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Abstract
The behavior of a multithreaded program does not depend only on
its inputs. Scheduling, memory reordering, timing, and low-level
hardware effects all introduce nondeterminism in the execution
of multithreaded programs. This severely complicates many tasks,
including debugging, testing, and automatic replication. In this
work, we avoid these complications by eliminating their root cause:
we develop a compiler and runtime system that runs arbitrary
multithreaded C/C++ POSIX Threads programs deterministically.

A trivial non-performant approach to providing determinism is
simply deterministically serializing execution. Instead, we present
a compiler and runtime infrastructure that ensures determinism but
resorts to serialization rarely, for handling interthread communica-
tion and synchronization. We develop two basic approaches, both
of which are largely dynamic with performance improved by some
static compiler optimizations. First, an ownership-based approach
detects interthread communication via an evolving table that tracks
ownership of memory regions by threads. Second, a buffering ap-
proach uses versioned memory and employs a deterministic com-
mit protocol to make changes visible to other threads. While buffer-
ing has larger single-threaded overhead than ownership, it tends to
scale better (serializing less often). A hybrid system sometimes per-
forms and scales better than either approach individually.

Our implementation is based on the LLVM compiler infrastruc-
ture. It needs neither programmer annotations nor special hardware.
Our empirical evaluation uses the PARSEC and SPLASH2 bench-
marks and shows that our approach scales comparably to nondeter-
ministic execution.

Categories and Subject Descriptors D.1.3 [Programming Lan-
guages]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Compilers, Optimization,
Run-time environments

General Terms Reliabity, Design, Performance

1. Introduction
1.1 Motivation
Nondeterminism makes the development of multithreaded software
substantially more difficult. Software developers must reason about
much larger sets of possible behaviors and attempt to debug without
repeatability. Software testers face daunting incompleteness chal-
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lenges because nondeterministic choices cause an exponential ex-
plosion in possible executions. Even otherwise useful techniques
for making systems more reliable stop working. For example, if we
run multiple replicas of a software system to guard against tran-
sient hardware failures, nondeterminism means the nonfailing runs
may not agree on the result. In short, conventional wisdom strongly
suggests minimizing sources of software nondeterminism.

Unfortunately, the state of practice in multithreaded program-
ming is awash in nondeterminism. Thread scheduling, memory re-
ordering, timing variations, and hardware features like bus control
mechanisms can all lead to a multithreaded program producing dif-
ferent results. Indeed, we believe these sources of nondetermin-
ism are a key reason to avoid multithreaded programming where
possible. But with the move toward multicore architectures, multi-
threading is becoming less avoidable even though nondeterminism
remains problematic. Parallel applications are intended to be deter-
ministic: parallelism is for performance and should not affect out-
puts. By contrast, concurrent applications, such as servers, can ac-
cept some nondeterminism (e.g., the order requests are dispatched),
but determinism would still simplify testing and replication. Rarely
is the nondeterminism introduced by a parallel platform actually
desirable.1

What we want, then, is a programming environment with the
scalability and performance of multithreaded programming but the
determinism of sequential programming. In most sequential lan-
guages, the outputs depend only on the inputs. While some parallel
languages such as Data Parallel Haskell [10], Jade [29], NESL [6],
and StreamIt [32] have a deterministic sequential semantics, much
parallel code is written in conventional imperative languages such
as C, C++, Java, etc. Even when languages are given a thread-aware
semantics [8, 9, 21], implementations are allowed to be wildly non-
deterministic — and typically are.

1.2 Our Approach to Determinism
In this paper we present COREDET, a COmpiler and Runtime En-
vironment that executes multithreaded C and C++ programs DE-
Terministically. We require no additions to the language, no new
hardware support, and no annotations from programmers. (Our de-
terminism guarantee requires that the original program is memory-
safe, though in practice even memory-safety violations are unlikely
to introduce nondeterminism.) COREDET is implemented entirely
via a modified compiler that inserts extra instrumentation and a
novel runtime system that controls how threads execute. Our gen-
eral approach would work equally well for type-safe managed lan-
guages.

Unlike record-and-replay systems [20, 24, 26, 34], we do not
need to save any information about fine-grained memory interleav-
ings in order to replay a program’s execution precisely — CORE-

1 Randomized algorithms desire nondeterminism, but in a specific way
controlled by the application via some input source.



DET completely eliminates this source of nondeterminism. Clearly,
though, the timing of asynchronous I/O remains a source of nonde-
terminism because it is controlled by the external world.

One key aspect of our system is that we do not specify to
programmers which deterministic behavior we will produce, only
that any given program will always produce the same outputs given
the same inputs; this flexibility enables an efficient implementation
but comes at a price, which is that a small change to a program can
affect which deterministic program is produced.

If we ignore performance momentarily, a naı̈ve approach could
simply run one thread at a time in a fixed order and switch threads at
deterministic points (e.g., after n instructions are executed). CORE-
DET optimizes this naı̈ve approach by recovering parallelism when
threads do not communicate with each other and by serializing
threads when they do communicate. Determinism follows from all
interthread communication happening in a unique deterministic or-
der. Scalable performance is achieved by minimizing serialization,
but unfortunately, we cannot determine the minimal amount of nec-
essary serialization without overhead. So, in this paper, we describe
three deterministic execution strategies that explore the tradeoff be-
tween good scalability (requiring high overhead) and poorer scala-
bility (requiring less overhead).

1.3 Evaluation and Contributions
We have evaluated COREDET using the SPLASH2 [33] and PAR-
SEC [5] benchmark suites. Because our compiler adds instrumen-
tation to many memory loads and stores, we slow down each ap-
plication thread (roughly 1.2x-6x). However, we have developed
static optimizations that remove some checking when it is provably
unnecessary. More importantly, our instrumentation does not pre-
vent our benchmark applications from scaling. When we run the
applications with 2, 4, or 8 processors, we typically see a similar
relative performance improvement over 1 processor as we do with
a conventional nondeterministic implementation.

Recently, as part of the DMP project, Devietti et al. [11] de-
scribed a few ways to execute arbitrary imperative programs deter-
ministically. This work builds and improves upon that work sub-
stantially. First, we present the first weakly-consistent model of de-
terministic parallel execution and demonstrate that relaxing mem-
ory ordering can enable more scalable performance in deterministic
execution. Second, prior work in DMP focused on hardware-based
enforcement of determinism. The associated compiler was a di-
rect implementation of the proposed hardware support in software
and did not have static optimizations. Finally, this paper conducts
a thorough empirical evaluation and a careful study of the effect of
several configuration parameters.

1.4 Outline
Section 2 describes our approach to determinism at a high level.
Sections 3, 4, and 5 explain our deterministic execution strategies
in detail. Section 6 provides details of our compiler. Section 7 pro-
vides details of our runtime system and its interaction with thread-
ing libraries and the operating system, and includes a discussion
of how memory safety affects our deterministic guarantee. Sec-
tion 8 presents a comprehensive evaluation of performance, ana-
lyzes the impact of configuration parameters, and shows character-
ization data to help understand the behavior of COREDET. Finally,
Section 9 discusses related work and Section 10 concludes.

2. High-Level Approach
This section presents a series of ways to compile and run a program
such that it runs deterministically. The first is serial execution,
which is included for expository purposes. The next four, DMP-
TM, DMP-O, DMP-B, and DMP-PB, optimize the serial execution

to recover parallelism. Only the last three, DMP-O, DMP-B, and
DMP-PB, have been implemented in COREDET; we discuss the
implementation difficulties of DMP-TM below and in Section 8.4.

