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Abstract. A novel channel for fuel ions heating in tokamak core plasma is
proposed and analyzed using nonlinear gyrokinetic theory. The channel is
achieved via spontaneous decay of reversed shear Alfvén eigenmode (RSAE) into
low frequency Alfvén modes (LFAM), which then heat fuel ions via collisionless ion
Landau damping. The conditions for RSAE spontaneous decay are investigated,
and the saturation level and the consequent fuel ion heating rate are also derived.
The channel is expected to be crucial for future reactors operating under reversed
shear configurations, where fusion alpha particles are generated in the tokamak
core where the magnetic shear is typically reversed, and there is a dense RSAE
spectrum due to the small alpha particle characteristic dimensionless orbits.
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1. Introduction

Energetic particles (EPs) including notably fusion alpha particles related physics [1,2]
are key elements towards understanding the performance of future fusion reactors
such as ITER [3] and CFETR [4]. Heating of thermal ions via Coulomb collisions
is crucial for sustained fusion reactions, while EPs excitation of collective oscillations
such as shear Alfvén wave (SAW) instabilities may lead to EP loss and affect the
confinement of thermal plasmas [1, 2]. The SAW induced EP anomalous transport
is determined by the saturation level and spectrum of SAWs [5]. Thus, it is crucial
to understand the dynamics of SAW instabilities that lead to their saturation [6].
Another important topic in EP research, is searching for alternative/complementary
routes to transfer EP power to fuel ions, i.e., alpha-channeling [7,8], which is important
in maintaining the self-sustained burning in future reactors, where collisional transfer
of high energy fusion alpha is mostly due to electron drag due to the high alpha particle
birth velocities.

Due to the magnetic geometry and plasma nonuniformities, the SAW continuous
spectrum is characterized by various forbidden gaps, inside which different discrete
SAW eigenmodes reside, e.g., toroidal Alfvén eigenmodes (TAE) due to toroidicity
induced coupling of neighboring poloidal harmonics [9–11] and beta-induced Alfvén
eigenmodes (BAEs) due to plasma compressibility [12, 13]. Among various Alfvén
eigenmodes (AEs), TAEs have drawn the most attention in theoretical and numerical
investigations, and are studied as paradigm case for the nonlinear dynamics of
discrete AEs [2, 14–16], and the obtained general results can be applied to other
SAW instabilities, based on the understanding of their respective linear properties.
E.g., in future reactors operating in advanced reversed shear scenarios [3, 4, 17, 18]
with minimized inductive current fraction, it is expected that reversed shear Alfvén
eigenmodes (RSAEs, also known as Alfvén cascades) [19,20] are preferentially excited
in tokamak center where fusion alpha particles are generated, while TAEs are excited
in the relatively exterior region of the torus with finite magnetic shear [21, 22]. On
the other hand, BAEs, or more generally, low frequency Alfvén modes (LFAMs)
in the frequency range comparable or lower than BAEs [13, 23–26], can be excited
by both EPs as well as thermal plasmas due to their relatively low frequencies, in
different toroidal mode numbers regimes. The properties of LFAMs in reversed shear
plasmas, including destabilization mechanism, mode polarization dependence on qmin,
are systematically investigated in Ref. [27]. Here, qmin is the local minimum of the
safety factor q.

The linear properties of SAW instabilities expected in fusion reactors are
extensively investigated [1, 2, 28, 29], and it is generally accepted that most unstable
modes are characterized by high-n mode numbers with k⊥ρh ∼ O(1) [21, 30], due to
the competition of drive from EP pressure gradient (∝ n) and the stabilization by
finite orbit width effects (FoW) in the high-n limit (∝ 1/n, noting the asymptotic
form of Bessel functions accounting for FoW effects in the short wavelength limit [31]
§). Here, n is the toroidal mode number, k⊥ is the perpendicular wave number, and
ρh is the characteristic EP orbit width. As a result, in future reactors such as ITER
and CFETR [3, 4] with a/ρh & O(10), the most unstable modes are characterized
by n & O(10) with many modes having comparable linear growth rates [21]. Thus,

§ Note that, the FoW effects are formulated using Padé approximation in Ref. [31]. For a more
explicit expression, one may refer to equation (3) of Ref. [32] for the EP response to TAE, assuming
well circulating EPs.
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nonlinear mode coupling is expected to be a channel for effectively saturating SAW
instabilities and modifying the perturbation spectrum [14,33–37], among which, alpha-
channeling through TAE decaying into modes prone to ion Landau damping are
proposed and analyzed in Refs. [14, 36, 38, 39], which is shown to effectively transfer
fusion alpha particle power to fuel ions, in addition to nonlinearly saturate TAEs.

