 133 2.50 0.7436 0.7437 0.7436 0.7437 0.7439 0.7437 0.7431 0.7433 0.7431 0.7433 0.7431 0.7								S NULLUIS	THEADE		
No. Description Description <thdescription< th=""> <thdes< td=""><td></td><td>6</td><td>g</td><td>S NULLURS</td><td>100 ACE</td><td></td><td></td><td></td><td>dC</td><td>90</td><td>PPR</td></thdes<></thdescription<>		6	g	S NULLURS	100 ACE				dC	90	PPR
33 2.50 0.7436 0.7953 0.6480 0.00 0.6523 0.7421 0.7743 0.6621 0.7743 0.7639 0.7743 0.66219 0.7743 20.000 0.4361 0.6039 0.7744 20.000 0.4361 0.6041 0.7233 0.7200 0.4361 0.6041 0.6209 0.6011 0.7243 0.6011 0.7223 33.000 0.4206 0.6010 0.6209 0.60140 0.6209 0.67040 0.6209 0.60100 0.6209 0.6209 0.60140 0.6209 0.6209 0.6209 0.6209 0.6209 0.6209 0.6209 0.6209 0.6209 0.6209 0.6209 <	0. 7448 0 69	69	10	ACHORD	90	ΩΡ	PPR	2.50	0.0758	0.7457	0.7571
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 8004 0 81	0 81	22	2.50	0.7436	0.7955	0.6880	6.00	0.6161	0.7259	0.7314
50 13.00 0.6395 0.7744 20.00 0.4361 0.6395 0.7067 72 20.00 0.5157 0.6691 0.7127 20.00 0.4206 0.6011 0.1 15 25.00 0.4569 0.7757 25.00 0.4125 0.6011 0.1 14 35.00 0.4369 0.6710 0.7356 40.00 0.4125 0.6010 0.1 14 35.00 0.4369 0.6710 0.7356 40.00 0.4289 0.6294 0.1 14 35.00 0.4894 0.6710 0.7356 40.00 0.4289 0.6294 0.1 14 35.00 0.4894 0.5710 0.7356 40.00 0.4289 0.6294 0.1 15 50.00 0.4286 0.7594 0.7755 50.00 0.4268 0.7594 0.1 16 70.00 0.5372 0.7395 0.700 0.7594 0.1 26 0.0 0.77555 70.00	0.8208 0.84	0	ò	8.00	n. 6353	0.7477	0.7380	13.00	0.6627	0.7451	0.7599
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7200 0.73	0.73	50	13.00	0.6395	0.7504	0.7744	20.00	0.4361	0.6389	0.6442
75 25.00 0.4969 0.6616 0.7125 30.00 0.4125 0.6040 0.1316 114 35.00 0.4938 0.6510 0.7266 40.00 0.4214 0.6209 0.1316 0.7366 40.00 0.4307 0.6229 0.1307 0.6209 0.1367 0.7366 40.00 0.4307 0.6229 0.1307 0.7366 0.7300 0.4307 0.6229 0.1307 0.6229 0.1307 0.6229 0.1307 0.62202 0.7564 0.17694 0.1	0.6520 0.64	3.0	372	20.00	0.5157	0.6691	0.7067	25.00	0.4206	0.6011	0.6368
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.65.13 0.5	9.9 0	345	25.00	0.4969	0 6616	0.7125	30.00	0.4125	0.6040	0.6439
414 35.00 0.4884 0.6710 0.7365 40.00 0.4680 0.6456 0. 145 40.00 0.4938 0.6714 0.7565 50.00 0.4680 0.6544 0. 145 40.00 0.4680 0.7575 50.00 0.4680 0.6544 0. 303 50.00 0.4580 0.7594 60.00 0.5222 0.7594 0.1 301 60.00 0.5248 0.7374 0.8352 70.00 0.5526 0.7553 0.1 302 60.00 0.5467 9.6678 90.00 0.9531 0.3553 0.1 302 0.7587 0.8916 80.00 0.9124 1.0420 1 1 1 1 1 1 1 1 0.3531 0.3531 0.3531 0.3553 0.9 0.9504 1 1 1 0.4201 1 1 1 1 0.4201 1 1 1 1 1 1 0.9	0.619, 0.6	0.0	31.7	30.00	0.4938	0.6591	0.7223	35.00	0.4214	0.6209	0.6711
1.15 40.00 0.4938 0.6789 0.7565 50.00 0.4680 0.6854 0.1 0.06 0.05052 0.7030 0.7565 60.00 0.5564 0.1 0.06 0.05152 0.7030 0.8352 70.00 0.5926 0.7594 0.1 0.06 0.0562 0.7374 0.8352 70.00 0.5926 0.8563 0.1 0.46 0.05 0.5374 0.8352 70.00 0.5926 0.8533 0.1 0.59 0.00 0.5927 0.6916 60.00 0.7013 0.9531 0.1 0.29 0.00 0.6409 0.6772 0.6652 95.00 0.6904 1.1214 1.1 164 90.00 0.8409 1.0615 1.1284 1.1214 1.1	0.5949 0.6	9.0 0	414	35.00	0.4884	0.6710	0.7366	40.00	0.4307	0.6458	0.7103
085 50.00 0.5052 0.7030 0.784% 60.00 0.5202 0.7594 0.4 9.10 60.00 0.5248 0.7347 0.8352 70.00 0.5926 0.8563 0.4 9.10 60.00 0.5548 0.7377 0.8352 70.00 0.5926 0.9563 0.4 4.29 80.00 0.5937 0.8352 70.00 0.7013 0.9531 0.1 4.29 80.00 0.77013 0.9548 90.00 0.7013 0.9531 0.1 114 90.00 0.7818 0.9663 90.00 0.6124 1.0420 1.1 124 90.00 0.78052 1.0652 95.00 0.6904 1.1214 1.1 124 95.00 0.8409 1.1284 1.1284 1.1	0.5563 0.7	0.7	1.15	40.00	0.4938	0.6788	0.7565	50.00	0.4680	0.6954	0.7666
1930 60.00 0.5248 0.7374 0.8352 70.00 0.5926 0.8563 0.1 1048 70.00 0.5662 0.7337 0.8316 80.00 0.7013 0.9531 0.3 10429 80.00 0.5467 0.9672 0.9673 90.00 0.9124 1.0420 1.1 1164 90.00 0.7587 0.9672 1.0652 95.00 0.6904 1.1214 1.1 1164 95.00 0.8409 1.0615 1.1284 1.1214 1.1	0.6216 0.8	0	085	50.00	0.5052	0.7030	0.7879	60.00	0.5202	0.7694	0.8423
10년-18 70.00 0.5662 0.7937 0.8916 60.00 0.7013 0.9531 0.1 1429 60.00 0.6409 0.6792 0.9618 90.00 0.6124 1.0420 1.1 1184 90.00 0.6409 1.0615 1.1652 95.00 0.6904 1.1214 1.1 95.00 0.8409 1.0615 1.1284	0 73-55 0 8	9.6	006	60.00	0.5248	0.7374	0.8352	70.00	0.5926	0.8563	0.9146
1429 80.00 0.6408 0.6782 0.9678 90.00 0.8124 1.0420 1. 1164 90.00 0.7587 0.9872 1.0652 95.00 0.6904 1.1214 1. 25.00 0.8409 1.0615 1.1284	0.9516 0.5	0	8-306	70.00	0.5662	0.7937	0.8916	80.00	0.7013	0.9531	0.9969
1184 90.00 0.7587 0.9872 1.0652 95.00 0. 6904 1.1214 1. 95.00 0.8409 1.0615 1.1284	0.9479 1.0	-	0429	80.00	0.6408	0.6782	0.9668	90.00	0.8124	1.0420	1.1100
95,00 0,8409 1,0615 1,1284	1 0360 1.1	-	164	3 0.00	0.7587	0.9872	1.0652	95.00	0.8904	1.1214	1.1622
	•	•		95.00	0.8409	1.0615	1.1284				

~	IMMERS I ON	X)= 80			IMMERSION	(X)= 90	
PRESSURF	SURFACE						
TCHORD	ЧO	đ	PPR	PRESSURE	SURFACE		
2.50	0.3673	0.8861	0.5978	XCHORD	ð	å	PPR
00	0.8186	1.0690	1.1780	2.50	0.4172	0.8938	1.0223
20.00	0.9187	1.1199	1.2199	8.00	0.8330	1.0652	1.1536
30.00	0.9471	1.1536	1.2360	20.00	0.9210	1.1314	1.2107
45.00	0.9837	1.1771	1.244)	30.00	0.9374	1.1417	1.2234
60.00	1,0042	1.1785	1.2613	45.00	0.9699	1.1704	1.2401
20.00	1.0128	1,1879	1.2662	60.00	0.9880	1.1834	1.2536
80.00	1.0145	1.1854	1.2636	70.00	0.9916	1.1792	1.2560
00.00	0.9882	1.1872	1.2372	80.00	0.9847	1.1830	1.2487
95,00	0.9804	1.1689	1.2324	90.00	0.9735	1.1564	1.2325
				95.00	0.9503	1.1433	1.2127
SUCTION SI	URFACE						
I CHORD	90	6	PPR	SUCTION S	URFACE		1
0 Q Q	0.6348	0.7024	0.7364	XCHORD	0	5	PPR
8 00	0.595.0	0.7079	0.7391	2.50	0.6896	0.7331	0.7686
13.00	0.5658	6.6479	0 6900	8.00	0. 5930	0.6956	0.7461
20 00	0.4247	0.5729	0.6313	13.00	0. 5358	0.6317	0.666
10 20	0 3458	0.5693	0.6322	20.00	0.4317	0.5820	0.6498
		0 5454	0.6424	25.00	0.4077	C. 5705	0.646
	0.4128	0.6032	0.6/32	30.00	0.4031	0.5941	0.664
40.60	0.4122	0.6253	0.7064	35.00	0.4209	0.6195	0.6940
	0 4897	0.6974	0.7801	40.00	0.4406	0.6470	0.7357
00.00	0 5667	0.8015	0. 8344	50.00	0.4997	0.7208	0.8040
20.00	0 6461	0. 7985	0.9706	60.00	0.5952	0.8137	0.906
	0.7604	0.9964	1.0513	70.00	06894	0.9202	1.0103
	0 8615	1.0649	1.1536	60.00	0.7900	1010.1	1.0697
	0 9127	1,1176	1.1849	90.00	0.8492	1.0742	1.1.191
22.25				95.00	0.8928	1.0665	1.1602
•							

ORIGINAL PAGE IS OF POOR QUALITY

auch -

alas asl

-10

tion,			808	1.4057	1.4565	1.4759	5/65.1	1.5191	1.5135	1.4963		PPR.	1 1145	1.0933	1.0912	1179	1.1420	1.1609	1.2098	1.3352	1.4301	1.4299						• • • •																				
nfigura	(X)= 50		a	1.2701	1.3703	1.3970	1.4409	1.4521	1.4557	1.4325		0P 1 1660	1 0707	1.0326	1.0148	1.0281	1.0451	1.0605	1.1040	1.1090	1.3495	1.3524																										
itage Co	I MMERS I ON (SURFACE	0.9059	1.1125	1.1456	1.2011	1.2148	1.2217	1.1973	URFACE	0P • 0EC3	0.9055	0.8430	0.8003	0.7820	0.7885	0.7959	0.8256	0.9535	1.0885	1.0956		-		-		PPR 1 2535	1.4002	1.4531	1.4728	1.5082	1.5179	1.0160	1.4603		app	1.2034	1.1177	1.0361	1.0787	1.0995	1.1392	1.1918	1.2577	1.3040	1.4598	1.4577
8 Four-S ment.			PRESSURE	5.20	20.00	30.00	43.00 60.00	70.00	80.00 90.00	95.00	SUCTION S	XCHORD		13.00	20.00	00.02	35.00	40.00	50.00	20.00	60.00	00 00	3		Į	A)= 40		DP 1 2365	1915.1	1.3750	1.3969	1.4211	1.4461	1.4445	1.4072		ЪР	1.1495	1.0595	1 0236	1.0109	1.0284	1.0429	1.1095	1.1761	1.2638	1.92.1	1.3474
Stator J g Treatr			PPR 1 5166	1.4892	1.5030	1.5136	1.5326 1 5347	1.5377	1.5270			894	1.0390	1.0955	1.1027	1 1623	1.1844	1.2130	1.2431	1.3541	1 3951	1 4251	1.4512			I FITCKS LUNI	SURFACE	0P 0 0	1.0482	1.1203	1.1487	1.1956	1.2041	1.2044	1.1550			1.0295	0.8952	0.8401	0.7908	0.7951	0.8054	0 8399	0.8996	1.0221	1.1497	1.0950
otor B/S d Casing	X)= 20		DP	1.3689	1.4178	1.4371	1.4606	1.4687	1.4579			aŭ	1.0720	1.0568	1.0359	1 0603	1.0711	1.0916	1.1196	1.2297	1.2878	1.3401	1.3835				PRESSURE	XCHORD		20.00	30.00 1	43. UC	70.00	80.00 00.08	95.00		SUCTION S	2.50	8.00	30.00	25.00	30.00	00.00 00.00	50.00	60.00 70.00	80.00	90.00	35.00
ures, R ance an	IMMERSION(SURFACE	0P 0 0.70%	1.0685	1.1599	1.1862	0613-1	1.2232	1.2138			URFACE	0.9829	0.8924	0.8374	0.8160	0.8138	0.8204	0.8379	0.9391	1.0068	1.0718	1.1428				PPR	3565	45:12	4736	4926	5211	5207	4636		000	1972	.11.6	0743	0787	6650	.1180	1736	.2461	. 3075	4045	.4340	
ic Press ip Clear		PRESSURE	a so	808	30.00	45.00	60.00 70.00	80.00	90.00	-	• ••••	SUCTION S	2.50	9.00	13.00	00.00	30.00	35.00	40.00	60.00 90.00	70.00	80.00	92.00 95.00	•)= 80		DP	1.2376 1	1.3741	1.3983 1	1.4188 1	1 4474	1.4508 1	1 4383		ĝ	1 1543 1	1.0562 1	1.01-14 1	1 00001	1.0151 1	1.0359 1	1 0020 1	1.1571.1	1.2190-1 1.3487	1.3304	1.3569 1	
ce Stat: Rotor T			ਅਰਹ	1.5573	1.4989	1.5370	1.5332	1 5440	1.5369	1.5103		PPR 1 6006	1.1031	1.1230	1.1678	1 2285	1.1987	1.2806	1 3227	1.4035	1.4272	1.1460			MMERSION (1	URFACE	dD	0.8578	1.1184	1.1483	1.1759	1.2163	1.2136	1.2019	~	RFACE	1 0456	0 8958	0.8:38	0.72854	0.7760	0.7681	0.8257	0.6842	0.9488	1.0742	1.1097	
e Surfa reased	X)= 10		40	1.3367	1.4062	1.4288	1.4691	1.4784	1.4666	1.4404		1 0261	1.0650	1.0570	1.0752	1 1135	0500	1.1542	1.2029	1016.1	1.3469	1.3/35	1.3000		-	PRESSURE S	XCHORD	2.50	90.00 00.00	30.00	45.00	60.00 70.00	80.00	00.00		SUCTION SU	ACHORUM 2 SUL	9 . 00.	13.00	20.00	30.00	35.00	50.00	60.00	70.00	90.00	95.00	
0. Van Inc	MIGA SN ANG		THEFACE	60c0 1	1.1437	1,1737	0551.1	1 2319	1.2242	1.1985	IRFACE	20 00 00 00	0.6888	0.8568	0.8448	0 8551	0.7849	0.8743	0.9118	1.0311	1.0819	1.1225							•	1			1.	•					•				1			1		
Table 1	_		Pla SSUM : ZCHOM	2.50	20.00	30.00	60.00 60.00	70.00	00.08 00.06	95.00	SUCTION SU	XCHORD		13.00	20.00		35.00	40.00	50.00	20.00	80.00	<u>50.00</u>	0.55																									

144

OPIGNIAL PAGE IS OF MORE FRANK

Blade Surface Static Pressures, Rotor B/Stator B Single-Stage Configuration. Table 11.

				PPR	0.1100	0.1817	0.2219	0.2384	0.2523	0.2646	0.2689	0.2671	0.2567	0.2415		app R	-0.4759	-0.4251	-0.4430	-0.4477	-0.4295	-0.4068	-0.3680	-0.3375	-0.2691	-0.1362	-0.0540	0.0395	0.1320	0.1736	
	(3)= 20			P.C	-0.0473	0.0982	0.1674	0.1678	0.2080	0.2214	0.2263	0.2259	0.2156	0.2011		ΒE	-0.3574	-0.3902	-0.4379	-0.4627	-0.4581	-0.4439	-0.4123	-0.3836	-0.3273	-0.2309	-0.1265	-0.0346	0.0651	0.1170	<i></i>
	I'MERSION		SURFACE	90	-0.3054	0.0322	0.1052	0.1354	0.1601	0.1782	0.1842	0.1630	0.1762	0.1625	JRFACE	90	-0.2534	-0.3551	-0.4200	-0.4649	-0.4736	-0.4709	-0.4455	-0.4254	-0.3702	-0.3203	-0.1925	-0.1005	0.0043	0.0641	
			PRESSURE	ACHORD	2.50	8.00	20.00	30.00	45.00	60.00	70.00	80.00	90.00	95.00	SUCTION SI	ICHORD	2.50	00.0	13.00	20.00	25.00	30.00	35.00	40.00	50.00	60.00	70.00	80.00	90.00	95.00	
			PPR	0.1566	0.2065	0.2444	0.2552	0.2711	0.2813	0.2895	0.2944	0.2863					PPR	-0.5296	-0.4167	-0.4227	-0.4293	-0.4185	-0.3998	-0.3735	-0.3451	-0.2767	-0.1913	-0.0972	-0.0000	0.1069	0.1654
3)= 20			ΒE	-0.0155	0.1215	0.1919	0.2125	0.2350	0.2432	0.2518	0.2552	0.2466					PE	-0.3958	-0.3718	-0.4044	-0.4342	-0.4344	-0.4243	-0.4087	-0.3891	-0.3380	-0.2734	-0.1780	-0.0768	0.0376	0.1044
I MMERSION	~	SURFACE	90	-0.2725	0.0459	0.1307	0.1613	0.1905	0.2034	0.2125	0.2159	0.2065				URFACE	DP	-0.2847	-0.3317	-0.3823	-0.4286	-0.4391	-0.4392	-0.4316	-0.4158	-0.3792	-0.3282	-0.2596	-0.1448	-0.0290	0.0449
		PRESSURE	XCHORD	2.50	8.00	20.00	30.00	45.00	66.00	70.00	80.00	90.06				SUCTION SI	I CHORD	2.50	B .00	13.00	20.00	25.00	30.00	35.00	40.00	50.00	60.00	70.00	80.00	00.06	95.00
				PPR	0.1900	0.1981	0.2527	0.2683	0.2647	0.2731	0.2815	0.2957	0.3023	0.2899		PPR	-0.5503	-0. 3986	-0.4507	-0.4976	-0.4794	-0.4436	-0.4016	-0.3564	-0.2597	-0.1678	-0.0738	0.0301	0.1444	0.1876	
	(X)= 5			ű.	0.0522	0.1100	0.1829	0.2309	0.2499	0.2522	0.2563	0.2636	0.2630	0.2476		Pe Be	-0.4257	-0.3378	-0.3847	-0.4584	-0.4902	-0.4881	-0.4590	-0.4194	-0.3423	-0.2518	-0.1595	-0.0603	0.0625	0. 7314	
	I MITERS LON		SURFACE	90	-0.0802	0 0325	0.1135	0.1702	0.2125	0.2276	0.2333	0.2391	0. 2353	0.2165	JRFACE	90	-0.3407	-0.2929	-0.3355	-0 4045	-0.4527	-0.4877	-0.4926	-0.4695	-0.3947	-0. 3222	-0.2364	-0.1393	-0.01-19	0.0698	
			PRESSURE :	X CHOND	2.50	8.00	20.00	30.00	45 00	60.00	70: 00	80.00	90.06	95.00	SUCTION SI	XCHORD	2.50	00 0	13.00	20.00	25.00	30.00	35.00	40.00	50.00	60.00	70.00	80: 00	90.00	95.00	

IMMERSION(3)= 00

7257 586 688

ö

1911 2018 2137

0.2259 0.2204 0.2003 0.1730

08 =(%)			PE	0.0113	0.1007	0.1399	0.1544	0.1723	0.1883	0. 1904	0.1824	0.1654	0.1408			ĥ	-0.3766	-0.4165	-0.4597	-0,4853	-0.4785	-0.4525	-0.4099	-0.3689	-0.2569	-0.1360	-0.0302	0.0299	0.0659	0.0775
I MMERS I ON	- - -	SURFACE	90	-0.1379	0.0326	0.0735	0.0968	0.1262	0.1356	0.1454	0.1412	0.1360	0.0980		URFACE	- D -	-0.2985	-0.3861	-0.4263	-0.5030	-0.5107	-0.4913	-0.4539	-0.4160	-0.3311	-0.2215	-0.1464	-0.0223	0.0447	0.0370
		PRESSURE	XCHORD	. 2.50	8,00	20.00	30,00	45.00	60.00	70.00	80.00	90.00	95.00		SUCTION S	I CHORD	2.50	8.00	13.00	20.00	25.00	30.00	35.00	40.00	50.00	60.00	70.00	80.00	90.00	95.00
		PPR	0.1:24	0.1656	0.1942	0.2057	0.2182	0.2319	0.2323	0.2226	0.2022	0.1756			PPR	-0.4601	-0.4423	-0.4650	-0.4701	-0.4471	-0.4146	-0.3741	-0.3353	-0.2049	-0.0876	0.0101	0.0877	0.1189	0.1258	
		PE	-0.0258	0.0904	0.1438	0.1608	0.1784	0.1921	0.1926	0.1858	0.1692	0.1442			ΡE	-0.3685	-0.4121	-0.4620	-0.4921	-0.4814	-0.4580	-0.4216	-0.3845	-0.3042	-0.1644	-0.0665	0.0278	0.0831	0.0941	•
	SURFACE	DP	-0.2205	6.0198	0.0828	0.1120	0.1308	0.1415	0.1423	0.1432	0.1280	0.1074		URFACE	9	-0.2891	-0.3907	-0.4678	-0.5046	-0.5013	-0.5032	-0.4600	-0.4365	-0.3733	-0.2447	-0.1319	-0.0424	0.0405	0.0548	
	PRESSURE	SCHORD	2.50	8.00	20.00	30.00	. 45.00	60.00	70.00	80.00	90.00	95.00		SUCTION S	CHURD	2.50	8.00	13.00	20.00	25.00	30.00	35.00	40.00	50.00	60, 00	70.00	80.00	80.00	95.00	

145

-0.1718 -0.0496 0.0250 0.0250 0.0034

530

301.7

ó

19 43

ò

ę ģ ġ

PR

Single-Stage Configuration. æ Rotor B/Stator Static Pressures, Surface Vane 3 12. Table

	1		844	2002		1281	0 4423			0.4/12	0.4822	0 4855	0.4795	0.4536			PPR	0.0011	0.0145	0.0354	0.0407	0.0644	0.0879	0.1146	0.1399	0.12 44	0.2529	0.3077	0.3602	0.4062	0.4247			
<u> </u>			ud	0 3367		0 2500		0.57.00	0.9996	0.4167	0.4271	0.4327	0.4252	0.4085			ц.	0.0320	-0.0013	-0 0154	-0.0065	0.0064	0.0263	0 0484	0.0686	0.11.91	0.1762	0.2324	0.2860	0.3410	0.3629			
MULSIUN		UDEACE				0.000	00/7.0	0.0000	0.3266	0.3470	0.3591	0.3633	0.3575	0. 2412		IRFACE	g	0.0548	-0 0207	-0.0509	-0.0600	-0.0526	-0.0444	-0 02PA	-0.0127	0.0317	0.0885	0.1472	0.2072	0 2664	0 2913			
-	•	S TOLICE			2.30 2	00.00	20.00	30.00	45.00	60.00	70.00	80.00	00 06	33		SUCTION St	ECHORD	2.50		000	200	9 8 9 8		20.00		50.00	60 00	20.00				00.08		
			¥7,	0.465/	0.4:08	9.4490	0.4581	0.4734	0.4920	0.4992	0 4971	0 4859						899		0.0414		0.0440	6000 0		10/10	C 1600	0 2147	0.010	0.4240		0.3000	0.4109	0.4223	
t)= 20			ΒE	0.3371	0.3460	C. 5/33	0.3697	0.4114	0.4316	0, 1364	1 4341	1976	0.44.0					01	22.0	0.09180	0.0340	0.0036	0.0000	0.0392		0.0039	0.000	0.000		0.000	0.3133	0.349/	0.3624	
MMERS FORC		NUNE ALC	90	0.1994	0.2433	0.2596	0.3126	0. 3372	0 3006	0.3675	0 2678	00000	0.00.0	•					5	0.1078	0.0342	-0.0121	-0.0208	-0.0232	-0.0228	-0.010	2000-0	0.000	0.1100	0.1/92	0.2324	0.2780	0.2947	
-		PRI SSUKE	X CHUKD	2.50	0.00	20.00	30.00	45,00	00 09	20.00		90. OC	30.00		~			SUCTION S	XCHORD	2.50	8.00	13.00	20.00	25.00	30.00	33.00	40.00	20.00	60. UU	70.00	80.00	9 0.06	95.00	
				BPR	0.4702	1.761.0	0.4474	0.4618	0 4772	1061 0			0.4950	0.4905	0.4652			Ary Here	0.0407	0.0625	0.0590	0.0764	0.1004	0.1247	0.1275	0.1756	0 7:324	0.2994	0.3520	0.3848	0.4053	3.4207		
	31= 10			٣	0. 1294	0.3416	0.3762	0.3964	0 1172	1957	0000	0.4436	0.4481	0.4368	0.4105			PE	0.1220	0.0816	0.0480	0.0423	0.0520	0.0671	0.0612	0.0954	0.1568	0.2168	0,2768	0.3141	0 3430	0.3587		
	PHDERCHOHO		IJRFACE	90	0.1612	0.2403	9762 0	0 3167	0.2426	0.3460	0. 3010	0.36/9E	0.3729	0.3632	0. 3377		IRFACE	90	0 1446	0.0681	0.0209	-0.0027	-0.0034	-0.0005	0.0211	0.0216	0.0680	0.1273	0.1920	0.2379	0.2716	0.2693		
	-		1.5 10PL S	IN HOKD	90.5	90.4	00 0.	3		10.00	00.00	70°.00	80.00	90, 00	95,00		UCTION SL	I CHORD	2.50	9 .00	13.00	20.00	25.00	30.00	35.00	40.00	50.00	60.00	20 00	80.00	90,00	95.00		

ORIGINAL PAGE IS OF POOR QUALITY

PPR 4008 3955 3955 3955 423 423 423 423 423 4739 4739 4739 4739 4739 4739

PE 0.2900 0.3171 0.3581 0.3777 0.3777 0.3568 0.4201 0.4194 0.4194 0.4194 0.3651 0.3651

8

8

IIMMERSION(3)=

=(X)NOISUGN(X)= URFACE 0.0673 0.0673 0.0048 0.0048 0.0048 0.0034 0.0034 0.0034 0.2111 23:00 2670 0.003 SURFACE DP DP 0.2242 0.2793 0.2793 0.2793 0.2312 0.3312 0.3352 0.3488 0.3468 0.3156 2 PPR 0.01144 0.01144 0.01210 0.01229 0.0259 0.02518 0.12218 0.12518 0.3357 0.3355 0.3355 0.3355 0.3465
 PPR

 0.3958
 0.3958

 0.4370
 0.4370

 0.4574
 0.4574

 0.4574
 0.4574

 0.4755
 0.4575

 0.4575
 0.4575

 0.4575
 0.4575

 0.4575
 0.4575
 PE 0.0523 0.0523 0.0066 0.0002 0.0002 0.0683 0.0683 0.0683 0.0683 0.0769 0.1769 0.2794 0.3453 0.3453 PE 0.2894 0.355 0.355 0.355 0.4161 0.4161 0.4161 0.4161 0.4161 URFACE - DP - DP - 0.0833 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0163 - 0.0295 - 0.0163 - 0.0295 - 0.0355 - 0.02555 - 0.02555 - 0.02555 - 0.02555 - 0.02555 - 0.02555 DP 0. 1567 0. 2164 0. 2164 0. 3012 0. 3012 0. 3392 0. 3395 0. 3395 0. 3395 0. 3395 0. 3395 0. 3395 0. 3200 SURFACE 3 Silicition S 5.00

Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested. Table 13.

