
Discrete Comput Geom (2009) 41: 96–118
DOI 10.1007/s00454-008-9073-y

Coreduction Homology Algorithm

Marian Mrozek · Bogdan Batko

Received: 6 June 2007 / Revised: 23 January 2008 / Accepted: 2 March 2008 /
Published online: 8 April 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper presents a new reduction algorithm for the efficient compu-
tation of the homology of cubical sets and polotypes. The algorithm—particularly
strong for low-dimensional sets embedded in high dimensions—runs in linear time.
The paper presents the theoretical background of the algorithm, the algorithm itself,
experimental results based on an implementation for cubical sets as well as some
theoretical complexity estimates.

Keywords Homology algorithm · Cubical set · Reduction methods

1 Introduction

This paper presents a new reduction algorithm for preprocessing homology computa-
tions of large cubical or simplicial complexes. The algorithm is based on the concept
of one space homology theory, which enables the dual process of coreductions. The
complexity of the algorithm is linear both in the size and the dimension of the input.
Experimental results based on an implementation for cubical sets show that the al-
gorithm performs much better than other available homology algorithms not only for

Both authors are partially supported by Polish MNSzW, Grant N201 037 31/3151.

M. Mrozek (�)
Institute of Computer Science, Jagiellonian University, ul. Nawojki 11, 30-072 Kraków, Poland
e-mail: Marian.Mrozek@ii.uj.edu.pl

M. Mrozek · B. Batko
Division of Computational Mathematics, Graduate School of Business, ul. Zielona 27,
33-300 Nowy Sa̧cz, Poland

B. Batko
Institute of Mathematics, Pedagogical University, ul. Podchora̧żych 2, 30-084 Kraków, Poland
e-mail: bbatko@ap.krakow.pl

mailto:Marian.Mrozek@ii.uj.edu.pl
mailto:bbatko@ap.krakow.pl

Discrete Comput Geom (2009) 41: 96–118 97

cubical sets with simple topology (sphere, torus, Bing’s house, Klein bottle etc.) but
also for randomly generated cubical sets. Complexity estimates concerning rescal-
ings of a fixed cubical set indicate that the algorithm is better than other homology
algorithms particularly for low-dimensional sets regardless of the embedding dimen-
sion.

The classical homology algorithm is based on Smith diagonalization of the matrix
of the boundary homomorphism [22, Sect. 1.11]. The computational complexity of
the best available Smith diagonalization algorithm is O(n3.376...) [24]. Several au-
thors propose variants or alternatives for the classical approach [1, 7–9, 27], but only
Delfinado and Edelsbrunner [3] presented an algorithm for Betti numbers that runs
in near linear time. Unfortunately, the applicability of this algorithm is restricted to
dimension three. Donald and Chang [4] performed a probabilistic analysis of the
Smith diagonalization for a certain class of sparse matrices with invertible entries
and showed that the expected complexity of homology algorithm is quadratic in the
number of generators if the matrices of the boundary maps are in this class. However,
it does not seem likely that this bound can be improved on the basis of the sparseness
of boundary maps only, because of the well-known fill-in process [5]. For instance,
applying the Smith algorithm to diagonalize the following sparse matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 . . .

1 0 1 0 0 0 0 0 . . .

0 1 0 1 0 0 0 0 . . .

0 1 0 0 1 0 0 0 . . .

0 0 1 0 0 1 0 0 . . .

0 0 1 0 0 0 1 0 . . .

0 0 0 1 0 0 0 1 . . .

0 0 0 1 0 0 0 0 . . .

0 0 0 0 1 0 0 0 . . .

0 0 0 0 1 0 0 0 . . .

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

we observe the fill-in process in columns. One can try to minimize the fill-in process
by searching for the best order of the operations on matrices. However, unlike
the Gauss algorithm, the Smith algorithm does not leave much room for changing
the order. Moreover, finding an ordering that minimizes the fill-in is NP-complete
(see [26]).

The quadratic expected complexity obtained by Donald and Chang is significantly
better than the general complexity of the Smith diagonalization, but chain complexes
in which the number of generators exceeds 105 are on the verge of the applicability of
the quadratic algorithms. This is unsatisfactory for applications in rigorous numerics
of dynamical systems and in image analysis by topological methods (see [12, 20]
for a broader discussion of this subject). Moreover, in some applications, particularly
in image analysis it is important to perform homology computations in real time.
Clearly such applications require new ideas. Some authors search for improvements
to the Smith algorithm, in particular by applying probabilistic methods [6, 7]. Tests

98 Discrete Comput Geom (2009) 41: 96–118

show that this approach is helpful only to cope with many large torsion numbers.
Moreover, such methods cannot be used in rigorous numerics.