In this work, a new alpha-channeling mechanism, based on LFAM generation
due to the nonlinear decay of RSAE, is proposed and analyzed. With the alpha
particle characteristic orbit size much smaller than the tokamak minor radius [1],
multiple RSAEs may be simultaneously excited [2, 21], with their radial localization
determined by qmin, and are thus, radially overlapped. The RSAE frequency is
determined by ω2 ≃ (nqmin −m)2V 2

A/(q
2
minR

2
0) + ∆2

ω, with ∆ω being the deviation
from local SAW continuum accumulation point due to q-curvature (q′′ ≡ ∂2q/∂r2)
and non-perturbative EP drive [21]. Here, m is the poloidal mode number, VA
is the Alfvén speed, and R0 is the major radius. Thus, for given qmin, RSAEs
with different toroidal mode numbers may have different parallel wave numbers
k‖ ≡ (nqmin − m)/(qminR0) and consequently frequencies covering TAE and BAE
frequency ranges, and two RSAEs may couple and generate secondary modes with
ω± ≃ [(n1±n2)qmin− (m1±m2)]VA/(qminR0). Among the two secondary modes, the
lower frequency one, if satisfies the dispersion relation of a normal mode, e.g., BAE,
or mor generally LFAM, can be strongly driven unstable, and effectively heat thermal
ions via LFAM Landau damping. This process, may provide a direct and efficient
alpha-channeling mechanism that transfers fusion alpha particle power to fuel ions.
This channel is of potential importance since RSAEs are expected to be firstly excited
in the tokamak center by core localized alpha-particles [21], and thus, the core localized
power deposition will heat core ions, leading to enhanced fusion performance.

Two independent processes can occur and lead to LFAM generation. In the
first process, a linearly unstable RSAE spontaneously decays into another linearly
stable RSAE and a low frequency sideband; while in the second process, two linearly
unstable RSAEs couple and generate a low frequency mode. The two processes can
occur, since there is a rich spectrum of (linearly stable or unstable) RSAEs and their
kinetic counter-parts, i.e., kinetic RSAEs (KRSAE) [28,40,41] in reactors with ρh ≪ a,
so the frequency and wavenumber matching condition required for the resonant mode
coupling process can be satisfied. In the present work, we will focus on the first process
of parametric instability of RSAE and discuss the condition for spontaneous decay;
while the second process, which does not require an amplitude threshold condition,
can be formally analyzed from the obtained nonlinear LFAM equation.

The rest of the manuscript is organized as follows. In Sec. 2, the theoretical
model of nonlinear gyrokinetic theory will be introduced. In Sec. 3, the linear particle
responses to SAW instabilities in torus are reviewed, which are then used to derive the
general nonlinear equation describing the nonlinear interaction of SAW instabilities
in torus. The nonlinear dispersion relation for RSAE parametric decay instability
is analyzed in Sec. 4. The consequences on RSAE saturation and core-localized
ion heating is discussed in Sec. 5. And finally, a brief summary and discussion are
presented in Sec. 6.

2. Theoretical model

The governing equations describing nonlinear interactions among RSAEs and LFAM
with all predominantly SAW polarization can be derived from nonlinear gyrokinetic
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vorticity equation [34, 42]

c2

4πω2
k

B
∂

∂l

k2⊥
B

∂

∂l
δψk +

e2

Ti

〈

(1− J2
k )F0

〉

δφk −
∑

s=e,i

〈

q

ωk
JkωdδHk

〉

s

= − i
1

ωk

∑

k=k′+k′′

Λk
k′′,k′

[

c2

4π
k′′2⊥

∂lδψk′∂lδψk′′

ωk′ωk′′

+ 〈e(JkJk′ − Jk′′)δLk′δHk′′〉] , (1)

and quasi-neutrality condition

n0e
2

Ti

(

1 +
Ti
Te

)