ì

Open Throttle

Basign Point Throftle

	10	ITAL PRESSI	JAE	STA	VEIC PRESS)NE		0Ľ	TAL PRESSU	JE	21	VTIC PRESSI	RE
PEN T. T.	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 Exit	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 EXIT	PERCENT	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 EXIT	ROTOR 3 INLET	ROTOR 3 Exit	STATOR 3 EXIT
	8.8378	1.3173	1.3719	6.7836 4.7835	1.6373	1.2059		1.8461	1.6197	1.6413	6616-9	1.2994	1.5831
	1.1567	7676.1	1.4096	9.7615	1.5239	1.2827	- N	1.635	1.6762	1.6538	E710.2	1.293¢	1.4995
	g. 8682	1.4638	1.4222	g - 6998	1.0104	1.2012	3.6	1.6717	1.6991	1.6795	1.916.1	1.2914	3.4979
	1.0067	1.4232	1.4387	1.6986 1.1225	1513.1	1.1999		1.4795	1.7184	1.6 88 2	1.9147		
	5768°3		1.4304	E.6956		1.1964			1.7552	1.782		1.2830	1.4922
	1074-1 1076-1	4718	1.4226	6.69 32	1.88.1	1.1938		1.1143	1.7596	1.7875	E7112.11	1.2778	1.4287
	1356	1.4728	1.4285	8 .692 8	1.88.1	1.1921	15.8	1.1262	1.7535	1.7142	1.9544	1.2787	3.4855
	9866°.3	1.4585	1.4339	g #69.8	1.8544	1.1937	26.5	1.1299	1.7432	1.7156	1716 · 1	1.2867	1.4885
	E. 9485	1.4622	1.4417	g. 69#2	1.0117	1.1916	36.9	1.1356	1.7292	1.7143	g. 9626	1.2865	1. 48 36
	F. 95.89	1.4828	1.4515	J.6881	1.983	1.1889	50.5	1.1476	1.7435	1.7244	1661-2	1.2885	1.4758
	1636.3	1.4841	1.46#9	g. 68.55	£.9877	1.1783	78.8	1.1376	1.74.08	1.7586	g. 2025	1.2745	1.4682
	1.9554	1.4752	1.4584	J.6728	£.9778	58/1 - 1	88.8	1.1200	1.7255	1.6974	g 6628° 9	1.2565	1.161.4
	8.9335	1.4685	1.44.02	J.665 3	g. 9722	1.1639	85.8	1.1113	1.7228	1.6968	BE78.8	1.2497	1.4569
	. g.9318	1.4634	1.4305	s.658 9	8 .9698	1.1589	98.80	1.1095	LUEL.I	1.69\$6	g. 9678	7EA2.1	1.4521
	E.9386	1.4598	1.4280	g.6 524	g.9718	1.1468	a . 66	1.1071	1.7345	1.6971	J. 36 17	1-241	3.4416
	a.9185	1.4594	1.4001	g. 6468	g .9622	1.14.68	95. J	1.6847	1.7384	1.6793	Ø. 8551	1.2395	1.4315
1.3	9686 J	1.4627	1.3778	J.6435	F .961 F	1.1335	96.8	1.4645	1.7424	1.6593	g. 8532	1.2395	1.4272
1.1	1928.8	1.4545	3696.1	g. 6406	g.96 37	1.1319	97.6	3.8386	1.7429	1.6347	g. 8522	1.2385	1.4201
1.06	8.8455	1.4642	1.3018	1119.1	g. 965.0	1.1292	34.8	1.4129	1.7448	1.6119	g. 8547	1.2382	1-427 3

Peak Efficiency Throttle

Peak Pressure Rise/Near Stall Throttle

	16	ITAL PRESSI	IRE	STA	NTIC PRESSI	JRE		2	TAL PRESSU	RE	STI S	VTIC PRESSI	ike
PERCENT IMMERCION	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 EXIT	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 EXIT	PERCENT IMMERSICH	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 EXIT	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 EXIT
		. 7610	1 7476	9969	1.3885	1.6828		1.2035	1.8749	1.8663	1-1057	1.5133	3-7464
			7502	9366	1.3816	1.5988	1.8	1.2141	1.8979	1.8951	1.1841	E782. E	1.7427
	CC11-1			0944	1.3763	1.5968	2.5	1.2239	1.9182	1.9032	1.1924	1.5019	1.7394
2.5	1.1248		17764	6699	1.3718	1.5936	0. 0	1.2331	1.9358	EN16.1		1784.E	1.7364
			1003	£.9922	1.3681	1.5914	8-4	1.2417	1.95#6	1.9164	19994	SECA. E	1.7336
	1.14/0			100.0	1.3652	1.5896	5. F	1.2495	1.9627	1.9215	1.0779	1.4095	2167.1
	1101-1	0070 I	1 7051	0893	1.3615	1.587#	7.8	1.2633	1.9786	1.9285	1.952	1.4844	1.7271
	F. 01 - 1		1000		1.3603	1.5857	34.8	1.2784	1.9878	1.920.1	1.016	3.4015	EE27.1
	1.1424			1 9854	1.3539	1.5914	15.4	1.2739	1.9732	1.9281	1.684	2.4736	1.7251
	1.1922	0748.I	1.071	0847	1.3546	1.5912	28.8	1.2755	1.9512	1.9169	1.061	1.4885	1.7221
28.8			1077	6799	1.36.1	1.5872		1.2752	3966.1	1.9116	1100.1	1.4875	1.7157
				e 9738	1.3542	1.5795	56.5	1.2694	1.9263	1.0994	1.9718	1.4763	1.7640
	7071.1	1.005	1 7695	£.9627	1.324.0	1.5683	78.8	1.2498	1.9075	1.4795	1.0622	1.4543	3.6948
	06/1-1		1 7690	g. 9571	1.3169	1.5648	10. NA	1.2419	1.9143	1.0018	1.9501	177. E	1.6918
	5001.1	100/1	1777	0538	1.3159	1.5615	88 . Ø	1.2430	1006.1	1.0846	1.0550.1	1.4387	1.6802
	1.162/			a 9467	1.3151	1.55.84	8.8 2	1.2421	1.9437	1.8766	1.6492	1.4365	1.6821
1.36	1701.1			a 0398	1.3147	1.5444	9 3. E	1.2344	1.9495	1.87#6	1.6437	1.4342	1.6759
9 3. J	1.1624	1478.1	100/-1	EASP B	1.3138	1.5384	95.1	1.2192	1.9536	1.8556	1.6367	1.4357	1.6572
1 , 56	9/41.1	AC78.1	1 7200	6.9316	1.3131	1.5351	96 . 8	1.2695	1.9529	1.84.64	1.6349	1.4320	1.5635
96 - F		5750 T	1 7118	6.9281	1.3121	1.533.0	97. E	1.1952	1.9457	1.8255	1.8327	1.4297	1.6598
1. 16 1	8969 1	1.8273	1.6888	8,63,88	1.31.09	1.5328	98.8	1.1798	1.9282	1.8673	1.0348	1.4303	3.6638

Rotor B/Stator B Four-Stage Configuration, Third Stage Tested (Concluded). Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for . Table 13.

۰
-
- 22
8
2
л
F
Ĩ.,
*
æ

	-	MEASURED		U	ORRECTED	
PEACENT IMMERSION	ROTOR 3 INLET	STATOR 3 INLET	STATOR 3 EXIT	ROTOR 3 INLET	STATOR 3 INLET	STATOR 3 EXIT
1.5	j3 4	62.9	32.9	34.7	64.8	34.2
2.5	33.6	62.6	33.6	35.1	63.7	34.9
ill C	34.46	62.2	33.8	35.3	63.3	34.3
1	32.8	- 1	32.1	34.1	62.2	33.4
1 10	ë., ĕ	59.7	31.6	32.5	68.9	32.8
14.4	28.4	55.8	31.6	29.5	56.2	31.6
15.0	25.7	58.2	27.8	26.7	51.4	28.9
20.0	23.2	46.4	25.2	24.1	47.6	26.1
25.8*	21.3	44.1	23.0	22.1	45.3	23.9
	6.6-I	42.5	21.4	20.6	43.6	22.1
35.8*	19.1	41.5	2.0.2	19.7	42.6	28.9
÷	18.7	48.9	19.6	19.4	42.5	28.2
45. J*	1a.8	48.7	19.4	19.5	41.7	20.8
	E.EL	40.0	19.6	19.9	41.7	2.8.2
55.8*	19.8	41.1	19.9	28.3	42.4	28.5
54.6	28.3	41.5	28.4	28.9	42.4	28.9
65. J*	23.9	42.1	28.8	21.4	43.6	21.4
78.8-	21.4	42.9	21.3	21.9	43.7	21.8
75.8*	21.8	43.7	21.7	22.3	44.5	22.2
a t . t	22.22	44.7	22.3	22.7	45.5	22.5
35. 0.	23.1	46.1	23.6	23.6	46.9	23.5
	24.4	47.8	24.2	24.9	48.5	24.7
95.8	26.9	49.94	27.1	27.5	58.6	27.7
96.1	26.9	58.4	27.5	27.5	51.1	28.1
37.8	27.8	51.1	27.2	27.6	51.8	27.8
38.8	26.8	51.7	28.1	27.3	52.4	28.7
						-

3 STATOR 3 STATOR

ROTOR 3

"M

STATOR EXIT

MEASURED ROTOR 3 STATOR 3 INLET INLET

PERCENT

CORRECTED

Design Point Throttle

CURVE FIT VALUES USING ZERO STATOR POSITION BATA

Park Efficiency Throttle

	•	EASURED		J	ORRECTED	
PEACENT	ROTOR 3 INLET	STATOR 3 INLET	STATOR 3 EXIT	ROTOR 3 INLET	E PC'ATS	STATOR 3 EXIT
.	32.9	68.5 5	33.7	34.2	69.5	35.8
1 1	32.5	67.8 67.8	33.1	33.6	58.8°	1.40 1.40
	32.2	66.8 65.1	32.3	33.5	67.8 66.1	33.6
	23.4	1.15	38.8	29.5	61.2	32.8
	25.8	54.8	27.8	26.8	56.18 51.9	28.9 26.3
12.4	22.5	48.8	23.4	1.62	49.9	24.3
	8-12 5-19	47.6	22.0	22.6	43.7 131	22.8
19.2	24.9	47.8	28.5	21.6	43.8	21.2
8 MR - 17 J	28.7	47.3	28.3	21.4	49.3	21.8
	28.7	47.9	28.5	21.3	43.3	21.1
	23.6	48.3	28.5	21.2	19.2	21.1
- 1	0.87 58.9	49.9 49.5		1.12	59.3	21.7
8.8	21.2	5.8.2	21.7	21.8	6.65	22.3
	21.8	58.3	22.4	22.3	51.7	22.9
9 be	27.5	51.9	23.1	23.8	52.5	23.7
- B	24.2	52.9	25.2	24.7	53.7	25.8
	20.8	54.3	27.3	26.6	55.8	27.9
8 , c.	27.4	55.8	28.2	8-67	55.6	23.8
Ч	2,.3	59°. 7	27.5	6.72	6.50	23.1
51.3	25.3	55.9	27.8	25.8	26.5	27.6
	24.9	57.1	26.8	4.62	57.7¢	27.3

17
1
- 6
F
_
÷,
-
- 5
- 2
1
2
1
2
-
. 9
1
2
Ē
1
.2

m

ORIGINAL PAGE IS OF POOR QUALITY

Rotor Loss Coefficients Determined from Relative Total Pressure Measurements, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested. Table 14.

ų.,

		Open	Throttle			
1	FAL PRESSUR			80108 FOS	S COEFFIC	LENT
PRECENT MMERSION	P0108 3	R070R 3 EX11	PERCENT	TOTAL LOSS	WAKE LOSS	TOTAL MINUS WAKE LOSS
8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,4688 1,4687 1,5290 1,5786 1,5786 1,5786 1,5786 1,5786 1,5910 1,3910 1,3900 1,3000	1.3747 1.4591 1.4974 1.5226 1.5226 1.5226 1.3830 1.3830 1.3830 1.3515	4, 0, 4, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	0.1219 0.0857 0.0370 0.0377 0.03330 0.0649 0.0455 0.0455 0.0649 0.0645 0.0645	0.0085 0.0106 0.0206 0.0276 0.0276 0.0279 0.0279 0.0279 0.0279	0, 1135 0, 0752 0, 0752 0, 0752 0, 0162 0, 0162 0, 0162 0, 01147 0, 01147 0, 0114

		isign Poi	i			
	ð	,	nt Thrott			
101	TAL PRESSUR	SE		DTOR LGS	S COEFFIC	16NT
RECENT	ROTOR 3 INLET	R010R 3	PERCENT	TOTAL LOSS	WAKE LOSS	TOTAL MINUS WAKE LOSS
	1643 .	1 5518	5.0	0.1259	1600 0	0.1165
2		5005	5	0.0799	0.0164	0.0635
0.0				0.0285	0.0172	0.0113
15.0	1.6623				0.0210	0.0230-
20.0	1.7038			0.657	0.0182	0.0275
35.0	3667.1	1.09/0		5890 0	0.0168	0.0321
20.0	1. /048			0.0544	0.0245	0.0298
65.0	1.6589			0596	0.0356	0.0240
80.0	1/80 1			10.04	0 0435	0.0299
85.0	1.595.1	C710.1			0.0483	0.0324
0.06	1.5294	1 4 /60		0.000	10.034	0.0305
95.0	1.4860	9144.1	0.06			

	ottle	0108 105	TOTAL	LOSS	0.1245				0.0606	0.0773	E190.0	0.0622	0.0590	0.0537	0.0551		5/10.0	
	lency Thre		DEDCENT	I MUERSION	C T		2	19.0	50.0 20	35.0	50.0	65.0	80.0	0		2	95.0	
	ak Bffeci	BE .		EXIT	- EAN7		1.6112	1.7313	1.7591	1 7805	17431	1 6943	1 6276	. 5033		7766 1	1.5298	
	Ъ.	IAL PRESSU		ROTOR 3 INLET		1.557.1	1.7372	1.7626	1 8091	0477	170400	LLVL			5-474-1	1.5876	1 5597	
		12		PRECENT IMMERSION		0,0	0.0	15.0	0.00					0.04	85.0	0.06	5	2
L		4		;- 	•			<u>.</u>										_
		ENT		TOTAL MINUS		0.1278	0.0812	0.0264	0 0333			0.010.0		0.030	0.0284	0.0240	0 0140	
	hrottle	COFFFICI		NAKE		0.0081	0.0132	0 0180		1010.0	CE10.0	0.0249	0.0408	0.0602	0.0551	0.0570		C.0.0
	Stall T			TOTAL		0.1359	0 0944		5	20.0	0.0756	0.0409	0.0525	0.0905	0.0836	0100 0	0.000	0.0003
	1se/Near			PERCENT		5			2.0	20.0	0.55	50.0	65.0	80.0	6 58		2	0.35
	ressure F		ZE	ROTOR 3		. 7740			1.8293	1.8641	1.8771	1.8435	1.7750	1.6906	0000		1 6310	1 5222
	Peak P		IAL PRESSU	20108 3				18481	1 8637	1 9067	1 9424	1 8764	1 9154	1536			1 5823	1 65.98
			101	PREGENT		1	Ö	- 10.0 -	15.0	20.0	2					122 O	0.05	15 0

TOTAL MINUS

WAKE LOSS

0.0069 0.0165

ROTOR LOSS COEFFICIENT

0.1156 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0328 0.0156 0.0156 0.0121

0.0155 0.0191 0.0199 0.0199 0.0434 0.0434 0.0453

1	4	•

Table 15. Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Open Throttle.

BLADE ELEMENT DATA ROTOR INLET

IMMER		1	١	i U	BETA	(CZ .	c	U	С		ALPHA.
X	MPS	FPS	MPS	FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DEG
1.ø	54.5	178.7	51.0	167.3	69.2	19.1	62.8	13.3	43.7	23.3	76.5	34.7
2.5	54.8	177.2	58.2	164.9	68.3	19.8	64.9	14.8	45.8	24.2	79.8	35.1
3.#	63.6	175.9	49.5	162.5	67.3	28.5	-67.4	14.6	47.9	26.2	82.6	35.3
4.B	53.9	176.7	49.3	161.8	66.1	21.7	71.1	14.7	48.3	26.2	86.0	34.1
5. <i>0</i>	54.3	178.2	49.2	161.5	64.8	22.9	75.3	14.7	48.2	27.2	89.4	32.5.
7.8	54.6	179.1	48.9	160.5	63.6	24.2	79.2	14.8	48.5	28.3	92.9	31.4
18.8	55.2	181.2	48.4	158.8	61.8	26.6	87.3	15.8	49.3	38.6	188.2	29.4
15.8	56.2	184.4	49.2	161.4	68.9	27.2	89.1	13.8	45.2	30.5	99.9	26.8
28.8	37.3	187.9	49.5	162.6	59.7	28.7	94.2	12.9	42.4	31.5	183.3	24.2
38.8	58.9	193.4	58.8	166.6	59.3	29.9	98.2	18.7	35.2	31.8	104.3	19.7
59.9	57.3	168.0	48.5	159.1	.57.7	38.5	198.1	11.1	36.3	32.5	186.5	19.9
78.8	54.8	179.9	45.8	147.5	54.9	31.4	183.8	12.7	41.6	33.8	111.0	22.8
8 <i>8</i> .s	53.7	175.2	43.4	142.3	53.7	31.7	183.9	13.3	43.6	34.3	1.12.7	22.7
85.5	52.7	172.9	42.6	139.6	53.7	31.1	101.9	13.6	44.7	33.9	111.3	23.6
98.8	51.4	108.6	41.7	136.9	54.2	38.8	98.4	14.0	45.9	33.1	108.5	24.9
93.8	50.5	135.5	40.6	133.3	53.5	29.9	98.1	14.8	48.5	33.4	1.09.5	26.2
95.Ø	49.7	162.9	39.7	130.1	52.9	29.9	98.0	15.6	51.1	33.7	118.5	27.4
96.8	49.5	162.5	39.7	130.4	53.2	29.5	96.9	15.4	58.5	33.3	109.2	27.4
97.0	49.3	161.7	39.9	121.8	54.8	28.9	94.7	15.1	49.6	32.6	106.9	27.5
98.#	49.1	161.2	48.5	133.2	55.5	27.7	98.8	14.4	47.1	31.2	182.3	27.3

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

IMMER	W	WU	BETA	CZ	CU	С	ALPHA
X M	PS FPS	MPS FPS	DEG	MPS FPS	MPS FPS	MPS FPS	DEĠ
1.8 37	.\$ 121.4	34.0 111.4	65.4	14.7 48.1	30.4 99.6	33.7 118.6	64.Ø
2.# 35	.6 115.7	31.8 184.4	63.3	15.9 52.1	32.4 186.3	35.1 118.4	63.7
3.# 34	.6 113.4	38.1 98.7	68.4	17.8 55.7	34.8 111.6	38.8 124.7	63.3
4.8 34	.3 112.6	29.8 95.1	57.4	18.4 68.3	35.8 115.8	39.6 129.8	62.1
5.0 34	.5 113.1	28.2 92.6	54.9	19.8 64.8	35.7 117.1	40.8 133.8	60.9
7.8 34	.8 114.3	27.7 91.0	52.6	21.1. 69.2	36.0 118.1	41.7 136.9	59.5
18.8 35	.6 119.9	27.9 91.4	49.5	23.7 77.7	35.6 116.8	42.7 148.2	56.2
15.0 39	.5 129.7	28.7 94.1	46.4	27.2 89.2	34.3 112.4	43.7 143.5	51.4
28.8 42	.1 138.1	38.1 98.7	45.5	29.5 96.7	32.4 186.3	43.8 143.7	47.6
38.8.44	.5 145.9	31.8 104.5	-45.6	.31.8 101.8	29.7 97.4	42.9 140.9	43.6
58.8 44	.5 146.0	31.0 101.8	44.1	31.9 184.6	28.5 93.7	42.8 142.4	41.7
78.8 41	.8 137.2	27.1 88.8	48.2	31.9 104.6	30.6.100.3	44.2 144.9	43.7.
88.8 39	.9 131.8	24.6 80.7	37.9	31.5 183.2	32.1 1.05.3	44.9 147.4	45.4
85.# 38	.6 126.5	23.3 76.5	37.1	30.7 100.7	32.9 187.8	45.8 147.6	46.8
90.0 37	.Ø 121.3	22.8 72.2	36.4	29.7 97.4	33.7 110.6	44.9 147.4	48.5
93.8 35	.9 117.9	21.3 69.7	36.2	29.0 95.1	34.2 112.1	44.8 147.8	49.6
95.8 35	.5 114.9	20.8 68.2	36.3	28.2 92.5	34.4 113.0	44.5 146.8	50.6
96.# 34	.6 113.6	-20.1 65.9	35.4	28.2 92.5	35.0 115.0	45.8 147.5	51.1
97.8 34	.\$ 111.6	19.5 64.8	34.9	27.9 91.5	35.5 116.6	45.2 148.2	51.7
98.# 33	.5 189.9	19.1 62.8	34.8	27.5 98.2	35.8 117.4	45.1 148.1	52.3

BLADE ELEMENT DATA STATCE OUTLET

IMMÉR V	WU	BETA	с	z	C	υ	c	:	ALPHA
X MPS FPS	MPS FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DÉG
1.8 54.1 177.6	49.7 163.1	66.5	21.4	78.2	14.5	47.9	25.9	85.Ø	34.2
2.8 53.4 175.2	48.4 158.7	64.7	22.6	74.2	15.8	52.Ø	27.6	90.6	34.9
3.8 53.4 175.2	47.8 156.8	- 63.3	23.9	78.3	16.3	53.6	28.9	94.9	34.3
4.8 53.7 176.1	47.5 156.8	62.1	24.9	81.9	16.5	54.1	29.9	98.1	23.4
5.8 53.8 176.6	47.3 155.2	61.4	25.6	84.2	16.6	54.5	30.6	100.3	32.8
7.8 54.8 177.1	47.2 154.9	68.8	26.1	85.8	16.5	54.2	30.9	101.5	32.2
18.8 54.8 177.8	47.2 154.8	58.8	26.2	85.9	16.3	53.4	38.0	101.1	31.8
15.0 55.1 180.8	48.2 158.3	60.9	26.6	87.4	14.7	48.3	30.4	99.8	28.8
28.8 56.2 184.2	48.8 160.2	68.2	27.7	90.9	13.6	44.8	38.9	101.4	26.1
38.8 57.5 188.6	49.7-163.1	59.7	28.9	94.7	11.8	38.7	31.2	102.3	- 22. 2
60.0 57.0 137.0	48.6 159.3	58.3	29.8	97.9	11.0	35.1	31.8	184.4	20.2
78.8 54.7 179.6	45.3 148.5	55.6	30.8	101.#	12.4	48.6	33.2	108.9	21.9
88.8 53.7 176.2	43.7 143.3	54.3	31.2	182.5	13.8	42.6	33.8	111.0	22.5
85.0 52.8 1/3.1	42.8 148.4	54.1	30.8	181.2	13.4	44.0	33.6	110.4	23.4
90.0 E1.6 169.2	41.7-136.8	53.R	38.4	99.6	14.8	46.0	33.4	129.7	24.7
93.8 EJ.3 164.9	40.5 133.0	53.6	29.7	97.4	14.9	48.8	33.2	119. B	26.5
95.# 49.5 162.6	39.5 129.7	52.8	29.9	98.0	.15.7	51.5	33.7	110.7	27.7
96.8 49.1 161.1	39.6 130.0	53.6	29.8	95.2	15.3	50.9	32.9	197.9	28.1
97.8 49.8 160.8	48.4 132.4	55.3	27.8	91.2	14.7	48.1	31.4	183.2	27.7
98.# 48.3 158.4	40.7 133.4	57.2	26.0	85.4	14.3	46.8	29.7	97.4	28.7

Table 16. Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Design Point Throttle.

BLADE ELÉMENT DATA ROTOR INLET

۱

IMMER		1		/U	BETA	c	Z	C	บ	c		ALPHA
X	MPS	FPS	MPS	FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DEG
1.8	55.5	162.1	62.2	171.3	78.8	18.8	61.6	13.4	44.8	23.1	75.7	35.4
2 8	55 1	1 80.7	61.6	169.0	69.1	19.5	63.9	14.0	46.0	24.0	78.7	35.6
3 8	86 2	121 0	51.2	168 2	68.1	28.4	66.9	14.2	46.5	24.8	81.5	. 34.7
1.0	88.1	19.7 0	60 0	167 0	67.7	21 2	60 6	14 4	47.4	26 6.	84.1	34.2
• ••	9.0 1	100.9	20.7	166 8	- 9/16	22.4	72.3		47 6	26 4	96 6	22.2
0.0	22.3	161.9	20.7	100.3	00.3	46.N	16.3	14.8		20.7	00.0	33.2
7.8	55.4	181.8	58.5	100./	65.5	22.0	14.2	14.9		21.1		- 34.4
10.0	55.5	182.1	5Ø.Ø	164.0	- 64.07	24.1	79.2	14.8	48.4	20.3	92.8	- 31.4
15.0	56.5	185.3	5Ø.1	164.5	62.4	26.Ø	85.2	14.1	46.3	29.6	97.0	28.4
28.8	57.6	188.9	58.5	165.8	61.2	-27.6	98.6	13.2	43.4	38.6	100.4	25.5
38.8	58.5	192.1	51.1	167.6	68.6	28.6	93.8	11.7	38.3	38.9	101.3	22.2
59.9	57.8	189.6	49.8	163.3	.59.3	29.4	96.4	11.8	36.1	31.4	102.9	24.5
78 8	85 6	182.1	46.7	153.2	57.1	38.8	98.4	12.1.	39.8	32.4	106.2	22.8
00.0	62 0	174 0	44 9	147 4	56 2	20 8	97 8	12 9	42.3	32.5	186.5	- 23.3
02.0	50.0	172 1	77.5	1 4 4 6	66 E	20 0	86.2	13.5	12 6	21 0	184 7	24 5
00.7	92.0	1	44.1	144.0		29.0	90.2	14 1	40.0	21.7	1041	26.2
AN 'N	01.4	128.0	46.0	142.4	20.4	20.4	. 73.3	11.1	40.4	31.7	104.1	20.0
93.Ø	50.3	155.1	41.5	136.6	- 55./	28.3	92.7	14.9	49.0	32.2	104.8	
95.Ø	49.5	162.2	.455.7	133.5	55.2	28.1	92.3	15.7	51.5	32.2	105.6	29.1
96.8	49.2	161.3	41.8	134.5	56.3	27.1	89.1	15.3	58.1	31.1	192.2	29.3
97.0	48.9	168.5	41.4	135.9	57.7	26.8	85.3	14.7	48.3	29.9	98.Ø	29.5
98.8	45.5	149.2	39.4	129.4	68.8	22.6	74.2	16.6	54.5	28.1	92.8	36.2

SLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

				กม	BETA	C	z	c	20	c	;	ALPHA
- 11016-0	`мрс"	595	MPS	FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DEG
่ำิต	33.3	1.09.2	31.8	101.7	68.4	12.1	39.8	34.6	113.6	36.7	120.4	. 70.5
2 9	31 5	133.4	29.8	95.2	66.8	12.3	48.4	36.5	119.8	38.5	126.4	71.2
วัต	38.8	98.5	27.3	89.6	65.3	12.4	40.8	38.1	125.0	48.1	131.5	71.7
1 9	29 1	95 4	26.8	85.4	63.3	13.8	42.6	39.3	129.8	41.4	135.8	71.5
E a	22 8	94 R	25.1	82.5	60.6	14.1	46.2	40.1	131.5	42.5	139./	-70.5
7 0	20.0	97 5	24.R	81.5	55.5	16.3	53.5	48.2	131.9	43.4	142.3	67.7
1 6 6	21.6	107.5	24.7	81.1	51.4	19.6	64.3	40.0	131.3	44.6	146.2	63.7
15 8	35 6	116.7	26.2	86.0	47.3	24.1	78.9	38.8	124.8	45.8	147.7	57.5
20.0	38 6	126 5	27.9	91.5	46.2	26.7	87.4	35.9	117.7	44.7	145.5	53.2
20 0	A1 0	127 5	20.0	98.0	45.3	29.4	96.4	32.9	107.9	44.1	144.7	48.1
50.0	A1 1	1 13.3	29.8	95.1	44.7	29.2	95.8	31.8	104.4	43.2	141.6	47.3
70 0	20 4	126 8	26 6	84.2	41.9	28.5	93.5	33.2	188.8	43.7	143.5	49.2
6a a	36 3	119 8	23.2	76.1	39.6	27.9	91.5	34.6	113.7	44.5	145.9	51.0
95 9	26 2	115 6	22.2	73.2	39.2	27.2	89.1	35.0	115.0	44.4	145.6	52.8
00.0	27 7	11.4.5	28.9	68.6	38.2	26.4	86.6	36.8	118.0	44.6	145.4	53.6
02 a	22 0	108 1	15 9	64.9	36.8	26.3	86.4	36.8	120.7	45.2	148.4	54.2
93.N	22 6	106 7	19.1	62.8	36.9	26.3	86.2	37.2	122.1	45.6	149.5	54.6
06 A	22 1	135.4	19.7	61.2	35.4	26.2	85.8	37.6	123.4	45.8	150.3	55.Ø
0° 0	32.1	105.2	18.4	69.3	34.9	26.3	86.2	37.8	123.9	46.0	151.8	55.0
00 0	21 9	194 3	18 1	59.4	34.6	26.1	85.7	37.9	124.5	46.1	151.1	55.3

BLADE ELÉMENT DATA STATOR	OUTLÉT .			
IMMER W. WU	BETA ĆŹ	ĊŬ	С.	ALPHA
X MPS FPS MPS FPS	DEG MPS FPS	MPS FPS	MPS FPS	DEG
1.8 55.7 182.9 52.1 170.9	68.9 19.9 65.1	13.5 44.4	24.8 78.9	34.2
2 8 55 4 181 9 51 3 158.2	67.5 21.1 69.1	14.3 46.8	25.5 83.5	34.0
2 8 55 6 192 5 51 8 167.2	66.1 22.3 73.3	14.5 47.5	26.6 87.3	32.9
A # 55 7 182.9 50.6 166.1	65.1 23.3 76.5	14.7 48.2	27.6 98.4	32.1
E # 55 8 183 7 57 3 165.7	64.2 24.1 79.8	14.9 49.0	28.3 93.0	31.7
9 g g g g l g l g g g g g g g g g g g g	67.5 24.6 BR.B	15.1 49.7	28.9 94.9	31.5
	62 6 25.5 83.6	15.1 49.5	29.6 97.2	38.5
10.0 00.0 100.1 49.7 106.9	61 7 26 8 88 1	14.8 45.8	30.3 99.3	27.4
10.0 07.0 107.0 50.0 100.0 90 0 60 9 107.0 50.0 100.0	61 8 28 1 92 1	12.8. 42.1	30.9 101.3	24.5
20.00000000000000000000000000000000000	40 7 20 6 91 R	11.6 37.9	30.8 101.1	22.0
	60 4 20 1 0K K	10 9 25 2	31.1 101.9	251.2
- 58.0 57.9 190.0 50.0 104.4	E7 4 70 7 00 0	10.0 00.0	22 2 105 8	20.7
78.8 30.2 184.3 47.4 195.4	- 3/.4 J#.4 70.7	12 2 48 1	21 7 184 1	32.6
8#,# 54,2 1//.8 45.5 149.5	37.1 23.3 30.8	10.6 40.1	21 4 102 1	57.8
85.8 52.5 172.1 44.1 144.5	57.0 28.5 93.4	13.3 43.0	31 7 103.1	
98.8 58.7 166.3 42.2 138.5	55.2 28.1 92.2	14.7 40.1	31.7 103.7 33.1 10È 4	70 6
93.8 49.9 163.7 41.2 135.8	55.4 28.2 92.5	15.4 50.5	32.1 100.4	20.0
95.# 49.4 162.# 40.3 132.3	54.6 28.5 93.5	10.0 52.0	32.7 107.3	
95.8 49.4 162.8 48.6 133.1	55.1 28.1 92.3	15.7 51.4	32.2 105.0	- 9 - 1
97.# 48.7 159.8 48.6 133.1	56.2 26.9 88.4	15.6 51.1	31.1 192.1	30.0
98.4 48.2 158.3 48.8 133.8	57.5 25.8 84.6	15.3 58.1	317.17 98.3	313.6

Table 17. Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.