2.1 Starting Serial
A naı̈ve way to run a multithreaded program deterministically is to
serialize its execution in a deterministic way, which is our starting
point. At runtime we schedule threads in a simple round-robin
fashion so that execution is serial. Each thread is scheduled for one
finite logical time slice, or quantum; a round consists of all threads
executing one quantum each.

To ensure determinism it suffices to ensure that the length of
each quantum and the scheduling order are both deterministic. Con-
ceptually, the compiler inserts code to count how many instructions
are executed and ends each quantum after a fixed number. Sec-
tion 6.1 describes how this is done efficiently in our compiler. Also,
we always add new threads to the end of the scheduling order, re-
move them from the order when they exit, and do not change the
order otherwise.

2.2 Going Parallel
The conceptually simplest way to recover parallelism is to use
transactional memory. Starting with a serial execution, we can
schedule multiple quanta in parallel by enclosing each quantum in
an implicit transaction. As long as transactions commit according
to the serial scheduling order, the resulting parallel execution is
exactly equivalent to the (deterministic) serial execution. Thus, the
parallel execution is deterministic. This is called DMP-TM, and is
described more thoroughly in [11].

DMP-TM is an attractively simple strategy. It produces an ef-
ficient schedule in which threads are serialized only when they
communicate; there is very little unnecessary serialization. Unfor-
tunately, we cannot implement DMP-TM in COREDET with just a
few simple modifications to existing STM implementations. There
are multiple difficulties, a few of which we highlight here. (It is
worth noting that when HTM with support for large transactions is
available, these difficulties will be less serious.)

First, while STM has been shown to have good performance
for some applications, this was under the assumptions that trans-
actions are small and most execution is outside transactions. Nei-
ther assumption applies in our case. In DMP-TM, all code executes
transactionally and transactions would need to be large in order to
amortize the cost of commit. Moreover, quanta in COREDET are
not lexically scoped. (Recall that we form quanta by instruction
counting; as will be seen later, this strategy creates balanced quanta
which are important for scalable performance.) Since quanta are
not lexically scoped, implicit transactions in DMP-TM may begin
and end at any point in the execution. The runtime, then, must be
prepared to rollback the call stack to an arbitrary prior state when-
ever a transaction aborts. This requirement would add significant
complexity and overhead to our purely software implementation.
For all these reasons, we have chosen to develop approaches that
do not rely on speculation.

2.3 Two-Stage Rounds
In the rest of this paper we present three alternatives that avoid the
need for speculation. We start by adopting a more conservative,
and less speculative, approach. The basic idea is to divide each
round into a parallel mode and a serial mode. In parallel mode,
threads run in parallel but we do not allow them to communicate.
In serial mode, threads are scheduled serially and they are allowed
to communicate arbitrarily. A thread ends its parallel mode once
it has either exhausted its quantum or reached an instruction that
might communicate with other threads. Serial mode begins once
all threads have completed parallel mode, and ends once all threads
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Figure 1. Timeline of a quantum round, showing the divi-
sion into parallel mode and serial mode. T2 finishes its quan-
tum in parallel mode (a), while T1 and T3 have work left for
serial mode (b,c). Once T3 finishes its serial mode, the round
ends and the next one begins (d).

have had a chance to run. In this way the parallel and serial modes
are isolated by global barriers, producing the two-stage round illus-
trated in Figure 1.

Already we can begin to understand the requirements for de-
terminism and scalable performance. Because the two modes are
isolated by global barriers, execution is deterministic when each
mode is deterministic in isolation — the barriers provide determin-
istic transitions between each mode. Parallel mode is deterministic
if it ends at a deterministic point and if there is no communication;
the absence of communication eliminates the possibility of nonde-
terministic data races. Similarly, serial mode is deterministic if it
ends at a deterministic point.

Scalable performance requires minimal serial modes and bal-
anced parallel modes. In a given round each thread executes for a
total time of P + S, where P is the time spent executing in paral-
lel mode and S is the time spent executing serially in serial mode
(indicated by brackets on T3 in Figure 1). It is good to remember
that scalability is limited by S/(P + S) (Amdahl’s Law). Each
thread spends on average an additional time W waiting at the bar-
rier between parallel and serial mode. Both W and S represent lost
parallelism, so we obviously want to minimize them. W is mini-
mized when parallel mode is balanced. S is minimized when all
quanta execute completely in parallel mode, making serial mode
unnecessary.

Section 3 presents DMP-O, which has very low overhead but
the poorest scalability; it is very conservative about what code can
run in parallel mode. DMP-O was first implemented, in hardware,
by [11] as DMP-SHTAB. Our presentation here is phrased using
software terminology and is included for completeness. Section 4
presents DMP-B, which has higher overheads but provides very
good scalability by relaxing memory ordering. Section 5 presents
DMP-PB, which is a hybrid of DMP-O and DMP-B that provides
a middle ground in terms of both overhead and scalability. Those
three sections describe how we make loads and stores determin-
istic. Section 7.1.2 describes our implementation of a determinis-
tic pthreads library which implements objects such as mutexes and
barriers in terms of a deterministic compare-and-swap primitive.
Finally, Section 8.4 argues empirically that DMP-B scales compa-
rably to DMP-TM even though it does not require speculation.

3. DMP-O: Ownership Tracking
We can divide memory locations into those that are thread-private
(i.e., only ever accessed by one thread T ) and those that may-be-
shared. A conventional static escape analysis can identify memory
accesses that must always access thread-private data (versus those
that may access shared locations). A thread could then execute in

parallel mode as long as it only accesses thread-private data. At
the first may-be-shared access, it blocks until serial mode. The
serial mode, then, is used to deterministically serialize all accesses
to may-be-shared data. Determinism follows directly from this
observation.

This approach exploits thread-private data but assumes that the
ownership information for a location does not change during ex-
ecution. This is a poor assumption for arbitrary C/C++ code, in
which the same memory location may dynamically transition from
being thread-private to thread-shared and back, possibly to a differ-
ent thread. We do not want to block on every access to a location
that might at some point in the execution be shared. Moreover, any
static escape analysis is imprecise and so it will conservatively cat-
egorize many accesses as may-be-shared. Therefore, we track the
ownership of memory locations at runtime and instrument may-be-
shared memory accesses to check and possibly change the owner-
ship information.

A runtime hashtable we call the Memory Ownership Table
(MOT) maintains the ownership status for each location. (A loca-
tion can have any granularity, but we use the same granularity for
all locations.) At any point, the status of an entry indicates which
thread T owns the location. If T owns a location, then T can access
the location in parallel mode. If not, then it must wait until serial
mode. At this point, in serial mode, T changes the MOT so that
T owns the location and proceeds. Because status changes occur
only during serial mode, access to the MOT is well-synchronized.
In parallel mode, when multiple threads are accessing the MOT, the
MOT is immutable. Determinism is preserved because the point at
which each thread blocks is deterministic (the transition from par-
allel to serial mode is deterministic) and prior to this point there is
no interthread communication.

Note that any changes to the MOT are purely a matter of policy.
When T1 accesses a location owned by thread T2, the access occurs
in serial mode and our policy is to change ownership to T1. The
advantage of this policy is locality: if T1 is likely to access the
location again soon, then it may not need to block before doing
so. But any deterministic policy—e.g., leaving the ownership with
T2, setting it to another thread T3, etc.—is correct. Similarly, the
initial state of the MOT does not affect correctness provided it is
deterministic.