δφk =
∑

s=e,i

〈qJkδHk〉s , (2)

with the non-adiabatic particle response δHk, related to the perturbed particle
distribution function via δfk = −(q/T )F0δφk+exp(−ρ·∇)δHk, derived from nonlinear
gyrokinetic equation [43]:

(

−iω + v‖∂l + iωd

)

δHk = − iωk
q

T
F0JkδLk

−
∑

k=k′+k′′

Λk
k′′,k′Jk′δLk′δHk′′ . (3)

Here, the terms on the left hand side of equation (1) are, respectively, the
field line bending, inertia and curvature coupling terms; while the terms on the
right hand side are the formally nonlinear terms, corresponding to Maxwell and
gyrokinetic Reynold stresses dominated by nonlinear electron and ion responses,
respectively. ∂l is the derivative along the equilibrium magnetic field, Jk ≡ J0(k⊥ρ)
with J0 being the Bessel function of zero index accounting for finite-Larmor-radius
effects (FLR), ρ ≡ v⊥/Ωc, Ωc = B0q/(mc) is the cyclotron frequency, F0 is the
equilibrium particle distribution function, and is taken as local Maxwellian for bulk
electrons/ions, ωd = (v2⊥ + 2v2‖)/(2ΩcR0)(kr sin θ + kθ cos θ) is the magnetic drift
frequency for a circular cross section large aspect ratio tokamak assumed in this work
for simplicity of derivation. Furthermore, Λk

k′′,k′ ≡ (c/B0)b̂ ·k′′ ×k′ with b̂ being the
unit vector along the equilibrium magnetic field B0,

∑

k=k′′+k′ denotes the selection
rules of frequency and wavenumber matching conditions for nonlinear mode coupling,
δL ≡ δφ− k‖v‖δψ/ω with δψ ≡ ωδA‖/(ck‖) and δA‖ being the parallel component of
the vector potential, and ideal MHD condition is determined by δψ = δφ.

In this work, we assume the nonlinear coupling is dominated by thermal plasma
contribution, while EPs, driving the pump RSAE unstable, contribute negligibly to
the nonlinear coupling. Consequently, the nonuniformity of thermal plasma in the
tokamak core can be neglected [44], corresponding to thermal ion diamagnetic drift
frequency being smaller than BAE frequency here, in consistency with the considered
high-performance scenarios [18]. Thus, the present theory, which could be generalized
to included kinetic ballooning modes (KBMs) [13] and/or Alfvénic ion temperature
gradient modes (AITGs) [23, 45] by inclusion of thermal plasma nonuniformities, is
derived for application to BAE in its present form. We consider a spontaneous decay
process, in which a pump RSAE decays into another linearly stable RSAE and a
LFAM, and the condition for this process to occur is βi ≪ 1 such that the frequency
separation between RSAE and LFAM can easily be satisfied. The nonlinear decay
process, can be analyzed by deriving the nonlinear equations of the two sidebands,
which can be coupled to yield the nonlinear parametric dispersion relation. For proper
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evaluation of ion heating due to the LFAM Landau damping, the LFAM resonance with
thermal ions is crucial [13], and can be formally accounted for in the anti-Hermitian
part of the LFAM dispersion relation.

3. General nonlinear equation for resonant SAW three wave coupling

The linear particle response to SAW instabilities can be derived by noting the k‖ve ≫
ω ≫ k‖vi & ωd ordering, and one has, at the leading order, δHe,k ≃ −eF0δψk/Te and

δH
(0)
i,k = eF0Jkδφ

(0)
k /Ti, which can be substituted into quasi-neutrality condition, and

yield δφ
(0)
k = δψ

(0)
k , i.e., ideal MHD condition is maintained at the leading order.

To the next order, one derives

δH
(1)
i,k =

e

Ti
F0Jk

[

δφ
(1)
k +

ωd

ωk
δφ

(0)
k

]

,

which can be substituted into quasi-neutrality condition and one obtains

δφ
(1)
k − δψ

(1)
k =

Te
Ti

〈

ωd

ωk

F0

n0

〉

δφ
(0)
k , (4)

i.e., breaking of ideal MHD constraint due to plasma compressibility. Finite parallel
electric field generation due to FLR effects, i.e., kinetic Alfvén wave (KAW) related
physics, will not be considered here for simplicity. However, as we show later, the
decay process favors higher-n modes, for which inclusion of FLR may be needed and
can be accounted for straightforwardly [46].