BLADE ELEMENT DATA ROTOR INLET

IMMER W X MPS FPS 1.8 56.9 193.7 2.8 55.8 183.7 3.8 55.5 182.9 4.8 55.5 182.2 7.8 55.5 182.2 7.8 55.5 182.2 7.8 55.5 182.2 7.8 55.5 182.4 15.8 56.9 126.7 28.8 57.8 129.6 58.8 57.8 129.6 58.8 54.9 187.2 88.8 57.8 129.6 58.8 54.9 187.2 98.8 54.9 187.2 98.8 54.9 187.2 93.8 49.9 163.6 95.8 49.9 163.2 93.8 49.9 163.2 93.8 49.9 163.2 93.8 49.9 163.2 95.8 49.9 163.2 <t< th=""><th>WU MPS FPS 53.2 174.4 52.6 172.6 52.0 178.6 51.5 169.8 51.4 168.5 51.1 167.6 58.8 166.8 58.9 167.8 51.1 167.5 49.6 162.7 47.6 146.2 43.6 146.2 43.6 146.2 43.6 136.6 41.6 136.6</th><th>BETA DEG 71.541 78.442 68.442 68.442 66.82222 66.825 66.8222 66.825 66.825 66.825 65.85 65.85 65.85 65.95 65.85 65.85 65.85 65.85 65.95 65.85 65.85 65.85 65.95 65.85 65.85 65.85 65.85 65.95 65.85 65.</th><th>CZ FPS MPS FPS 8.6 56.9 9.4 63.5 9.4 63.5 9.2 66.2 1.1 69.2 3.7 77.7 5.5 83.6 8.8 88.7 7.5 92.8 92.8 88.6 7.5 92.8 8.6 6 8.8 8 8.6 6 8.8 8 8.5 8</th><th>CU MPS FPS 12.5 39.4 12.5 48.9 13.8 42.6 13.4 43.9 13.4 43.9 13.4 44.8 13.5 44.4 13.5 44.4 13.5 44.4 13.5 44.4 13.3 37.8 18.8 35.4 11.3 37.8 18.8 38.7 12.4 45.7 13.2 45.8 14.3 45.8 14.5 45.8 14.5 45.8 13.1 45.8 14.2 5 15.1 45.8 15.1 45.8 1</th><th>C MPS FPS 21.3 69.9 22.4 73.3 23.3 76.6 24.2 79.4 25.8 84.7 27.2 89.4 25.8 84.7 27.2 89.4 28.6 93.3 29.4 95.3 29.4 95.7 38.1 98.7 38.1 98.7 38.1 98.7 38.5 168.1 29.5 96.8 38.5 168.1 29.5 94.8 38.5 168.4 38.5 168.4</th><th>ALPHG 2 33.5 33.5 33.5 33.5 33.5 33.5 29.6 33.5 29.6 33.5 29.6 33.5 29.6 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5</th></t<>	WU MPS FPS 53.2 174.4 52.6 172.6 52.0 178.6 51.5 169.8 51.4 168.5 51.1 167.6 58.8 166.8 58.9 167.8 51.1 167.5 49.6 162.7 47.6 146.2 43.6 146.2 43.6 146.2 43.6 136.6 41.6 136.6	BETA DEG 71.541 78.442 68.442 68.442 66.82222 66.825 66.8222 66.825 66.825 66.825 65.85 65.85 65.85 65.95 65.85 65.85 65.85 65.85 65.95 65.85 65.85 65.85 65.95 65.85 65.85 65.85 65.85 65.95 65.85 65.	CZ FPS MPS FPS 8.6 56.9 9.4 63.5 9.4 63.5 9.2 66.2 1.1 69.2 3.7 77.7 5.5 83.6 8.8 88.7 7.5 92.8 92.8 88.6 7.5 92.8 8.6 6 8.8 8 8.6 6 8.8 8 8.5 8	CU MPS FPS 12.5 39.4 12.5 48.9 13.8 42.6 13.4 43.9 13.4 43.9 13.4 44.8 13.5 44.4 13.5 44.4 13.5 44.4 13.5 44.4 13.3 37.8 18.8 35.4 11.3 37.8 18.8 38.7 12.4 45.7 13.2 45.8 14.3 45.8 14.5 45.8 14.5 45.8 13.1 45.8 14.2 5 15.1 45.8 15.1 45.8 1	C MPS FPS 21.3 69.9 22.4 73.3 23.3 76.6 24.2 79.4 25.8 84.7 27.2 89.4 25.8 84.7 27.2 89.4 28.6 93.3 29.4 95.3 29.4 95.7 38.1 98.7 38.1 98.7 38.1 98.7 38.5 168.1 29.5 96.8 38.5 168.1 29.5 94.8 38.5 168.4 38.5 168.4	ALPHG 2 33.5 33.5 33.5 33.5 33.5 33.5 29.6 33.5 29.6 33.5 29.6 33.5 29.6 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5
95.8 49.5 102.4 97.8 49.9 163.6 98.8 58.4 165.4	$\begin{array}{c} 41.8 \\ 42.7 \\ 43.7 \\ 143.3 \end{array}$	58.7 2 59.9 2	25.8 84.6 25.2 82.5	13.1 42.9 12.Ø 39.3	28.9 94.8 27.9 91.4	26.8

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

					5 C T A	C 1	7	C	u	C		ALPHA
IMMER	. W	_		U	BEIM		-	мре	FPS	MPS	FPS	DEG
X	MPS	FPS	MPS	FPS	DEG	mrs	rra_	6 19		26 1	119 4	69.4
1 4	33.8	116.8	31.3	102.8	68.Ø	12.6	41.2	33.8	111.10	.30.1	110.7	60 0
5 6	22.2	106 1	29.4	96.4	65.1	13.5	44.4	35.7	117.1	38.2	120.3	63.0
2.8	32.3	1 0 2 4	27 7	90.9	62.4	14.4	47.1	37.3	.122.3	39.9	131.Ø	68.7
3.8	31.4	186.4	21.1	66.0	60 4	15 5	51.8	38.4	126.8	41.4.	135.9	67.8
4.8	3Ø.7	100.8	20.0	60.7	59.4		86.7	70 1	128.1	42.7	139.9	66.1
5.0	3Ø.9	1.01.4	.25.7	84.4	50.4	17.1	00.3	30 1	120 4	43.6	143.2	64.5
7.0	31.3	1.02.8	25.2	82.5	53.2	18./	01.4	37.4	162.4	15.0	147 7	61 2
18.8	32.9	137.8	24.B	81.3	48.8	21.5	70.8	39.5	129.1		1 1 1 1 1 1	5 C A
15 9	26 4	119.3	26.1	85.6	45.7	25.3	83.1	37.7	123.7	40.4	149.0	50.0
10.0	20.7	120 0	27 8	91.2	44.9	27.7	91.0	35.5	116.5	45.1	147.8	21.9
20.0	39.3	1-0.9	20.1	00 0	44 9	29.1	95.4	33.2	109.1	44.2	144.9	48.7
30.0	41.1	122.10	47.1	93.3	77.6	20.2	02 7	32.5	106.5	43.0	141.2	48.8
5Ø.Ø	39.7	130.3	27.9	21.0	44.5	20.3	22.1	22.0	110 0	43.4	142.4	51.Ø
78.8	36.7	120.5	24.6	80.8	42.0	27.3	03.4	33.0	116 2	44 2	144 9	62.5
80.0	34.9	114.4	22.3	73.2	39.7	26.8	- 87.9	30.1	113.4		115 0	67.6
95 8	33.7	110.6	21.1.	69.2	38.6	26.3	86.3	35.9	11/./	44.5	140.9	55.0
00.0	22.2	106 1	19.6	64.4	37.3	25.7	84.3	36.8	120.9	44.9	147.4	22.1
90.0	32.3	1.24 4	16 7	61 2	35 B	25.8	84.6	37.5	123.Ø	45.5	149.3	65.3
93.8	-31.8	124.4	10./		24.6	26 0	84.9	38.0	124.8	46.0	151.Ø	55.6
95.Ø	31.5	183.3	11.3	20.0	34.9	20.9	04.7	29 4	126.8	46.3	151.8	55.9
96.Ø	31.2	1#2.3	17.5	57.3	34.9	20.8	04./	20.9	127 2	46 5	152.4	56.5
97.8	38.7	100.6	17.Ø	55.7	33.5	25.5	83.8	30.0	12/.3	10.0	152 0	67 7
98.8	29.6	97.2	16.2	53.3	33.1	24.8	\$1.3	39.4	123.4	40.0	19510	

IMMER WU BÉTA CZ CU C ALP X MPS FPS MPS DEG MPS FPS MPS FPS DEG 14.9 54.2 24.5 88.3 35 2.6 54.5 178.9 56.3 165.1 167.2 21.8 68.8 14.8 48.4 25.7 84.2 35 3.8 54.5 178.8 49.9 163.7 66.8 22.8 72.1 15.1 49.5 26.6 87.4 34 4.8 54.7 179.4 49.7 162.9 65.1 22.9 75.8 16.2 56.8 27.5 98.1 33 5.8 54.7 179.4 49.4 161.9 64.3 23.5 77.2 15.4	
50.0 56.7 165.9 58.2 164.8 52.3 26.2 80.0 10.2 33.20.1 95.6 27.8 78.8 54.5 178.8 47.4 155.4 60.2 26.9 88.4 11.1 36.3 29.1 95.6 22.9 78.8 54.5 178.8 47.4 155.4 60.2 26.9 88.4 11.1 36.3 29.1 95.6 22.9 88.8 52.9 173.6 45.8 158.4 59.2 26.2 85.9 12.7 41.6 29.4 96.6 22 98.8 59.8 163.9 42.7 146.8 59.2 26.2 85.9 12.7 41.6 29.4 96.6 22 98.8 59.8 163.9 42.7 148.8 57.2 26.5 87.3 14.6 47.9 30.3 99.5 21.8 49.4 151.2 41.3 135.5 57.0 26.7 87.3 14.6 47.9 30.4 99.9 21.8 49.4 94.4 152.4 81.4 21.4 21.4 21.4 </td <td>LPE3354.5.18 HG</td>	LPE3354.5.18 HG

Table 18. Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Peak Prossure Rise/ Near Stall Throttle.

BLADE ELEMENT DATA RO	TOR INLET			A1 011A
THMER W WL	BETA	CZ CL		ALFRA
W MPS FPS MPS	FPS DEG M	APS FPS MPS "	FPS MPS FPS	
1 9 65 9 183 5 53.5 1	75.4 .72.7 16	5,4 53.9 11.7	38.5 28.2 60.	39.4
7 6 55 7 187 7 52 8 1	73.4 71.4 17	7.6 67.6 12.2	48.2 21.4 78.	34.5
0 0 55 2 101 6 52.2 1	71.1 78.3 16	B.5 68.6 12.8	42.1 22.6 73.1	3 34.7
	69.6 69.2 15	63.6 13.2	43.4 23.5 77.1	34.2
	68.8 68.2 24	3.4. 66.8 13.3	43.8 24.3 79.	33.1
0,0 00,3 101,0 01,0	67 8 67 3 21	1.2 69.6 13.5	44.2 25.1 82.	5 32.3
7.8 55.4 101.7 51.1		2 9 75.3 13.2	43.3 26.5 86.	8 29.8
10.0 56.0 163.0 51.1		4 6 89.2 12.1	39.8 27.3 89.	6 26.3
15.8 57.2 187.7 51.7	103.0 04.0 5	5 3 82.9 11.6	36.1 27.8 91.	2 24.6
28.8 57.5 188.9 51.7	103.7 03.0 5	6 9 85.3.19.6	34.7 28.1 92.	1 22.1
38.8 57.9 192.1 51.8	109.9 03.4 4	6 7 87 6 9.8	32.1 28.4 93.	3 28.1
50.0 57.2 187.7 SU.D		6 6 87 A 18.7	35.1 28.7 94.	2 21.9
78.8 54.7 179.3 47.7	150.5 58.7 2		37 2 27 9 91.	5.24.8
88.8 52.7 172.8 45.1	151.3 50.9 2		29 4 27.7 90.	8 25.7
85.0 51.4 168.7 45.8	147.5 60.8 2	4.9 81.8 12.0	43 g 27.9 91.	4 28.0
98.8 49.9 153.5 43.4	142.3 68.3 2		// 5 28 4 93.	d. 26.5
93.8 49.4 162.8 42.6	139.9 59.5 2	4.9 G1./ 13.0	43 5 28 2 92.	5 28.0
95.Ø 49.5 162-3 42.7	148.2 59.5 2	4.9 01.0 13.2 	A1 1 27.6 98.	5 26.9
96,8 49.8 163.5 43.4	142.3 68.3 2	4.0 . 80.0 12.0		5 25.8
97.8 58.3 164.9 44.8	144.4 61.8 2	4.3 /9.0 11.0	25.5 £7.8 55.	A 24.5
98.4 54.7 166.5 44.9	147.2 62.8 2	3.7 77.6 18.8	33.3 68.0 99.	

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

ì

					DETA	c	7	C	U	C		ALPHA
IMMER	¥		W		BEIA	мас	_ 5 9 6	MPS	FPS	MPS	FPS	DEG
X	MPS	FPS	MPS	FPS	DEG	FIF 3	753	27 1	121 9	38.7	127.1	73.4
1.6	30.1	98.8	28.Ø	92.Ø	68.5	11.2	39.7	3/.1	196 2	40 2	132.1	72.6
2.8	29.2	95.7	26.6	87.4	65.7	11.9	39.1	38.5	120.2	4 1 10	126 4	72.2
5.7	29.2	97.9	25.4	83.3	63.5	12.6	41.2	38.0	130.0	41.6	140.4	71 4
3.0	22.0	01 4	24.4	80.1	61.8	13.5	44.1	40.5	132.9	42	140.0	CD 0
4.0	27.3	7114	22.0	79.3	57.8	14.9	49.8	41.5	134.4	43.6	143.0	69.0
5.4	28.1	92.3	23.3	76 6	55.1	16.2	53.1	41.3	135.4	44.3	145.4	68.4
7.Ø	28.4	93.2	23.3 -	.76.0	50.1	101	62.6	41.1	134.8	45.3	148.5	64.9
18.0	3Ø.1	98.6	23.2	70.2	20.4	12.1	79 2	39.2	128.5	45.9	158.4	58.5
15.0	34.3	112.5	24.7	88.9	43.5	23.0	00 1	26 6	120.0	45.5	149.4	52.2
28.8	33.1	125.1	26.8	87.8	44.5	21.2	67.1	30.0	100 0	42 B	143.7	49.1.
39.9	40.9	134.1	29.2	95.7	45.4	28.6	33.3	33.4	100.0	42 2	142 8	19.3
5A A	39.3	129.1	27.5	98.2	44.2	28.1	92.3	32.9	1207.9	43.3	1.11 9	63 0
70 8	24 6	113.5	23.5	77.Ø	42.5	25.4	83.3	35.0	114./	43.4	101.0	55.5
/10.10	34.0	144 8	21 3	69.7	41.5	23.8	78.2	36.2	118.8	43.4	142.2	20.2
80.0	31.7	104.0	10 6	62.8	39.3	23.7	77.8	37.5	123.1	44.4	145.0	57.0
85.0	32.1	100.0	19.0	20.0	27 1	23.9	78.4	38.3	125.8	45.2	143.2	57.9
98.8	38.8	99.4	18.1	33.9	3/11	24 4	86.1	38.9	127.5	45.9	150.6	57.7
93.Ø	29.9	98.2	17.3	20.0	30.3	57.2	90 5	39.2	128.7	46.3	151.8	57.8
95.8	29.7	97.5	16.8	55.9			00.0	20 1	129.3	46.4	152.1	58.1
96.8	29.4	96.6	16.5	54.8	33.9	24.4	30.0	30.7	120 2	46.5	152 6	56.4
97.8	29.1	95.6	16.1	52.9	33.5	24.3	19.0	33.4	120.4	46 7	15109	59.0
0.9 8	28.6	93.9	16.0	52.4	33.8	23.7	77.9	33.7	138.4	40.3	191.4	

BLADE ELEMENT DA IMMER W X MPS FPS 1.# 55.3 181.4 2.0 54.8 179.8 4.8 54.5 178.7 5.8 54.6 179.2 7.8 55.2 180.9 15.8 55.9 183.4 28.8 55.9 183.4 28.8 57.9 189.9 58.8 57.1 187.2 78.8 54.3 178.2 88.8 52.5 172.1 85.8 58.7 166.3 98.8 48.9 167.5 93.8 48.9 161.3 95.8 49.2 161.3 96.8 49.6 162.6 87.6 56.2 164.6	NTA STATOR OUTLET WU BSTA MPS. FPS DEG MPS 51.6 169.4 48.8 19.8 53.8 166.6 67.7 28.6 50.2 164.7 65.7 21.4 49.8 163.3 65.9 22.1 49.8 163.3 64.3 23.8 49.8 163.3 64.3 23.8 49.8 165.7 63.3 24.4 50.8 166.5 63.2 25.4 50.5 165.5 62.9 26.2 50.5 165.5 62.9 26.2 50.5 165.5 62.9 26.2 45.1 151.1 61.2 25.4 45.1 151.1 61.2 25.4 44.1 144.8 657.4 24.4 42.3 138.6 59.6 24.4 43.9 141.9 59.9 24.4	CZ CU FPS MPS FPS 64.9 13.6 44.5 67.5 14.3 47.5 78.1 14.8 48.5 72.5 15.1 49.6 75.5 15.2 49.9 78.5 14.3 48.7 88.1 15.3 58.3 83.5 14.1 46.1 83.4 12.6 41.2 86.8 18.8 35.3 87.4 9.9 32.6 82.4 11.4 37.4 81.7 12.8 42.1 88.7 19.9 14.2 46.7 79.9 14.5 47.4 81.6 13.6 44.6 81.6 13.6 45.6 81.6 13.6 13.6 13.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15	C ALPHA MPS FPS DEG 24.# 78.7 34.3 25.1 82.3 34.7 26.# 85.3 34.6 26.8 87.9 74.3 27.5 90.1 33.6 28.# 91.9 31.9 28.8 94.6 32.1 29.1 95.4 28.8 28.4 93.1 26.2 28.4 93.8 22.3 28.4 93.8 22.3 28.4 93.8 22.3 28.4 93.8 22.3 28.4 93.8 22.4 28.5 93.8 22.5 27.6 95.4 24.4 28.8 91.9 27.2 28.5 93.4 24.9 28.3 93.5 25.5 27.6 95.4 24.4 28.8 91.9 27.2 28.5 93.4 24.9 28.3 93.5 25.5 27.6 95.4 24.4 28.3 93.5 25.5 27.6 95.4 24.5 28.3 93.5 27.5 27.5 88.6 26.5 27.5 88.6 26.5 27.5 88.6 26.5 27.5 85.5 27.5
96.8 49.6 162.6 97.8 58.2 164.6 98.8 49.8 163.4	, 43.0 141.0 59.9 24. , 43.9 144.1 68.9 24. , 44.0 144.3 61.8 23.	7 81.8 12.9 82.9 3 79.6 11.9 39.8 4 76.7 11.7 38.4	27.8 88.6 26.8 4 26.1 85.8 26.5

ORIGINAL PAGE IS OF POOR QUALITY

Table 19. Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Open Throttle.

ROTOR BLADE ELEMENT PERFORMANCE

IMMER (%)	WHIEL Speed Mps Fps	REL. TURNING Angle	LOSS COEF.	LOSS Para.	REL. MACH NO.	DIFF. FACT.	REL. MACH NO.	INCID. ANGLE DEG	DEV. Angle Deg
1.0 2.0 3.0 5.0 0 15.0 0 15.0 0 50.0 50.0 50.0 50	MPS FPS 64.3 211.00 64.2 210.69 64.1 210.05 63.9 209.74 63.7 209.10 63.4 208.15 63.0 206.57 62.5 204.98 61.5 201.81 59.6 195.47 57.6 109.13 56.7 105.96 55.2 101.21 55.1 180.39	ANGLE DEG 2.3 5.9 8.9 8.0 11.0 11.5 14.5 14.3 13.7 13.6 14.7 15.8 16.7 17.3 16.6 17.8	S. Ø75 S. 103 Ø. 121 V. 141 S. 157 Ø. 169 Ø. 169 S. 056 Ø19 J. 056 J. 057 J. 11 J. 057 J. 102 J. 103 J. 103	0.064 8.089 8.187 0.142 0.142 0.142 0.146 8.133 0.095 0.053 0.05530 0.05530 0.05530000000000	NO. IN Ø.156 Ø.155 Ø.155 Ø.155 Ø.155 Ø.155 Ø.157 Ø.153 Ø.164 Ø.164 Ø.164 Ø.169 Ø.164 Ø.157 Ø.155	1.466 1.500 1.523 1.523 1.523 1.544 1.5533 1.540 1.503 1.503 1.503 1.503 1.503 1.413 1.413 1.415 1.415 1.415 1.415 1.415 1.415 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445	OUT Ø.126 Ø.126 Ø.129 Ø.199 Ø.199 Ø.199 Ø.199 Ø.199 Ø.113 Ø.127 Ø.127 Ø.127 Ø.127 Ø.127 Ø.127 Ø.128 Ø.199 Ø.193 Ø.199 Ø.199 Ø.199 Ø.196 Ø.199 Ø.	-1.5 -2.4 -3.4 -5.9 -7.1 -9.5 -9.8 -19.7 -19.5 -19.5 -19.5 -19.5 -115.3 -115.3 -115.3 -115.3 -115.3 -115.4 -115.4 -115.4 -115.4 -15.4 -15.4 -15.4 -15.4 -15.4 -15.4 -15.4 -15.4 -15.4 -15.4 -15.5 -15.4 -15.5 -15.	23.32.52 23.32.52 17.52.9 12.50 5.12.50 5.334 5.130 5.130 5.130
97.Ø 98.Ø	55.Ø 180.57 54.9 180.26	19.1 2Ø.8	Ø15 Ø16	Ø15 Ø16	ຍ.141 ອີ.141	9.474 9.491	0.097 0.096	-12.9	្វ . ថ្ង

TORQUE = 7929.14 IN.-LB.

STATOR VANE ELEMENT PERFORMANCE

TMMER	WHEEL	ABS.	ABS.	ABS.	INCID.	DEV.	LOSS	LOSS	DIF7.
V N	SPEED	TURNING	MACH	MACH	ANGLE	ANGLE	COEF.	PARA.	FACT.
<i>"</i>	MDC FPC	ANGLE	NO.	NO.	DEG	DEG			
	nis ris	DEG	IN	OUT					
• ~	CA 9 911 88	20 3	ส.ีส97	Ø.Ø74	-4.4	14.1	195Ø	19Ø6	<i>1</i>.3984
1.0	04.3 411.00	22.0	a. 193	ต. ด79	-3.7	15.5	1319	1279	g.3935
2.9	04.2 210.09	20.0	a 199	<i>a</i> . <i>a</i> ₃₃	-3.2	15.6	1840	Ø821	g.4952
3.0	64.1 (19.37	23.2	0.100	a age	-3.5	15.3.	11477	0467	11.4129
4.Ø	64.9 219.93	20.0	G 117	9 697	-3.q	15.3	0183	//179	9.4131
5.Ø	63.9 289.74	28.9	9.117	0.007	-2.0	16 0	0.9474	1.1069	N.4255
7.Ø	63.7 299.19	27.3	N.158	9.009	-3.0 -== a	16 3	a 6192	01. 9 4 81.	1.3451
1Ø.Ø	63.4 2//8.15	24.5	9.122	0.000		12.0	1 1 STAR	M 1 (121)	11.46.14
15.Ø	-53.Ø206.57	22.6	0.125	0.087	-0.0	10.3	10 . 1040 11 . 1040	1027	1 1 7 4
2Ø.Ø	62.5 2./4.90	21.5	Ø.125	0.083	-/.9.	13.0	19.7900	1 120	1. 1. 1. 1. 1.
30.0	61.5 201.81	21.4	Ø.123	J.J89	-9.3	1.1.3	2.7331	0.0040	
50.0	39.6 195.47	21.5	Ø.123	g.891	-19.3	3.7	9.9489		- 1. 19 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -
70.0	57.6 139.13	21.8	J.127	0.095	-1.៩.1	9.7	11. 14. 4	19.1940.2	11.0.0
80.0	56.7 145.95	22.9	Ø.129	Ø.Ø97	-10.5	9.2	1.3467	1.146-	1.3.1
52.2 5 0	36.2 194.38	23.4	B.129	g.996	-19.7	9.2	H.7499	11.1149	
00.0	dd 7 142.79	23.8	g.129	Ø.096	-11.1	9.1	3.3578	19.955	$G \to G \to Z$
90°.0		23.11	g.128	. g. g95	-11.5	9.7	J./367	//652	1.4/1.6
93.0 00 0	- 10144 - 2721444 - 55 0 101 01	22 0	0.123	g. 297	-11.6	9.3	Ø.3636	.J.962)	3313
95.9		22 1	1129	6. 197	-11.3	9.5	9.1.32	:3.1910	19 . A 1994
96.0	33.1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 191	-11.3	3.1	0.1332		1
97.5	- 6 6 . 9	44.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-11.9	. ส.ร	1. 1292	1.226!	3.4091
98.Ø	-34,9 10.7,20	23.1	3.142						

OR GINAL PAGE IS OF POOR QUALITY

Table 20. Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Design Point Throttle.

and shaft a set of a set of the set

ROTOR BLADE ELEMENT PERFORMANCE

1 ...

1.0 65.6 215.32 1.6 ϑ .114 ϑ . ϑ 97 ϑ .158 ϑ .578 ϑ . ϑ 95 $-\vartheta$.7 28 2.0 65.5 214.99 2.3 ϑ .141 ϑ .121 ϑ .157 ϑ .617 ϑ . ϑ 90 -1.6 29 2.0 65.5 214.99 2.3 ϑ .141 ϑ .122 ϑ .157 ϑ .616 (ϑ 86 -2.6 ϑ	REL. LOSS LOSS REL. DIFF. REL. INCID. TURNING COEF. PARA. MACH FACT. MACH ANGLE ANGLE NO. NO. DEG IN OUT	ANGLE DEG
3.065.4214.672.8 $y.176$ $y.157$ $y.681$ $y.833$ -3.5 234.065.3214.353.9 $y.195$ $y.170$ $y.157$ $y.681$ $y.833$ -3.5 235.065.2214.025.7 $y.297$ $y.183$ $y.157$ $y.681$ $y.833$ -3.5 237.0 55.0 213.33 8.9 $y.193$ $y.174$ $y.158$ $y.640$ $y.992$ -4.4 10.0 64.7 212.41 12.6 $y.193$ $y.174$ $y.158$ $y.640$ $y.994$ -6.6 11 15.0 54.2 2117.79 15.1 $y.166$ $y.199$ $y.161$ $y.562$ $y.101$ -8.2 15.0 64.2 213.79 15.1 $y.166$ $y.199$ $y.161$ $y.562$ $y.101$ -8.2 15.0 64.2 213.79 15.1 $y.166$ $y.199$ $y.161$ $y.562$ $y.101$ -8.2 15.0 64.2 213.79 15.1 $y.166$ $y.199$ $y.161$ $y.562$ $y.101$ -8.2 15.0 64.2 213.79 15.1 $y.166$ $y.163$ $y.164$ $y.562$ $y.101$ -8.2 16.0 64.7 212.41 12.6 $y.162$ $y.163$ $y.164$ $y.164$ $y.164$ $y.167$ $y.164$ $y.167$ 20.0 62.8 235.94 15.2 $y.0601$ $y.165$ $y.143$ $y.117$ -9.3 20.0 62.8 193.04 </td <td>DEG\mathcal{I}<</td> <td>28.4 29.7 25.2 13.3 13.2 11.8 5.9 13.4 5.9 5.9 5.9 8.4 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9</td>	DEG \mathcal{I} <	28.4 29.7 25.2 13.3 13.2 11.8 5.9 13.4 5.9 5.9 5.9 8.4 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9

TORQUE = 8:79.19 IN.-LB.

*Loss Coefficients Computed from Fixed Rake Data

STATOR VANE ELEMENT PERFORMANCE

	114551	ABS.	ABS.	ABS.	INCID.	DEV.	LOSS	LOSS	SACT.
IMMER	WALLS OBUUD	TURNING	MACH	MACH	ANGLE	ANGLE	COEF .	i ann •	
74	SPaco	ANGLE	NO.	NO.	DEG	DEG			
	MAR LAD	ANGLE	TN	OUT					er 11 11 11
			a 1 as	a 468	2.1	14.1	0674	0658	0.0004
1.ø	65.6 2(5.32	36.3	(1) (a 072	3.7	14.6	3181	Ø177	1.5.55
2.9	65.5 214.99	37.2	0.110	0.016	5.2	14.1	ø.9194	9.9189	1.5479
3.0	65.4 214.67	33.9	9.114	0.070	5.6	14 6	0.9481	9.2471	g.5460
1 9	55.3 211.35	39.4	g.118	ມ.ມ/ອ	2.2	1 4 2	a. 07/13	9.9599	5.5448
φ. <i>α</i>	45 2 214.32	33.7	Ø.121	0.081	5.2	14.0	a (19.11	ar. 1864	0.5396
5.0	42 0 1 3 3 B	36.3	Ø.124	g.982	4.5	15.1	3.3004	or 110/3	4.5351
1.1.	00.0 1000	12.2	Ø.127	g.j84	2.5.	15.5	N.1771	.7 1 445	1 5 119
19.9	- (34 - 7 - 23 44	23.1	4.128	n.336	-0.4	13.2	9.1931		1 1 1 1 1 2
15.0	61.2 (1.2.7)	3,7 1	a 127	0.938	-2.3	12.5	9.9828	9.9817	11. 11. 16.
29.9	63.8 209.17	20.0	a 126	. d .788	-4.3	1.5.3	<u>y.9597</u>	านายมเ	1.41.32
ġø.ø	62.8 205.94	20.1	0.120	0 88 h	-4.7	3.7	ø.9336	J.733	
50.0	31.8 192.47	27.1	10.163 (1.101	0.000	-4.6	8 3	5.3329	1.3.417	
70.0	30.8 193.00	1 23.3	1.120) N.N74	-1 0	4.3	9.0635	1.11374	1 2.4574
9 a a	57.8 19.75	23.4	13.127	11.130		1 (7	0.0504	91. (58)	, M. Saav
05 0	37 3 111.13	27.5	(J.127	1 1.133	-5.5	1.2		r : 334	
85.4		26.1	1.127	1 1.191	(=6.U	11.3	میں ور اور اور 19 م م اور اور		
90.0		04.7	9.125) g.g91	-6.8	. 11.7			
93.0		04 1	9.12	<i>i 1</i> .393	3 -7.3	11.1	9.973.		· · · · · · · · · · · · · · · · · · ·
95.J	39.4 .4.23		11 13	1 1.192	-7.3	1.5.5	-3.1133	3 . 3 . 4 . 4	
96.J	. د	الدولالي ال	(f 1 1 2	1 1.435	j - j. S	1.1.7	1.190	1	
97.5	33.2 1.2		د. بر اور ۱۹۰۹ - ۱۹۰	1 1 1 1 1 1		1.1.4	5.214	5 J.211	.
98.3	33.1 . 1.9	24.7	ښا ول.	1					

ORIGINAL PAGE IS OF POOR QUALITY

Table 21. Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Peak Efficiency Throttle.