3.1 Nonblocking Shared Reads
The approach described thus far does not yet support parallel reads
of the same location, which is essential for scalable performance in
most applications. So far, for an access not to block, the location
accessed must be owned by the running thread and there can be
only one owner.

To fix this, we extend the MOT to support a shared status
for locations and allow reads (but not writes) to shared locations
to proceed during parallel mode. To do this without introducing
nondeterminism we must disallow all parallel writes to data in
shared status. Hence our access rules are now as follows:

1. If the location is owned by T , then T proceeds immediately.

2. If the location is shared and the access is a read, then T proceeds
immediately.

3. If the location is shared and the access is a write, then T can
proceed once T is scheduled in serial mode.

4. If the location is owned by Tother , then T can proceed once T
is scheduled in serial mode.

Figure 2 represents these possibilities in a flowchart. While (3)
delays executing writes to shared locations until all other threads
are blocked, we favor reads over writes, which is the right perfor-
mance trade-off. Moreover, in cases (3) and (4) we can now use any
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Figure 2. Memory Ownership Table policy

(deterministic) policy to change the MOT so as to hopefully avoid
blocking on subsequent accesses. For writes, we choose the same
policy as before: a write by T changes the status to owned by T
(see (5) in the flowchart). For reads, we choose to change the status
to shared (see (6) in the flowchart), so that reads by other threads
in future rounds can proceed in parallel. As a slight modification
to this policy, Section 6.2.2 describes a compiler optimization that
uses static information to choose (deterministically) to change the
status to owned by T for some reads in order to remove instrumen-
tation on subsequent accesses.

While program execution is still deterministic, it is not the same
deterministic execution we would have had without shared reads. In
fact the quanta are no longer necessarily serializable. To see why,
consider this example, assuming the round-robin order begins with
thread T1 and x begins shared and holding 0:

Thread T1 Thread T2

First Quantum ... ...
x:=1 y:=x
... ...

The original serial execution would assign 1 to y, but now thread T1

will not proceed beyond its assignment to x until all other threads
are blocked, which will be after T2 reads 0 from x if nothing before
y:=x causes T2’s quantum to block.

3.2 The Length Of Serial Mode
We have not yet discussed how much work should be done in se-
rial mode. Recall that each quantum has a budget of n instructions.
Parallel mode ends when either the budget is exhausted or a nonpri-
vate access is reached. If the budget has not been exhausted, then
the thread has work to do in serial mode. Again, how much work
should be done in serial mode?

In answering this question we must consider competing factors.
First, if serial mode is too long, the program will be over-serialized
and will suffer from poor scalability. Second, programs usually
exhibit temporal locality, so a nonprivate access will likely be
followed by other nonprivate accesses. If serial mode is too short,
these other accesses will block the thread early in its parallel mode
of the next round, again causing poor scalability. Finally, the global
round barriers incur some overhead which is best amortized by
using fewer rounds (and thus, longer serial modes).

We tried two approaches: full serial mode, which completely
exhausts the quantum budget in serial mode that remains from the
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Figure 3. Timeline of a quantum round in DMP-B, showing
the addition of the new parallel commit mode prior to serial
mode.

previous parallel mode; and reduced serial mode, which ends serial
mode immediately once a thread releases a mutex if it no longer
holds any mutexes. The insight of this second technique is to end
serial mode at the end of a critical section, i.e. at the end of a
period of interthread communication. Section 8.3 explores these
two techniques.

4. DMP-B: Store Buffering
Our second approach to deterministic execution dispenses with the
idea of ownership tracking altogether. Instead, we use a multi-
versioned model where each thread has its own private store buffer.
During parallel mode, all writes are entered directly into the private
store buffer. Each read of some location L first consults the store
buffer. If L was written to earlier in the same quantum then the
value is fetched from the store buffer; otherwise, the value of
L is fetched from shared-memory. At the end of parallel mode
we enter a commit mode in which threads commit their writes
to the global shared-memory space. The commit happens serially
according to the deterministic scheduling order. (Later we explain
how to perform this commit in parallel.)

Determinism follows from two observations. First, during par-
allel mode each thread has its own private view of memory which
it updates independently from all other threads. As a consequence,
shared-memory is read-only during parallel mode and there is no
communication. Second, updates to shared-memory happen in a
deterministic order during commit mode.

Notice, however, that these updates are not sequentially consis-
tent. Stores performed by thread T in some quantum are delayed
to the end of parallel mode, effectively reordering the stores with
respect to loads performed by T in parallel mode. What we have
described is a weakly-consistent memory model. For correctness,
then, we must add the following two restrictions. First, parallel
mode must end once a memory fence is reached. This implements
the semantics of a full memory fence, allowing the programmer
some guarantees about the order of operations across threads. Sec-
ond, atomic operations such as compare-and-swap cannot execute
in parallel mode. The reason is that the parallel mode of thread T
does not happen atomically with the commit mode of T ; the com-
mit mode of some other thread may intervene and violate atomic-
ity. Therefore we delay atomic operations until serial mode. In this
way, DMP-B is composed of three-stage rounds as illustrated in
Figure 3.

4.1 Memory Consistency Model
DMP-B improves scalability by relaxing memory ordering, so ex-
ecution is no longer sequentially consistent as in DMP-O. In the
following, we describe DMP-B’s memory consistency guarantees
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in more detail and explain why DMP-B does not violate the seman-
tics of the original program.

Figure 4 illustrates why DMP-B is not sequentially consistent.
The circled numbers indicate the order in which each quantum’s
stores are serialized during commit mode. The solid arrows in Fig-
ure 4a show where each load gets its data. The concurrent loads in
T0 and T1 read different values of A as T0 reads from its store
buffer and T1 reads from shared-memory. The deterministic com-
mit order ensures that T0’s load of B in quantum 5 receives its
value from quantum 4’s store, not quantum 3’s. Figure 4b shows the
same code as in Figure 4a annotated with causal happens-before re-
lations indicated via dashed arrows. The downward arrows within
quanta 3 and 4 are due to program order, the st B → st B arrow
is due to commit ordering, and the ld A → st A arrow is due to
the fact that the load of A received its value from quantum 1’s store
(see Figure 4a). The happens-before cycle shows how the logical
reordering due to store buffering results in a non-sequentially con-
sistent outcome.

Thus, to honor the semantics of memory fences in a program,
at every fence we must transition to commit mode and flush all
store buffers to shared-memory via the commit process. This is
analogous to the implementation of a memory fence instruction in
hardware, which flushes hardware buffers that contain the values of
pending store instructions. Since fences force the end of a quantum,
they may introduce imbalance into quantum formation. However,
when fences are infrequent, balanced quantum formation is not
perturbed substantially.

Most importantly for programmers, DMP-B does not violate the
semantics of the original program. Specifically, DMP-B preserves
sequential consistency for data race free programs as required by
the Java and C++ memory models [9, 21]. This fact follows from
the following three observations: (1) our commit mode imposes a
total order on all stores to shared-memory, (2) our serial mode im-
poses a total order on all synchronization operations, and (3) ev-
ery synchronization operation acts as a full memory fence. Further,
DMP-B obeys the “out-of-thin-air” requirement of the Java mem-
ory model because all loads return a value from a store that either
happens-before the load or commits in an earlier quantum (and thus
cannot happen-after the load).