Substituting non-adiabatic particle responses into vorticity equation, and noting

δφ
(0)
k = δψ

(0)
k , one derives the SAW mode equation in torus, i.e.,

n0e
2

Ti
bkEkδφ(0)k = 0, (5)

with Ek ≡ −k2‖V 2
A/ω

2
k + 1 − ω2

G/ω
2
k being the SAW dielectric function in the WKB

limit, and ωG ≡
√

7/4 + τvi/R0 being the leading order geodesic acoustic mode
frequency [47, 48], accounting for SAW continuum upshift and creation of beta-
induced continuum gap. We note that, in the expression of Ek, effects of wave-particle
interactions are not included, in consistency with the k‖vi ≪ ωk ordering for bulk non-
resonant ions. However, finite Landau damping due to resonance with ions is crucial
for alpha-channeling, and will be recovered formally in the later analysis by inclusion
of the anti-Hermitian part of Ek [13]. Equation (5) is general, and can be applied to
different modes in different scenarios. E.g., RSAE global dispersion relation can be
derived by expanding k2‖ at qmin, and solving the eigenmode equation in Fourier-kr

space [20], while BAE physics is dominated by k2‖q
2R2

0 . βi [13].
Note that, for the present case of a pump RSAE decaying into another RSAE

and a LFAM, all three modes involved are SAWs that satisfies ω2 ≃ k2‖V
2
A ‖. Thus,

one can derive the general nonlinear equation for SAW nonlinear coupling, which
can be applied to the case of RSAE nonlinear decay of interest. Considering two
SAWs, Ω1 ≡ Ω1(ω1,k1) and Ω2 ≡ Ω2(ω2,k2) coupling and generating a third mode,
Ω3 ≡ Ω3(ω3,k3), the nonlinear equations can be derived from nonlinear vorticity

‖ Note that, LFAM dispersion relation can be quite different due to thermal plasma compression,
but the general picture is the same, especially for BAE of interest here with predominantly SAW
polarization.
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equation and quasi-neutrality condition. For simplicity of derivation, parallel force
balance equation is used instead of quasi-neutrality condition.

The first equation of Ω3 mode can be derived from nonlinear gyrokinetic vorticity
equation,

n0e
2

Ti
bk3

(

−
k2‖,3V

2
A

ω2
3

δψk3
+ δφk3

− ω2
G

ω2
3

δφk3

)

≃ − i

ω3
Λk3

k2,k1

[

c2

4π
(k2⊥,1 − k2⊥,2)

k‖,1k‖,2

ω1ω2
δψk1

δψk2

+〈e(Jk1
− Jk2

)(δLk1
δHi,k2

+ δLk2
δHi,k1

)〉] . (6)

In deriving equation (6), we have noted, in the nonlinear Reynolds stress [35, 49],
δφk ≃ δψk, δHi,k ≃ eF0δφk/Ti, and neglectedO(k2⊥ρ

2
i ) order corrections. Substituting

the lowest order ion response into the Reynolds stress term, the nonlinear vorticity
equation of Ω3 then becomes

bk3

(

−
k2‖,3V

2
A

ω2
3

δψk3
+ δφk3

− ω2
G

ω2
3

δφk3

)

≃ − i

ω3
Λk3

k2,k1
(bk2

− bk1
)

(

1− k‖,1k‖,2V
2
A

ω1ω2

)

δφk1
δφk2

. (7)

The other equation can be derived from parallel electron force balance equation,
and one has,

δφk3
− δψk3

= −iΛk3

k2,k1

1

k‖,3

(

k‖,1
ω1

− k‖,2
ω2

)

δφk1
δφk2

, (8)

i.e., nonlinear extension of ideal MHD constraint, in addition to plasma compressibility
as shown in equation (4).