ROTOR BLADE ELEMENT PERFORMANCE

ĥ

			*						
IMMER	WHEEL	REL.	LOSS	LOSS	REL.	DIFF.	REL.	INCID.	DEV.
(%)	SPEED	TURNING	COEF.	PARA.	MACH	FACT.	MACH	ANGLE	ANGLE
	MPS FDS	ANGLE			NO.		NO.	ĎEG.	DEG
		DED			TM		OUT		
		DEG	~	~ ~~ /	a 1 a a	17 670	10 007	N 13	27 0
1.Ø	85.2 213.83	3.5	0.119	9.194	10.100	1.070	13.1397	<i>2</i> .0	61.5
2.Ø	65.1 213.51	5.3	Ø.141	Ø.122	9.16 <i>7</i>	9.613	0.293	-9.3	.7.5.19
3.Ø	65 0 213.19	7.0	J.16Ø	Ø.14Ø	ø.159	13.6415	Ø.Ø89	-1.3	22.3
лa	61 9 212 87	9.0	Ø.17B	Ø.151	Ø.153	0.653	0.088	-2.3	19.2
E 0	di 0 219 Bi	51 2 .	9.176	0.159	9.159	0.655	5.089	-3.3	15.9
3.0		19 9	(1 172	1117	a 150	9 656	<u>ज</u> लाभत	-4.2	12.9
1.19	04.5 .1.99	13.3	11.1/6	0.107	11 1 1 1 2	0.0000			
1Ø.Ø	64.3 11.94	16.0	9.158	9.140	19-101	11.027	1.994		13 a 14 .4 .45
15.Ø	53.8 239.33	- 17.5	0.105	ø.ø93	. Ø. 163	3.559	11.124	-7.4	5.6
29.9	63.3 207.73	17.3	Ø.Ø71	.0.966	9.166	J.5/3	B.112	-3.3	1.6
39.9	62.3 204.51	17.9	0.024	Ø.//23	Ø.166	1.457	ø.118	-8.0	5.5
50 0	60 4 198 09	16.3	a.a1a	Ø.009	Ø.163	9.464	0.114	-7.6	7.9
70.0		16.0	6 621	a a2a	a. 157	9.892	0.145	-3.3	8.8
70.0	20.4 191.00	10.9	a 420	a 427	182	7 675	a 199	- 8 7	
8 .98	57.4 103.45	18.9	9.930	0.037	0.100	1.040	0.200	-0.2	7 0
85.Ø	57.9 185.85	20.2	0.019	0.018	9.149	1.939	0.096	-13 - 7	7.0
9ø.ø	36.5 135.24	21.2	 Ø92 '	<i>99</i> 2	Ø.145	1.549	8.093	-9.4	1.3
93.Ø	53.2 104.20	21.9	#32	Ø31	. 9.143	J.55Ø	3.391	-15.4	്.3
95.0	55.7 103.63	22.3	046	045	9.142	1.556	3.395	-11.3.	5.4
06 7	65 0 103 31	23 7	- 648	647	9.132	5.566	9.939	-19.6	4.9
07 7		26 2	- 022	- 422	0 143	n 697	0.088	- 4. 6	1.6
97.5	00.0 102.99	20.2		925	- 10° 1 1 4 1		8 405	-2.6	4 4
98.Ø	55.7 102.67	20./	N. N. T. A.	9.919	.0.144	9.023	0.000	-0.0	

TORQUE = 8375.7.7 IN.-LB.

*Loss Coefficients Computed from Fixed Rake Data

STATOR VANE ELEMENT PERFORMANCE

a come strate and the

TMMER	VNIEL	ABS.	ABS.	ABS.	INCID.	DEV.	LOSS	LOSS	DIFF.
*	SP # # D	TURNIING	MACH	MACH	ANGLE	ANGLE	COEF.	57571	FACT.
· ·	MPS SPS	ANGLE	NO.	NO.	DEG	DEG			
		DEG	IN	OUT					
1 07	45 2 013 82	34.4	9.193	y.979	1.0	15.0	1437	1402	<u>9.5177</u>
2 0	dg 1 312 G1	31 9	a. 139	g.073	1.5	15.6	9728		1.5242
2.0	at a 212 10	21 4	0.114	a. 876.	2.2	15.7	3193	<i>1</i> /188	0.5010
3.2	al 0 213 97	24.4	a 119	4. 679	2.1	15.5.	J. 12/18	9.3211	J.5367
4.19	04.9 2307	3 4. 6	11 122	g 936	1.3	15.8	J. J521	9.0399	1.5085
5.0	04.0 2104 al a 111 077	33.J 91 d	1 125	d (132	1.2	16.3	3.3763	5.5767	
7.10	04.0 11.20	· 31.0	. 120	ST 102	11 11	17.7	9.1155	J. 1780	57.5084
10.0	01.3	- 119 · 11		11 703	-2 6	1 4 3	9.1273	1.1751	0.5 11
15.0	ې کې کې لار ښان کې د کې د کې د کې	27.1	- M • 1 0 0	0.004	-2.2	12.2	Gr 1-795	1.1621	5.5
2Ø.Ø	63.3	25.5	11.1.29	0.004	-3.0	11 1	18 1010	1 11 11 11 12 12 12 12 12 12 12 12 12 12	
3ø.ø	62.3 0/4.51	25.9	.1.120	U. U. U. U.	-4.6	1 7 . 7	1.1.30		A CONTRACT
5Ø.J	63.4 193.39	27.7	-9.123	0.000	-3.4	91.0	19. JOID	- 18 4 12 24 8 6 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	
7Ø.Ø	53.4 101.65	23.7	-3.124	a.a33	-2.3	19.1	19 . H S S S S Y		14 - D - 17
8.0.9	37.4 103.45	20.9	J.126	ø.ø92	-3.4	1.2.3	1		21.9.29
65. <i>9</i>	37.0 103.85	27.0	-9.127	11.483	-4.5	11.5	1.19.13	- 13 + 24 5 2312	
90.0	55.5 (3.21	27.1	J.129	_ J. J34	-4.6	12.3	្រម្មរះផងរាវ	$-J_{*}J_{*}J_{0}^{*}U_{1}^{*}$	34 . 13 1. 4 1.
93.J	33.2 1.1.23	26.7	9.133	11.187	-5.3	11.3	9,3333	S. 1791	- 1 - 5, 197
95.0	31.7 - 1.33	23.9	1.132	J.J37	-0.5	1.1.9	J.A. 38	- 18 . - 187 - 1	. 5
96.0	55.9 1 13 21	27.9	J.132	3.324	-6.9	9.3	7.1551	1.134	7.5 AB
07.n		29.3	1.133	1.331	-7.J	3.2	3. C. C. C. J.	1.030	
07.0		2 ()	4.123	1.178	- j. j	7.2	11.13:1		عالم المراجع
93.3	13.7	.J. !	- 91.222	فالالتباد فار	-0.0	1 + -+	لاع فتيت و 2.	2 4 4 4 A .	1 1 1 1 1 1 1

ORIGINAL PAGE IS OF POOR QUALITY

Figure 22. Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Peak Pressure Rise/ Near Stall Throttle.

. . . **.**

ROTOR BLADE ELEMENT PERFORMANCE

			*				0.51	TNCTO	DEV.
TMMER	VH2EL	RËL.	LOSS	LOSS	REL.	DILL.		ANGLE.	ANDIE
1 1 1	SPSED	TURNING	COEF.	PARA.	масн	FACT.	MACH	ANGLE	ANGLE
\ /#/	MD6 098	ANGLE			NO.		NO.	DEG	DEG
	Mina cha	ÓFC			IN		007		
			a 162	a 137	a 16a	0.672	Ø.Ø96	2.0	28.4
1.ø	65.2 213.94	4.4	.0,10L	A 162	a 160	6 691	8.483	Ø.7	28.6
2.9	65.1 213.53	5.7	0.178	0.103	A 160	11 71 2	สัตย์	= 61 . A	23.3
3.Ø	65.Ø 213.26	6.8	0.139	N.102	1.130	-10+114	11 UOG	_1 5	201.3
4.0	64.9 212.93	8.3	9.198	Ø.175	0.193	19.763	0.360	-1.5	1
5 0	64 8 212.61	18.4	9.291	Ø.179	g.153	0.721	11.11.11	-4.0	
3.2	G1 G 011 97	12.1	3.230	Ø.18Ø	1.158	Ø.715	<i>5.</i> 981	-3.4	1. (1.) (1. (1.) (1. (1.) (1.) (1.) (1. (1.) (1.) (1. (1.) (1. (1.) (1.) (1.) (1. (1.) (1.) (1.) (1. (1.) (1.) (1. (1.) (1.) (1.) (1. (1.) (1.) (1.) (1. (1.) (1.) (1.) (1. (1.) (
	- 94,0 - 211,27 - 22,0 - 211,0 - 21	16 2	8.198	Ø.175	. 9.169	3.691	0.086	-3.2	1.1.1
18.9	54.3	10.4	0 129	a 129	8.163	0.615	9.938	-6.2	5.3
15.0	63.8 209.40	10.7	0.130 0.070	a add	6 165	0.633	11.169	-0.7	л.1
2Ø.Ø	63.3 2.37.79	19.3	9.972	0.000	N.100	0 169	0 117	= n.7	5.11
39.0	62.4 204.58	17.7	0%5	004	9.100	7 100	a 112	_3_1	7.6
50.0	60.4 198.15	17.8	9.993	0.003	0.163	J.485			0 4
700	53.4 191.73	18.1	<i>G</i> .929	Ø.327	Ø.156	1.552	1.933	0.0	2.0
00 0	87 6 193 51	19.3.	ø.ø37	. ៨. ៧35	Ø.151	9.587	.7791	-0.4	10.0
30.0	- 07.0 100.01 	21 6	1.1136	Ø.Ø35	Ø.147	- <i>9.69</i> 5	່ນ.ທອອ	. ≓ ü.7	3.5
85.9	3/.0 103.91		- 009	- 007	0.142	4.602	0.036	7.5	7.1
9ø.ø	56.5 185.30	- 23.2			1 1 1 1	1 494	9.985	-3.5	3.7
93.Ø	55.2 184.34	24.3	235		·	0 639	ត ពេល	-3.6	5.1
95.Ø	-55.Ø 103.69	25.4	032	1334			n aga	-9 0	4.9
96.Ø	55.9 133.37	26.4	024	02	1.142		N.1964		. 6
97.0	55.8 103.95	27.5	I.QI3	Ø.903	3 9.144	.9.641	ມູນຜູ	-7.4	
60 a	66 7 192.73	28.2	. I.I 34	Ø.Ø33	3 ø.145	<i>9</i> .662	ມ.ສ82	-0.4	3.1
20.0									

TORQUE = 8853.58 IN.-LB.

*Loss Coefficient Computed from Fixed Rake Data

STATOR VANE ELEMENT PERFORMANCE

* ****	Viater	435	ABS.	ABS.	INCID.	DEV.	LOSS	10SS	DIFF.
IMMER	WALLL	THENTNE	MACH	MACH	ANGLE	ANGLE	COEF.	PARA.	FACT.
76	SPLID	IUKNING	NO	NO	DEG	DEG			
	MPS PPS	ANGLE							
		DEG	111	~ ~ ~ ~	ц a	14 2	0397	4399	9.5980
1.Ø	65.2 213.99	39.1	9.119	0.000	5.0	16 0	a 8872	10 1074	6.5915
2.Ø	55.1 213.53	37.9	Ø.115	y.971	3.4 .	10.3	0.0076	13 1367	n 5101
3.0	65.0 213.25	37.6	<i>g.</i> ,119	Ø.Ø74	5.7	15.9	19.9309	.9.9302	27 10 2 3 3
<u>, a</u>	61 9 212.93	37.2	0.122	Ø.076	5.8	16.2	9.7581	9.0503	1.31.0
4 . <i>N</i>	GH 9 0112 61	36.2	0.124	Ø.078	5.1	16.1	8.3747	1.3737	11.5 14.5
5.0	04.0 11.07	26 9	0.126	8.080	3.1	15.5	Ø.9871	JJJ353	9.5339
1.1	24.0 11.0.07	30.0	1120	0.082	3.7	17.1	11.1114	9,9993	3.5135
1 9 .1	54.3 · 1.4.	34.0	21 1 1 1 1	11 1100	η u	15.3	g. 1179	9.116.7	.1.5515
15.Ø	63.8	29.7	Q.131	0.000	_0.0	13 7	11.1063	1.1942	9.5331
2Ø.Ø	63.3	27.9	لالكا، لا	1.001		1 17 12	6 6712	1.173	9.5115
33.0	32.4 0/4.53	26.3	Ø.125	ນ. ມອງ	-3.0	10.0	J 1606	1. 10531	1.1
50.0	63.4 .108.15	28.0	9.124	g .931	-2.7	و ک	M.0390	11 11 11 11 11 11 11 11 11 11 11 11 11	· · · · · · · · · · · · · · · · · · ·
วัติดี	58.4 191.73	31.4	y.123	.g.y31	ø.1	15.3	ມ		
000	67 6 1911.51	32.1	J.124	វរ.វ79	!].6	11.1	1.1930	9.004	
		3.7 1	9.127	11.181	អ.អ	12.2	_ <i>1</i>].:/685	1.067	1.9115
85.9		20.4	(1.129	J. J81	-1.7	14.3	1.1926	: : 91.:	. 5
9.9.9	10.0 state	1.200.2	1 1 7 1	0.001	- 3 . 4	13.7	1.1325	-J. 13. D.	. 1. 835-21
93.Ø		· · / • · · ·	لد دن و <i>دن</i> ۱۶۰۱ و دن	11 -191	- 4 1	17.7	9.1331	9.151	1.1.37.30
95.Ø	31.5 108.60	.	11.1.36	ي کار دارد مرجع			1 1 2 2 3	1.105	1.5 1.
96.Ø	- :3.9 - :5 . 37	35.5	ما کار ا	9.079	-4.7	1		1 1 11 1	
97.5	11.3	32.1	0.113	9.377	~ .	• • •	میں بنائے میں اور ا مراجع میں اور ا		1 1 1
98. <i>1</i> .	35.7	s ba.s	1.132	. J.J75	-5.3	01	تكملا بلايان	الانتخاب فالمراق	

Table 23. Design Intent Performance for Rotor B/Stator B Computed for U = 65.73 mps (215.64).

BLADE	ELEM	INT C	ATA	ROTOR	INLET										
IMMER	WakW	-	MO	WU	BETA		CŽ_			ເບຼ		Ç,		ALPH	I A
ົດ້ໍ	55.3 1	81 3	50.	a 165 1	65.6	22.8	1 FP 1 78	19 1.0 1	mma 15.4	4 60.	5 27.	5 6	90.4	34	<u>م</u>
11.5	57.8 1	89.9	81.	9 170.1	63.7	25.7	84	2	2.0	42	0 28	7	04.0	26.	B ^{***}
21.6	59.3 1 Eo A 1	94.0	52.	6 172.4 4 172 1	62.3	27.6	5 90		11.1	1 36.	5 29.	7.	87:8	22.	0
40 5 6	59.6 1	95 7	31.	6 170 0	60.3	29.6	5 97		9.6	9 32.	6 31.	21	00.0	19.	6
49.8	59.1 1	93.7	50.	8 166.8	59.5	30,0	98	.4	10.0	32.	7 31.	8 1	03.6	18.	Ă-
- 159 1 1 - 68 - 6 1	58.3 1 57 1 1	91.1	49,	8 163.4 8 180 0	58.8	30.2	2 99	1.1	10.	1 93.	2 31.	9 1	04.5	18.	5
78.3	55.3 1	81.4	48.	7 153.1	57.6	29.6	5 97	2	11.1	3 37.	1 91.	7 1	04.1	20.	
88.6	32.4	72 1	44.	0 144.4	57.1	28.	93	. 4	2.1	9 42.	4 31.	3 1	02.7	24	4
100.0	47.7 1	28.2	39.	9 131.0	96 8	26.1	81	1.7	15.1	8 52.	3 30.	6 1	00.3	31.	4
BLADE	ELEM	ENT (DATA	ROTOR	OUTLET	1.5	TATO	R IN	LÉT	·					
	MPS	FPS	MP	WU S FRS	BETA	MB	CZ		MD	CU FP4		, C	FDS	ALPH	1A 2
o	34.5	13.2	2 29.	0 95.0	57.1	18.	7 6	.4	36.	8 120	6 41.	2 1	35.3	63	0
11.8	39.5	29.6	30.	7 100.9	51.1	24.	8 8	. 3	33.	8 110	9 41.	9 1	37.8	53.	7
21.6	42.4	39 0	31.	8 104.2	48.5	28.	194 8	2.1	31.	8 104.	.3 42.	4 1	39.1	48.	5
40.5	43.6	43.2	2 31.	1 102.1	45.5	30.1	6 100	5. g	30.	6 100.	.3 43.	2 1	41.8	45	. D
49.8	42.9	140	29.	9 98.0	44.1	30.	8 10	.2	30.	9 101	4 43.	71	43.3	45	Ť
59.1	42.0	37.8	3 28.	4 93.2	42.5	31.	0 10	1.7	31.	5 103	.3 44.	2.1	44.9	45.	.5
78.3	40.7	133.0	20.	1 79.1	38.7	30.1	6 10 1 9/	1.2. 8.7	32.	9 111	2 44. . 4 48.	9 1	40,7 48.8	40.	, 4 . 8
88.5	35.1	115.0	20.	7 67.5	36.1	28.	3 9	2.9	36.	3 119	2 48.	Ťİ	51.2	52	<u>. 1</u>
100.0	28.6	93.7	7 15.	5 50.6	32.9	24.	0 7	5.6.	40.	4 132	. 5 48.	9 1	54.0	69	. 3
BLADE	ELEM	ENT 1	DATA	STATO	OUTLE	T -				.		-			
IMMER	MPC	696	MD	WU	BETA -	MO	CZ F	ae	MO	CU		ູເ	FDQ		IA S
o	55.3 1	81.4	1 50.	4 165.4	65.8	22	7 74	1.5	15.	3 50.	2 27	4	89.8	34	0
11.5	57.9	89.9	51.	9 170.3	63.9	25.1	5 8:	3.6	12.	7 41.	8 28.	5	93.4	26	5
21.8	59.3	94.5	5 52.	6 172.6	62.5	27.4	4 81	9. <u>8</u> .	11.	1 36.	3 29.	5	96.8	22.	.0
40.5	59.6 59.6 1	95.6	5 51.	9 172.3	60.5	29.	0 90 3 91	3.0	9.	2 33. 9 32.	4 30.	0 1	99.0 01.5	18.	6
49.8	59.0	93.	5 51.	0 167.3	59.7	29	7 9	7.8	9.	9 32	4 31.	3 1	02.8	18	4
59.1	58.2	90 9	49.	9 163.7	69.0	30.	0 91	3.4	10.	0 32.	.9 31.	6 1	03.7	18	5
78.5	57.1 ' 88 2 '	87.2 At 1	(48.) Ar	6 159.4	58.3 57 A	29.5	8 98 8 98	3.2 2 R	10.	4 34. 2 28	.031. 931.	7 1	03.9	19.	. 1 G
88.6	52.4	71	44.	2 144.9	57.4	28	2 9	2.6	12	8 42	0 31.	ŏì	01.8	24	4
100.0	47.7	156.1	3 40.	0 131.3	57.1	25.	9 8!	5.0	15.	8 .51	.9 30.	4	99.6	31	. 4
ROTOR	BLAD	E ELI	EMENT	PERFOR	RMANCE										
IMMER	W	IEEL	_	REL.	LOSS	Ŀ	OSS	REL	. '	DIFF	REL.	IN	CID.	DEV	' _
(%)	MPS	FPS	<u></u>	ANGIE	COEF	<u>, P</u>	AKA.	NO	<u> </u>	FACT.	NO		FG	DEC	<u>_</u>
				DEG	-			IN	•		OUT	-		•	•
0.	57.6	189.	00	8.5	0.09	6 0	. 086	0.1	42	0.555	0.088	s -	5.1	17.	1
21 6	56 6 88 7	185	AA -	12.6 13.8	0.00	8 0 8 0	062	0.1	49	0.483	0.100		8.1	8.3	<u>-</u>
31.2	54.9	180	15	14.2	0.03	70	. 035	ŏ. i	54	0.423	0.112	<u>i</u> .	8.6	7.	7
40.5	54.1	177.	52	14.8	0, 03	4 0	. 032	0.1	53	0.419	0.112	-	8.8	<u>7.</u>	5
49.8	53.3	174	25	15.4	0:03	50	033	$\frac{0.1}{0.1}$	52	0.425	0.110	<u> </u>	8.9	7.1	2
68.6	-51.7	169	55	17.4	0.04	4.0	.042	ŏ.i	47	0.447	0.104	í.	9.1	7.1	2
78.3	50.8	166	80	18.9	0.04	9 Ò	. 047	0.1	42	0.471	0.099	•	9.6	6.4	8
88.6	50.0	163	88	21.0	0.05	50	.053	<u>Q.1</u>	35	0.512	0.090	2-1	0.5	<u>.</u>	2
STATE	43.U 19 VAN	100. E'EI	. 60 Ement	2J.9 Peréni	U.UU PMANCE		. 059	Q . I	46	0.004		, - 1	1.7	-	2
IMMEE				486				1 NO	N D	DEV	Let	99	1.685		165
110360	`	PEED	<u> </u>	TURNING	MAC	H M	ACH	ANG	LE	ANGL	E CO	EF.	PARA	. F	ACT.
	MPS	FP	S	ANGLE	NO.	N	0.	DE	0	DEG					
•	87 0	1	00	DEG	11		UUT			12 2	0.0	840	0.04	191 0	8910
11.8	56.6	185	. 74	27.2	0.1	07.0	073	-6	5.5	12.0	0.0	820	0.00	512 0	. 5000
21.6	55.7	182	. 88	28.6	Ö.	09 0	. 078		3.3	9.7	0.0	460	0.04	56 0	.4780
31.2	54.9	180	.15	-26.3.	Q. 1		078	-6	5.8	7.9	0.0	350	0.00	347 0	.4610
49.8	53.3	174	. 88	26.7	0.1	120	0.079		3.9	8.9	0.0	300	0.02	298 0	4510
59.1	52.5	172	.25	27.0	0.	13 0	. 081		0	6.0	0.0	320	0.0	318 0	4530
88.5	81.7	189	. 55	27.3	9 .1	15 0	0.081	-7	7.2	7.0	0.0	390	0.0	387 0	.4610
78.3 AA A	50.8	166	. 50 8A	27.5	0.1	1165 0), Q81 1.079	-7	3.0	7.9		340 740	0.00	732 O	.4/50
100.0	49.0	160	65	27.9		20 0	0.078	- (5.5	9.4	0.1	010	0.15	94 0	. 5250

Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance. Table 24.

۱

		6	pen Throttl	•		u e	
	Ŧ	OTAL PRESSI	URE	115			
2	DTOR 3	ROTOR 3 EXIT	STATOR 3 EXIT	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR S EXIT	
	1.8442	1.3499	1.3230	5.6370	1865.8	1.2057	
-	1.8591	1.3787	1.3351	g.6865	1 9762	1991.1	
	g. 8716	1586.1	90920 I	6.6842	g .9672	1.1964	
			1.3605	6.631	g.9596	1561.1	
		1299	1.3653	J. 68 22	J. 9535	1-1984	
		4452	1.3694	g. 62.65	g.9467	1.1355	
		1 4531	1.3849	J. 6786	H.9481	1.1795	
			1.3934	1.6778	g.9571	1.1757	
			13984	6767	g.9725	1.1741	
	217.170 2020	TET I	1.3989	g. 6769	1976. J	1.1705	

Design Point Throttle

Peak Pressure Rise/Near Stall Throttle

URE	STATOR 3 EXIT	1.5336	1.5289	1.5241	1.5278	1.5039	1.4938	
VIIC PRESS	ROTOR 3 Exit	1.2005	1.2621	5782.1	1.2414	1.2285	1.2195	
STI	ROTOR 3 INLET	8666.8		1.9 371 1.9362	g.9353	1.9306	1.9216 1.9216	
2	STATOR 3 EXIT	1.6166	1.6328	1.6386	1.6452	1.6489	1.6585 1.6585 1.6585	•
TAL PRESSU	ROTOR 3 Exit	1.7621	1.7652	1.7647	1.7551	1.7369	160/21	
1	ROTOR 3 INLET	1.0714	1770.1	1.000.1	1.066	1.922	1.1958	1.11/8
	PERCENT INNERSION			100 ·		7.8 18.8	15.6 29.8	33.8
URE	STATOR 3 EXIT	1.4418	1.4387	1.4328	1.4273	1.4223	1.4499 1.4459	1.45
ATIC PRESS	ROTOR 3	1 2618	1.1895	1.1684	1.1536	1.1457	1.1546	1.1775
15	ROTOR 3	10101	g. 8699	#.8668	g.8656 g.8648	g. 8629	g. 8569 g. 8536	g. 85#5
	STATOR 3	1183	1.5296	1.5454	1.5581	1.5747	1.5868	1.5964
	NOTOR 3		1.6363	1.6181	1.6365	1.6521	1.6582	1.6305
1	ROTOR 3	INLET	1/10.1	1.8250	1160.1	1678 · 1	1.0542	2604.1
	PERCENT	INNERSION		9 - 2			18.8 15.8	

Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance (Concluded). Table 24.

Open Throttle

	ຕ ∝⊢	G	ຄ	3	3	8	ġ	ø	ო	ო	5	ស
	STATO	43.1	39.9	38	36	- ME	33.	õ	27.	23	20.	19.
CORRECTED	STATOR 3 INLET	68.5	70.0	69.8	69.0	67.7	66.1	60.5	53.1	47.3	44.4	43.2
•	ROTOR 3 Inlet	41.1	43.8	42.8	41.2	40.1	37.6	33.7	30.7	27.2	23.8	21.8
	STATOR 3 EXIT	40.2	38.5	36.8	35.0	33.5	32.3	29.5	26.3	22.4	20.1	15.8
IEASURED	STATOR 3 INLET	. 67 5	69 1	68.9		66 7			51.9	46.1	C 64	42.1
1	ROTOR 3 INLET	7 96	A 7 A				20.00	5.00	30.6	26.26	1.02	21.0
	PERCENT	Ċ	- c	- c	20	- - -	4 u		0. u		0.07	0.0E

CURVE FIT VALUES USING ZERO STATOR POSITION DATA

Peak Pressure Rise/Near Stall Throttle

Design Point Throttle

CORRECTED	STATOR 3 EXIT	22.23.33.20.7 22.23.33.00.7 22.23.33.20.7 22.23.8 22.23.33.20.7 22.23.8 23.25.2 23.25.2 23.25.2 23.25.2 23.25.2 25.25.2 25.25.2 25.25.2 25.25.2 25.25.2 25.25.25.25.25.25.25.25.25.25.25.25.25.2	
	STATOR 3	78. 78. 78. 78. 78. 78. 78. 78.	
	ROTOR 3 INLET	84.6 85.4 85.4 82.7 33.9 33.9 33.9 22.2 33.9 22.2 22.0 22.0 22.0 22.0 22.0 22.0 22	
MEASURED	STATOR 3 Exit	40.2 39.1 39.5 345.6 334.0 221.4 221.0 221.0 221.0 221.0 221.0	
	STATOR 3 INLET	78 0 77 78 7 77 75 6 69 4 63 3 63 3 766 3 766 3 766 3 766 3	
	ROTOR 3 INLET	44 43 44 44 44 44 44 44 44 44 44 44 44 4	
	PERCENT	23000000000000000000000000000000000000	
CORRECTED	STATOR 3 Exit	40.1 35.8 35.8 33.5 33.5 33.5 23.9 21.5 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22	
	STATOR 3 INLET	76.1 77.7 77.7 77.7 77.7 77.7 7 7 7 7 7 7	
	ROTOR 3 INLET	44.5 42.6 42.8 40.8 39.1 39.1 26.0 22.7 22.7 22.2	
MEA SIJRED	STATOR 3 EXIT	10.00 10	
	STATOR 3	4 4 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	ROTOR 3	222333466 219425 2233346 219425 21945 223334 21945 219555 219555 219555 219555 219555 219555 219555 219555 219555	
	PERCENT	0 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	
Rotor Loss Coefficients Determined from Relative Total Pressure Measurements, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance. Table 25.

		Anen	Throttle			
		,				
	TAL PRESSUR			ROTOR LOS	S COEFFIC	I EMIT
PRECENT MANUTARY	ROTOR 3 INLET	ROTOR 3- EXIT	PERCENT	1CTAL LOSS	WAKE LOSS	TOTAL MINUS WAKE LOSS
					2000	0.1830
1	0101	1 2940	0.0	0.1596	0.000	
р й			ç	0.1509	0.008	0.141
5 Q,Q	1.4506			C C694	0.0202	0.0492
15.0	1.4729	1.411			0100	0.0159
. 0 00	1.4919	1.4628	20-02	0.000		0 037
	• 5407	1.5101	35.0	0.0448	20.0	00000
0.45			092	0.0511	0.0169	0.0342
50 0	1.5305			0 0483	0.0239	0.0244
65.0	1.4789	101			0 0290	0.0128
0.04	1 3973	1.3682			0.0421	0.0099
0.54	1,3660	1.3317	0.08	0700.0	0.05	0 0413
		1 2020	0.06	0.1069	0.000	
90.06	1700.1		5	0.0774	0.0621	0.0153
52°0	1. 2875					

		Design P	olnt laro	arti		
101	TAL PRESSUR	8		ROTOR LOS	S COEFFIC	LENT
PRECENT IMMERSION	ROTOR 3 INLET	R010R 3 E 111	PERCENT	TOTAL	MAKE LOSS	TOTAL MINUS WAKE LOSS
	1.5806 1.6221 1.6221 1.6233 1.6273 1.6273 1.6273 1.6287 1.6287 1.5598 1.5598 1.488	1.4382 1.4382 1.4775 1.6047 1.6047 1.6647 1.6657 1.6657 1.6875 1.5875 1.4083	n 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0. 1991 0. 1680 0. 1012 0. 0416 0. 0416 0. 0518 0. 0518 0. 0582 0. 0582 0. 0582 0. 0582 0. 0582 0. 0582	0.0049 0.0147 0.0156 0.0156 0.0156 0.0156 0.0190 0.0190 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195 0.0157 0.	0. 1942 0. 1953 0. 0753 0. 0763 0. 0762 0. 0762 0. 0725 0. 0755 0. 07550 0. 07550 0. 07550 0. 07550 0. 07550 0. 07550 0. 07550 0. 07550 0. 07550 0. 075500 0. 075500 0. 0755000000000000000000000000000000000

المحد تازيد " روي الديور

	Peak Pro	essure R	lse/Near S	itall Th	rottle	
. 5	TAL PRESSUR			OTOR LOS	S COEFFIC	IENT
PRECENT IMMERSION	ROTOR 3 INI.ET	R010R 3 Ex11	PERCENT	TOTAL LOSS	WAKE LOSS	TOTAL MINUS WAKE LOSS
0	1.4650	1.4168	5.0	0.1112	0.0158	0.0954
10.01	1.5499	1.4656	00	0.1233	0.0159	0, 1160
15.0	1.6165	1.5397	0.00		0.0164	0.0648
20.0	1.6723	1.6133	20.0	0.0477	0.0222	0.0255
35.0	C/C/ 1	6917	50.0	0.0569	0.0187	0.0382
0.00	1.1203	1.6360	65.0	0.0688	0.0204	0.0484
	1.6162	1.5797	80.0	0.0587	0.035	0.0216
85.0	1.5969	1.5470	85.0	0.019	0.000	0.0102
90.06	1.5573	1,4994			0.0514	0.0147
95.0	1.5199	1.4713	27.0			

OF POOR QUALITY

Table 26. Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Open Throttle.