However, finding homology is a problem in computational topology and not in
general computational algebra, therefore one can hope for some methods specific
to the problem to be fruitful. The methods of chain complex reduction, originally
proposed in [11] and then developed in [12, 14, 17], constitute such an approach.
They consist in iterating the process of replacing the chain complex, or even better
some combinatorial representation of the topological space, by a smaller one with
the same homology and computing the homology only when no more reductions are
possible. This way one postpones the process of computing the homology of the chain
complex until the complex is acceptably small. Moreover, if the reduction process is
applied directly to the combinatorial representation of the topological space, then
one also postpones the expensive process of constructing the chain complex until the
space is small. Of course, one can profit from the reduction process only if one step
of the reduction is computationally inexpensive and the reduction is significant.

The algorithm presented in [11] is a modification of Smith diagonalization for
sparse matrices. The modification consists in removing columns and rows of gener-
ators with trivial homology in all relevant matrices of boundary maps as soon as the
triviality is verified. This simple modification helps to keep the fill-in process at a
moderate level and numerical experiments show that the expected complexity of this
algorithm is significantly below quadratic.

The most expensive part of one step of the Smith diagonalization, in the case
of an invertible pivot element, is the cost of modifying the matrix. The cost is
O((p − 1)(q − 1)), where p and q denote the number of nonzero elements, respec-
tively, in the row and column of the pivot element. There are two special cases when
this cost is zero: the case of an elementary reduction, when the pivot entry is the
unique nonzero element in its row, and the dual case of an elementary coreduction,
when the pivot entry is the unique nonzero element in its column. As long as such
special cases are available there is no need to store the matrices of boundary maps if
only a combinatorial representation of the topological space is available. Obviously,
these types of reductions are preferable, because they may be performed very fast.

On the topological level, the case of an elementary reduction corresponds to a
deformation retraction of a free face onto the complex. The problem is that in most
situations free face reductions are quickly exhausted, so the benefit is short lasting.

An elementary coreduction is not possible in a standard simplicial or cubical com-
plex, because the boundary of a vertex is always zero and there are at least two el-
ements in the boundary of all other simplices or cubes. In this paper we show how
one can benefit from the elementary coreductions in homology computations. This
is done by means of the one space homology theory, i.e. the homology theory which
does not require relative homology for building the long exact sequence of a pair of
topological spaces (see [16, 23]).

Since an elementary reduction or coreduction takes only constant time, the com-
plexity of an algorithm that runs through all generators and performs reductions
and/or coreductions whenever possible is linear. Therefore the complexity of a ho-
mology algorithm preprocessed by elementary reductions or coreductions depends
on the size of the complex resulting from the preprocessing. Numerical experiments

Discrete Comput Geom (2009) 41: 96–118 99

as well as some partial complexity results show that unlike the case of elementary re-
ductions, the elementary coreductions may be performed very deeply, which results
in a very fast homology algorithm.

The algorithm presented in this paper may be viewed as a special form of the
acyclic subspace homology algorithm presented in [20]. The acyclic subspace homol-
ogy algorithm so far outperforms other available homology software. Unfortunately,
it significantly slows down when the embedding dimension of the set is increased.
This is because the construction of the acyclic subspace proposed there is based on
the technique of intersection with neighbours. This requires testing all neighbours
(3d − 1 neighbours in the case of a d-dimensional cube), which means that the com-
plexity of the algorithm depends exponentially on the dimension of the space. On the
other hand, the coreduction technique proposed in this paper may be viewed as the
construction of an acyclic subspace which requires only testing the codimension one
neighbours (2d neighbours in the case of a d-dimensional cube).

The first, purely topological approach to the combinatorial idea of the coreduction
introduced in this paper is presented in [21]. It is restricted to cubical sets only and it
is based on the local compactness criterion for representable sets instead of the more
general concept of regular subsets of S-complexes introduced in this paper.

The organization of the paper is as follows. In Sect. 2 we introduce the concept of
an S-complex. In Sect. 3 we present a combinatorial approach to the one space ho-
mology theory of S-complexes. The concept of coreductions is introduced in Sect. 4.
An example is discussed in Sect. 5. The algorithm is presented in Sect. 6. In Sect. 7
we show the results of some numerical experiments and in the last section we present
a theoretical result concerning the complexity of the algorithm under rescalings.