Substituting equation (8) into (7), one obtains

bk3
Ek3

δφk3
= − i

ω3
Λk3

k2,k1

[

(bk2
− bk1

)

(

1− k‖,1k‖,2V
2
A

ω1ω2

)

+bk3
V 2
A

k‖,3

ω3

(

k‖,1

ω1
− k‖,2

ω2

)]

δφk1
δφk2

. (9)

Equation (9) describes the nonlinear evolution of SAWs, as Ω3 being modified
by the beating of Ω1 and Ω2, with the first term on the right hand side from
the competition of Reynolds and Maxwell stresses and the second term from finite
parallel electric field contribution to field line bending term. Note that, (ω1 + ω2) ≃
(k‖,1 + k‖,2)VA, Ω3 naturally satisfies the SAW D.R., and can be strongly excited
if it is a normal mode of the system, leading to significant spectrum evolution of
SAW turbulence. Note that, though the primary motivation of the present work
is investigating the LFAM generation by RSAEs, equation (9) can be applied to
study the nonlinear SAW couplings in the high frequency range, e.g., the nonlinear
coupling among TAE, ellipticity induced AE (EAE) and non-circular AE (NAE),
whose frequency matching condition can be naturally satisfied. It can also be
generalized to kinetic Alfvén waves (KAW) [50] by properly accounting for parallel
electric fields due to kinetic effects [46], which is expected to be crucial due to the
intrinsic nonuniformity in magnetically confined plasmas. Equation (9) can be more
generally applied for KAW spectral cascading in space plasmas, e.g., solar wind, by
neglecting the ω2

G term that is unique in torus, and k‖ can be more flexibly taken
without the periodicity constraint in a torus.
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4. Parametric decay of RSAE

Equation (9) will be applied to the nonlinear decay of a pump RSAE Ω0 ≡ Ω0(ω0,k0)
into a RSAE sideband Ω1 ≡ Ω1(ω1,k1) and a LFAM ΩB ≡ ΩB(ωB,kB), with the
frequency/wavenumber matching condition Ω0 = Ω1 + ΩB assumed without loss of
generality. For RSAE and LFAM being dominated by single-n and single-m mode
structures, we take

δφk = Ak(t)Φk(x) exp (−iωkt+ inξ − imθ), (10)

with Ak(t) being the slowly varying mode amplitude, Φk(x) the parallel mode
structure localized about qmin with x ≡ nq − m, and the normalization condition
∫

|Φk|2dx = 1 is satisfied. For the effective transfer of alpha particle energy to core
ions, ωB . O(vi/(qR0)), and thus, |ωB| ≪ |ω0|, |ω1| and k‖,B ≃ 0. Thus, the
qmin surface where secondary ΩB locates, also corresponds to the rational surface
of ωB, i.e., ΩB is the LFAM in the reversed shear configuration, as investigated
experimentally [51] and theoretically [27]. We then have, ω0 ≃ ω1 and k‖,0 ≃ k‖,1.
Effects of small frequency mismatch on the decay process will be discussed later.

The nonlinear RSAE sideband equation can be derived from equation (9) as

b1E1δφ1 = − i

ω1
Λk1

k0,kB∗
α1δφ0δφB∗ , (11)

with α1 ≡ (b0−bB)(1−k‖,Bk‖,0V 2
A/(ω0ωB))+b1V

2
A(k‖,1/ω1)(k‖,B/ωB−k‖,0/ω0). The

nonlinear Ω1 eigenmode equation can be derived from equation (11), by multiplying
both sides by Φ0, and averaging over radial mode structure, and one obtains

b̂1Ê1A1 = − i

ω1

〈

Λk1

k0,kB∗
α1Φ1Φ0ΦB

〉

x
A0AB∗ , (12)

with 〈· · ·〉x ≡
∫

· · · dx denoting averaging over the fast radial scale, and b̂1Ê1 ≡
∫

Φ1b1E1Φ1dx being the Ω1 eigenmode dispersion relation.
The nonlinear LFAM equation, on the other hand, can be derived as

bBEBδφB = − i

ωB
ΛkB

k0,k1∗
αBδφ0δφ1∗ , (13)

with αB ≡ (b0− b1)(1−k‖,1k‖,0V 2
A/(ω0ω1))+ bBV

2
A(k‖,B/ωB)(k‖,1/ω1−k‖,0/ω0). The

LFAM eigenmode equation can be derived similarly, and one obtains

b̂B ÊBAB = − i

ωB

〈

ΛkB

k0,k1∗
αBΦBΦ0Φ1

〉

x
A0A1∗ , (14)

with b̂B ÊB being the LFAM eigenmode dispersion relation. Equations (12) and (14) are
readily reduced to the nonlinear eigenmode equations of RSAE sideband and LFAM
in the WKB limit, and can be simplified noting the respective parameter regimes.