BLADE ELEMENT DATA ROTOR INLET.

. . . •

TMMER	a v		5	/U	BETA	C	Z	CL	1	C		ALPHA
42	hine	000	MDC	203	OFC	MPS	FPS	MPS	FPS	MPS	FPS	l(a):⊾Gi
ii ii	_ PHP 🍮	663	616.5			10.0	60.1	12 0	66.2	26 6	12A Ø	41.1
ø.	62.1	171.8	48.4	158.7	68.1	19.2	03.1	10.2	00.0	<u>.</u>		
<i></i> .	12/11 1	1 3 3 9	16 6	152 5	67.2	19.4	63.5	18.7	61.2	26.9	33.2	43.4
1.0	20.4	100.0				10.09	67 1	10 0	67 4	27 Q	\$1.6	A2.8
2.0	59.4	135.2	46.0	151.0	ບນ. ປ	.0.5	01.1	1 2		80 0		
3 0	12 10 20 20	133 8	46.0	150.8	64.6	21.6	7Ø.9	19.5	62.3	ួម ម	94.4	
3.0	0,0,0				63 7	00 U	72 13	10 0	62.3	29.4	96.6	- MJ.1
4.0	51.1	157.0	43.9	120.0	03.1	44.0	73.0	· · · · · · · · · · · · · · · · · · ·		20.0	00.1	17 6
6 0	621	171.0	46.5	152.4	62.8	23.6	77.0	18.5	00.0	1. J . J		
0.0		A 1 A 1 A		120 0	49.1	31 6	217 7	17.3.	53.3	30.3	99.5	. 5.8
7.0	52.8	1 3.4	40.8	193.0	04.1	1. (* * C)	0.017			0.4	1 . 1. 1 15	., 7
1 07 07	52.6	173.0	37.2	154.9	61.5	-25.5	83.5	. 17	50.9	. ∪ , لاين	A - 1 - 2 +	
10.0		1 20 0	12 5	112 9	1.11 12	04 6	87.3	15.3	52.9	31.3	1.71.6	26.7
15.0	54.3	1	4/.9	137.4	00.0	1.0.0			1 12 13	91 4	1.12 2	
20.0	55.3	1 34.0	40.9	160.4	ųŬ.1	28.Ø	91.7	14++	41.44	31.3	1.7.9.0.5. 	· · · · · · ·
L .V. I //		1 1 1 1	1.17 3	161.6	8.9 7	20 2	99.3	12.1	39.7	32.6	137.9	21.7
30.0	. ວິວີ. ບິ	1	39.4	104.0	20.7	2012	22.0		• •			

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

TMMED	1	1	1.	111	BETA	C	Z	C	U	C		А:РНА
THEFT			MDe	coe.	- SFG	MPS	FPS	MPS	FPS	MPS	FPS	DEG
	PHP 5		00 0	- FEG	61 6	12 0	45 7	35.7	117.1	38.3	125.7	63.5
ø.	32.7	1.57.1	29.5	96.9	04.5	10.2	4.4.4	37 7	122 6	ALC OL	131.4	្វៈវេ. ថ
1.Ø	3.0.6	1.1.9.5	27.5	99.1	03.5	13.0	44.5	31.1	100 0	4.5	126 2	สติด
2.0	29.6	97.2	26.Ø	35.3	61.2	14.2	46.0	38.0	140.0	41.0	130.2	0.0.0
3 0	29.3	45.0	25.0	81.9	58.4	15.2	5Ø. <i>0</i>	43.3	131.1	4. 8	1.10.3	00.9
1 13	20.1	13 3	21 3	79.6	55.6	16.5	54.2	49.5	133.1	43.8	143.7	57.7
4.0	00 0		22.0		62.9	17.9	58.9	411.9	134.3	44.6	146.4	03.1
5.0	29.9	3 (J . 19 	-10.7	70.4	10 7	10 9	61 9	41.1	135.9	45.7	1 19.3	J.C. 2
7.Ø	39.6	12.1.5	23.4	76.0	49.7	12.0	71 0	10 11	121 2	45.9	157.8	1.1.4
1Ø.Ø	33.1	1	24.2	79.5	40.9			4.0 • .0	101.0	.112 1	1 1 2 4	13.13
15.0	33.6	125.6	27.4	89.9	45.1	27.1	88.1	30.4	113.3	40.4	1.0.0	
20 3	12.9	1.1.7.7	30.7	139.7	45.6	39.I	98.3	32.0	199.8	44.3	110.4	- 17.3
30.0	15.3	133.8	32.4	1.06.2	45.4	31.7	104.2	29.9	98.2	43.6	143.1	43.2

BLADE ELEMENT DATA, STATOR OUTLET

******			۱.	3 11	RETA	С	z	C	U.	C		AL PHA
THUMEN	(w	e	мре		0010	MPS	FPS	MP S	FPS	MPS	FPS	QeCG
*	MPS	112	MP 5			166	E 3 <i>a</i>	11 7	48.2	22.1	72.4	41.6
ø.	53.2	173.4	50.5	165.8	11.1	10.5	34.0	1	40.6	55 6	77 18	20 9.
1.0	53.2.	171.5	ธย.ม	164.2	7.5.5	18.0	23.9	1.2	49.0	14 J 4 J	1111	
5.4	62 1	1 7 3 12	19.8	163.3	38.6	19.4	-63.5	15.3	5:5.1		37.8	
6.2	53.4	172 4	10 7	-1/3 2 2	37.3	20.6	67.6	15.2	49.9	25.6	31.1	
3.1	53.3	1.0.0	42.7	100.00	0.0.0	21 3	71 11	15.1	19.5	26.4	33.5	Vi
4.Ŭ	54.3	1.5.9	10.0	103.3	00.3		7.1.1	1 1 11	1.3 .1	1 77	31.1	
5.9	54.6	173.2	-3.3	1.63.4	05.0	(a + - + · + ·	73.0	19.19	4 2 4 2	17	- 1 F 7	
7 0	51.8	174.9	49.7	152.9	31.7	23.3	76.4	14.0	1.1.1			
\ <u>a</u> `a	and a	131 7	19.5	162.3	33.1	24.5	.01.6	14.8	4315	-28.9	41.6	
10.0	0.044	4	30.0	1.12 12	31 2	26.7	87.6	13.3	4.5.4	3.7.1	- 99 . 7	
12.0	50.0	103.0	40.0	100.0		00 0	02.0	12.1	- 10 T	34.5	1.11.2	
29.0	53.4	131.5	51.2	101.5	96.6		- 94.10 - 00 - 0	1.1		21 2	1 (1 1	is
30.0	59.6	125.4	ានពេល	1721.6	i:∫, i	59.9	90.5	1771 - 3	22.0	9.9 . 9	A	

Table 27. Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Design Point Throttle.

BLADE ELEMENT DATA ROTOR INLET.

IMMER	. W	WU	BETA	CŻ		CI	j.,	с		ALPHA	
	MPS PPS	MPS FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DEG	
Ø.	5/3.6 133.1	47.7 156.6	7Ø.3	16.9	55.4	16.6	54.5	23.7	77.7.	44.4	
1.0	50.0 133.9	46.9 153.8	69.5	17.3	56.8	17.4	57.1	24.5	89.5	45.Ø	
3.0	50.3 135.1	46.6 162 8	- 03.9 67 8	18.2	69.7	17.5	57.5.	25.3	32.9	43.8	
4.0	50.9 155.6	46.7 153.1	66.6	29.9	65.6	17.3	57.4	25.9	35.0	42.4	
5.Ø	51.2 168.0	46.8 153.5	65.9	20.8	68.1	17.1	55.0	26.9	33.2	29.3	******
7.8.	52.9 173.5	47.8 157.Ø	64.6	22.5	73.8	15.8	52.3	27.5	99.2	35.1	
10.0	54.6 179.9	49.0 160.6	63.6	24.1	79.0	14.4	47.3	28.1	92.1	39.8	
29.0	57 8 123.3	30.1 04.5	02.4 61 6	26.0	85.4	12.3	41.9	29.9	95.2	23.1	
3ø.ø	57.3 130.M	51.5 167.2	31.5 3Ø.9.	27.7	90.9	$11.5 \\ 11.3$	37.7 37.1	29.0	97.2 93.2.	22.7 22.2	

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

IMMER	. W	1	V	νU	BETA	С	Z	C	:U	c	:	ALPHA
%	MPS	FPS	MPS	FPS	DEG	MPS	FPS	MP S	FPS	MPS	FPS	DEG
ø.	27.8	91.3	25.9	84.9	68.2	10.2	33.6	38.5	126.3	39.8	139.7	74.9
1.Ø.	26.2	36.Ø	24.3	79.8	67.9	9.8	32.I	39.9	131.0	41.1	134.9	73.1
2.Ø	25.6	33.9	23.3	76.4	65.4	1.0.6	34.7	40.9	134.2	42.2	138.6	75.3
3.Ø	25.3	93.1	22.5	73.8	62.4	11.7	38.3	41.6	136.4	43.2	141.7	74.1
4.Ø	25.3	33.1	21.9	71.8	59.6	12.7	41.8	42.1	138.1	44.0	144.3	73.0
5.Ø	25.7	24.3	21.5	79.7	56.8	14.5	45.9	42.3	136.9	44.6	115.3	71.5
7.Ø	23.6	37.4	21.3	69.8	52.8	16.3	52.6	42.4	139.1	45.3	148.7	59.1
1Ø.Ø	29.1	93.6	22.0	72.1	40.8	19.2	-62.9	41.4	135.9	45.7	149.8	65.9
15.Ø	33.9	1/3.3	23.7	77.9	45.9	22.9	75.2	39.2	128.5	43.4	143.9	59.5
2Ø.Ø	33.9	127.5	27.4	99.5	44.7	27.5.	99.4	35.1	114.9	44.5	146.2	31.7
3Ø.Ø	43 <i>I</i>	141.1	20.3	191.1	45.7	3Ø.Ø	98.4	30.6	1.0.5.3	42.9	149.7	43.5

BLADE ELEMENT DATA STATOR OUTLET

IMMER	e. 1	J.	٢	/U	AT36	C	ż	С	U	С		ALPHA
%	MPS	FPS	MPS	FPS	DEG	MPS	FPS	MP S	FPS	MPS	FPS	DEG
ø.	54.7	179.6	53.1	174.2	75.7	13.3	43.7	11.3	37.0	17.5	57.3	40.1
1.Ø	54.0	177.1	52.Ø	179.5	74.1	14.7	48.1	12.3	. 40.4-	-12.1	62.8	39.5
2.Ø	54.2	177.9.	51.7	169.6	72.3	16.3	53.6	12.5	49.9	24.5	67.4	37.3
з.Ø	54.3	178.5	51.3	166.4	7g.9	17.6	57.7	12.7	41.3	21.7	71.3	33.8
4.Ø	54.4	170.5	51.1	167.6	69.7	18.7	61.4	12.9	42.3	22.7	74.5	24.5
5.Ø	54.6	179.3	51. <i>9</i>	167.2	-68.7	19.7	64.6	12.9	42.4	23.6	77.3	52.1
7.Ø	54.6	179.2	50.4	165.5	67.3	20.9	-33.7	13.2	43.4	24.9	61.3	52.2
10.0	54.9	1 13.9	53.2	154.0	8C.1	22.1	72.5	13.2	43.2	25.7	04.4	
15.Ø	55.9	103.4	59.G	166.1	64.7	23.7	77.8	12.0	41.3	25.7	37.6	1.7.3
2 <i>9</i> .9	57.1	137.3	\$1.4	139.5	33.9	24.9	81.3	11.1	35 3	27.3	19.5	1.0.9
3Ø.Ø	53.5	1.2.7.3	51.8	169.8	305	25.1	85.8	9.7	31.9	27.9	:1.5	

ORIGINAL PAGE IS

Table 28. Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/Near Stall Throttle.

BLADE ELEMENT DATA _ ROTOR INLET

IMMER %	W MP S	FPS	MP S	/U 1 FPS	BETA DEG	CZ MPS	FPS	CU Mps	FPS	C MPS	FPS	ALPHA De g	
Ø. 1.Ø	51.6 51.0	$159.1 \\ 157.2$	48.8	160.1. 158.1	71.Ø 7Ø.8	16.6	54.6	16.4 16.9	53.9 55.6	23.4 23.7	76. 7 77.9	44.5	
2.Ø 3.Ø	51. <i>1</i> 51.6	137.3	48.1 48.3	157.7	7Ø.2 69.5	17.1	56.Ø 58.8	17.Ø 16.6	55.7 54.4	24.1	79.Ø 8Ø.1	44.7	
4.Ø 5.Ø	52.7 52.9	1/3.0	49.1	161.2	68.5 68.Ø	19.1	62.8	15.7	51.5	24.7	81.2.	39.3 20.4	
7.Ø 1Ø.Ø.	53.3	175.2	49.2	161.4	66.4	29.6	07.0 7以.7 75 7	15.3	47.7	26.8 26.7	45.3 87.5	33 . 87 33.87	
15.0 20.0 30.0	55.3 56.2 57.6	104.5 109.Ø	30.4 30.5 51.1	158.1 167.7	63.2 64. <i>1</i> 62.4	24.5	ນສ.3 87.1	12.7 11.2	41.5	27.6	97.4 94.5	27.3	

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

IMMER	W		W	J	BETA	C:	Z	C	:U	C	:	ALPHA
%	112 S	663	MPS	FPS	UEG	MPS	FPS	MP S	FPS	MPS	FPS	DEG
g.	23.0	13.6	21.3	70.0	37.6	8.7	28.6	43.9	144.Ø	44.3	146.9	78.5
ĩ.ø	22.3	73.1	20.6	67.6	67.3	8.5	28.Ø	44.5	146.1	45.4	143.8	78.9
2.Ø	22.3	73.1	29.2	66.3	64.9	9.4	3Ø.8	44.8	147.1	45.8	150.3	78.Ø
3.0	22.3	73.3	19.9	65.4	63.1	10.1	33.0	45.3	147.5	46.1	151.3	77.2
4.Ø	22.7	71.5	19.9	65.3	61.1	1Ø.9	35.3	44.9	147.4	46.2	151.7	76.1
5.9	23.3	75.3	28.15	55.7	59.3	11.3	38.8	44.7	146.7	46.2	151.7	75.9
7.9	21.5	3.2.6	29.7	68.Ø	57.3	13.2	43.3	43.8	143.8	45.8	150.2	72.5
10.0	25.5	37.0	21.8	71.4	55.1	15.1	49.6	42.5	139.4	45.1	147.9	79.2
15.0	3.5.2	90.9	23.0	75.6	. 49.6	19.5	63.9	45.7	133.6	43.2	143.1	64.3
20.0	34.9	114.7	25.2	32.6	46.0	24.2	79.5	38.1	125.3	45.1	143.1	57.4
30.0	41.3	135.4	29.3	96.2	45.1	29.1	95.4	33:3	100.2	44.9	144.3	48.5

BLADI	E ELEI	MENT D	ATA - 3	STATUR	00162	1						
IMMER		1	٨	/U	BETA .	c	z	с	U	С		ALPHA
×	MPS	FPS	MPS	FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DEG
ø.	54.7	179.4	52.9	173.6	75.2	13.0	45.3	12.3	4.3.4	18.5	6 9.7	41.G
1.ศ	54.4	173.5	52.3	171.6	73.8	15.3	49.1	12.3	42.1	19.7	64.7	A/J.5
2.9	54.2	177.7	51.8	169.9	72.7	15.9	52.2	13.3	40.5	29.7	68.0	. 39.7
3. 0	54.7	179.6	52.Ø	179.5	71.5	17.2	56.3	13.3	42.5	21.5	73.6	35.9
4.0	55.1	133.7	32.1	1.20.7	79.7	18.3	\$9.2	12.9	42.1	22.1	72.6	35.3
5 a	55.1	191.7	51.9	179.2	7.0.1	18.5	60.8	12.3	42.2	22.6	74.1	34.7
7 6	55.2	1 1 2	51.8	139.9	69.5	19.2	62.9	12.8	41.8	23.0	75.6	. 33.5
10 0	55.4	111.9	51.5	169.2	68.3	29.3	66.7	12.7	41.5	24.9	73.6	51.8
16 6	44.4	1 1 7	31.3	179.9	36.3	22.3	72.1	11.9	39.2	23.3	02.1	13.4
20 0	67 7	1 . 9	10.9	17.4.6	55.8	23.2	76.1	11.3	37.3	25.3	04.6	15.0
30.0	57.4	1 1.4	51.8	13).9	64.2	24.0	01.5	10.5	34.5	27.9	53.5	.2.9

164.

Table 29. Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Open Throttle.

ROTOR BLADE ELEMENT PERFORMANCE

1

IMMER (%)	VHIEL Spied Mps (PS	REL. TURNING ANGLE	K LOSS COEF.	LOSS PARA.	RÉL. MACH NO.	DIFF. FACT.	REL. MACH NO.	INCID. ANGLE DEG	DEV. Algle. Deg	
Ø. 1.Ø 2.Ø 3.Ø 4.0 7.0 19.0 15.Ø 20.0 30.0	65.2 214.82 65.1 213.79 65.9 213.80 64.9 213.80 64.8 212.74 54.7 212.41 64.5 211.77 64.3 219.81 63.8 279.20 63.3 207.69 62.3 204.39	DEG 3.7 4.7 6.1 9.9 12.4 14.6 15.6 14.5 13.3	y.122 J.139 J.169 J.224 J.222 J.249 J.260 J.222 J.110 J.222 J.110 J.524 J.030	9.196 9.113 9.148 9.182 9.227 9.227 9.249 9.227 9.249 9.237 9.193 9.522 9.528	1N Ø.148 Ø.144 Ø.145 Ø.145 Ø.145 Ø.149 J.151 Ø.153 Ø.153 Ø.161 Ø.167	Ø.541 Ø.567 Ø.595 Ø.615 Ø.623 J.623 J.623 J.463 J.463 J.384 J.384	8.393 8.337 8.337 9.384 9.383 8.334 9.335 7.335 7.335 7.335 1.113 0.122 8.129	-2.6 -3.5 -4.9 -6.1 -7.9 -7.9 -8.6 -9.9 -9.5 -11,2	24.5 20.5 21.1 13.3 15.4 12.7 9.3 6.4 4.6 5.2 5.9	•

TORQUE = 43147.7.7 IN.-LB.

*Loss Coefficients Computed from Fixed Rake Data

STATOR VANE ELEMENT PERFORMANCE

I MME R #	WHEEL Spied Mps fps	ABS. TURNING ANGLE	ABS. MACH NO.	ABS. MACH No.	INCID. ANGLE DEG	DEV. Angle Dec	LOSS COEF.	LOSS PARA.	DIFF. Fact.
	10 0 01 1 120		6 1 1 G	a d63	-0.9	20.3	Ø.J765	J. 9739	៨.៩៧៨
я.	33.2	20.9		4 837	1 5	19:3	9. 1427	1. 1395	1.6152 .
1.Ø	33.1 213.7.1	30.1	0.114		1.0	10.0	a 1.000	1 1000	1.61.19
2.0	65.0 213.30	31.6	9.118	S. 7.0	4.4	10.0	24 1.7 3 2	F 1 1 7 1 1	
2 14	61.9 213.95	32.6	Ø.122	ມ.ມ73	2.4	17.0	0.1109	9.113.	
3 . a	41 9 949 71	32 0	0.125	9.975	3.9	16.7	9.1253	1.1231	- D. A
4.0	- (1)	22.1	11.127	11.077	1.3	15.1	- 所, 1355	-9.132°	. 6 - 5 - 5
5.0	04.7 41	34.0		a 370	11 3.	16.1	-1.1521	1.1100	7. 3 C. 1
7.S	34.5 111.77	31.5	9.1.39				1 1 2 1	1 1 1 1 1 1 1 1	
10.0	64.3 .1.31	29.3	J.131	9.082	- i - i - i - i - i - i - i - i - i - i	10-3	ويوريه والمعالي	· · · · · · · · · · · · ·	
15 0	33.3 1.1.21	25.8	<i>U</i> .109	1.166	-4.9	13.3	11.11.25		• • •
20.0		24.11	9.126	J.587	-0.2	11.3	9.3917	7. 1 2.J	
20.ນ		14 17 1 A/ 13 13 13		0 193	-9.7	7.3	3.3714	3.275	
30.9	اد د. د	23.1	19 + 1 in 4						

Table 30. Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Design Point Throttle.

ROTOR BLADE ELEMENT PERFORMANCE

ì

IMMER (%)	WHICL Spead Mps fps	REL. TURNING ANGLE DEG	LOSS COEF	LOSS PARA.	REL. MACH NO. IN	DIFF. FACT.	REL. MACH NO. OUT	INCID. ANGLE DEG	DEV. ANGLE DEG
Ø. 2.00 3.00 4.00 7.00 15.00 15.00 20.00 30.00	64.4 211.16 64.3 213.84 64.2 213.53 64.1 213.21 64.3 239.89 63.9 239.89 63.9 239.89 63.4 239.89 63.4 237.99 62.9 236.41 62.4 234.83 61.5 231.66	2.1 1.6 3.1 5.1 7.9 11.8 14.9 16.5 16.9 15.2	N.168 N.199 N.232 N.259 N.283 S.297 J.331 J.328 J.280 T.166 S.J25	Ø.143 Ø.169 Ø.200 Ø.227 Ø.251 Ø.266 Ø.301 Ø.296 Ø.261 Ø.156 Ø.924	Ø.145 Ø.143 Ø.143 Ø.144 Ø.145 Ø.146 Ø.146 Ø.151 Ø.151 Ø.161 Ø.165 Ø.164	Ø.651 Ø.685 Ø.7Ø5 Ø.718 M.727 Ø.726 Ø.727 Ø.692 Ø.625 Ø.511 Ø.399	9.079 5.075 9.075 9.072 5.072 5.073 7.073 7.073 7.033 7.033 9.094 9.111 9.123	-3.4 -1.2 -2.2 -3.2 -4.1 -4.3 -6.1 -7.1 -3.3 -0.9 -9.0	27.52.4 27.52.4 152.3 152.3 154.3 54.3

TORQUE = 4.337.33 IN.-LB.

*Loss Coefficient Computed from Fixed Rake Data

STATOR VANE ELEMENT PERFORMANCE

IMMER %	WHEEL Speed Mps fps	A3S. TURNING ANGLE	ABS. Mach No.	ABS. Mach No.	INCID. ANGLE DEG	DEV. Angle Deg	LOSS COEF.	LOSS PARA.	DIFF. FACT.
Ø. 1.8 2.9 3.8 4.9 5.9 19.9 19.9 15.0 20.0 30.0	64.4 211.16 64.3 213.84 64.2 216.53 64.1 216.21 63.9 209.39 63.9 209.51 63.7 223.94 63.4 207.92 63.4 207.92 62.9 1.51.41 62.4 214.83 61.5 204.63	DEG 34.3 36.2 38. <i>H</i> 30.3 33.5 38.4 36.9 34.3 32.2 27.8 25.2	IN Ø.114 Ø.121 Ø.123 Ø.126 Ø.127 Ø.129 Ø.127 Ø.130 Ø.130 Ø.122	OUT Ø.959 Ø.955 Ø.955 Ø.965 Ø.965 Ø.965 Ø.965 Ø.971 Ø.973 Ø.978 Ø.999	5.5 7.3 7.3 5.3 7.3 5.3 5.3 1.5 5.3 1.5 8 -3.4	19.3 19.8 17.9 17.1 15.4 15.3 15.7 13.3 15.7 13.3 11.4 8.5	Ø.1928 Ø.134Ø Ø.1766 Ø.1783 Ø.1547 Ø.1547 Ø.1523 Ø.1523 Ø.1556 Ø.1307 Ø.1245 Ø.0753	9.1863 9.1713 9.1713 9.1567 9.1567 9.1567 9.1567 9.1507 9.1523 9.1397 9.1230 9.1230 9.1230 9.1230	1.8557 2.7748 3.7544 3.7544 3.7554 3.7554 3.7557 3.7554 3.7554 3.7554 3.7554 3.7554 3.7554 3.6573 3.5515 3.57155 3.57155555555555555555555555555555555555

Table 31. Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance, Peak Pressure Rise/Near Stall Throttle.

ROTOR BLADE ELEMENT PERFORMANCE

i

			*						
IMMER	VHEEL	REL.	LOSS	LOSS	REL.	DIFF.	REL.	INCID.	DEV.
(%)	SPEED	TURNING	COEF.	PARA.	MACH	F.ACT.	MACH	ANGLE	ASGLE
•••	MPS FPS	ANGLE			NO.		NO.	DEG	020
		DEG			ĨN		OUT		
ø.	65.2 214.22	3.4	g.262	Ø.223	Ø.147	9.391	0.066	ø.3	27.6
1.0	65.1 213.79	3.5 -	Ø.272	Ø.233	Ø.145	1.814	0.063	Ø.1	27.2
2.0	65.0 213.33	5.3	9.286	Ø.247	3.145	9.816	g.g63	-9.5	27.87
3.Ø	54.9 213.05	6.4	3.312	Ø.272	g.147	8.821	9.964	-1.2	22.9
4.9	64.8 212.74	7.5	Ø.345	Ø.394	9.159	<i>ม</i> .826	Ø.965	-2.2.	20.9
5.Ø	64.7 212.41	8.8	9.347	0.308	Ø.151	19.814	<i>I.I</i> 66	-2.6	2 P . M
7.0	64.5 211.77	9.8	N.345	Ø.3H9	Ø.152	Ø.785	J.979	3.6	:7.5
10.0	64.3 219.81	11.3	ø.334	Ø.3Ø2	Ø.155	.9.747	ø.975	-4.3	. 4.6
15.Ø	63.3 1.49.23	15.6	5.393	Ø.28Ø	Ø.153	B.68Ø	9.986	-5.4	9.1
20.0	63.3 207.68	18.0	9.216	g.292	9.169	9.582	. 9.199	-6.5	5.6
3Ø.Ø	52.3 254.39	17.3	<i>ы.8</i> 68	g.964	Ø.164	9.451	g.118	-7.5	9.7
TORQUE	= 4935 . 91	INLB.							

*Loss Coefficient Computed from Fixed Rake Data

•

STATOR VANE ELEHENT PERFORMANCE

IMMÉR %	WHEEL SPIED MDS IDS	ABS. TURNING	ABS. MACH	ABS. MACH NO	INCID. ANGLE	DEV. ANGLE	LOSS COEF.	LOSS PARA.	DIFF. FACT.
	nno aro	DEG	IN	ουτ					
ø.	55.2 C14.Ø2	36.9	11.127	0.053	9.1	29.8	Ø.3822	9.2929	3.8305
1.0	35.1 213.70	38.4	ø.129	N.956	1//.5	20.4	J.2326	<i>9</i> .2733	19 . 315#
2.1	35.9 183.33	33.3	B.13 5	.0.059	1/7.5	29.3	Ø.2645	1 .15 6 E	29.7931
3.0	34.9 113.96	411.3	8.131	Ø.961	10.7	10.2	9.2479	$g_{*2} _{4} g_{4}$	3.7417
4.0	51.8 212.73	4.5.3	9.132	N.963	1.5.5	17.2	8.2352	9.1241	.2.7397
5.0	64.7 112.41	48.3	J.132	I.164	-19.2	17.2	J.2139	<i>9.29</i> 3 (. 7979
7.3	64.5 111.77	39.5	J.13J	9.966	9.8	17.1	0.1238	9.1760	27.7593
10.0	164.3 11.7.31	38.4	9.128	Ø.963	9.5	16.9	J.1392	.7.1360	
15.0	53.8	35.3	9.129	5.371	5.3	14.9	9.1121	6.119	11.67.24
29.0	63.3 .17.6.1	31.6	1.129	9.973	1.9	13.3	3.1.124	$S.1.32^{+1}$	
30.0	32.3 1.1.39	25.6	5.125	9.977	-4.4	11.2	រវ.វថ7ម	J.Muu.	11.3704

Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment. Table 32.

Open Throttle

	ų	DTAL PRESSU	JRE	STA	ITIC PRESSU	IRE	
PERCENT	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 EXIT	NOTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 EXIT	
	. <u>6</u> . 9475	1,35,05	1.3647	g .6972	1.0057	1.2164	
-	8.9662	1.3766	1.3795	S .6967	6966.	1.2141	
	5.2216	1.3993	1.3913	g .6962	g 2886 . J	1.2119	
	8.838	1.4185	1.4016	J. 6958	g.9815	1.2899	
	£ 9877	1.4347	1.4155	Ø.6953	g .9752	1.2080	
	5000	1.4474	1.4163	£.6949	8.97##	1.2063	
	9999	1.4627	1.4229	g. 694.	g.9631	1.2032	
	2 9 1 2 9	1.4795	1.423	J . 6928	g. 9646	1.1995	
15.4	8.9875	1.4671	1.4213	. 6323	g.9672	1.1967	
28.4	J .9164	1.461.0	1.4245	g.68 93	8 .9751	1.1932	
31.15	36 56 .3	1.4555	1.4369	N.6837	g .9922	1.1892	

	Det	itgn Potnt !	Throttle				Peak P	wasure R4	so/Near Sti	111 Thrott	-	1
- 5	AL PRESSU	IRE	STA	NTIC PRESSI	JAE		2	TAL PRESSU	RE.	ILS	NTIC PRESSU	
	ROTOR 3 EXIT	STATOR 3 Exit	NOTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 EXIT	PERCENT IMMENSION	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR 3 EXIT	ROTOR 3 INLET	ROTOR 3 EXIT	STATOR EXIT
	1.5919	1.5868	g. 8761	1.2213	1.4643		1.4571	1.7354	1.6264	8,9375	1.2577	1.5223
	1.6143	1.5998	g .8753	1.2112	1.4616	an 4 		1/E/.I	1.63.46		1.2327	1.5160
	1.6271	1.61.69	g. 8746	1.2021				00E2 1	1.6371	-J. 9366	1.2222	1.5145
	1.6424	1.6282	8.8739	1.1941				1.7397	1.6399	2965.1	1.2134	1.5123
	1.5562	1.6275	8/34	1.18/4			6986	1 7387	1.6422	g. 9365	1.2065	1.51/3
	1.6585	1.6329	8729	1791.1	7104 · T			1 7346	1.6455	E.9366	1.1987	1.5076
	1.6865	1.6384	g.8 721	1.1758	1.44/9			1 2265	1 65.07	6. 9374	1.2054	1.5037
	1.71.05	1.6421	g. 9715	1.1766	8644 · I				1 65.4A	3859.8	1.1971	1.5017
	1.7885	1.6445	6.8717	1.1797				1.6955	1.6571	3459.8	1.1957	1.4957
	1.6791	1.6455	8.8/8.9		CO24.1		1.1248	1.6956	1.6740	g.9243	1.2466	1.4855
	1.6545	1.6444	5798. 2	1.6834	1.94.1							

Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Static Pressure, and Flow Angles for Rotor Tip Clearance and Casing Treatment (Concluded). Normalized Absolute Total Pressure, Table 32.