2 S-complexes

Recall that a sequence (Xq)q∈Z of objects of a category C is a gradation of an object
X in C if X decomposes as the direct sum of Xq . In particular, in the case of the
category of sets the gradation is the decomposition into a disjoint union and in the
category of moduli the gradation is the decomposition into the algebraic direct sum.

Let R be a ring with unity. Given a finite set A let R(A) denote the free module
over R generated by A.

Let S be a finite set with a gradation Sq such that Sq = ∅ for q < 0. Then R(Sq)

is a gradation of R(S) in the category of moduli over the ring R. For every element
s ∈ S there exists a unique number q such that s ∈ Sq . This number will be referred
to as the dimension of s and denoted dim s.

We use the notation 〈·, ·〉 : R(S) × R(S) → R for the scalar product defined on
generators by

〈t, s〉 =
{

1, t = s,

0, otherwise

and extended bilinearly to R(S) × R(S).
Let κ : S × S → R be a map satisfying

κ(s, t) �= 0 =⇒ dim s = dim t + 1.

100 Discrete Comput Geom (2009) 41: 96–118

We say that (S, κ) is an S-complex if (R(S), ∂κ) with ∂κ : R(S) → R(S) defined on
generators s ∈ S by

∂κ(s) :=
∑
t∈S

κ(s, t)t

is a free chain complex with base S. The map κ will be referred to as the coincidence
index. If κ(s, t) �= 0, then we say that t is a face of s and S is a coface of t .

By the homology of an S-complex (S, κ) we mean the homology of the chain
complex (R(S), ∂κ) and we denote it by H(S,κ) := H(R(S), ∂κ) or simply by H(S).
In the following we will drop the superscript κ in ∂κ whenever κ is clear from the
context.

Of course, an S-complex is only a reformulation of a chain complex, because the
map κ may be viewed as the matrix of the boundary homomorphism. By referring
to an S-complex instead of a chain complex we want only to stress that in many
applications the natural coding of S carries in itself the information about κ , so there
is no need at all to store κ in memory throughout the process of reductions and the
reductions may be performed on the coding of S only. The two main examples of
such S-complexes are simplicial complexes and cubical complexes.

Recall that a q-simplex σ = [A0,A1, . . . ,Aq] in R
d is the convex hull of q + 1

affine independent points A0,A1, . . . ,Aq in R
d , called the vertices of σ . The number

q is the dimension of the simplex. A face of σ is a simplex whose vertices constitute
a subset of (A0,A1, . . . ,Aq). A simplicial complex consists of a collection S of sim-
plices such that every face of a simplex in S is in S and the intersection of two
simplices in S is their common face. The simplicial complex S has a natural grada-
tion (S q), where S q consists of simplices of dimension q . Since a zero-dimensional
simplex is the singleton of its unique vertex, S 0 may be identified with the collection
of all vertices of all simplices in the simplicial complex S .

Assume an ordering of S 0 is given and every simplex σ in S is coded as
[A0,A1, . . . ,Aq], where the vertices A0,A1, . . . ,Aq are listed according to the pre-
scribed ordering of S 0. By putting

κ(σ, τ) :=

⎧⎪⎨
⎪⎩

(−1)i , if σ = [A0,A1, . . . ,Aq]
and τ = [A0,A1, . . . ,Ai−1,Ai+1, . . . ,Aq],

0, otherwise,

we obtain an S-complex whose chain complex is the classical simplicial chain com-
plex used in simplicial homology.

Let I = [k, l] ⊂ R be a compact interval. Its length is defined as l − k and denoted
len I . The interval I is called an elementary interval if len I ∈ {0,1} and its endpoints
are integers. Elementary intervals of length one are called nondegenerate. We define
the left interval of I by I− := [k, k] and the right interval of I by I+ := [l, l].

An elementary cube in R
d is the Cartesian product Q = I1 ×· · ·× Id of d elemen-

tary intervals. The dimension of Q is the number of nondegenerate intervals in the
product decomposition. A full elementary cube is an elementary cube whose product
decomposition consists only of nondegenerate intervals. For every elementary cube

Discrete Comput Geom (2009) 41: 96–118 101

Q and number j ∈ {1,2, . . . , d} we define the j th nondegeneracy number of Q by

ν(Q, j) :=
{

card{i < j | len Ii = 1}, if len Ij = 1,

0, otherwise.