The parametric decay dispersion relation for RSAE nonlinear decaying into
another RSAE and LFAM, can then be derived, by combining equations (12) and
(14)

Ê1ÊB∗ ≃
(

Λ̂k1

k0,kB∗

)2 α̂N

b̂B b̂1ωBω1

Ĉ2|A0|2, (15)

with Ĉ ≡ 〈Φ0ΦBΦ1〉x, α̂N ≡ α̂1α̂B with α̂k = 〈αk〉x, Λ̂k1

k0,kB∗
= 〈Λk1

k0,kB∗
〉x, and

Λk1

k0,kB∗
= ΛkB

k0,k1∗
noted. In deriving equation (15), we have noted that α̂N and

(

Λ̂k1

k0,kB∗

)2

are operators acting on the respective mode structures, and they are
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moved out of the spatial averaging in that they are both predominantly even operators
with respect to qmin surface. The integration 〈Φ0ΦBΦ1〉x can be evaluated, noting
that ΦB typically has a much narrower structure than those of Φ0 and Φ1. Taking

Φk ≃ exp(−x2/2∆2
k)/(π

1/4∆
1/2
k ) with ∆k being the characteristic radial width of the

parallel mode structure, we have, Ĉ ≃
√

2∆B/(
√
π∆0∆1), with ∆0 ∼ ∆1 ∼ O(1) and

∆B ∼ O(β1/2).
Expanding Ê1 ≃ i∂ω1

Ê1(∂t + γ1) ≃ (2i/ω1)(γ + γ1) and ÊB∗ ≃ (−2i/ωB)(γ+ γB),
with ∂ω1

Ê1 ≡ ∂Ê1/∂ω1, γ denoting the slow temporal variation of Ω1 and ΩB due to
the parametric instability, and γ1/γB being the linear damping rates of RSAE/LFAM
imbedded in the anti-Hermitian part of E1/EB, one obtains

(γ + γ1)(γ + γB) =
(

Λ̂k1

k0,kB∗

)2 α̂N

4b̂B b̂1
Ĉ2|A0|2. (16)

The condition for the pump RSAE spontaneous decay can thus be obtained from
equation (16) as

α̂N > 0, (17)

and

(Λ̂k1

k0,kB∗
)2

4b̂B b̂1
α̂N Ĉ

2|A0|2 > γBγ1 (18)

for the nonlinear drive overcoming the threshold due to Ω1 and ΩB Landau damping.
The nonlinear dispersion relation is very complex, and depends on various

conditions including the polarization and mode structure of the three modes involved.
For the analytical progress, the WKB limit and the strong assumption of k‖,B → 0 is
adopted from now on, and we have k‖,0 ≃ k‖,1 and thus, α̂N can be simplified as

α̂N ≃ (b0 − b1)

(

1− k‖,1k‖,0V
2
A

ω0ω1

)

(b0 − bB − b1) . (19)

The sign of α̂N is determined by several factors. First, the sign of 1 −
k‖,1k‖,0V

2
A/(ω0ω1) is determined by qmin and n0/n1 that determine the respective

SAW continuum structure, i.e., whether the RSAEs are localized below the local
minimum of SAW continuum or above the local maximum; b0 − b1 is determined by
the respective toroidal mode numbers n0/n1, noting kθ ∝ nq/r and kr ∝

√

q′′n2/qmin.
Noting that, k⊥,0 = k⊥,B + k⊥,1, we have, b0 − bB − b1 = (k⊥,0 · k⊥,1 − k2⊥,1)ρ

2
i , and

its sign is positive for cos η > |k⊥,1/k⊥,0|, with η being the angle between k⊥,0 and
k⊥,1. The above three conditions are quite complicated, but two parameter regimes
can be identified for the spontaneous decay process to occur. The first parameter
regime corresponds to k⊥,1 ≫ k⊥,0, such that (b0 − b1)(b0 − bB − b1) > 0; and α̂N > 0
can be satisfied with 1 − k‖,0k‖,1V