Open Throttle

~	ME A SURFD		Ū	ORRECTED		
ROTOR 3 INLET	STATOR 3 INLET	STATOR 3 Exit	ROTOR 3 INLET	STATOR 3 INLET	STATOR EXIT	6.1
44.1	31.8	38.2	45.6	82.2	39.66	
40.7	81.2	37.7	42.1	81.6	39.1	
39.3	79.5	37.3	40.7	80.0	38.7	
36.7	17.7	35.8	38.1	78.3	37.1	
34.7	75.7	34.8	36.0	76.4	36.1	
33.2	74.1	34.6	34.5	74.8	35.9	
30.3	65.6	31.4	31.5	66.6	32.6	
27.2	56.7	26.4	28.2	57.8	27.4	
23.8	49.7	24.8	24.7	50.9	25.7	
21.2	44.7	22.0	22.0	45.9	22.8	
18.8	42.4	19.6	19.5	43.5	20.3	
	R01 1010 1010 1010 1010 1010 1010 1010	MEASURFD MEASURFD 3 STATOR 3 INLET INLET 44.1 81.2 44.1 81.2 39.3 79.5 39.3 79.5 36.7 77.7 34.7 75.7 33.2 65.6 33.2 65.6 27.2 65.6 23.8 44.7 21.2 25.7 21.2 18.7 21.2 18.7 21.7 17 21.7 18.7 21.7 17 21.7 18.7 21.7 18.7 21.7 17 21.7 18.7 21.7 17 21.7 18.7 21.7 17 21.7 18.7 21.7 17 21.7 17 21.7 18.7 18.7 17 21.7 17 21.7 18.7 17 21.7 18.7 18.7 17 21.7 18.7 18.7 18.7 17 21.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 1	MEASURFD ROTOR 3 STATOR 3 STATOR 3 INLET INLET EXIT 44.1 81.8 38.2 40.7 81.2 37.7 39.3 79.5 37.3 36.7 77.7 35.8 34.7 77.7 35.8 33.2 74.1 34.6 33.2 65.6 31.4 27.2 56.7 26.4 21.2 56.7 26.4 21.4 56.7 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	MEASURFD MEASURFD ROTOR 3 STATOR 3 STATOR 3 ROTOR 3 STATOR 3 INLET INLET EXIT INLET INLET EXIT 1NLET 101.2 38.2 44.1 81.2 37.3 35.3 77.7 35.8 36.7 77.7 35.8 36.7 77.7 35.8 36.7 77.7 35.8 36.7 77.7 34.6 37.3 40.7 34.5 30.3 65.6 31.4 31.5 21.2 56.7 24.8 24.7 21.2 56.7 24.8 24.7 21.2 44.7 22.0 22.0 19.6 19.6 19.5	MEASURFD CORRECTED R010R 3 STATOR 3 STATOR 3 STATOR 3 R010R 3 STATOR 3 STATOR 3 INLET INLET EXIT 44.1 81.8 38.2 45.6 82.2 40.7 81.2 37.7 42.1 81.6 39.3 79.5 37.7 42.1 81.6 36.7 77.7 34.8 36.7 78.3 36.7 77.7 34.8 36.0 74.8 36.7 77.7 34.8 36.0 76.4 36.7 77.7 34.8 36.0 76.4 36.7 77.7 34.8 36.0 76.4 36.7 77.7 34.8 36.0 76.4 37.2 74.1 34.6 34.5 74.8 30.3 65.6 31.4 31.5 66.6 27.2 56.7 28.2 57.8 23.5 21.2 44.7 24.0 24.7 50.9 21.2 44.7 24.0 45.9 <td>MEASURFD CORRECTED R0TOR 3 STATOR 3 STATOR 3 STATOR 3 STATOR INLET INLET EXIT INLET STATOR 3 STATOR 3 STATOR 3 STATOR 3 STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 3 STATOR 10LET STATOR 3 /td>	MEASURFD CORRECTED R0TOR 3 STATOR 3 STATOR 3 STATOR 3 STATOR INLET INLET EXIT INLET STATOR 3 STATOR 3 STATOR 3 STATOR 3 STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 3 STATOR 10LET STATOR 3 STATOR 3 STATOR 3 STATOR 10LET STATOR 3

e

CURVE FIT VALUES USING ZERO STATOR POSITION DATA

Peak Pressure Rise/Near Stall Throttle

Design Point Throttle

Ċ 3 STATOR 3 STATOR EX17 CORRECTED I I I I I ROTOR 3 INLET , e 40.6 337.1 337.1 335.8 334.8 334.8 334.8 334.8 235.7 225.7 225.7 225.7 20.4 3 STATOR 3 STATOR EXIT MEASURED INLET 899.8 899.4 889.4 887.4 877.4 887.4 877.4 INLET ROTOR PERCENT IMMERSION e STATOR EXIT 41.7 40.5 337.4 337.4 335.6 335.6 229.6 229.6 223.2 20.5 20.5 3 STATOR 3 STATOR 3 CORRECTED 833.0 82.6 82.6 82.6 779.8 776.3 776.3 776.3 776.3 776.3 776.3 776.3 776.3 776.3 776.3 776.3 776.3 777.0 ROTOR 3 INLET 46.9 47.0 38.9 35.5 35.5 35.5 22.7 225.4 225.4 225.4 225.4 225.4 e 3 STATOR EXIT 3 STAFOR 3 T INLET MEASURED I'NLET ROTOR PERCENT IMMERSTON Rotor Loss Coefficients Determined from Relative Total Pressure Measurements, Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment. Table 33.

Ì

	E	TAL MINUS AKE LOSS	0.1876 0.1827 0.0901 0.0143 0.0143 0.0143 0.0143 0.0148 0.0169 0.0107 0.0107
	COEFFICIEN	WAKE TO LOSS W	0.0145 0.0115 0.0115 0.0176 0.0176 0.0203 0.0218 0.0218 0.0218 0.0279 0.0276 0.0279
tle	RDTOR LOSS	TOTAL Loss	0. 2021 0. 1942 0. 1942 0. 0345 0. 0346 0. 0346 0. 0443 0. 0433 0. 0653 0. 0653 0. 0653
int Throt		PERCENT	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
estgn Po	RE.	R010R 3 Ex11	1,4304 1,4638 1,56399 1,5639 1,5636 1,5636 1,5298 1,5298 1,4035 1,4035
	IAL PRESSU	RDTOR 3 INLET	1.5715 1.6065 1.6346 1.6346 1.6339 1.6731 1.6733 1.5539 1.4943 1.4544
	01	PRECENT IMMERSION	
	<u> </u>	¥	
	ENT	TOTAL MINU WAKE LOSS	0. 2065 0. 1671 0. 0638 0. 0233 0. 0270 0. 0259 0. 0232 0. 0132 0. 0132 0. 0132 0. 0132
	S COEFFICI	WAKE	0.0088 0.0128 0.0129 0.01299 0.0259 0.0259 0.0259 0.0259 0.0259 0.0259
	ROTOR LOS	TOTAL LOSS	0.2155 0.1795 0.0817 0.0418 0.0418 0.0414 0.0518 0.0514 0.0554 0.0554
Throttle		PERCENT	4, 0, 11, 05, 12, 05, 12, 05, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
Open		P0108 3	1.2742 1.3274 1.4151 1.5114 1.5114 1.5114 1.5114 1.3314 1.3314 1.3314 1.2935 1.2935
	AI PRESSUE	ROTOR 3 INLET	1.4552 1.4653 1.4653 1.4655 1.5551 1.755 1.5551 1.775 1.2595 1.2895 1.2895
	101	PRECENT	*

	Peak Pr	essure R	1se/Near	Stall Th	rottle	
01	TAL PRESSUS			NOTOR LOS	S COEFFICI	IENT
PRE CENT IMMERS LON	R010R 3 INLET	R010R 3 E 117	PERCENT	TOTAL	WAXE LOSS	TOTAL MINUS Wake Loss
4	1 2650	1 4168	5.0	0.0911	0.0064	0.0847
	1 5499	1 4656	10.0	0. 1376	0.0104	0. 1272
24	1 6165	1 5397	15.0	0.1133	0.0454	0.0979.
	1 6723	1.6133	20.0	0.0799	0.0213	0.0587
	1 7373	1 7030	35.0	0.0418	0.0219	0.0199
	1 7203	1.6817	50.0	0.0468	0.0230	0.0238
	1 6822	1.6360	65.0	0.0566	0.0229	0.0337
	1 6162	1 5797	80.0	0.0465	0.0278	0.0137
2	5969	1.5470	85.0	0.0640	0.0423	0.0218
	5673	4994	0.06	0.0768	0.0594	0.0174
		11711	95.0	0.0666	0.0396	0.0270
2.06).))			

ORIGINAL PAGE IS

Table 34. Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Open Throttle.

BLADE ELEMENT DATA ROTOR INLET

i

			1.4		ne TA	C	7	CL	J	C		ALPHA	
IMMER	W	e n.n.:	MDO	- -	DEC	- MPS	FPS	MPS	FPS	MPS	FPS	DEG	
Х.	MPS	112	MLL 2	. ГГЭ .		17 4	87 2	17.8	58.5	24.9	81.8	45.5	
ø.	5.0.2 1	54.6	47.1	194.4	09.0	1114		17 9	69 4	26.5	86.9	42.1	
1.Ø	5.7.9 1	37.1	47.0	154.2	67.1	13.0	24.4	10 1		27 7	90.00	19.7	
2.0	51.1 1	67.7	46.6	152.9	65.6	21.0	68.8	10.1	577.4 EO (X	20 6	0 A 0	122 1	
3.Ø	52.0 1	74.7	46.9	153.9	34.2	22.5	73.9	17.7	33.0	~0.0	04.0	20.0	
4.0	52.3 1	73.4	47.2	155.0	. 63.2	23.7	77.7	17.3	50.7	29.3	90.4		
Ēã	67 6 1	73.5	17.5	156.2	62.6	24.5	30.3	16.9	55.3	29.7	97.0		
7 0	EA 0 1	70 0	10 6	159.3	62.1	25.5	83.6	15.7	51.4	29.9	98.1	31.5	
. ~ ~	04.01	1.	10.7	167.1	61.9	26.3	86.4	14.2	46.6	29.9	93.2	78.3	
10.0	50.3	وت به د ا	42.1	1.47 (1	61 8	27.1	88.9	12.5	41.1	29.9	93.9	2.4.7	
15.Ø	5/./		30.9	107.0	- 40 Q	22 1	0.5.3	11.5.	37.8	3.7.7	133.6	22.9	
2. Ø .Ø	53.8	1 9 2 1 8	27.4	100.7	30.9	20.4 707 7	100 6	1 01 0	33.7	32.5	1.35.7	19.5	
3Ø.Ø	59.6	195.5	51.1	15/./	58.2	/ ولايك .	100.0	10.0	00.7				

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

	14		1,1	11	BETA	С	Z	C	U	C		ALPHA
TRIMER		730	M9 5	"FPS	DEG	MPS	FPS	MPS	FPS (MPS	FPS	DEG
	1153		27.6	0072	79 3	5.0	16.4	37.4	122.7	37.7	-123.8	82.2
<u>ب</u> . پ	2/.9	21.1	27.0	91 G	77.4	5.6	18.5	39.2	129.6	39.6	129.9	81.6
1.0	23.2	00.2	20.0	70 1	73 6	7.6	23.0	40.6	133.1	41.2	135.1	SH.Ø
2.Ø	25.1	36.4	24.1	72.1	20 E	ភូជ	27.9	41:6	136.6	42.5	139.4	- 78.2
3.0	24.5	8.2.3	23.9	70.0	.05.0	10.0	22.2	12 1	139.1	43.6	143.0	76.3
4.Ø	24.3	79.9	22.1	76.0	00.2	11.0.4.	33.3	12 3	148.8.	11.1	145.8	74.8
5.0	57.4	ាហ.ស	21.5	1.3.5	01.7	17.0	60 0	41 0	137 0	45.5	149.1	66.6
7.มี	23.7	34.3	22.5	13.1	51.4	11.9	20.0	20 2	127 12	15 9	151.7	57.9
10.0	34.0	114.3	25.9	81.9	45.0	24.3	/9.0	- 39. <i>8</i>	11.4 37	16 6	120 2	541.9
15.9	43.1	431.4	. 28.1	92.1	44.4	28.6	93.7	30.4	100.0	13.0	147 1	44 9
20.0	42.7	1:3.4	30.7	1.90.7	44.5	31.1	102.1	32.3	103.0	44.9	1.10 6	12 6
30.0	44.9	147.3	31.9	1.04.3	45.9	31.7	194.9	39.2	99.0	43.0	140.0	40.0

BLADE ELEMENT DATA STATOR OUTLET

			۱.	A1	RETA	C	Ż	C	: U.	C		ALPHA
IMMER	(~	MDC	600	nsc.	MPS	FPS	MP S.	FPS	MP S	FPS	DEG
Ж	MPS	662	1115	- r r 3		10 0	62 3	15.8	51.7	24.7	31.Ø	39.6
ø.	52.7 1	72.3	49.1	151.4	00.7	12.0	66 3	1 4 1	ចា ត	26.4	25.4	37.1
1.Ø	52.4 1	71.9	48.4	158.6	67.2	2.20.6	00.4	10.4	1944.00 1915 - 19	27 1	201	312 7
2.0	52.2 1	71.2	47.7	156.5	65.9	21.2	69.4	17.19	53.9	6/+1	02.1	
2 3	59 6 1	22.6	47.6	156.2	64.7	22.3	73.3	17.0	55.7	200 a L	94.1	37.1
4 0	62 0 1	20 5	.7.5	155.8	63.7	23.2	76.3	17.9	53.0	28.8	94.5	30 • X
4.19	.54.3 1		17.1	164 7	63.1	23.3	78.8	17.5	56.6	29.4	90.4	38.9
5.0	52.8 1	./3+6	21.1	1.077 1	20 H	28 3	82.7	16.2	53.3	3.1.1	- 93.6	211.6
7.Ø	54.21	11.9	33.9	157.4	04.0	00.0	00.0	14 3	4.3 . 11	39.3	39.4	
11.1	56.7 1	1.5.13	13.3	103.0	01.5	20.9	00.2	1 2 2	47 4	3/1.1	·i.7.7	1.5.8
15.0	57.2 1	7.5	39.2	7.4ت1	61.2	27.3	09.7	13.6	- 44-04-14 - 11-15 - 3	20.00	1.1.2	
. n. n.c	51.3 1	131.4	3.7.9	167.2	59.7	28.4	93.2	12.1	59.4	37.0	- 4.J 2. + 4. - 4 7 7	
20.0	50 9 1	111.5	5.1.9	166.9	59.4	29.9	98.1	11.1	33.4	31.9	1.24 + 7	
15.0 20.0 30.0	57.2 1 53.3 1 59.9 1	137.5 131.4 173.5	30.2 30.9 30.9	164.7 167.2 166.9	61.2 61.7 59.4	28.4	93.2 98.1	12.3 11.1	39.4 35.4	3 <i>5</i> .8 31.9	1.71.2 1.74.7	11.0 134 . 3

Table 35. Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Design Point Throttle.

BLADE ELEMENT DATA ROTOR INLET

IMMER	R I	1	١	VU	BETA	Ċ	Z	c	lf -	c		
%	14P S	72S	MPS	FPS	DEG	MPS	FPS	MPS	FPS	MRS	F96	0500
ø.	\$1.6	159.2	49.2	161.5	72.5	15.3	50.3	16.4	53.0	22 1	726	୍ମରେ ∕ର ମ
1.0	52.3	171.7	49.6	162.6	71.1	15.0	55.Ø	16.9	62.4	23.2	76. a	A 12 R
2.0	52.9	170.7	49.8	163.5	713.13	17.9	58.8	15.6	51.3.	23.8	78.0	41 G
3.0	53.5	173.6	50.1	164.3	69.1	10.9	62.0	15.3	59.1	24.3	79.7	28.9-
4.0	54.3	178.2	5ø.5	165.8	60.3	19.9	65.2	14.7	48.3	24.7	81.2	36.4
5.0	54.5	178.8	5 <i>1</i> .5	165.0	67.8	29.4	67.9	14.6	48.9	25.1	32.4	25.5
7.0	55.3	103.2	51.4	168.6	66.8	21.8	71.5	13.6	44.5	25.7	31.2	21.3
10.0	56.9	136.7	52.1	171.Ø	-36.1	22.9	75.N	12.5	41.2	26.1	85.5	20.7
15.0	57.9	199.9	52.8	173.3	65.6	23.8	78.0	11.3	37.2	26.3	85.4	25.5
20.0.	58.7	122.7	53.2	174.5	64.7	24.9	81.8	10.5	34.4	27.15	88.7	22.7
3.99	59.2	194.1	52.5	172.3	62,4	27.2	39.4	10.2	33.4.	29.1	95.4	1.1.1

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

IMMÉ	२ V		5	/U	BETA	С	7		^ 11		~	
	14P S	FPS	MPS	FPS	DEG	MPS	FPS	MPS	0 9 9 9 1 1 9	MPC		ALPHA.
ø	21.3	71.5	21.1	69.3	75.6	5.3	17.5	44.5	146 1	11 0	1471	DEG
1.0	21.1	59.4	29.4	66.8	74.Ø	5.7	18.3	45.2	148.3	45 5	112 8	02.9 -
2.0	29.9	33.6	19.8	64.9	79.8	6.3	22.3	45.7	149.9	46 2	149.0	04.00
3.1	21.3	ü3.9	19.4	63.6	67.1	8.1	26.6	46.9	159.8	46.7	123.0	70 0
4.19	21.3	34.3	19.1	62.7	63.7	9.3	31.7	46.1	151.1	47.1	151 5	70.0 -
5.W	22.1	72.6	19.1	62.8	59.7	11.1	36.4	40.0	151.5	47.3	145 3	79.3
100	20.2	J. 6	20.13	65.6	52.5	15.3	50.2	45.0	147.5	47.5	155.8	70.2
15 0	⊸324.03 ໄ ວ⊂ 1 1	1		74.2	47.6	29.6	67.5	42.13	137.9	45.3	133.5	03.7
20.0	10.1		40.0	84.9	45.1	25.4	83.4	38.6.	126.6	46.2	151.6	56.5
30.0	40.51	1.2 1.1	20.4	93.3	44.1	29.4	96.3	35.2	115.6	45.9	159.5	2.51 1
92.12	ч <i>с.</i> ,,,,,,,	હે પ્રાથમિક છે.	. 19 م. ل. ت	199.3	46.1	29.3	96.1-	32.1	115.3	43.5	142.6	47.5

BLADE ELEMENT DATA. STATOR OUTLET

·•••

IMMER	२ ।	1	١	1 υ	85TA	C 7	-	C		•		
%	MP S	FPST	MPS	FPS	DEG	MPS	586	MDC	ີສວດ	MDC	-	ALPHA
ø.	54.Ø	177.2	51.7	169.8	73.1	15.5	51.9	13 3	15 G	24 0	115	DEC
1.Ø	54.1	177.4	51.5	169.1	72.2	16.3	53.6	14 6	46 0	21 5	23.4	
2.Ø	54.3	178.2	51.5	169.1	71.3	17.2	56.4	13.0	15 5	22 1	72.0	09.9
з.ø	54.0	179.2	51.6	169.3	78.5	18.0-	58.9	13.8	40.0	22 4	74.0	
4.0	54.8	179.6	31.5	169.Ø	79.0	18.5	60.9	13.7	45 1	22 1	74.4	37.5
5.8	54.9	13.7.1	51.5	168.8	69.5	19.1	62.5	13.7	A.i 0	00 g	73.7	40.4
7.Ø	55.6	182.5	51.9	175.1	68.6	29.2	66.2	13.1	17.4	21 11	76.0	0.0.0
19.9	56.6	135.8	32.4	171.9	67.5	21.5	70.6	12.3	41.2	21 2	7342	14. 1
15.0	57.8	1:2.7	33.2	174.4	66.7	22.7	74.6	11.9	36.1	23.3	1212 12	
20.0	53.5	131-9	53.4	175.2	65.3	23.0	78.2	19.3	33.7	23.4	36 2	3 13
30.0	59. <i>0</i>	123.6	52.8	173.4	63.4	26.2	86.1	9.0	32.3	29.9	92.0	7.5

172

ì

ORIGINAL PAGE IS

Table 36. Vector Diagram Parameters for Rotor B/Stator B Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Peak Pressure Rise/Near Stall Throttle.

BLADE ELEMENT DATA ROTOR INLET

IMMER	. v		1	10	BETA	. 0	Z	CU	l j	C		ALPHA
%	MPS	FPS.	MPS	FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DEC
ø.	52.3	171.7	49.9	163.8	72.4	15.7	51.4	16.4	63.9.	22.7	74.4	46.2
1.0	53.2	173.4	50.3	165.1	71.S	17.1	56.2	15.9	52.3	23.4	76.8	42.8
2.0	54.3	178.2	51.Ø	167.4	69.7	18.7	61.2	15.1	49.7	24.1	78.8	39. <i>1</i>
3.0	54.8	179.7	51.2	167.9	68.9	19.5	64.1	14.9	48.9	24.6	83.6	37.2
4.0	55.4	101.8	51.5	169.0	68.2	20.4	67.3	14.4	47.4.	25.Ø	82.1	35.2
5.0	55.9	103.3	51.7	169.7	67.6	21.1	69.2	14.1	46.4	25.4	33.3	33.8
7.0	56.9	195.8	32.4	171.9	66.8	22.3	73.1	13.3	43.5	25.9	65.1	319 .7
10.0	57.3	189.7	52.9	173.7	66.1	23.2	76.2	12.4	4.7.8	26.4	36.6	1 . است
15.Ø	53.7	192.6	33.5	175.6	65.6	24.1	. 79.0	11.3	37.2	26.6	87.3	
29.0	59.1	134.1	33.6	175.7	64.7	25.1	82.3	10.0	35.5	27.3	39.7	23.3
30.0	59.6	123.4	52.9	173.4	62.4	27.4	9ø.ø	10.5	34.5	29.4	98.4	. 9

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

TMMER	u v		V.	J	BETA	C:	Z	C	U.	C	;	ALPHA
<u>%</u>	ัพยร์	228	MP S.	FPS	DEG	MPS	FPS	MPS.	FPS	MP S	FPS	0 E G
ø.	21.9	6).Ø	21.Ø	69.0	89.2	Ø.2	ø.7	45.3	148.7	45.3	148.7	39.5
ĩ.ơ	23.2	33.3	29.2	66.3	88.9	Ø.3	1.Ø	46.0	151.1	46.9	151.1	Q9.4
2.Ø	19.5	64.0	19.5	63.9	87.7	Ø.7	2.2	46.7	153.1	46.7	153.2	38.9
3.Ø	13.9	62.Ø	13.9	61.9	86.5	1.1	3.6	47.2	154.8	47.2	134.8	80.4
4.0	18.5	5.1.7	13.4	69.4	83.9	1.9	6.2	47.5	156.3	47.6	156.1	37.5
5.0	10.4	5.1.4	18.1	59.5	79.6	3.3	10.7	47.7	155.0	47.9	157.9	05.9
7.Ø	19.3	52.2	18.1	59.4	7.9.9	6.5	21.4	47.3	155.1	48.9	157.5	92. <i>1</i> 1
10.0	21.6	2.1.7	29.2	63.2	55.1	14.9	46.1	45.2	143.2	47.3	155.2	72.6
15.Ø	39.1	93.7	22.6	74.1	48.5	19.9	65.1	42.3	133.7	46.7	133.2	43.Z
29.0	37.2	121.9	25.2	86. <i>9</i>	. 44.7	26.3	86.4	33.2	125.2	46.4	152.1	55.2
30.0	45.7	133.5	29.5	95.0	45.4	28.5	91.9	33.9	111.1	43.9	14.2	38.3

BLADE ELEMENT DAYA STATOR OUTLET

.

IMMER	د <i>۱</i> ۰	1	١	/U	BETA	C	Z	с	U	C	:	ALPHA
*	MPS	F 2 S	MPS	FPS	DEG	MPS	FPS	MPS	FΡS	MPS	FPS	$O \in \mathbf{G}$
ø.	54.5	173.8	32.2	171.3	73.1	.15.6	51.3	14.1	45.4	21.1	69.1	12.9
1.Ø	54.8	172.8	52.2	171.3	72.1	16.6	54.5	14.1	46.1	21.8	71.4	MI.1
2.0	55.1	129.7	52.2	171.3	71.3	17.5	57.3	13.9	45.7	22.4	73.3	09.5
3.Ø	55.3	121.5	52.2	171.3	79.6	18.2	59.7	13.0	45.4	22.9	75.9	.17.1
4.0	55.5	152.9	32.2	1/1.2	78.9	18.8	61.3	13.8	45.2	22.3	75.5	····
5.Ø	55.6	1 12.5	32.2	171.1	69.1	19.4	63.5	13.7	44.9	23.7	77.8	.3.2
7.0	56.4	1.5.3	32.5	172.4	60.5	29.3	ü7.1	13.1	43.1	24.3	79.7	. S. . G
10.9	57.3	1 .3.1	33.11	173.9	67.5	21.0	71.4	12.1	4.7.6	23.3	32.2	
15.0	58.9	12.1.4	33.4	175.1	36.7	22.0	74.8	11.5	37.7	23.5	. 33.7	
2.9.9	59.9	190.6	33.9	176.8	65.8	24.1	78.9	1.9.5	34.4	25.2	33.1	
3Ø.Ø	59.3	199.7	33.1	174.3	. 03.1	26.4	86.7	1.9.2	33.6	23.3	93.4	21.1

Table 37. Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Open Throttle.

ROTOR BLADE ELEMENT PERFORMANCE

t

IMMER (%)	WHEEL SPIID MPS FPS	REL. TURNING ANGLE DEG	LOSS [*] COEF.	LOSS Para.	REL. MACH NO. IN	DIFF. FACT.	REL. MACH NO. OUT	INCID. ANGLE DEG	DEV. Angle Deg
ø.	64.9 212.92	-10.5	ø.178	Ø.142	IJ.143	Ø.624	I.I8I	-1.2	29.5
1.Ø	64.8 212.63	-10.2	9.252	Ø.2 <i>9</i> 4	Ø.146	. <i>1</i> .681	Ø.Ø75	-3.6	37.3
2.Ø	64.7 212.23	-8.Ø	9.290	Ø.24Ø	Ø.146	Ø.712	Ø.Ø72	-3.1	33.5
з.ø	64.6 211.96	-5.3	Ø .3 38	Ø.286	Ø.149	J.742	y.979	-6.5	29.3.
4.Ø	64.5 211.64	-2.0	J.369	Ø.319	Ø.151	9.759	<i>ม</i> 069	-7.5	23.N
5.Ø	64.4 211.32	ø.9	I.391	Ø.343	Ø.153	1.763	8.979	-3.1	21.4
7.0	64.2 21.7.63	19.9	9.351	Ø.321	Ø.157	<i>9.</i> 695	9.932	-3.6	1.4.9
30.0	63.9 209.73	16.3	J.261	\$.244	9.161	J.582	J.199	-3.8	3.2 .
15.0	63.4 2./3.13	17.4	I.17Ø	Ø.159	Ø.165	N.485	11.114	-8.9	3.8
20.0	63.0 205.53	16.4	J.J97	Ø.Ø92	<i>1</i> .168	<i>U</i> .413	1.125	-9.6	4.1
3Ø.Ø	62.0 203.34	13.9	9.967	Ø.Ø63	Ø.17Ø.	391	Ø.128	-11.9	3.6

TORQUE = 5.032.83. IN.-LB. .

*Loss Coefficient Computed from Fixed Rake Data

STATOR VANE ELEMENT PERFORMANCE

IMMER	WHITL	ABS.	ABS.	ABS.	INCID.	DEV.	LOGS	LOSS	DIF7.
	SPIED	TURNING	иасн	MACH	ANGLE	ANGLE	CCEF.	PARA.	FACT.
	MPS FPS	ANGLE	NO.	NO.	DEG	DEG			
		DEG	IN	OUT					
ø.	64.9 212.92	42.3	Ø.198	Ø.37Ø	12.8	18.3-	0412	- <i>.0</i> 399	7.5398
1.Ø	54.8 012.65	42.5	9.113	0.074	13.2	19.0	9963	- . <i>09</i> 6)	Ø.5481
2.0	64.7 232.29	41.3	J.118	Ø.977	12.5	19.3	ø.ø195	11.11189	6.5454
3.Ø	64.6.211.96	41.1	Ø.121	0.080	11.7	13.4	0.1389	J.8370	3.5471
4.0	64.5 111.54	40.2	Ø.124	g.g82	15.7	18.0	0.8530	.7.352-	9 .5 -79
5.9	64.4 211.32	30.9	Ø.127	Ø.984	$1 \mathcal{G}$. \mathcal{G}	18.4	$g.g_{651}$	J.J633	. 4.5.51
7.1	54.2 1.0.63	34.1	9.135	0.986	3.3	16.2	J.3797	11.178.1	J.5 96
1ø.ø	33.9 209.73	3.9.4	g_{131}	Ø.N86	-3.3	12.5	114.1932	3.991	. 5
15.0	63.4 2.03.13	25.2	9.135	N.387	-7.1	12.3	3.3916	ា ភេទន	ે . ઇ. ોડ
20.0	33.0 0.78.53	23.9	Ø.128	Ø.988	-9.6	1.7.3	9.0751	5.374	1.47.30
3Ø.Ø	32.0 193.34	23.2	Ø.125	Ø.091	-9.4	۵.۵	9.9491	71738 :	.3.4.52

Table 38. Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Design Point Throttle.

ROTOR BLADE ELEMENT PERFORMANCE

Ale de la construction d

IMMER (%)	WHEEL Speed Mps IPS	REL. TURNING ANGLE	LOSS COEF.	LOSS PARA	REL. MACH NO.	DIFF. FACT.	REL. MACH NO.	INCID. ANGLE DEG	DEV. Angle Deg
Ø. 1.9 3.0 4.0 5.0 19.0 15.0 30.0	65.6 215.37 65.5 215.35 65.4 214.72 65.3 214.43 65.3 214.43 65.2 213.75 65.0 213.11 64.7 213.14 64.2 213.52 63.7 270.91 62.7 235.63	DEG -3.1 -2.9 -Ø.8 2.1 4.6 3.1 14.4 18.5 28.5 28.5 28.3 16.3	9.310 9.360 9.396 9.422 9.448 9.449 7.439 7.364 9.364 9.282 9.192 7.994	0.254 9.297 9.332 0.369 8.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398	IN Ø.147 Ø.149 Ø.151 Ø.152 Ø.155 Ø.155 Ø.162 Ø.165 Ø.163	9.831 9.855 9.868 9.873 9.875 9.869 9.699 9.699 9.494 9.494 9.49	OUT Ø. 262 Ø. 259 Ø. 269 Ø. 368 Ø. 368 Ø. 363 Ø. 363 Ø. 263 Ø. 143 Ø. 116 Ø. 129	1.8 5.4 -9.7 -1.6 -2.4 -2.9 -3.9 -4.5 -5.1 -5.8 -7.5	35.6 24. <i>M</i> 2 <i>M</i> .7 25.0 23.6 10.4 12.1 7.1 4.5 0.6 5.7

TORQUE = 5232.52 IN.-LB.