A cubical complex C in R
d is a finite collection of elementary cubes in R

d and the
associated cubical set is the union of this collection. The cubical complex C has a
natural gradation (C q)q∈Z, where C q consists of elementary cubes of dimension q .
We put

κ(Q,P) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)ν(Q,j), if Q = I1 × · · · × Ij × · · · × Id

and P = I1 × · · · × I−
j × · · · × Id ,

(−1)1+ν(Q,j), if Q = I1 × · · · × Ij × · · · × Id

and P = I1 × · · · × I+
j × · · · × Id ,

0, otherwise.

An induction argument in d may be used to show that a cubical complex is an S-
complex. The associated chain complex coincides with the cubical chain complex
used in [12] to define the homology of cubical sets, i.e. finite unions of elementary
cubes.

In both of these examples the internal structure of the generators carries all the
information needed to compute the coincidence index of two generators in constant
time. Therefore such a complex may be represented in memory by storing the gen-
erators only: there is no need to store the coincidence index. In the case of a cubical
complex the memory representation may be taken to be a bitmap, which is particu-
larly compact.

3 Regular Subsets of S-complexes

We want to replace the set of generators S by a subset S′ ⊂ S which, via the coinci-
dence index κ ′ := κ|S′×S′ , gives rise to another S-complex with the same homology.
Note that we take κ ′ as the restriction of κ to guarantee that κ ′ may be recovered
directly from the coding of S′.

The first question to address is what is a sufficient condition for (S′, κ ′) to be an
S-complex. To answer this question let us introduce the following notation. Given
A ⊂ S put

bdS A := {
t ∈ S | κ(s, t) �= 0 for some s ∈ A

}
,

cbdS A := {
s ∈ S | κ(s, t) �= 0 for some t ∈ A

}
.

In the following we drop the braces in bdS{s} or cbdS{s} and write bdS s or cbdS s

when applying this notation to a singleton of an s ∈ S.
We have the following theorem

102 Discrete Comput Geom (2009) 41: 96–118

Theorem 3.1 If S′ ⊂ S is such that for all s, u ∈ S′ and t ∈ S

t ∈ bdS s and u ∈ bdS t implies t ∈ S′, (1)

then (S′, κ ′) is an S-complex.

Proof We need to verify that ∂κ ′
∂κ ′ = 0. Assume this is not true. Then

0 �= ∂κ ′
∂κ ′

(s) =
∑
t∈S′

κ(s, t)∂κ ′
t =

∑
u∈S′

(∑
t∈S′

κ(s, t)κ(t, u)

)
u

for some s ∈ S′. Therefore there exists a u0 ∈ S′ such that

∑
t∈S′

κ(s, t)κ(t, u0) �= 0. (2)

On the other hand ∂κ is a boundary, so we have

0 = ∂κ∂κ(s) =
∑
t∈S

κ(s, t)∂κ t =
∑
u∈S

(∑
t∈S

κ(s, t)κ(t, u)

)
u.

In particular
∑
t∈S

κ(s, t)κ(t, u0) = 0.

It follows from (2) that
∑

t∈S\S′
κ(s, t)κ(t, u0) �= 0,

which implies that κ(s, t0)κ(t0, u0) �= 0 for some t0 ∈ S \ S′. Therefore t0 ∈ bd s,
u0 ∈ bd t0 and t0 �∈ S′, a contradiction. �

We say that S′ ⊂ S satisfying (1) is regular. We say that S′ ⊂ S is closed in S if
bdS S′ ⊂ S′. We say that S′ ⊂ S is open in S if S \ S′ is closed in S.

Theorem 3.2 If S′ ⊂ S is closed in S, then S′ and S \ S′ are regular.

Proof Let S′ be closed in S. The fact that S′ is regular is obvious. Assume S \ S′ is
not regular. Then there exist s, u ∈ S \ S′ and t ∈ S \ (S \ S′) such that κ(s, t) �= 0 �=
κ(t, u). Thus t ∈ S′ and since S′ is closed we get u ∈ S′, a contradiction. �

Theorem 3.3 If S′ is closed in S, then

(i) ∂κ ′ = ∂κ |R(S′)
(ii) R(S′) is a subcomplex of R(S).

Discrete Comput Geom (2009) 41: 96–118 103

Proof To show (i) observe that since bd t ⊂ S′ for t ∈ S′, we have

∂κ(t) =
∑
u∈S

κ(t, u)u =
∑

u∈S∩bd t

κ(t, u)u =
∑

u∈S′∩bd t

κ(t, u)u = ∂κ ′
(t).