As DMP-B flushes store buffers on every fence (not distinguish-
ing between different types of fences), it implements a weak order-
ing memory consistency model [2], specifically total store ordering
(PowerPC and Sparc processor architectures have a flavor of such a
model). Thus, DMP-B does not noticeably weaken the consistency
model provided by modern execution stacks. While the DMP-O
and DMP-TM strategies execute programs in a sequentially consis-
tent way, DMP-B shows that, just as with nondeterministic parallel

1 CommitChunk(c: Chunk) {
2 if (NumAllocatedChunks[c.addr] == 1) {
3 Publish(c)
4 return
5 }
6 lock(LockTable[c.addr])
7 foreach (x ∈ CommitTable[c.addr]) {
8 if (x.thread > c.thread)
9 c.bitvector &= ~x.bitvector

10 }
11 Publish(c)
12 CommitTable[c.addr] += {c}
13 unlock(LockTable[c.addr])
14 }

Figure 5. Deterministic parallel commit

execution, stronger consistency guarantees can be traded for per-
formance gains.

4.2 Deterministic Parallel Commit
For scalable performance it is vital that we extract as much paral-
lelism from commit mode as possible. In this section we describe
our algorithm for deterministic parallel commit. To preserve de-
terminism, our algorithm must publish store buffers in the same
logical order as if they were committed serially. We achieve this by
allowing store buffers to commit in any order, while maintaining
enough metadata to prevent one thread’s writes from being over-
written by some other thread that precedes it in the logical commit
order. In the following, we start by describing the layout of a store
buffer, then describe our locking protocol which ensures the com-
mit order is deterministic, and finally describe an optimization to
reduce locking overhead.

A store buffer is a collection of chunks. A chunk buffers a fixed
amount of contiguous data, for example one cacheline. Each chunk
is linked into a hash table (used to service loads) and a queue
(which is processed during commit). For each chunk we keep a
bitvector with one bit per byte of data in the chunk. A bit is set
in the bitvector if the corresponding byte was written earlier in the
same quantum.

During commit mode threads can commit their chunks in any
order. To commit chunk C at address A, thread T first locks address
A. (We use a table of locks where each lock guards some region of
memory.) If T is the first thread to commit a chunk at address A,
it publishes chunk C to shared-memory and then inserts chunk C
into a global commit table. Otherwise, T enumerates from the com-
mit table all chunks with address A that were published by threads
that logically happen-after T . Recall that in order to preserve the
deterministic commit order, T must not overwrite any bytes pub-
lished by those threads. So, T masks the already-published bytes
out of C’s bitvector, publishes C, and inserts C into the commit
table. Finally, T unlocks address A.

Acquiring a lock for each chunk can incur heavy overheads. As
an optimization, we publish chunks without acquiring any locks
when we are certain there are no conflicting writes. To facilitate
this optimization, we maintain a global hash table which maps
addresses to counts; when allocating chunk C with address A,
we increment the counter for address A. (We use a fixed-sized
hash table so that updates can be performed by simple atomic
increments.) If at the end of the quantum the counter for address A
is 1, then C was the only chunk allocated for A during the quantum
and it can be published without acquiring a lock.



Figure 5 summarizes this algorithm with pseudocode. Lines 2–4
show the fast path: chunk c was the only chunk allocated at address
c.addr during the quantum, so we can publish chunk c without
acquiring a lock. Lines 6–13 show the slow path: we acquire a lock
(line 6), mask out bytes from chunks that happen-after chunk c in
the serial commit order (lines 7–10), publish the chunk (line 11),
save the chunk in the global commit table (line 12), and finally
release the lock (line 13).

5. DMP-PB: Partial Buffering
DMP-B has good scalability because almost all operations can
proceed in parallel. However, the instrumentation cost is higher
since the store buffer needs to be accessed frequently. To reduce
this overhead we borrow an idea from DMP-O: We partition the
address space into locations that are dynamically thread-private
and locations that are shared. Accesses by thread T to its own
private data can proceed in parallel mode without consulting the
store buffer, while accesses by T to another thread’s private data
must wait for serial mode. Accesses by T to shared data (be they
reads or writes) can proceed in parallel mode but must consult the
store buffer.

This scheme, which we call DMP-PB, is effectively a hybrid
of DMP-O and DMP-B. We use a MOT to partition the address
space into private and shared data, and we use DMP-B to allow
concurrent access to shared data in parallel mode. Notice DMP-PB
is equivalent to DMP-B when all locations are shared in the MOT.
This trivial policy is clearly undesirable because it does not reduce
the overhead of DMP-B.

To define a useful MOT policy for DMP-PB, we extend the
MOT to support an always-shared state. This state behaves exactly
like the shared state; accesses to always-shared data can proceed
in parallel mode by consulting the store buffer. However, once
a location has transitioned to the always-shared state, it never
transitions back to shared or thread-private. The insight is that we
use always-shared for locations that are being written by multiple
threads so that those writes may proceed in parallel mode. Our
policy for evolving the MOT in serial mode of DMP-PB is now
defined by the following rules, where T is the thread performing
the access: (1) If the location is shared and the access is a write,
change the status to owned-by T ; (2) If the location is owned-by
T ′, change the status to always-shared; (3) Else leave the state as
is. We initialize all MOT states to shared to allow parallel access to
shared-memory by default.

In summary, DMP-PB uses thread ownership information of-
fered by the MOT to filter accesses to the store buffer that cannot
be proven private statically. This reduces overhead for applications
with infrequent interthread communication.

6. Compiler Transformations
COREDET’s compiler transformations are implemented as an ad-
ditional pass in the LLVM [19] compiler infrastructure. This pass
instruments the application to enforce deterministic execution ac-
cording to either DMP-O or DMP-B (DMP-PB is instrumented
identically to DMP-B). As discussed later, our runtime also pro-
vides a custom threading library, so we use preprocessor macros to
automatically convert pthreads calls into our runtime calls.

To form quanta of bounded size, the compiler statically inserts
calls to CDcommit(i) as described below. To enforce determinis-
tic interthread communication, the compiler instruments loads and
stores with calls to our runtime. These calls differ slightly depend-
ing on which execution strategy is being compiled for:

DMP-O: Calls to CDload(addr, size) and CDstore(addr, size)
are inserted just before loads and stores, respectively. These

functions apply our MOT policy for an access at the given lo-
cation, of the given size.

DMP-B: Calls to CDloadT(addr) and CDstoreT(addr, value)
replace loads and stores, respectively. These type-specialized
functions emulate loads and stores by redirecting them to the
local store buffer as necessary.

This instrumentation pass is fully compatible with all standard
compiler optimizations. However, the calls to CDcommit, CDload,
and CDstore drastically inhibit the opportunity for optimization
once they have been added. Because of this we always run a full op-
timization pass before applying our deterministic transformations.

In the remainder of this section we explain how our pass
achieves reasonably balanced quanta, and then we describe some
static optimizations that remove instrumentation from loads and
stores when it is provably unnecessary.

6.1 Balanced Quantum Formation
For scalability, it is essential to keep the amount of work per quan-
tum as uniform as possible. Nonuniform quanta lead to excessive
waiting. Notice that there are two sources of imbalance. First, there
is imbalance caused by a thread blocking for serial mode, for ex-
ample to access shared data via DMP-O, or to execute a memory
barrier via DMP-B. Second, there is imbalance caused by differing
quantum lengths. This is the source of imbalance we strive to elim-
inate here. Our goal is to maximize the balance of parallel mode
under the assumption that serial mode is rarely necessary.

A quantum is a certain bounded amount of dynamic work. Of
course, the compiler cannot precisely estimate dynamic work nor
annotate specific dynamic points in the execution. Instead we count
work dynamically by setting the i parameter in CDcommit(i) to
be the expected work done since the last call to CDcommit. We
define work using a cost function over LLVM’s IR which maps each
opcode to its expected runtime latency. At runtime, CDcommit(i)
subtracts i from a thread-local counter and ends the quantum when
the counter reaches 0. Quantum length is deterministic because
each call to CDcommit(i) uses a constant value for i. Note that
a small change to the program can change the value for i, which
can affect which deterministic program is produced by changing
where quantum boundaries occur.