2
A/(ω0ω1) > 0, which generally requires Ω1 being

excited above the local SAW continuum accumulation point with n1qmin < m1 ¶.
Another parameter regime can be found with 1− k‖,0k‖,1V

2
A/(ω0ω1) < 0, i.e., to

have Ω1 being excited below the local minimum of SAW continuum. In this case,
α̂N > 0 can be satisfied with (b0 − b1)(b0 − bB − b1) < 0, which requires b1 < b0 while
k⊥,0 · k⊥,1 < k2⊥,1.

We note that, the Λk1

k0,kB∗
in the nonlinear coupling cross-section is maximized for

k⊥,1 being perpendicular to k⊥,0, and, also, that the linearly unstable pump RSAE
typically have relatively broad mode structures with k⊥ρh ∼ O(1) [21]. For finite

¶ Note n1qmin < m1 is a sufficient condition for 1− k‖,0k‖,1V
2

A
/(ω0ω1) > 0, but not necessary.
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LFAM generation with the mode structures typically much narrower than that of the
pump RSAE by O(ωB/ω0) ∼ O(

√
βi), the nonlinear coupling, thus, may occur in the

radially fast varying inertial layer of Ω1. As a result, the toroidal mode number of
Ω1 is expected to be much higher than that of the pump RSAE, which makes the
first parameter region with b1 ≫ b0 optimized for the nonlinear process. On the
other hand, the coefficient on the left hand side of equation (18) is proportional to
b1 considering b1 ≃ bB ≫ b0, which further confirms the first parameter regime with
b1 ≫ b0 is favored, i.e., normal cascading to high-n1 regime. The upper bound of n1

can be determined by γ1(n1), i.e., the decay RSAE Ω1 damping rate increases with
n1, as is shown in equation (18). The condition for wavenumber/frequency matching
condition to be satisfied, especially the requirement on |ωB| being comparable with ion
transit frequency, can be satisfied due to the potential dense RSAE/kRSAE spectrum
in the high-n limit.

The threshold condition for the RSAE spontaneous decay, for the first case of
“normal cascading”, can be estimated from equation (18), and one obtains

∣

∣

∣

∣

δB⊥,0

B0

∣

∣

∣

∣

2

>
4γ1γB
ω0ω1

k2‖,0

k2⊥,1

1

Ĉ2

1

1− k‖,0k‖,1V
2
A/(ω0ω1)

∼ O(10−7), (20)

and is comparable with or slightly higher than typical threshold condition for other
dominant nonlinear mode coupling processes, e.g., ZS generation [35, 52]. This
threshold amplitude, is also consistent with typical SAW instability intensity observed
in experiments [53]. Thus, this channel can be an important process in determining the
nonlinear dynamics of RSAE, and the consequent transport by the short wavelength
RSAE sideband and nonlinear thermal ion heating via the nonlinearly generated
LFAM. In deriving the threshold, typical parameter are used, i.e., γ/ω ∼ 10−2,
k⊥,1 ∼ 1/ρi, k‖ ∼ 1/R0, k‖/k⊥,1 ∼ ρi/R0 ∼ 10−3, ∆B/∆0 ∼ O(ωB/ω0) ∼ 10−1,
and |1− k‖,1k‖,0V

2
A/(ω0ω1)| ∼ |γ/ω0| ∼ O(10−2) is assumed.

5. Nonlinear saturation and core-localized ion heating

The RSAE saturation level can be estimated by considering the feedback of the two
sidebands to the pump RSAE, which can be derived from equation (9) as

b̂0Ê0A0 ≃ − i

ω0
Λ̂k0

k1,kB
α̂0ĈA1AB , (21)

with α0 = (b1 − bB)(1− k‖,Bk‖,1V
2
A/(ω1ωB)) + b0V

2
A(k‖,0/ω0)(k‖,B/ωB − k‖,1/ω1).

Expanding equations (12), (14) and (21) along their characteristics, one obtains

(∂t + γ1)A1 = − α̂1

b̂1ω1∂ω1
E1,R

Λ̂k1

k0,kB∗
ĈA0AB∗ , (22)