*Loss Coefficient Computed from Fixed Rake Data

STATOR VANE ELEMENT PERFORMANCE

IMMER %	WHIEL Spijd NPS FPS	ABS. Turning Angle	ABS. Mach No.	ABS. Mach No.	INCID. ANGLE DEG	DEV. Angle Deg	LOSS COEF.	LOSS PARA.	DIFF. FACT.
5.0 1.9 2.9 3.0 4.9 5.0 15.9 15.9 15.9 23 .0	63.6 213.37 65.5 215.95 65.4 214.72 55.3 214.49 65.3 214.93 65.2 212.75 65.9 219.11 64.7 210.14 34.2 219.50 63.7 210.91 62.7 210.91	DEG 41.2 42.5 42.4 41.9 43.6 36.1 34.1 31.7 26.3 27.5	IN Ø.127 Ø.135 J.131 Ø.133 J.135 J.135 J.135 J.135 J.135 J.131 J.131 J.134	OUT 8.359 0.961 9.963 9.964 9.966 9.966 9.966 9.968 9.979 9.978 9.979 1.172 0.174 9.389	13.514.113.913.312.711.47.72.3-1.5-5.4	20.9 20.4 19.5 13.6 18.3 18.1 16.5 14.6 12.3 15.3 15.3 8.3	g.2282 g.2176 g.2979 g.1986 g.1026 g.1653 g.1653 g.1342 g.3758 g.3758 g.3481	9.2295 9.2197 9.2197 9.1932 9.1932 9.1932 9.1932 9.1932 9.1768 9.1967 9.9477	Ø.779Ø M.7728 Ø.7368 M.7161 H.7360 Ø.7424 M.7360 J.6277 S.6468 M.65.22 J.61.22

C - 3

OF POOR QUALITY

Table 39. Blade and Vane Element Performance for Rotor B/Stator B, Four-Stage Configuration, Third Stage Tested, Increased Rotor Tip Clearance and Casing Treatment, Peak Pressure Rise/Near Stall Throttle.

ROTOR BLADE ELEMENT PERFORMANCE

							0.01	TNOTO	arv
IMMER	WHEEL	REL.	LOSS	LOSS	REL	DIFF	KEL.	THCTD.	ULV.
/ 4/ \	00790	TURNING	COFF.	PARA.	MACH	FACT.	MACH	ANGLE	ANGLE
(4 1	SFELU		00211		MO		NO	nsa	a≓G
	MPS FPS	ANGLE			NO.				*
		DEG			IN		QUI		
a	36.4 212.72.	-16.8	J. 332	Ø.248	9.148	1.855	0.069	1.7	SP.2
ັ . ຕ	66 3 217.39	-17.9	ø.383	Ø.283	J.151	J.882	J. 957	1.3	49 .9 -
3 0	66 2 217 07	-18 M	J. 436	Ø.331	0.154	9.910	J.895	-1.1	.47.6
2.0			11 140	0 240	Ø 155	11 927	$M_{\odot}(15.4)$	-1.8	
3.0	66.1 .(G./4	-1/.5	J 400	0.330	0.100		N 004		
4.0	65.0 216.41	-15.7	Ø.497	Ø.387	Ø.15/	.0.946	11.1232	-4.9	
5.0	65.9 216.09	-12.9	Ø.515	Ø.413	J.153	I.948	3.332	-3.1	11.13
7 0	65 7 115.43	-3.2	J. 535	Ø.452	ø.161	J.93 8	0.055	-3.9	
100		11.1	0.477	9.431	Ø.164	J.834	3.079	-4.6	1.6
1.0.0		3 77 (1	11 110	a 200	0.166	11.727	11.025	-5.1	ۍ ن
15.0	04.9 212.84	17.0	M. 41M	N. 302	- 20 - X - C - C - C - C - C - C - C - C - C	- m 11 00 cm		- 4 0	1 4
2Ø.Ø	64.4 211.19	20.0	19.278	n.521	0.100	.9.00.9			
30.0	63.4 207.92	16.0	.9.136	Ø.128	I.169	J.491	0.115	-7.5	7.0

TORQUE = 5247.89 IN.-LB.

*Loss Coefficient Computed from Fixed Rake Data

8.18

STATOR VANE ELEMENT PERFORMANCE

IMMER	WHEEL	ABS.	ABS.	ABS.	INCID.	DEV.	1.055	LOSS	DIFF.
14	SPIED	TURNING	MACH	MACH	ANGLE	ANGLE	COEF.	. A.R.A •	FACT.
	MPS FPS	ANGLE	NO.	NO.	DEG '	DEG			
		DEG	IN	OUT					
ø.	66.4 217.72	47.5	I.128	Ø.06Ø	29.1	21.2	Ø.2282	$g_{*}22g_{4}$	9.7599
โด	65.3 217.39	49.3	9.139	0.062	21.9	20.9	Ø.2176	$g_{1}21g_{2}$	1.7758
2 0	66 2 217 17	50.5	0.132	0.063	21.5	19.1	J.2979	.g.2010	11.7717
3.0	66.1 216.74	51.3	9.134	0.005	21.9	13.4	Ø.1986	1.1931	F.7389
4.0ĭ	66.6 215.41	51.4	1.135	U.U66	21.9	18.1	ມ.1395	. H. (B AG	1.7.334
ŝã	35.9 113.09	50.7	0.136	0.967	21.1	17.7	Ø.1313	1.177	7.7.336
7.0	65.7 115.43	19.3	1.136	g.969	18.7	16.2	1.1653	5.1612	7 - 18°
19.4	65.4 11.45	43.9	9.134	0.071	11.3	14.5	Ø.1342	. (. 131 -	/ , 7130
16.0	64.9 112.02	30.3	11.132	0.072	6.7	13.2	ារ ។ ស្រុនស	1.0.937	ាំ ថេ ខែកំពី
20 0	- 3A. A - 2(1.19)	31.3	1.121	9.974	-0.30	11.3	J.J760	1.170.	16 .6 459
30.0	63.4 0 07.90	29.1	5.124	JU. 1011	-2.6	9.4.	Ø.9131	J. J477	

Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor B/Stator B Single-Stage Configuration. Table 40.

,		Ges1g	s Point Th	rottle					Peak Iff	liciency Th	rottle		
	ř	OTAL PRESSU	38(271	NTIC PRESSI	UNE		70	TAL PRESSU	30	115	VEIC PRESS	ME
TRECERT THESE	BOTOR 3 INLET	POTOR 3	STATCE 3	ROTCR 3 INLET	A0108. 3 E 417	STATOR 3 EXIT	PERCENT IMMERSIGN	ROTOR 3. INLET	RUTOR 3 EXIT	STATOR 3 EXIT	RDTOR 3 INLET	80708 3 Ex11	STATOR 3 EXIT
Ţ	- 1164	1988 8	4754	2319	8 .1514	2392		- , 1185	8.5972	1.5482	- ,2#68	8.2848	8.4136
		5117	111	2317	8.1425	SC252			8.6136	B.553B	2#96	£761.2	6.4133
1 1 - r			1	- 2315	B.1352	a. 3368	2.6	9688 -	#.6269	8.567	212#	20101.0	g.41#5
		2.5422	1.5134	2314	S.1295	8.3384	e.	#3#3	# .637 #	# .5751	2348	8 .3951	1917.9
		4.5617	1 . 5 . 2 h	-12314	5 ,1242	#.338#	4.4	\$732	\$.6439	F. 5823	2155	F.1843	55 87 . M
n Ín Þú		4.5724	6.510.	233	B.1296	S. 3376	i di	#567	8.6477	#.5893	2165	8. 1773	1607°
	5430 -	5249	0.1154	2 : 17	#.1165	#.2365	7.6	- , #569	Ø.6459	1 .5931	2176	E. 173E	5/27-2
	164.4	100 C	B. 5575	-2262	1.1166	H. 2343			A.6378	A. 6434	- ,2158	6.1717	8.456%
		8.5078	0.4426	2457	4.1183	8 .3326	15.0	#263	J. 6283	8.6835	2385	10.1699	6.470A
) #		1.5234	G. 5555	2:52	Ø. 1284	#.3325	20.6	#156	S163.2	F.6132	2836	B. 1758	
		5 10 M 3	S. 503-	2337	2.1466	4.338 6	35.5	- #1#5	E.6357	8.6174	2146	F. 1985	8.4821
13		1000	10.5	- 1142	a.1245	6.3294	58.8	\$122	#,6354	8.6137	2131	£.1813	
		4 5325	165.1	- 2426	5365.0	4.3212	76.6	86.1 <i>8'-</i>	H.6227	g . 5959	2163	E .1465	8 . 3522
			2.5427	- 2435	6365	4.3161			1683.2	8.5834	2148	8.1424	1.1362
		15.34	1 5 2 4 4	- 2443	6.808.8	B. 2134	82. <i>8</i>	#313	M. 6#46	a, 574¥	2200	BET 1 . B	5.35 B
		1.45.7	6972.0	- 2456	5 29 M 2	6. 2883	57 ° 5	6539	# . 5954	A.5732	22.49	. 1324	1112 - 1
				- 7479	1965.2	1.2421	53 . E	8698	M. E.B.B.2	s .5552	2224	g.1395	.3725-
		1 5702		2423	1862	1562.0		6188'-	8.6481	#,5555	2248	# .139 #	g. 2693
				- 2479		6.795. 1		8843	E. 6555	1.5377	2232	272.8	J .3581
					1 4277	1692	97.6	#364	E. 6672	5 .5212	2226	F.1343	5 .3567
				2446	2 2721	9.2524		2168	.6718	1651-0	2217	£.1322	813E.8

Paak Pressure Rise/Mtar Stall Throttle

	1	DTAL PRESSU	1 16	- S	VLIC PRESSI	URE
PERCENT	RUTOR 3	ROTOR 3 EXIT	STATOR 3 Exit	ROTOR 3 INLET	ROTOR 3 EXIT	STATO
		6567	8.5832	- , 1865	8.2518	8.472
	- 4215	G. 6718	E.556.	1839	#.2424	8.473
	- 4746	6.6333	B.6872	1968	a.235s	8.478
ā		6169.0	0 ,6162	1892	8.2282	834 - 1 69
	- 4519	6556	6.6249	1912	S .2234	Ø. 458
1	- 0561	E. 6964	B.6314	1926	B.2198	B.467
	8454	6.6872	2623-8	11945	#.2125	E.4 66
	91.94	£735	g .6462	1923	1087.8	#. 465
	- 4265	6.6685	8.6525	1834	8.2#58	8.464
24. 2	- 9158	£.6227	2.6563	1841	4.2147	8.464
	2000	6759	2.6536	1855	4.2259	. 462
		16:41	8.6567	1863	8.2275	Ø. 457
14.4		1 . 4. 52	4.6351	1355	4.1936	8.442
	- 31.65	B. 6155	9.6175	1915	8.1923	6.44.9
1.20	7	8.6539	2.6124	1927	1661.1	2.44.2
1 25	12 S S	8.6472	M. 6432	1938	4.1668	27.4.4
53.8	1591	#.67##	8 .6462	- , 1951	d.1846	R. 4.31
82° 8	4659	8.5575	8262.4	1965	8.1622	824-8
8.95	25LP -	8.7183	8.5757	- 1952	M.1771	5. 1 . 9
57 B	4726	9.7162	N. 1583	1948	3.1716	6-425
1.62	4783	8-7452	6575-8	- 1545	2.1653	8.424

a.

ORIGINAL PAGE IS OF POOR QUALITY

177

;1 ;1 Normalized Absolute Total Pressure, Static Pressure, and Flow Angles for Rotor B/Stator B Single-Stage Configuration (Concluded). Table 40.

ì

		TATOR	EXIT	32.6	3 5, 8	5.5		1. IE	28.5	24,9	22.2	19.6	19.2	20.0	20.6	21	20		n 6		0.14	
le	ORRECTED	STATOR 1 S	INLET	68.8	61.6	66.7	65.8	64.9	60.0	55.0	51.4	49.0	49.2	49.9	50.8	51.7	53.3	53.6	54.6	56.6	58.8	
Thrott	-	ROTOR 1	INLET	31.8	29.6	28.0	26.7	25.0	21.4	20.6	20.3	6.6	19.6	5.61	19.7	19.8	20.0	21.1	21.0	21.1	21.2	
lficiency		1 BUIDE	EXIT	31.3	31.5	30.6	30.4	29.9	A 10	9.60			0 9 9 9		1 00	20.9	22.0	24.0	24.8	31.6	42.9	
Peak I	AE A SURED	1 001112	INLET		9.79	65.7						20	5.74 5.00	5. 19 19 19			52.65	52.9	54.0	56.0	58.2	
	•		INLET			0.90				20.5	9 .	19.5	19.2	19.0	0.61	2.01	5 d d	9.00		20.02	20.8	
			PERCENT IMMERSION		0. -		5	-	5.0	0.0	15.0	20.0	30.0	50.0	70.0	80.08	85.0°	2.0	5.5	2.0	0.86	
	•		STATOR 1 FAIT		31.7	31.4	30.8	30.2	29.6	28.0	24.9	22.3	20.2	18.9	19.0	20.1	20.9	22.1	24.8	25.7	33.2 46.0)
		CORKELIED	STATOR 1	THEFT	64.0	53.7	£3.1	62.5	61.5	57.6		50.3	1.84	4 L 4	48.1	49.0	49.7	51.2	51.9	52.5	8. 9 53 6 5 7	r 00
hrottle			R010R 1	IMLET	31.2	29.8	28.3	5 90	26.0							6 91	19.2	20.0	21.3	21.3	21.0	20.9
Point 7			STATOR 1	EXIT	V	100	3 00					א ת היי	6 I 7	0.0			4.00	21.6		25.2	32.6	45°.3
Des1gn		NE A SURED	STATOR 1	INLET					1		20.4	52.2	1.64	47.0	40.9 1		4 Ć) 		2.63	55.7
		-	R0108	INLET		5 U 5 U		27.1	25.8	24 9	20.4	19 6	19.6	19 6	19.0	18 2	•				20.6	20.5
			PERCENT	IMMERSION		• •	50	0 Ó	0 ¥	0	10:0	15 Q.	20 0	30.0	50.0	10.0	0.08	85.0	0	0 56	96.0	0 86

Peak Pressure Rise/Near Stall Throttle

	STATOR EXIT	31.5	4.06	29.5	29.6	2.90	96.90		C.77	19.5	17.5	18 B	9 0	9 V n (0.02	21.7	23.5	94.9		1.07	27.5	0, 65		N DATA	
RRECTED	STATOR 1 INLET	13.7	9.47		9 64				61.3	56.1	50.8				53.8	54.6	55.0			2 . •	61.7	5.4.5	5	2 POSITIC	
3.	ROTOR 1	31.6					26.1	22.0	20.6	• 00			0.5	1.61	19. G	5			21.3	21.3	21.2			ERO STATO	
	STATOR 1 EXIT			2.62	2. 82	28:4	28.0	25.8	316		9.9	6.9	16.2	19.1	1 00		1.17	23.0	24.4	25.2			4 .86	S USING Z	
EASURED	STATOR 1 INLET	•	72.9	74.2	73.3	72.4	70.8	64.6			55.0	49.7	50.5	51.6		2.50	53.9	54 5	56.8	9		61.2	63.2	FIT VALUE	
X	ROTOR 1 INLET		30.3	28.4	27.1	25.9	25.0			19.B	19.6	1 61	19 0			18.8	19.2	19.7	8 00		20.8	20.8	20.9	· CURVE	
	PERCENT TAMERSION		1.0	2.0	9.6		i e	n q	0.02	15.0	20.0	-0.05			.0.02	9 0.08	85.0*	000		5	96.0	97.0	-0.66	2	

÷

a and a second se

178

Table 41.Vector Diagram Parameters for Rotor B/Stator B Single-
Stage Configuration, Design Point Throttle.

BLADE ELEMENT DATA ROTOR INLET

Tan Contra

INNER		1	VU	BETA	с	z	c	u	C		ALPHA
	MPS	FPS	MPS FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DEG
1.1	54.8	179.8	51.7 169.5	78.3	18.3	68.8	11.1	36.4	21.4	78.ļ	31.2
2.8	55.Ø	180.5	51.4 168.6	68,9	19.6	64.4	11.3	37.0	22.6	74.2	29.8
3.8	55.4	181.8	51.3 168.4	67.7	28.8	68.3	11.2		23.7	77.6	28.3
4.8	55.8	183.1	51.3 168.5	66.8	21°.8	71.7	11.1	36.5	24.5	88.4	26.9
5.0	56.1	184.0	51.3 168.3	66.Ø	22.7	74.3	11.1	36.3	25.2	82.7	~ 26.8
7.0	57.1	187.4	52.8 178.5	65.4	23.6	77.6	10.2	33.4	25.7	84.5	23.3
18.8	57.8	189.6	52.3 171.6	64.6	24.6	80.7	9.6	31.5	26.4	85.7	21.3
15.0	57.9	189.9	51,.8 178.8	63.4	25.7	84.5	9.6	31.5	27.5	98.2	20.4
20.0	57.7	189.2	50.8 166.6	61.5	27.4	89.8	10.2	33.4	29.2	AP'R	28.4
38.8	56.9	186.7	49.8 163.4	68,9	27.5	98.3	10.2	33.5	29.3	A0.3	213.3
58.0	55.7	182.6	48.2 158.2	59.9	27.8	91.2	9.9	32.5	29.5	30.8	19.0
78.0	54.5	178.9	46.7 153.2	58.7	28.2	92.4	9.0	31.3	29.7	31.0	18.7
80.0	53.7	176.2	45.6 149.6	57.8	28.5	93.4	- A. V.	32.0	30.1	30./	10.7
85.Ø	53.0	174.8	45.0 147.7	5/.9	28.0	92.0	9.8	32.2	- 20 1	97.3	20 0
40.0	52.1	110.9	44.4 140./	28.3	21.6	09.3	10.0	21 4	22.0	07 0	20.0
93.8	51.1	10/.0	44.5 140.1	61 0	20.0	70 2		20.0	20.0	967.9	21.2
95.0	52.5	100.0	44.0 140.9	61.3	22 6	77 4	3.4	30.9	25.3	83.1	21.3
70.0	27.2	109-0	44.0 140.3	62 4	22.0	76 0	8 9	29.3	24.8	81.5	21.8
97.8	50.4 50.3	165.1	44.8 147.8	62.7	22.9	75.2	8.8	28.9	24.5	80.5	28.9

BLADE ELÉMENT DATA ROTOR OUTLET / STATOR INLET

. •

IMME 8	. v	,	v	U	BETA	с	z	c	:U	c	:	ALPHA
¥.	` MPS"	FPS	MPS	FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DEG
า๊ต	33.9	111.2	29.9.	98.2	61.9	15.9-	52.8	32.8	107.7	36.4	119.6	64.Ø
2 8	33.6	188.2	28.4	93.3	59.3	16.8	55.0	34.2	112.3	38.1	125.0	63.7
2 4	37 6	1 67 8	27.3	.89.5	56.7	17.8	58.4	35.3	115.7	39.5	129.6	63.Ø
1 0	22.4	195 2	76 4	86.8	54.5	18.7	61.5	36.0	118.2	40.5	133.2	62.3
E 0	22 6	126 7	25.9	84.8	52.5	19.7	64.7	36.5	119.8	41.5	136.2	61.5
7 9	22.1	148 7	25 6	84.8	58.5	21.8	68.9	36.6	128.8	42.2	138.4	6Ø.Ø
1.0	33.1	112 7	26 6	83 0	48.0	22.9	75.2	36.3	119.2	42.9	148.9	57.6
15 0	27 0	171 5	76 7	87.6	46.8	25.7	B4.2	34.7	113.9	43.2	141.7	53.4
10.0	20 1	120 4	57 6	.91 6	45 4	27.4	90.0	33.8	108.4	42.9	140.9	50.2
20.0	10 0	1 2 1 4	20.2	62 7	44 7	28 4	93.1	31.8	104.2	42.6	139.8	48.1
50.0	10 D	177 6			42 0	27 0	91 7	31.1	187.0	41.8	137.1	47.9
20.0	30.7	127.0	74 5	00.7	- 10 6	28 4	67.2	31.8	184.3	42.6	139.8	48.1
10.0	3/.0	123.0	24.0	72 2	27 2	20.0	94 6	22.2	189.1	44.8	144.4	48.9
88.3	30.3	119.1	22.0	76.3	37.3	27 0	01 5	22 1	109.5	42.3	141.9	49.7
85.0	35.4	110.1	21.0		. 20 1	36 7	07 7		100.3	45.7	140.1	51.1
30.0	34.1	111.7	21.1	29.4	30.1	20.1	5/./	33.3	100 7	17.4	120 1	51.7
93.0	33.4	104.1	20.8	. 98.1	38.3	20.2	00.0	33.3	110 0	17.0	140 3	52 1
95.0	33.0	108.4	.20.1	02.9	3/.4	20.2	00.0	33.8	110.9	44 0	144 2	52 4
96.0	32.7	107.3	18.8	61.9	35.1	20.7	8/./	34.9	110 7	44 6	146 2	63.9
97.0	31.6	103.7	47.6	2/.9	33.8	20.2	6.0.Ø	30.1	110.0	10.0	140.3	55.5
98.0	29.6	97.2	15.8	51.9	32.2	25.0	82.2	3/.8	1.2.2.2	49.3	140.1	20.3

Table 42. Vector Diagram Parameters for Rotor B/Stator B Single-Stage Configuration, Peak Efficiency Throttle.

BLADE ELEMENT DATA ROTOR INLET

ANNED MIL	BETA	ĊZ	ĊŬ	C	ALPHA	
	DEC DEC	MPS FPS	MPS FPS	MPS FPS	DEG	
	a a 73 3	16.5 54.8	18.2 33.6	19.4 63.6	31.8	
	0.7 (L.L. 0 5 707	18 9 59.1	18.3 33.7	28.7 68.4	29.6	
5.0 22.0 127.5 54.6 14		10 2 62 2	18.3 33.8	21.9 71.7	28.0	
3.8 55.3 181.5 51.6 1/		77 4 66 9	10 3 33.7	22.8 74.8	26.7	
4.0 55.6 102.6 51.8 10	A'A 08'3	20.4 00.0	10 0 32 B	23.6. 77.4	25.8	
5.0 56.2 104.3 52.0 17	N'P 01'5	21.3 70.0	0 6 21 8	24.2 79.4	23.8	
7,8 56,9 186,5 52,3 17	1.0 00.7	22.3 73.1		25.1 82.2	21.4	
19,9 57,3 188,8 52,3 17	1.7 65.8	23.3 70.0	3.2 34.2	26 1 85.1	28.6	
15.0 57.3 187.9 51.8 17	8.8 64.6	24.4 80.0	9.2 30.4	26 6 87	28.3	
28.8 57.1 187.2 51.3 16	8.3 63.8	25.8 82.8	9.3 30.4	20.0 07.1	19.9	
30.8 56.5 185.3 58.3 16	4.9 62.7	25.7 84.5	9.3 30.7	20 0 01	196	
50.8 55.1 188.6 48.4 15	8.6 61.3	25.3 86.4	9.4 30.0	20.0 7.01	10 6	
78.8 53.5 175.4 46.5 15	2.5 68.2	26.4 85.5	. 9.4 30.8	20.0 31.	107	-
80.0 52.6 172.6 45.4 14	9.1 59.6	26.5 86.9	9.5 31.1	28.1 96.	3 17.7	
85.8 52.1 171.8 45.8 14	7.5 59.4	26.4 86.5	9.5 31.2	28.0 92.0	0 19.0	
90.0 51.4 158.8.44.7 14	16.6 6 Ú .1	25.5 83.7	9.3 30.6	27.2 89.		
93 8 50.6 156.1 44.6 14	6.5 61.7	23.9 78.3	9.1 29.8	25,5 83.	8 · 20 · 6	
95 9 50.2 164.7 44.7 14	6.7 62.8	22.8 74.9	8.8 28.9	24.5 80.	3 21.1	
96 8 58 8 164.2 45.8 14	17.5 63.8	22.9 72.1	8.5 27.8	23.6 77.	3 21.12-	
97 8 49.9 163.7 44.9 14	17.4 64.8	21.7 71.2	8.4 27.5	23.3 76.	4 61.1	
48 A 49 8 163.2 44.9 1	17.2 64.2	21.5 78.5	8.4 27.5	23.1 75.	/ 21.2	

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

			67	cu	C	ALPHA
IMMER W	- WU TRO	552	293 294	MPS FPS	MPS' FPS	DEG
X MPS FPS M	12 - 162	UEG	14 0 A 6 0	26 4 119.5	39.0 128.1	68.8
1.8 29.5 96.6 25	.9 85.0	61.4	14.0 40.0	27 2 122 2	40.2 132.8	67.6
2.8 29.3 96.0 25	.8 82.1	58.5	10.2 47.7	37.6 166.6	41 2 135.1	66.7
3.8 29.2 95.7 24	.3 79.7	56.2	16.2 53.0	3/17 14414	41 9 137.5	65.8
4.8 29.2 95.9 23	.8 78.0	54.2	17.8 55.9	38.3 125.0	47 4 120 2	64.3
B B 29 9 98 2 23	.7 77.7.	52.2	18.3 60.0	38.3 125.0	46.4 13716	62 9
7 9 70 5 100.1.23	.6 77.5	ŠØ.6	19.363.3	38.1 125.2	42.8 140.3	E0 0
10 0 22 4 105 2 24	3 79.8	48.6	21.4 78.1	37.2 121.9	42.9 140.0	09.7 EE 7
10.0 32.4 100.6 24	0. 85.4	45.9	24.2 79.4	35.Ø 114.B	42.5 139.0	52.4
15.0 35.5 110.0 20	6 43.3	46.2	26.3 86.2	33.0 108.4	42.2 138.5	51.4
20.0 36.0 124.6 27	0 . 01 2	45.1	27.6 90.4	31.8 104.4	42.1 138.1	49.0
30.0 39.1 128.4 27		43.8	27.2 89.1	31.6 103.8	41.7 136.7	49.2
50.0 37.7 123.6 20	5.1 00.7 5.9 E		27 6 BB.6	32.2 185.7	42.0 138.0	49.9
70.8 35.9 117.8 23	5.7" 77.0		77 1 88 6	33.4.189.6	43.8 141.1	50.8
80.0 31.6 113.5 21	1.5 . / 0.0	. 38.4	27.1 00.7	33.6 110.3	42.7 148.1	51.8
85.8 33.6 110.2 20	5.9 58.4	38.3	20.3 00.0	24 1 111.9	42.5 139.4	53.3
90.0 32.2 105.6 19	9.9 65.2	38.0	23.3 03.1	22 9 111 8	42.1 138.2	53.3
93.8 32.8 105.1 19	5.9 65.3	38.3	25.1 02.4	1 33.8.117 8	42 7 148.8	53.5.
95.8 31.7 1.34.8 19	9.2 62.8	37.9	25.3 82.3	· . · · · · · · · · · · · · · · · · · ·	44 1 144.8	54.6
96.8 30.8 101.1 1	7.4 57.1	34.2	25.5 83.	30.1 110.3	44 9 147.5	56.6
97.8 29.2 95.9 1	5.8 51.9	32.6	24.5 80.	/ 3/.9 123.2	AG 6 149	58.8
98.8 27.5. 98.1 4	4.3 46.9	31.2	23.5 77.1	1 34:0 151.0	40.0 140.4	

BLADE ELEMENT DATA STATOR OUTLET

IMMER W X MPS FPS 1.8 53.6 175.7 2.8 53.2 174.6 3.4 53.4 175.2 4.9 53.3 174.9 5.8 53.4 175.1 7.8 53.5 175.5 9 5.4 177.2	WU MPS FPS 49.9 163.9 49.3 161.8 49.2 161.3 48.8 168.1 48.6 159.4 48.4 158.9 48.5 159.4	ETA CZ DEG MPS FI 68.7 19.3 61 67.7 20.0 61 66.8 20.8 61 65.4 22.1 7 64.7 22.7 7 63.6 23.8 7	CU S MPS FPS 1.4 12.4 40.6 1.6 12.9 42.4 1.4 13.8 42.6 1.4 13.8 43.5 1.4 13.3 43.5 1.4 13.4 43.9 1.5 13.3 43.8 8.2 13.8 42.7	C ALPHA MPS FPS DEG 23.0 75.3 32.6 23.8 75.3 32.6 24.6 80.6 31.8 25.2 82.8 31.6 25.8 84.7 31.1 26.3 86.4 30.4 27.2 89.1 28.6
20.0 56.3 184.6 30.0 56.8 186.2 50.0 55.4 181.7 70.0 53.4 175.1 80.8 52.2 171.2 85.0 51.3 468.3 90.0 50.3 165.0 93.0 49.6 162.6 95.8 48.4 158.9 97.0 45.2 143.3	49.9 163.9 50.1 154.4 48.3 158.4 46.0 158.9 45.0 147.5 44.5 146.0 43.6 143.0 42.7 140.1 42.7 140.1 42.7 130.2 36.4 119.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9 1.0 3.1 9.1 9.5 31.1 8.8 9.9 32.4 5.9 1.8 32.4 3.7 1.8 32.4 2.3 1.8 32.4 2.3 1.8 34.4 2.5 11.4 34.4 2.5 11.4 37.4 9.3 11.5 37.4 8.9 13.7 44.4 7.9 13.6 9.5	28.3 92.8 19.6 28.8 94.5 20.4 28.8 94.5 20.4 28.8 94.5 20.4 28.3 92.5 20.4 28.4 92.5 20.4 27.4 89.9 21.3 27.5 90.1 22.5 27.5 90.1 23.6 3 27.3 69.7 24.5 5 26.8 87.8 25.3 8 25.6 83.9 32.2 3 24.4 80.1 43.6

٠.

Table 43. Vector Diagram Parameters for Rotor B/Stator B Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.