There is a trade-off between the precision of work counting
and the overhead of instrumentation. In the following, we first
explain how we use CDcommit to count work exactly, and then
present optimizations to remove some calls to CDcommit to reduce
overhead at the cost of some imbalance.

6.1.1 Maximal Balance
The simplest precise strategy is to call CDcommit(i) at the end
of every basic block, where i is the amount of work done in that
block. An equivalent strategy is to call CDcommit(i) at the end of
every linear sequence of basic blocks, where i is the total amount of
work done in that sequence. More precisely, we call CDcommit(i)
at the end of basic block B if some successor of B has multiple
predecessors; i.e., if some successor of B is a merge node. In
addition, we call CDcommit before every function call and function
return so the thread-local work counter is up to date before and after
each call.

6.1.2 Minimal Balance
At minimum, to guarantee progress, we must call CDcommit at
some regular interval within every loop that is not provably termi-
nating. (Otherwise, some thread could go into an infinite loop with-
out ending its quantum and no other thread would make progress.)
A conservative estimate, which we use, is to call CDcommit(i)
before every backedge and function call. In this strategy, the true



value of i depends on the specific path taken since the last call
to CDcommit. We estimate this value by averaging the amount of
work accrued over all possible incoming paths. All such averages
in a function can be computed in one linear pass by processing the
control-flow graph in topographic order.

6.1.3 Heuristic Balance
The final strategy is a hybrid of the previous two. It attempts to find
a trade-off between maximal balance and minimal instrumentation.

We start with maximal balance. At each merge node N , we
compare the values of i for the call to CDcommit(i) in each prede-
cessor of N . If these values differ by a small heuristically-chosen
threshold, and if none of the predecessors of N have an outgoing
backedge, then we remove the call to CDcommit from each prede-
cessor of N . We do this greedily until there are no more calls to
remove. For the remaining calls to CDcommit(i), i is computed as
the average of work accrued over all possible incoming paths.

6.2 Static Optimizations
In this section we describe two optimizations that remove calls to
CDload and CDstore when they are provably unnecessary. The
first, escape analysis, is applicable to both DMP-O and DMP-B.
The second, redundant call removal, is only applicable to DMP-O.

6.2.1 Escape Analysis
Accesses to provably thread-local data do not need to be in-
strumented.2 Note that because LLVM lowers all stack-allocated
scalars that do not have their address taken into virtual registers,
the majority of thread-local accesses are automatically identified
by LLVM with no extra work from our pass.

Although this optimization is applicable to both DMP-O and
DMP-B, there are subtleties when applying it to DMP-B. For ex-
ample, consider the following snippet:

int local;
int *p = (...) ? &local : &global;
...

The pointer p may-alias shared data, so all accesses of *p must
be instrumented. Because p may-alias local, we must also instru-
ment accesses to local, even though the address of local does
not escape. If we did not instrument local, then direct accesses of
local would not consult the store buffer, while indirect accesses
of local, through p, would. That is incorrect behavior: We must
ensure that all accesses to an object either consult the store buffer
or do not consult the store buffer.

Therefore, when applied to DMP-B, our escape analysis re-
spects an extra constraint: An object is thread-local only if all ac-
cesses of that object are through pointers that must-alias thread-
local objects. We use a points-to analysis based on Data Structure
Analysis [18]. DSA is unification-based, so all pointers which may-
alias the same object will point at the same node in the points-to
graph. This automatically satisfies our extra constraint: we simply
label each node in the points-to graph as either “thread-local” or
“escaping”.

6.2.2 Redundant Call Removal
This optimization removes calls to CDload and CDstorewhen they
are provably redundant. It is not applicable to DMP-B because we
must consult the store buffer on every may-be-shared access.

Given two accesses A1 and A2 that are redundant in some
way, we can remove the instrumentation from A2 if whenever A2

2 More generally, if an access is not involved in a data race it does not need
to be instrumented, but our current infrastructure does not include a sound
static race detector.

executes, then A1 must execute earlier in the same quantum. In
other words, A1 dominates A2 and there does not exist a path from
A1 to A2 that contains a call to CDcommit. If A2 is a store and A1

is a load, then we also must instrument A1 as if it were a store.
The two types of redundancy are:

• A1 and A2 are accesses of the same size that must-alias. This is
a form of common-subexpression elimination.

• A1 and A2 are accesses that are provably spatially close, where
“close” is heuristically defined. For example, they refer to dif-
ferent fields of the same heap object or different elements of the
same array. In this case, the instrumentation on A1 should be
replaced by instrumentation that covers the full range of both
accesses. This is an “access coalescing” optimization.

To see why this optimization is correct, first recall that there
cannot be a quantum boundary between A1 and A2. Then consider
three cases. In the first case, A1 and A2 both execute in parallel
mode. The instrumentation on A1 will verify that A1 can execute
in parallel mode; since the accesses are redundant, A2 can also
safely execute in parallel mode. In the second case, A1 and A2 both
execute in serial mode. Again, instrumentation on A1 subsumes
instrumentation on A2. In the third case, A2 executes in serial mode
while A1 executes in parallel mode. It is safe to execute A2 in serial
mode without consulting the MOT since there is only one thread
running. However, because A2 is not instrumented, the MOT will
not be modified even if A2 accesses some location that is currently
private to another thread. This lack of MOT change can affect future
rounds. In other words, enabling this optimization can produce a
different deterministic program than the one produced when this
optimization is disabled.

7. System Issues
This section discusses special considerations for threading li-
braries, other external libraries, memory allocation, and C/C++
memory errors. This expands our capabilities to the full generality
of C/C++.

7.1 Threading Libraries
Multithreaded programming is more than just shared memory. Op-
erations such as thread creation, thread destruction, and mutex
locking are equally important and must also happen determinis-
tically. COREDET includes a deterministic implementation of the
pthreads library. In this section we highlight key operations pro-
vided by that library.

7.1.1 Thread Create, Exit, and Join
Thread creation and destruction are sufficiently rare that we simply
delay them until serial mode. Spawned threads are appended to the
serial round-robin order immediately but do not begin executing
until parallel mode of the following quantum. To exit, a thread waits
for serial mode, sets an exit flag, and then exits. Thread T0 joins on
T1 by waiting for T1 to set its exit flag. Since the exit flag is changed
only in serial mode, a join can safely complete in parallel mode.

7.1.2 Synchronization Objects
Synchronization objects such as mutexes, barriers, and condition
variables can be implemented on top of an atomic compare-and-
swap (CAS) subroutine. To avoid uncontrolled interaction with
the OS scheduler, we do not invoke the system pthreads library.
Instead, our synchronization objects are implemented using well
known busy-wait algorithms (as in [23]) with a few modifications
to ensure determinism:

DMP-O: Each operation on a synchronization object O requires
exclusive ownership of O in order to perform a CAS. For pre-



cision we use a distributed object-based MOT for synchroniza-
tion objects, which means that the MOT entry for O is held in
a field in O. Our MOT policy (Section 3.1) ensures that if syn-
chronization is mostly thread-local, serialization will rarely be
necessary.

DMP-B: All synchronization operations must execute in serial
mode as a consequence of the following two observations: (1)
Each operation requires a memory fence because execution
is weakly-consistent; and (2) CAS cannot execute in parallel
mode (Section 4).