Now ∂κ(t) = ∂κ ′
(t) ∈ R(S′) for every t ∈ S′. Therefore ∂κ(R(S′)) ⊂ R(S′), which

proves (ii). �

However, let us remark that the conclusion of Theorem 3.3 need not be true when
S′ is not closed in S.

Theorem 3.4 Assume S′ ⊂ S is closed in S. Let S′′ := S \ S′ and κ ′′ := κ|S′′×S′′ .
Then the inclusion

ι : (R(S′), ∂κ ′) → (
R(S), ∂κ

)
,

and the projection

π : (R(S), ∂κ
) → (

R(S′′), ∂κ ′′)

are chain maps. Moreover, we have the following short exact sequence

0 → R(S′) ι→ R(S)
π→ R(S′′) → 0 (3)

and the following long exact sequence of homology modules

· · · ∂k+1→ Hq(S′)
ιq→ Hq(S)

πq→ Hq(S′′) ∂k→ Hq−1(S
′)

ιq−1→ ·· · . (4)

Proof The fact that ι is a chain map follows immediately from Theorem 3.3. To show
that π is a chain map take s ∈ S and consider first the case s ∈ S′. Then ∂κ(s) ∈ R(S′)
and

π
(
∂κ(s)

) = 0 = ∂κ ′′
(0) = ∂κ ′′(

π(s)
)
.

On the other hand, if s ∈ S′′, then

π
(
∂κ(s)

) = π

(∑
t∈S

κ(s, t)t

)
=

∑
t∈S′′

κ(s, t)t = ∂κ ′′
(s) = ∂κ ′′(

π(s)
)

which proves that π is a chain map.
The fact that the sequence (3) is exact is obvious and the exactness of the sequence

(4) follows from the standard result in homological algebra. �

Theorem 3.5 If S′ is closed in S, then

H(S′′) ∼= H
(
R(S),R(S′)

)
.

104 Discrete Comput Geom (2009) 41: 96–118

Proof The projection π induces a chain map π̄ : R(S)/R(S′) → R(S′′). It is straight-
forward to check that the following diagram, in which the top row is the exact se-
quence of a pair and the unmarked vertical arrows denote identities, is commutative.

· · ·
∂k+1

Hq(S′)
ιq

Hq(S)
πq

Hq(R(S),R(S′))

π̄

∂k · · ·

· · ·
∂k+1

Hq(S′)
ιq

Hq(S)
πq

Hq(S′′)
∂k · · ·

Now the conclusion follows from the five lemma. �

We say that a regular subset T ⊂ S is a null set of S if T is closed or open in S and
H(R(T)) = 0. As an immediate consequence of Theorem 3.4 we get the following
corollary.

Corollary 3.6 If T is a null set of S, then H(R(S)) and H(R(S \T)) are isomorphic.

The corollary tells us that if we are able to locate a null set in S, then we can
remove it without changing the homology of S. In the next section we will indicate a
simple method of locating null sets in S.

We conclude this section with the following lemma, which will be useful later.

Lemma 3.7 Assume s0, t0, u0 ∈ S are such that u0 ∈ bd t0 and t0 ∈ bd s0. Then
card bd s0 ≥ 2 and card cbdu0 ≥ 2.

Proof We have

0 = ∂∂s0 =
∑
u∈S

(∑
t∈S

κ(s0, t)κ(t, u)

)
u.

In particular

0 =
∑
t∈S

κ(s0, t)κ(t, u0).

Since by our assumptions the term κ(s0, t0)κ(t0, u0) �= 0, the sum may be zero only
if there is another nonzero term. Thus

κ(s0, t1) �= 0 �= κ(t1, u0) for some t1 �= t0 ∈ S.

It follows that t0, t1 ∈ bd s0 and t0, t1 ∈ cbdu0. �

4 Reduction Pairs

As in [11] we say that a pair (a, b) of elements of S is a reduction pair if κ(b, a) is
invertible in R. A reduction pair (a, b) is said to be an elementary reduction pair if

Discrete Comput Geom (2009) 41: 96–118 105

cbdS a = {b}. In this case we will also say that a is a free face in S. Similarly, we
define an elementary coreduction pair as a reduction pair (a, b) such that bdS b = {a}
and in this case we call b a free coface in S.

Theorem 4.1 Assume a, b ∈ S. If (a, b) is an elementary reduction pair, then {a, b}
is open in S. If (a, b) is an elementary coreduction pair, then {a, b} is closed in S.
Moreover, in both cases {a, b} is a null set.