(∂t + γB)AB∗ =
α̂B

b̂BωB∂ωB∗
EB∗,R

Λ̂kB

k0,k1∗
ĈA0∗A1, (23)

(∂t − γ0)A0 = − α̂0

b̂0ω0∂ω0
E0,R

Λ̂k0

k1,kB
ĈA1AB, (24)

and the saturation level of pump RSAE and LFAM can be evaluated from the
coupled three wave equations. We note that, the coupled nonlinear equations with
drive and dissipation can exhibit different dynamics from limited cycle oscillation
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to period doubling and finally route to chaos, depending on the driving/dissipation
as well as the initial conditions [54]. Here, an order of magnitude estimation of
the saturation level can be derived from the fixed point solution, among which the
LFAM saturation level can be derived from equations (22) and (24). One obtains,

|AB |2 = γ0γ1b̂0b̂1ω0ω1∂ω1
E1,R∂ω0

E0,R/(α̂0α̂1|Ĉ|2(Λ̂k0

k1,kB
)2), and the ion heating rate

due to LFAM Landau damping, can be estimated as

Pi = 2γBωB
∂EB,R

∂ωB
|AB |2. (25)

The obtained core ion heating due to LFAM conllisionless damping, is expected to be
complementary to Coulomb collisional heating, which is less effective in the tokamak
center. This channel, achieved via the Landau damping of secondary LFAM, noting
that k‖,B ≪ 1, is highly localized around the qmin surface (this conclusion can also
be obtained, noting as the “secondary” LFAM structure will be determined by the
primary RSAE, with a narrower extent than the primary RSAEs), will deposit fusion
alpha particle power locally and heating core ions, leading to direct improvement of
fusion performance in the tokamak center.

6. Conclusion and Discussion

In conclusion, a novel channel for RSAE nonlinear saturation is proposed and analyzed,
which is expected to be important in regulating SAW instability induced alpha particle
transport and heating of fuel ions in future reactors burning plasmas. The saturation
is achieved through the spontaneous decay of the unstable pump RSAE into linearly
stable RSAE decay wave and LFAM, while the fuel ion heating is achieved through
the ion Landau damping of the secondary LFAM. The conditions for the RSAE
spontaneous decay is analyzed. It is found that decay into RSAE sideband with
higher toroidal mode number is preferred, and the threshold condition on pump RSAE
amplitude is derived, which is compatible with typical experimentally observed SAW
instability amplitudes. The saturation levels of RSAE and LFAM are estimated from
the fixed point solution of the coupled nonlinear equations, from which the fuel ion
heating rate is also derived. This channel is expected to be relevant and crucially
important for reactors since RSAEs are expected to be firstly excited by core localized
fusion alpha particles in the high performance advanced reversed shear scenarios, and
the resulting core localized fuel ion heating will directly contribute to the performance
of the reactor. An implication from the present analysis, is the potential importance
of rational qmin that may lead to low-order rational surfaces, which can yield broader
mode structure and thus stronger couplings.

The present analysis focused on the picture of RSAE nonlinear decay, while
neglected the effects of thermal plasma nonuniformity. The derivation, also assumed
SAW polarization of all the three modes involved. Thus, the present analysis, while can
be directly applied to RSAE decay into BAE in the present form, cannot be directly
applied to RSAE decay into KBM or AITG, where plasma nonuniformity is crucial
for the mode presence, and the mode may have a finite parallel electric field [27]. The
generalization of the present analysis, to include system nonuniformity, can be tedious
but straightforward, and will be carried out in a separate work.

As a final remark, several channels may contribute to the RSAE nonlinear
saturation, e.g., self-consistent re-distribution of EPs [55], and zonal field generation
generation [52] with notably the effects of zonal current on modifying the local SAW
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continuum structures. For the proper evaluation of EP confinement, the nonlinear
dynamics of RSAE including saturation level is required, which is determined by the
relative importance of these channels; and thus, more in-depth investigation including
nonlinear gyrokinetic simulation [56] is required. In fact, the effects investigated in the
present work, e.g., the ion polarization nonlinearity unique to gyrokinetic ion Reynold
stress, can only be captured by simulations with gyrokinetic thermal ions.
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