7.2 External Libraries
So far we have assumed instrumentation of the whole program.
However, the whole program is rarely available. C and C++ pro-
grams commonly load shared libraries, such as the system libc,
at runtime. External libraries can execute arbitrary code that may
cause interthread communication, and it is important to execute that
code deterministically. We support external libraries with the fol-
lowing extension: Each call to an external library must execute in
serial mode. Our compiler ensures this by adding instrumentation
to every external function call.

Three optimizations prevent over-serialization. First, we handle
indirect calls precisely. If we cannot determine all possible targets
of an indirect call statically, then at runtime we compare the indi-
rect target against a hash table of known functions. The call is seri-
alized only if it is truly external. Second, we provide deterministic
replacements for commonly used libc functions such as memcpy.
Third, we do not serialize pure functions, such as those in math.h,
since they do not access shared-memory.

We must mention two caveats. First, an external library can
deadlock if it uses blocking synchronization, such as through a
pipe. This is a consequence of serialization, and it is one of the
reasons we provide our own implementation of the pthreads library.
Second, if an external library registers an asynchronous callback to
external code, we do not guarantee deterministic execution of that
code since we do not control when it is scheduled.

7.3 Memory Allocation
Heap objects must be allocated at a deterministic address since ad-
dresses are visible to C. The simple solution is to treat malloc
as an external library function, but that risks over-serializing pro-
grams with frequent heap allocation. A better solution is to com-
pile the memory allocator using COREDET. We assume the mem-
ory allocator is data race free and observe that for data race free
programs, deterministic synchronization is sufficient for full deter-
minism [27, 30]. This means we do not need to instrument loads
and stores in the allocator; we simply link the allocator with the
deterministic threading library described in Section 7.1.

We selected the Hoard allocator [3] because of its high scala-
bility, which is achieved in part by the use of a thread-local cache.
This thread-local cache provides an additional benefit for DMP-O:
it minimizes the number of times that an address is freed by one
thread and then allocated to another thread, which reduces false-
sharing in the MOT and further improves scalability.

7.4 Memory Errors
We end this section with a caveat about memory errors. C and C++
are not safe languages. COREDET is robust to most kinds of mem-
ory errors. However, in two corner cases, a memory error can inval-
idate our deterministic guarantee. We stress that COREDET always
executes a program deterministically up to the first such error. The
corner cases are memory errors that lead to unexpected accesses to:
(1) some object that was labeled thread-local by our escape analy-
sis; and (2) COREDET’s runtime metadata. (Our runtime executes

in the same address space as the program.) In both cases, the pro-
gram is performing one of two fundamentally unsafe operations,
neither of which are supported by the underlying language: making
assumptions about memory layout, or writing to invalid pointers.

8. Evaluation
Our main goal in this evaluation is to show that COREDET provides
determinism in arbitrary C/C++ programs without sacrificing scal-
ability. We start by describing our experimental infrastructure, then
show scalability and performance data, and end with a characteri-
zation analysis of optimizations and the configuration parameters.

8.1 Experimental Setup
We ran our experiments on an 8-core 2.4GHz Intel Xeon E5462
with 10GB of RAM, and used 64-bit Ubuntu 8.10 with address
space randomization disabled. We present results that are the aver-
age of 10 runs with the highest and lowest values removed. Error
bars indicate the 95% confidence interval, as even though CORE-
DET ensures the same program outcome on identical runs, perfor-
mance can still vary.

We evaluated our system on two benchmark suites: the SPLASH2
suite of parallel scientific workloads, and the PARSEC suite of
more general purpose parallel programs. We used the simlarge
inputs for PARSEC (except for the blackscholes and canneal
benchmarks, where we used the native input to overcome short
running times), and scaled inputs for SPLASH2 to run for about
a minute with one thread. There were several benchmarks from
these suites that we were not able to run using our infrastructure.
In SPLASH2, volrend and radiosity were not 64-bit clean and
we opted not to include results from raytrace and cholesky
because, even with their largest inputs, they ran for less than half
a second on our test machine. A few benchmarks from PARSEC
use language or runtime features that our prototype implementa-
tion does not yet support: dedup suffered from miscompilations by
LLVM; bodytrack, facesim and ferret use C++ exceptions;
freqmine uses OpenMP; and vips was incompatible with our
build infrastructure. We compiled all the benchmarks using a pre-
release version of LLVM 2.6 with -O4 optimizations, including
link-time optimization. We tested the correctness of COREDET by
running the racey deterministic stress test [15, 34] 10,000 times
for each COREDET configuration. We verified that racey consis-
tently produced the same output for each configuration.

Table 1 lists the benchmarks we used to evaluate our work, with
a short description of each and the percentage of work (of a single-
threaded execution) that is not designed to execute in parallel. The
top section refers to SPLASH2 applications and the bottom section
refers to PARSEC applications. As these benchmarks are all highly
parallel, they are good choices for evaluating how COREDET im-
pacts scalability.

8.2 Scalability and Overheads
In this section we compare the scalability and overheads of CORE-
DET with NONDET, which is a nondeterministic executable that
is compiled solely with LLVM (without the COREDET compiler
transformations and runtime). For each COREDET configuration
we turn on escape analysis, redundant call removal (DMP-O only),
and heuristic quantum balancing, and we use optimal values for
the granularity and quantum size parameters as discussed in Sec-
tion 8.3.

We start by looking at the performance scalability for each
configuration, shown in Figure 6. Each bar is normalized to the
same configuration with 2 threads, so for example, fmm running
with DMP-B runs 1.82x faster with 8 threads than with 2 threads.
The subset of benchmarks shown in this plot includes the best-
scaling (lu) and worst-scaling (canneal) benchmarks from each



(Section 8.3) (Section 8.2)
Optimal Configuration Moore’s Dividends

Benchmark Description % Sequential O B PB ND O B PB

barnes n-body simulation < 1% 16B,10k 64B,50k 64B,50k 3.55 .61 .69 .70
fft fast Fourier transform 31% 4096B,200k 64B,50k 64B,50k∗ 1.41 .70 .51 .55

fmm n-body simulation 1% 1024B,50k 64B,50k 64B,50k 2.84 .61 .59 .54
lu matrix factorization < 1% 4096B,200k 64B,200k∗ 64B,100k 3.21 .70 .28 .25

ocean ocean simulation < 1% 4096B,10k 64B,50k 64B,100k 1.29 .76 .82 1.05
radix radix sort < 1% 4096B,10k 64B,50k 64B,100k 3.49 1.22 .95 1.04
water molecular dynamics < 1% 16B,200k 64B,200k∗ 16B,200k 2.23 .71 .32 .50

blackscholes options pricing < 1% 16B,200k∗ 64B,100k 64B,50k 3.16 2.75 2.68 2.66
canneal chip routing 17% 16B,10k 64B,10k 64B,10k 1.54 .54 .45 .37

fluidanimate fluid simulation 6% 64B,50k 64B,50k 64B,50k 1.97 .52 .41 .36
streamcluster online data clustering < 1% 16B,100k∗ 64B,200k∗ 64B,200k∗ 2.18 1.11 .79 .58

swaptions swaptions pricing < 1% 16B,200k 64B,50k 64B,50k 3.47 1.59 1.39 1.30
x264 H.264 video encoding < 1% 1024B,100k∗ 64B,200k 64B,100k∗ 2.63 .41 .27 .26

Table 1. Benchmarks
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Figure 6. Scalability

of the SPLASH2 and PARSEC suites, but the harmonic mean is
for all benchmarks in each suite as listed in Table 1. Overall we
note that DMP-O limits scalability more than other schemes, but
it still enables reasonable scaling. DMP-B generally offers the best
scalability, often very close and sometimes exceeding NONDET,
with a few exceptions (fmm, canneal, x264). Our most important
goal was to avoid limiting scalability; we believe that goal has been
achieved.