BLADE ELEMENT DATA ROTOR INLET

ì

		,		ш	BETA	C	z	CL	j	C		ALPHA
	ыве"	é	_мрс"	FPS	DEG	MPS	FPS	MPS	FPS	MPS	FPS	DEG
.^_	17(7-00 12 2 07	10.7	20 6	172 8	72.7	16.2	83.8	18.8	32.7	19.8	62.3	31.6
1.8	20.0	100 3	36.0	170 0	71 4	17 4	\$7.2	9.9	32.6	20.1	65.8	29.6
2.8	22.3	101.0	26.2	176.0	74.4	10 8	20 6	19.9	32.7	21.8	68.9	28.3
3.0	55.5	182.2	DZ . 4	1/1.9	. /	10.0	23.7	· ~ ~	22 6	21.8	71.6	27.8
4.8	55.8	183.1	52.3	171.8	03.4	13.4	04.1	3.7	22.6	22 6	72 0	26.1
5.\$	56.Ø	183.8	52.2	171.4	68.6	20.2	00.4	3.2	36.8	22.0	76 0	24.2
7.0	56.5	185.5	62.6	172.1	67.9	21.1	69.3	-a.s	37.5	23.2	70.0	55.6
18.8	57.2	187.6	52.6	172.7	66.8	22.4	73.4	9.1	29.7	24.1	13.5	
15.0	67.4	188.2	62.4	172.0	65.8	23.3	76.5	8.8	28.9	24.9	81.9	20.0
28.8	57.8	187.2	52.1	178.9	65.7	23.3	76.3	8.7	28.4	24.8	81.4	28.4
20 0	66.4	185.8	58.9	167.2	64.5	24.1	79.2	8.9	29.1	25.7	84.4	20.1
		190 4	49 1	161.8	63.8	24.8	81.3	8.8	29.8	25.3	86.3	19.6
	83. <i>8</i>	175 6	77.7	166 7	62.2	24.8	81.3	8.6	28.2	26.2	.86.1	19.1
10.0	03.0	1/0.0	16.3	160.7	61 4	28 1	82.2	8.8	28.8	26.6	87.1	19.3
88.8	92.1	1/2.8	40.3	106.0	21 2	24 7	91 Ø	8.8	29.8	26.2	B6.Ø	19.7
85.0	52.8	179.7	40.0	100.3	61.5	22.0	70 6	0.0	26 6	28.6	83.7	28.1
9ø.ø	51.3	.168.3	45.4	148.8	. 52.0	23.7	70.0	0.0	27 6	22.8	78.0	29.6
93.Ø	5Ø.6	166.1	45.5	149.2	63.8	22.2	12.3		27.0	27.0	71 7	21 3
95.Ø	58.1	164.5	45.4	.149.Ø	64.8	21.2	DA • D	5.3	61.6	22.0		21.2
96.8	58.8	164.2	45.4	149.0	65.0	21.8	69.8	8.2	20.3	22.0	74.0	21 2
97.8	49.9	163.7	45.5	149.7	65.9	20.2	66.3	7.9	52.3	21.7	11.6	21.2
98.#	49.8	163.4	45.4	149.8	. 65.6	28.4	66.9	9.0	25.2	21.9	/1.9	21.3

BLADE ELEMENT DATA ROTOR OUTLET / STATOR INLET

				••	DETA	c	7	0	U	C		ALPHA
IMMER				V.	6510	MPC	Epe	MPS	FPS	MPS	FPS	DEG
X	MPS	FPS	mr S	rra_	254	44.4	26.2	28 2	125.4	39.8	130.5	73.7
1.82	16.7	87.5	24.3	79.7	00.3	11.1	30.3	30.6	120 0	10 0	134.3	74.9
2.5 2	5.2	82.6	22.9	75.0	65.1	10.0	34.9	33.0	123.0	41 9	127 2	73.8
3.92	4.9	81.8	22.1	72.5	62.3	11.5	. 37.1	42.6	132.0	41.0	100 5	72 0
4.8.2	4.9	81.6	21.5	7Ø.8	6Ø.Ø	12.4	40.5	48.7	133.4	42.3	139.0	76.7
6.6 2	5.2	82.5	21.3	78.8	57.8	13.3	43.8	48.8	133.9	42.9	140.9	11.1
7 6 3	56 A	86.7	21.6	78.8	54.5	15.3	5Ø.1	48.4	132.5	43.Z	141.7	03.1.
1000		02.7	22.4	73.6	51.6	17.7	58.8	39.3	128.8	43.1	.141.3	65.5
18.8		102 2	22.0	79 2	49.1	28.5	. 67.3	37.4	122.6	42.6	139.9	61.1
10.0	1.5	103.6	22.0	62.5	17 0	22.6	77.3	35.4	116.1	42.5	139.5	56.2
20.0	54.0	113.5	23.4	03.6	11.0	26.9	88.1	32.9	108.0	42.5	139.4	5ø.7
30.0	38.0	124.5	20.9	60.4	44.9	20.0	0 20	22 4	198.1	42.1	138.0	51.4
50.0 3	36.2	118.7	25.0	82.8	43.0	20.2	00.0	36.3	100.4	42 R	127.8	52.4
78.8 3	34.2	112.2	22.7	74.5	41.5	25.0	. 83.9	33.3	1.03.4	12.6	170 0	62.8
88.8 3	32.5	186.6	28.6	67.7	39.3	25.1	82.3	34.5	113.1	46.0	137.7	
85.0 :	31.7	184.8	19.9	65.3	38.8	24.7	80.9	34.7	114.0	42.0	133.0	54.5
98.8	38.9	101.4	19.1	62.8	38.2	. 24.3	79.6	35.Ø	114.9	42.0	139.8	59.2
62 8	201	98.7	18.7	61.2	38.2	23.5	77.4	35.2	115.6	42.4	139.1	50.4
73.0	20.1	94 7	16 0	65.6	35.9	23.4	76.6	36.8	128.6	43.5	142.9	57.4
70.8	20.7	24.1	14 0	10.9	33.2	22.7	74.6	38.7	126.9	44.9	147.2	59.4
30.9	21.2	63.3	19.7	42.4	21 5	21 5	78.6	48.3	132.2	.45.7	149.9	61.7
97.8	29.2	82.8	13.2	43.4	31.3	20 0	65.7	41.6	136.4	46.1	151.4	64.1
98.8	23.3	76.3	17 · A	38.3	349.0	6.8 . 9	44.1	7.14				

BLADE ELEMENT DATA STATOR OUTLET

e	2011	BETA	Č2	CU	Ç,	ALTIA
IMMER W.		DEC.	MDC 690	MPS FPS	MPS FPS	DEG
X MPS FPS	MA2 LAS	Use	PIPS ITS	100 25 5	20 7 68.1	31.5
1.8 54.5 179.2	51.7 169.5	78.9	17.7 58.8	10.5 35.0		30 1
0 0 E4 7 179 2	61 2 168.2	69.5	19.0 62.2	11.2 36.6	22.8 12.6	
2.0 34./ 1/3.3	C1 0 167 0	69.2	28 8 65.8	11.4 37.3	23.8 75.6	29.5
3,8 54.8 179./-	21.1 101.4	00.3		11 9 79 7	23.9 78.5	. 29.5
A.# 54.5 179.1	58.5 165.5	67.4	28.8 00.2	11.0 00.0	51 6 07 9	29 1
B B B4 6 179.1	58.2 164.6	66.6	21.5 78.5	12.0 39.3	24.0 00.0	
	E# # 164 #	65.9	22.2 72.7	12.8 39.3	25.2 82.5	28.3
7.8 84.7 1/2.4	30.0 104.0		22 1 76 B	11.7 38.5	25.9 85.8	26.8
1 55.8 188.5	50.0 103.9	00.0	.23.1 70.0	10 2 22 2	26.5 87 8	22.5
15.8 56.6 185.9	51.1 167.5	64.2	24.5 00.3	10.2 33.3	A7 0 00 E	10 5
28 8 87 6 189.8	61.7 169.6	63.6	25.4 83.4	9.1 29.1	2/.0 00.0	13.0
	E1 6 160 2	63.0	26.8 85.4	8.2 27.0	27.3 89.5	1/.9
38.8 21.9 103.2	01.0 107.6	61 7	26 2 86 9	8.9 29.3	27.7 98.7	18.8
58.8 55.6 182.3	49.0 100.0	<u> 91. (</u>	10,2 00.9	0 1 24 7	27 8 91.3	19.6
78.8 53.5.175.7	46.7 153.2	68.5	20.2 80.0		Ac 0 00 2	20 6
08 8 52 1 171 8	45.6 149.7	69.9	25.2 82.5	9.5 31.1	20.3 00.2	20.9
	AC @ 147 7	61.6	24.1 79.1	9.5 31.6	26.0 85.2	21.7
#5.# 51.1 18/.8			22 6 77 2	18.3 33.7	25.7 84.2	23.5
98.8 49.8 163.4	43.9 144.8	01.0		10 6 24 9	26 G 85.1	24.1
93.8 49.3 161.8	43.3 141.9	61.1	23.7 11.1	10.0 34.3	- CU.U 00.1	24 9
DE # 48 8 16#.1	42.7 148.	6 / 6	23.5 77.5	11.0 39.1	20.1 00.0	
70.8 40.0 108.1	42 7 148 2	62.1	22.5 73.8	18.9 35.7	25.0 82.0	25.7
AD'M 49'3 700'5			21 2 69 7	11.1 36.5	.24.0 78.7	27.5
97.8 47.4 155.6	42.4 139.1	03.4	E113 0917		22 9 75.2	39.07
98.8 42.8 148.5	39.# 127.8	1 55.3	11.2 5813	T#*3 #/+8		

Table 44. Blade and Vane Element Performance for Rotor B/Stator B, Single-Stage Configuration, Design Point Throttle.

ROTOR BLADE ELEMENT PERFORMANCE

Ŋ

۱.

ì

			T .						
IMMER	WHEEL Speed	RÉL. TURNING	LOSS COEF.	LOSS Pará.	REL. Mach	DIFF. FACT.	REL. Mach	INCID. ANGLE	DEV. Angle
	MPS FPS	ANGLE			NO. IN		NO. OUT	DÉG	DEG
1 0	60 0 00E 00		0.106	a. a93	Ø.158	Ø.566	Ø.Ø98	-Ø.4	21.9
1.0	62.6 200.00 63 7 906 E7	0.4	a 144	a. 128	a. 159	Ø.593	Ø.Ø95	-1.8	19.2
2.2	62.7 LD3.37	11 0	à 175	a. 157	Ø. 16Ø	Ø.612	0.094	-3.Ø	16.6
3.2	62.6 200.20 40 6 744 05	12 2	a 198	a 179	<i>й</i> .161	Ø.625	0.094	-3.9	14.3
4.2	02.0 194.90 80 1 031 61	12.2	a 21a	a 192	a. 162	Ø.629	0.094	-4.7	12.3
5.0	02.4 284.04 30 3 344 83	13.5	a 23a	a. 212	Ø.165	0.632	g.ø96	-5.3	19.1
1.2	32.2 2.94.03 41 0 909 19	16 6	a 228	a. 211	a. 167	Ø.617	3.099	-6.1	7.5
10.0	61 A 201 EE	10.0	a 171	a 16a	a. 167	Ø.557	Ø.1Ø7	-7.2	5.5
15.0	1 0 201.00 41 0 200 00	16 1	a 104	a 998	a. 167	Ø.5ØØ	Ø.113	-9.0	5.Ø
22.2	61.0 200.00	16.2	a a51	a a48	Ø. 164	Ø. 464	Ø.116	-9.Ø	5.3
39.0	UO 1 100 77	15 0	a a 19	a a17	a. 161	Ø.465	Ø.112	-8.5	7.3
ວຍ.ທ	30.1 150.73 57 3 104 54	· 10 1	a a 22	a a 31	a. 157	9.482	Ø.1Ø8	-8.5	7.4
12.0	29.2 104.04	20.1	a aga	a a77	Ø. 155	3.503	9.195	-9.5	5.7
80.9	- 55.3.181.40 - c + 0 170 08	20.0	a aga	a a77	a. 153	Ø.511	9.192	-9.6	7.1
85.0	04.0 1/9.90 CI 4 170 25	20.0	a a77	a a74	a. 15a	Ø.526	0.093	-9.5	8.1
99.0	04.4.1/0.30	22 2	a a55	a a53	9.147	Ø.531	Ø.Ø97	-7.5	8.8
93.9	53 0 176 91	22.6	a a15	a. a43	g. 146	Ø.539	Ø.Ø95	-6.9	8.2
95.9	33.3 4/0.01 30 0 176 59	23.9	a a19	a a48	Ø.146	Ø.555	Ø.Ø94	-6.3	6.1
ש.מע	53.6 1/0.52	20.0	a agi	a. 079	Ø. 146	Ø.587	Ø.Ø91	-5.9	5.Ø .
9/.2	53./ 1/0.19	20.0	a 122	a 13a	a 145	a. 64a	Ø.Ø05	-5.7	3.5
98.0	23.0 1/5.83	ن بر ن	6.5.5.3	2.130	~	~. • • • •			

TORQUE = _ 2232.21 IN.-LB.

*Loss Coefficients Computed from Fixed Rake Data

STATOR VANE ELEMENT PERFORMANCE

IMMER	WHEEL	ABS.	ABS.	ABS.	INCID.	DEV.	LOSS	LOSS	DIFF.
*	SPEED	TURNING	MACH	MACH	ANGLE	ANGLE	COFF.	FARA.	FAG1.
/ •	MPS FPS	ANGLE	NO.	NÖ.	DEG	DEG			
		DEG	IN	OUT					
• •	22 0 206 00	32 4	Ø. 195	Ø.067	-4.4	11.6	Ø.940I	ø.ø392	0.5689 -
1.0	02.0 200.00	22 1	a. 11a	Ø.Ø71	-3.7	12.9	Ø.Ø544	Ø.Ø534	Ø.55Ø5 -
2.0	32.7 200.07	36.4	à 11A	a a74	-3.5	12.1	Ø.Ø638	Ø.Ø627	Ø.5526
3.8	62.6 295.20	34.4	a 117	a a77	-3.3	12.1	Ø.Ø692	.Ø.Ø68Ø	Ø.5447
4.Ø~	62.5 294.95	32.2	a 12a	a a79	-3 3	12.1	Ø.9715	ø.9783	Ø.5366
5.2	62.4 254.64	31.9	9.120	a a91	-3.3	12.5	9,9710	0.0699	0.5265
7.9	32.2 284.03	31.9	9.124	0.001		12 0	ดัสธรส	a a62a	0.5062
19.9	51.9 2 <i>9</i> 3.1J	29.6	9.124	N.084		11 2	a a637	a d673	a.5432
15.0	61.4 201.55	28.7	Ø.125	9.982	-4.6	11.4	a 6521	6 9515	a. 1848
29.9	51.3 298.98	27.8	Ø.124	Ø.987	-5.3	9.0	2.2341	a aros	a 1576
30.0	39.9 198.91	27.3	Ø.123	Ø.Ø37	-4.8	8.5	2.3497 0.0160	0.0493 a ditt	a AABA
50.0	59.1 199.73	29.1	Ø.121	Ø.J88	-4.1	1.4	9.0400	0.9437	0.4404 /
70.0	56.2 104.54	29.1	Ø.123	ø.089	-5.7	6.3	9.9449	9.9440	0.4001 0.4700
26 9	5.3 131.45	28.9	ø.127	g.088	-7.3	6.3	J.J419	0.9416	J.4700
0.5 . X	3 9 179 90	28.6	Ø.125	_ ປີ. 936	-7.8	6.3	Ø.9417	9.9414	0.4324
07.0	- 34.0 172.20 - 11 3 170 25	20.0	Ø.123	0.035	-8.5	6.5	Ø.0421	g.g413	g.4346
9	- 24.4.179.00 - 04.5.197.42	70 G	f. 122	g.935	-9.4	15.8	ມ	ຸສ.ສ355	Ø.4769
93.9	- 24.1 1//.43	27 2	a 123	ต.ศ85	-10.1.	6.9	. 0.0682	ສ.ສ575	Ø.4779
95.9	33.9 1/5.01	4/+6		n 1182	-10.4	7.1	Ø.1549	9.1532	Ø.5257
93.0	33.3 1/5.5.	20.7	N.12/		-9.7	13.9	0.2.793	.1.2954	0.5469
97.0	33.7 175.13	20.0	9+143		-7 a	25 3	0.2660	1 0.2567	2.5574
93.0	33.6 175.83	10.3	7.131	. ພະພາອ	-1.2	20.0			

OF POOR QUALITY

?• <u>*</u>

Table 45. Blade and Vane Element Performance for Rotor B/Stator B, Single-Stage Configuration, Peak Efficiency Throttle.

ROTOR BLADE ELÉMENT PERFORMANCE

IMMER	WHEEL	REL.	LOSS	LOSS PARA.	REL. MACH	DIFF. FACT.	REL. MACH	INCID. ANGLE	DEV. Angle
(7)	MPS FPS	ANGLE	00111		NO. IN		NO. UUT	DEG	DEG
1.Ø	62.3 204.51	10.8	Ø.165	Ø.145	Ø.158	Ø.683	Ø.Ø85	1.5	21.3
2.Ø	62.2 284.21	12.2	Ø.186	Ø.165	Ø.159	0.090	0.000	-9.0	16.4
з.ø	62.1 293.99	13.2	Ø.292	Ø.181	0.100	Ø.103	0.004 0.005	-1.3	14.0
4.9	62.1 293.59	.14.1	Ø.214	N.194	0.101	N 400	a as7	-3 2	11.9
5.0	52. <i>9</i> 293.28	15	Ø.219 « 229	Ø.200	Ø.103	Ø.033	a. a88	-3.9	19.3
7.9	61.8.252.67	15	x . 2 3 X	a 194	g 166	a 658	a.a94	-4.9	8.1
10.0	51.5 291.75	17.2	Ø.205 Ø 146	g. 136	Ø.166	Ø.584	Ø.1Ø3	-G.Ø.	6.4
10.0	61.0 L00.21	17.6	g. g94	Ø.Ø88	Ø.165	Ø.521	Ø.11Ø	-6.7	5.8
20.0	59 6 195.60	17.6	Ø.Ø42	Ø.Ø4Ø	Ø.164	Ø.484	Ø.113	-7.2	5.7
5 <i>0.0</i>	57.7 139.46	17.5	Ø.Ø1Ø	Ø.ØØ9	Ø.159	Ø.489	Ø.1Ø9	-7.1	7.2
70.0	55.9 133.31	19.2	0.004	Ø.ØØ4	Ø.155	Ø.5Ø6	Ø.1Ø4	-7.9	7.9
30.Ø	54.9 180.24	21.2	Ø.Ø48	Ø.Ø46	Ø.152	Ø.528	Ø.100	-7.7	ື 5.ປ 7 5
85.Ø	54.5 178.71	21.1	Ø.Ø62	Ø.Ø6Ø	Ø.151	Ø.543	y.ya/	-8.1	7.5
9ø.ø	54.0 177.17	22.1	Ø.Ø7Ø	Ø.068	.0.149	Ø.508	D.D93	-/./	87
93.Ø	53.7 176.25	23.4	Ø.Ø45	9.044	0.147	0.303	a 202	-5.4	7.8
95.Ø	53.5 175.63	25.7	0.034	a ale	a 1/5	0.572 0.603	a a89	-4.5	5.2
96.0	53.4 1/5.33	29.5	Ø.040 Ø Ø85	a. as3	Ø.140	Ø.646	g.085	-4.3	3.7
97.0	53.3 1/5.04	22 0	Ø. 125	a.122	Ø.144	Ø.692	Ø.Ø8Ø	-4.2	2.5
39.0	53.3 1/4./1	33.0	<i></i>						

TORQUE = 2192.59 IN.-LB.

*Loss Coefficients Computed from Fixed Rake Data

STATOR VANE ELEMENT PERFORMANCE

IMMER	WHEEL	ABS.	ABS.	ABS.	INCID.	DEV.	LOSS	LOSS	DIFF.
%	SPÉEĎ	TURNING	МАСН	MACH	ANGLE	ANGLE	COEF.	PARA.	FACT.
	MPS FPS	ANGLÉ	NO.	NO.	DEG	DÉĠ			
		DEG	IN	OUT					
1.Ø	62.3 204.51	36.2	Ø.113	Ø.Ø56	ø.4	12.5	Ø.1249	Ø.1223	9.6329
2.0	62.2 204.21	34.8	Ø.116	Ø.Ø69	Ø.2	13.4	Ø.1335	Ø.13Ø7	5.6242
3.Ø	62.1 203.90	34.9	Ø.119	Ø.Ø71	Ø.2	13.1	Ø.1373	ø.1345	9.6194
4.9	62.1 203.59	34.2	Ø.121	Ø.Ø73	Ø.2	13.5	Ø.137Ø	g.1343	Ø.6113
Ś.Ø	62.0 203.28	33.2	Ø.123	Ø.075	-ø.5	13.6	9.1339	Ø.13Ø5	0.6013
7.Ø	61.8 202.67	32.6	9.124	Ø.Ø76	-Ø.3	14.Ø	Ø.1252	0.1230	9.5912
10.0	61.5 201.75	31.3	Ø.124	Ø.Ø79	-1.3	13.6	g.1398	Ø.J974	1.5574
15.Ø	61.0 200.21	3Ø.4	Ø.123	0.080	-2.8	11.2	Ø.\$729	Ø.9721	8.5472
2Ø.Ø	63.6 198.68	29.1	Ø.122	Ø.081	-4.1	9.7	Ø.543Ø	9.9426	1.5268
3Ø.Ø	59.6 195.60	29.4	Ø.122	Ø.Ø82	-3.9	7.9	9.9395	0.9392	9.5165
5Ø.Ø	57.7 189.46	30.0	Ø.121	Ø.Ø33	-2.8	7.7	9.9439	0.9496	0.4964
78.9	55.9 183.31	29.9	Ø.122	ø.983	-3.9	7.3	Ø. 9477	9.9473	9.4968
8Ø.9	54.9 130.24	39.2	Ø.125	0.082	-5.1	7.3	1.7479	9.0475	9.5262
85.Ø	54.5 178.71	3Ø.5	Ø.24	0.079	-5.7	7.9	Ø.3597	0.2592	8.5441
90.0	54.8 177.17	3Ø.8	Ø.123	.ø.ø79	-6.3	6.9	9.3641	0.0636	9.5472
93.Ø	53.7 176.25	29.7	B.122	Ø.979	-7.8	6.7	1.3436	9.548)	6.5277
95.Ø	53.5 175.63	29.J	Ø.124	. 9.979	-3.7	6.0	Ø.7396	9.9887	0.5377
96.J	53.4-175.33	29.3	g.128	ມ <i>.</i> 1977	-8.2	6.7	9,1688	9.1679	9.5773
97.Ø	52.3 175.02	24.4	Ø.130	1 ม.ม74	-6.9	12.9	9.2273	9.2234	1.0.55
98.0	53.3 174.71	15.2	0.132	ຍ.071	-5.5	23.4	g.2743	0.235/	

Table 46. Blade and Vane Element Performance for Rotor B/Stator B, Single-Stage Configuration, Peak Pressure Rise and Near Stall Throttle.

ROTOR BLADE ELEMENT PERFORMANCE

فلافحا والمروا ومروا الرا

.

IMMER WHEEL REL. (%) SPEED TURNING MPS FPS ANGLE DEG	COEF.	PARA.	MACH NO. IN	FACT.	MACH NO. OUT	ANGLE DEG	ANGLE DEG
1.0 62.5 205.16 7.42.0 62.4 204.85 6.3 3.0 62.3 204.55 8.0 4.0 62.3 204.55 8.0 5.0 62.3 204.55 8.0 4.0 62.3 204.24 9.4 5.0 62.2 203.93 10.8 7.0 62.0 203.31 13.3 10.0 61.7 202.39 15.2 15.0 61.2 200.85 16.7 20.0 60.7 199.31 18.8 30.0 59.8 196.22 19.5 50.0 57.9 190.06 19.5 70.0 56.1 183.90 20.7 80.0 55.1 180.81 22.1 85.0 54.6 179.27 22.7 90.0 54.2 177.73 23.8 93.0 53.9 176.81 25.6 95.0 53.7 176.19 28.9 96.0 53.6 175.88 31.8 97.0 53.5 175.57 34.4 98.0 53.4 175.27 35.1	Ø.198 Ø.24Ø Ø.256 Ø.269 Ø.274 Ø.256 Ø.256 Ø.2155 Ø.2155 Ø.2155 Ø.863 Ø.8657 Ø.8657 Ø.8657 Ø.8657 Ø.8659 Ø.184 Ø.152 Ø.196	Ø.171 Ø.208 Ø.224 Ø.238 Ø.244 Ø.235 Ø.244 Ø.235 Ø.199 Ø.144 Ø.024 Ø.024 Ø.047 Ø.024 Ø.047 Ø.055 Ø.055 Ø.055 Ø.055 Ø.055 Ø.102 Ø.142 Ø.192	Ø.189 Ø.169 Ø.160 Ø.160 Ø.161 Ø.162 Ø.163 Ø.165 Ø.165 Ø.165 Ø.163 Ø.165 Ø.155 Ø.155 Ø.155 Ø.155 Ø.155 Ø.156 Ø.148 Ø.148 Ø.148	Ø.753 Ø.793 Ø.803 Ø.805 Ø.782 Ø.678 Ø.628 Ø.516 Ø.551 Ø.5531 Ø.5533 Ø.5533 Ø.6519 Ø.6550 Ø.6519 Ø.65500 Ø.65500 Ø.65500 Ø.65500 Ø.65500 Ø.65500 Ø.65500 Ø.65500 Ø.655000 Ø.655000 Ø.655000 Ø.655000 Ø.65500000000000000000000000000000000000	g.g77 g.g73 g.g72 g.g72 g.g72 g.g73 g.g72 g.g72 g.g72 g.g73 g.g72 g.g73 g.g73 g.g73 g.g73 g.g73 g.g73 g.g94 g.g94 g.g94 g.g94 g.g94 g.g94 g.g94 g.g95 g.g87 g.g87 g.g87 g.g87 g.g87 g.g87 g.g87 g.g87 g.g87 g.g87 g.g87 g.g87 g.g87 g.g87 g.g87 g.g77 g.g72 g.g73 g.g72 g.g73 g.g72 g.g73 g.g72 g.g73 g.g74 g.g73 g.g74 g.g74 g.g74 g.g74 g.g74 g.g74 g.g74 g.g74 g.g74 g.g74 g.g74 g.g74 g.g777 g.g777 g.g77 g.g777 g.g77 g.g77 g.g77 g.g77 g.g77 g.g77 g.g77 g.g77 g.g	2,7331898844 ,12234455556.834348 ,234455556.834348 ,	25.29.62 29.62 17.4.1 1.6.65 2.27.7 14.1 8.65 7.9 2.77.1 8.65 7.9 2.77.1 8.65 7.9 2.77.1 6.8 1.1 8.65 7.9 2.77.1 6.8

TORQUE = 2200.88 IN.-LB.

*Loss Coefficients Computed from Fixed Rake Data

STATOR VANE ELEMENT PERFORMANCE

IMMER	WHEEL	ABS. TURNING	ABS. Mach	ABS. Mach	INCID. ANGLE	DEV. ANGLE	LOSS Coéf.	LOSS PARA.	DIFF. FACT.
^	MDC EDC	ANGLE	NÔ.	NO.	DEG	DEG.			
	MES LIS	DEG	IN	OUT			-	~ 1777	A 7344
1 07	62 5 295.16	42.2	Ø.115	Ø.ØGØ	5.3	11.4	Ø.1812	9.1///	0.7644
2 9	62 4 204.85	44.5	Ø.118	Ø.Ø63	7.5	11.Ø	Ø.1765	9.1/33	Ø.7100 0 6050
2 0	62.3 204.55	44.4	Ø.121	ø.ø66	7.3	19.8	9.1698	0.1009	1.0900 a 6002
3.0 A 0	62.3 204.24	43.4	Ø.123	Ø.Ø69	7.2	11.4	0.1610	9.1003	x 6667
5 a	62.2 203.93	42.7	Ø.124	Ø.Ø71	6.9	11.5	0.1497	0.14/5	0.0007 d 6520.
7.0	62.0 203.31	40.8	Ø.125	Ø.Ø73	5.8	11.9	9.1362	0.1340	0.0520
19.9	61.7 202.39	38.7	Ø.124	Ø.Ø75	4.4	11.8	19.1905 a ardi	11.19991	0 6062
15.0	61.2 200.85	38.6	Ø.123	Ø.Ø76	3.1	a .0	y.yoo7		J 5862
29.9	60.7 199.31	36.7	Ø.123	Ø.Ø78	Ø.7	1.9	0.0340	0.0040	a 564d
30.0	59.8 196.22	33.2	Ø.123	Ø.Ø79	-2.2	5.8	0.0300 0.0300	11125	0.5429
5Ø.Ø	57.9 190.06	32.6	Ø.121	Ø.080	-0.6	7.3.	0.0420 d deño	rt 17499	4.5334
70.0	56.1 183.90	32.8	Ø.121	g.889	-1.4	····/+4	a 11626	6 6620	W. 5677
8Ø.Ø	55.1 180.81	33.2	Ø.123	0.078	-2.1	7.3	a (1918)	6.3811	r. 5885
85.Ø	54.6 179.27	32.8	Ø.123	ນ.ມ/ວ	-3.1	7 0	0.0010	6.6927	9.5912
90.0	54.2 177.73	31.6	Ø.123	0.074	4.4	7.2	6.0325	0.0817	5.5805
93.Ø	53.9 176.81	31.9	19.122	ູນ.ນ/ວ ທີ່ທີ່ອີຊ	-19	7 9	d. 1342	J.1289	1.5964
95.Ø	53.7 176.19	32.5	Ø.125	1 J. J. J. C		7 1	σ.2986	11.2.761	0.6479
9Ġ.Ø	53.6 175.88	33.7	122	1 10 . 10 / 4 N / 11 / 4	3.5 	3.2	a. 2542	9.151	1 9.6855
97.Ø	53.5 175.57	34.2	J. 132	. N.NOS N N NGG	; -1.8 ∴a(1	19.9	0.2853	1.2782	. 1.6966
98.Ø	53.4 175.27	25.1	10.133	3 9 . 9 9 6	-0.1	10.9	2.2000		•

9.0 REFERENCES

- 1. Wisler, D.C., "Core Compressor Exit Stage Study, Volume I Blading Design," NASA CR-135391, December 1977.
- 2. Wisler, D.C., Koch, C.C., Smith, L.H., Jr., "Preliminary Design Study of Advanced Multistage Axial Flow Core Compressors," NASA CR-135133, February 1977.
- 3. Koch, C.C. and Smith, L.H., Jr., "Loss Sources and Magnitudes in Axial-Flow Compressors," Transitions of ASME, Journal of Engineering for Power, Vol. 98, Series A, No. 3, July 1976, page 411.
- Wisler, D.C., "Core Compressor Exit Stage Study Volume II Data and Performance Report for Rotor A/Stator A Baseline Configurations," NASA CR-159498, November 1980.
- 5. Wisler, D.C., "Core Compressor Exit Stage Study, Volume III Data and Performance Report for Screening Test Configurations," NASA CR-159499, December 1980.
- 6. Brent, J.A. and Clemons, D.R., "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors," Final Report NASA CR-134713, November 1974.