Figure 7 plots the performance results in a different way: Each
bar shows COREDET normalized to NONDET with the same num-
ber of threads, directly showing how much overhead is incurred in
each configuration. Again, we show the best and worst performers
from each benchmark suite, and the means across all benchmarks in
each suite. Overall, the overheads for 8 threads range from 1.1x–6x
for DMP-O and 1.2x–11x for DMP-B.

Figure 7 also shows scalability of COREDET with respect to
NONDET’s scalability. When all bars in a group have exactly the
same height (lu), then COREDET is scaling exactly as well as
NONDET. When the bars become shorter as more threads are added
(fmm), then COREDET is scaling more slowly than NONDET. When
the bars grow as more threads are added (ocean), then COREDET

is scaling more rapidly than NONDET. This last result is surpris-
ing, but can happen because COREDET has higher overheads than
NONDET and thus more inherent parallelism; effectively, we can
gain back lost overhead.

Note that Figure 7 clearly demonstrates the scalability vs. over-
head tradeoff: DMP-B has higher overheads but better scalability,
while DMP-O has lower overheads but worse scalability, and DMP-
PB fits somewhere in between. DMP-B’s distinct scalability ad-
vantage derives from its relaxed memory ordering and the fact that

fences and atomic operations are relatively rare; when atomic oper-
ations are not rare (canneal), DMP-B’s scalability suffers. Achiev-
ing similar scalability in DMP-O would require evolving the state
of the MOT in a proactive and intelligent way, such that threads
are very likely to own the memory locations they are updating. It
can be quite difficult to discover such a sharing policy for applica-
tions with complicated sharing patterns, hence DMP-O’s scalability
suffers. DMP-B’s scalability comes at a cost, however, as the over-
heads of maintaining store buffers are significantly higher than the
overheads of maintaining the MOT.

Spending Moore’s Dividends. We believe determinism is
worth some performance loss, and since in many cases this cost
is not in scalability, we can potentially pay for it with extra cores.
The rightmost four columns in Table 1 show the speedup of NON-
DET and COREDET with 8 threads compared to NONDET with 2
threads. In five of the benchmarks we used, COREDET matched
or was faster than NONDET with 2 threads, demonstrating that
in some applications we can trade 4x cores for determinism. The
average speedup compared to NONDET with 2 threads is 2.26x
for NONDET and 0.75x for the best deterministic scheme (in bold).
Hence a user upgrading from 2 to 8 cores can often choose between
increased speed and determinism.

8.3 Sensitivity
The performance of COREDET is very sensitive to three parame-
ters: the granularity (of the MOT for DMP-O, of store buffer chunks
for DMP-B, and of both for DMP-PB); the quantum size; and the
choice between full serial mode and reduced serial mode (Sec-
tion 3.2). We measured the performance of each benchmark under
a variety of parameter values. Table 1 shows the values we used
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for each benchmark in this study. In Table 1, quantum size has
units of (approximately) one simple x86 instruction, and reduced
serial mode (as opposed to full serial mode) is designated by an as-
terisk. The variability across benchmarks shows that most bench-
marks have a “sweet spot” unique to them. One visible trend is that
DMP-B prefers 64B store buffer chunks, likely due to the superior
space utilization compared to smaller chunks (due to specifics of
our implementation we could not test chunk sizes larger than 64B).

Figure 8 examines in detail the performance of streamcluster
executing under DMP-O with a variety of granularities and quan-
tum sizes. For DMP-O, choosing too fine a granularity reduces the
opportunity for COREDET to exploit spatial locality by “prefetch-
ing” permissions for large contiguous blocks of data. Choosing too
coarse a granularity leads to false-sharing as threads try to access
disjoint portions of memory mapped to a single entry in the MOT.
For streamcluster, the latter effect dominates: tracking at too
large a grain costs up to a factor of four in performance. The opti-
mal MOT granularity for streamcluster is just 16B.

In addition, the choice of quantum size has a large impact on
performance. Larger quanta better amortize the costs of round bar-
riers, but some applications share data with such frequency that
smaller quanta perform much better, as smaller quanta reduce the
latency between when a producer and its consumer are able to run.
streamcluster is a good example of this tradeoff. At small gran-
ularities (10k) the overheads dominate, while large granularities
(200k) suffer from increased communication latency.

Finally, streamcluster runs best with reduced serial mode (a
20% improvement over full serial mode at the optimal configura-
tion of 16B and 100k). Generally, we found reduced serial mode
helps the most for large quantum sizes, while it occasionally hurts
performance for small quantum sizes.

8.4 Characterization
Table 2 characterizes COREDET in a few ways. The data in this
table was generated from executions using 8 threads. Columns 2–4
show the percentage of total execution time spent in serial mode.
These numbers are highly correlated with scalability. For example,
fmm and canneal both spend a relatively large percentage of time
in serial mode and so have the poorest scalability, as also seen in
Figure 7. Similarly, lu and blackscholes spend a small percent-
age of time in serial mode and have good scalability. Furthermore,
these numbers show clearly that DMP-B has the best overall scala-
bility, while DMP-O has the worst.

Columns 5 and 6 examine how much faster each benchmark
runs with static optimizations turned on. Generally, static optimiza-
tions help DMP-O more often than DMP-B because redundant call
removal is applicable more often than escape analysis. (Many of
our scientific benchmarks make heavy use of global arrays which
are not amenable to escape analysis.) However, when it does apply,
escape analysis helps DMP-B more than DMP-O due to the intrin-
sically higher overheads of DMP-B; for example, escape analysis
decreases the runtime of swaptions by 59% for DMP-B.

Column 7 examines how much faster DMP-B runs with par-
allel commit versus with serial commit, showing that our parallel
commit algorithm (Section 4.2) does indeed recover parallelism.
Column 8 compares parallel commit to simply committing all store
buffers in parallel nondeterministically; this represents the ceiling
of parallel commit performance. We observe that parallel commit
is generally very close to that ceiling, with one exception (fft).

Columns 9 and 10 examine how much faster DMP-B runs with
heuristic balance versus with maximal balance and minimal bal-
ance, respectively. We consider heuristic balance a good tradeoff
as it is only rarely slower than either alternative (at most -5.2%)
and often faster (up to 59%). These columns also demonstrate the
importance of balance, as minimal balance is generally the worst
performer.

Comparison to DMP-TM. The last column approximates the
percentage of quanta suffering conflicts in a DMP-TM-like system,
showing simulation results for the benchmarks reported in [11].
These results are from an HTM simulation, with 1,000-instruction
quanta and eager conflict detection at a 32B granularity. A realistic
STM implementation would require much larger quanta to amortize
the overheads of quantum boundaries, which would cause conflict
rates to climb even higher. As the rate of transactional conflicts is
proportional to the amount of extra serialization introduced by TM,
we observe that for most benchmarks the rate of conflicts is much
higher than DMP-B’s serial work (Column 3), justifying our claim
that DMP-B can attain the benefits of DMP-TM without relying on
speculation.



Parallel Commit Heuristic Balance
Serial Mode Static Opts (% faster vs.) (% faster vs.) TM %

(% of execution time) (% faster) Serial Ideal Maximal Minimal conflicts
Benchmark O B PB O B Commit Commit Balance Balance (from [11])

barnes 56.2 8.8 36.9 6.6 0.9 1.8 −4.4 1.4 2.2 37
fft 62.6 6.5 47.9 10.7 0.0 23.9 −15.8 −4.1 3.2 25

fmm 68.3 23.6 36.9 14.6 16.8 7.3 −4.7 4.4 14.5 51
lu 22.4 2.1 6.7 24.2 0.7 1.4 −0.5 0.0 6.9 71

ocean 40.0 4.6 7.3 1.2 0.0 19.5 −5.5 0.2 14.6 28
radix 55.0 3.2 57.9 1.4 3.1 16.8 −8.3 −0.8 1.1 7
water 20.3 2.2 5.8 23.7 13.6 −0.6 −2.5 1.4 2.4 19

blackscholes 12.9 3.9 6.1 0.0 0.0 2.2 1.1 1.1 −1.1 8
canneal 70.2 96.1 98.1 0.9 0.0 0.2 −1.1 3.2 −1.6 –

fluidanimate 65.1 49.2 67.3 1.6 0.0 5.8 −0.6 0.3 −5.2 76
streamcluster 24.8 8.0 11.7 4.0 0.0 3.8 −1.0 0.3 2.6 28

swaptions 10.2 11.1 10.3 14.8 59.2 9.6 −4.2 0.8 59.7 –
x264 53.0 30.4 21.5 9.9 12.3 1.4 −1.4 0.4 −3.6 –

Table 2. Characterization

9. Related Work
Since determinism is a desirable property for parallel programs,
there has been significant effort in dealing with nondeterminism.
Past work focused on deterministic parallel languages, log-based
deterministic replay, and testing / debugging tools. In contrast, our
work focuses on providing determinism in arbitrary multithreaded
programs.

There are a few recent proposals for deterministic multithreaded
execution. Kendo [27] provides deterministic execution for race-
free programs by imposing a deterministic order of synchroniza-
tion operations. It uses the number of executed store instructions
(collected via performance counters) as logical time to determinis-
tically schedule synchronization operations. Since Kendo does not
instrument loads and stores, it leads to low overhead, albeit at the
cost of not automatically supporting arbitrary programs. Grace [4]
is a runtime system for C/C++ programs with fork-join parallelism
that executes each thread in a fork region atomically and commits
them in a deterministic order; the goal is to increase safety of fork-
join programs by making them behave like their sequential counter-
parts. Grace uses page-protection hardware and operating system
processes to implement the transactional mechanism, which distin-
guishes it from traditional STMs.

DMP [11] is a recent proposal for a multiprocessor architecture
that executes arbitrary multithreaded programs deterministically.
DMP introduced the DMP-TM and DMP-O (there called DMP-
SHTAB) deterministic execution strategies. COREDET is a major
contribution on top of DMP. Besides all the novel compiler and
runtime techniques to make determinism usable without hardware
support, we propose a new execution strategy (DMP-B) and show
how relaxed memory orderings can be exploited to achieve scala-
bility comparable to DMP-TM without requiring speculation.

Stream-based programming languages, such as StreamIt [32],
are deterministic because communication happens only via explic-
itly declared streams. Similarly, SHIM [14] is a parallel language
that supports explicit communication only via deterministic mes-
sage passing. These are a good match for digital signal processing
(DSP) applications. NESL [6] and Data Parallel Haskell [10] are
examples of data-parallel functional languages that expose sequen-
tial semantics to programmers and yield deterministic programs.
Another notable class of deterministic languages are implicitly par-
allel languages, such as Jade [29]. With Jade, programmers write
programs in a sequential, imperative language and then augment
the code with information about how data is accessed. The system
then extracts concurrency without violating the original sequential
program semantics. More recently, Bocchinno et al., developed De-

terministic Parallel Java (DPJ) [7], which is a set of extensions to
Java that enable programmers to control precisely where nondeter-
minism is allowed in the code via a type and effect system.

While using deterministic languages is a long-term solution
to the problem, the existing options are typically domain-specific
and are not widely used. The majority of parallel programs being
written today use mainstream languages such as C/C++ or Java, and
this is likely to remain the case for the time being. Past research has
dealt with nondeterminism in mainstream languages in the context
of specific needs, such as log-based deterministic replay, data-race
detection tools, and testing frameworks.

In log-based deterministic replay systems, a recording tool mon-
itors the execution of a program and logs the effects of nonde-
terminism. A replay tool then consumes the log to reproduce the
recorded behavior. DeJavu [17] is a software-only record and re-
play system for race-free Java programs. DeJavu records only syn-
chronization events and enforces the recorded synchronization dur-
ing replay. RecPlay [30] also records synchronization order but it
includes a data-race detector as well. As it provides deterministic
replay only up until the first data-race, RecPlay uses race detection
to alert the user when the first race occurs. CHESS [25] is a testing
tool that explores multiple synchronization orderings in order to
test multithreaded programs and performs race detection for each
choice. When it detects a defect, it lets the user replay the execution
that led to a race.

To support arbitrary programs that might contain data-races
or lock-free data-structures, a record and replay system needs to
record much higher-frequency information to capture the outcome
of any conflicting memory operation. This can generate very large
logs because every memory operation that is subject to nonde-
terminism needs to be logged. Therefore, proposals for general-
purpose fully deterministic replay system typically involve hard-
ware support. Among such proposals are Instant Replay [20], Flight
Data Recorder [34], and most recently DeLorean [24] and Re-
Run [16]. ReRun is related to COREDET because it relies on the
observation that threads do not communicate all the time. DeLorean
is also related to COREDET because it uses the notion of chunks (a
quantum in COREDET) to record execution at a coarse grain. In
addition, one of its modes forces a specific order of events during
replay to reduce log size. While COREDET shares some of the same
observations as the work just described, COREDET is not a record
and replay system and does not rely on hardware support.

The Wisconsin Wind Tunnel (WWT) [28] performs a determin-
istic simulation of a parallel computer. It works by dividing the
program into quanta, which are executed in lock-step across all
processors. The quanta provide deterministic state transitions for



the simulated coherency protocol. WWT’s notions of quanta and
ownership-based coherency have direct analogues in DMP-O.

Other systems, unrelated to determinism, use techniques similar
to ones employed by COREDET. Store buffering, as used by DMP-
B, has been used before to efficiently support relaxed memory
models [12, 13]. Escape, redundancy, and batching optimizations
have previously been used to remove instrumentation overheads in
various settings [1, 31]. Mellor-Crummey and LeBlanc describe
software instruction counters that are similar to our maximal and
minimal quantum balancing schemes [22].

10. Conclusions
In this paper we presented COREDET, a fully automatic compiler
and runtime system for deterministic execution of arbitrary C/C++
multithreaded programs. We explored two basic approaches to en-
forcing determinism. The first tracks ownership of data and seri-
alizes execution whenever threads communicate. This yields se-
quentially consistent executions and has lower overheads, but lower
scalability. The second approach uses memory versioning without
any form of speculation and relaxes memory ordering, yielding
higher scalability at the cost of higher overheads. We described
a number of static and dynamic optimizations and evaluated the
trade-offs of both approaches in detail. Our results indicate it is
possible to execute arbitrary multithreaded programs deterministi-
cally without sacrificing scalability and in most cases our system
can compensate for its overheads with more cores. We believe our
present work is an important starting point for scalable determinis-
tic compilers and runtime systems.

The source code for COREDET will be made available at
http://sampa.cs.washington.edu/.
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