Proof First assume that (a, b) is an elementary reduction pair. We need to show that
S \ {a, b} is closed. Assume this is not true. Then there exists an s0 ∈ S \ {a, b} and
a t0 ∈ bd s0 ∩ {a, b}. It cannot be t0 = a, because then b �= s0 ∈ cbdS a. Therefore
t0 = b. By Lemma 3.7 card cbdS a ≥ 2, a contradiction.

Next assume that (a, b) is an elementary coreduction pair. We need to show that
{a, b} is closed. Obviously bdS a = {b} ⊂ {a, b}. We also have bdS a = ∅, because
otherwise Lemma 3.7 implies that card bdS b ≥ 2. Therefore bdS{a, b} ⊂ {a, b}.

Let T := {a, b}. Let k := dimb. Then

Rq(T) =

⎧⎪⎨
⎪⎩

Ra for q = k − 1,

Rb for q = k,

0, otherwise,

and ∂q is zero except ∂k , which is the multiplication by κ(b, a). Since κ(b, a) is
invertible, ∂k is an isomorphism. It follows that Zq(T) = 0 for all q �= k − 1 and
Zk−1(T) = Ra = Bk−1(T). Therefore Hq(T) = 0. �

Thus, Theorem 4.1 and Corollary 3.6 imply the following corollary.

Corollary 4.2 If (a, b) is an elementary reduction or coreduction pair in S, then
H(R(S)) and H(R(S \ {a, b})) are isomorphic.

5 An Example

The simplest elementary reduction algorithm consists in running through all the gen-
erators and performing the reduction whenever a reduction or coreduction pair is
found. This is illustrated in Fig. 1. We begin with a simplicial complex consisting
of one triangle BCD, eight edges AB , AD, AE, AF , BC, BD, CD, DE and six
vertices A, B , C, D, E, F . Let us assume that the simplices are analysed in the
lexicographic order

A,AB,AD,AE,AF,B,BC,BD,BCD,C,CD,D,DE,E,F.

Then the consecutive elementary reduction pairs encountered are

(A,AF), (BC,BCD) and (C,CD)

and the resulting complex consists of five edges AB,AD,AE,BD,DE and four
vertices A,B,D,E. However, there are at least two problems with this algorithm:

106 Discrete Comput Geom (2009) 41: 96–118

Fig. 1 Simple reduction

Fig. 2 Simple coreduction. The
missing vertices are marked
with circles and the missing
edges are marked with thin lines

the depth of the reduction crucially depends on the order in which the generators
are analysed and the output of the algorithm cannot be expected to be small if the
minimal homology generators are large.

Consider now the outcome of the reduction algorithm applied to the considered
example from the point of view of possible coreductions. First recall that no sim-
plicial complex may admit an elementary coreduction pair, because the cardinality
of boundary is n + 1 in the case of an n-dimensional simplex with n > 0 and zero
for a vertex, so it is never one. However, when we treat the simplicial complex as the
reduced complex, i.e. we assume that the empty set is an additional simplex of dimen-
sion −1 which has in its coboundary all vertices, then the situation becomes different,
because every vertex becomes a free coface with the empty set as the unique element
in the coboundary. The resulting sequence of coreductions is presented in Fig. 2.
The outcome is an S-complex consisting of exactly two generators of dimension one,
whose boundary is zero. Therefore these generators are also homology generators
and obviously there are no more homology generators.

Note that if the simplicial complex has more than one connected component, then
the above procedure works only for the connected component of the vertex which

Discrete Comput Geom (2009) 41: 96–118 107

was picked up as a free coface. This is because once this coface is reduced, the empty
set is gone and there are no more coreductions of this type available for the remaining
components. A straightforward remedy is to add one extra generator in dimension −1
per each connected component with its coboundary consisting of all vertices in this
component.

Observe that testing if (a, b) is an elementary reduction or coreduction pair re-
quires only the knowledge of bdb or cbda. In all cubical complexes and many sim-
plicial complexes the size of the boundaries and coboundaries is bounded by a small
number depending on the dimension of the space. In this case the test may be per-
formed in constant time. What is more important, the bound remains valid for the
new, reduced complex. Therefore the algorithm runs in linear time. On the algebraic
level this fact may be considered as the no fill-in process in the matrix of the boundary
operator.

6 Coreduction Homology Algorithm

The order in which the generators are processed matters, because every reduction per-
formed may give birth to new reduction or coreduction pairs. Therefore Algorithm 6.1
uses a method of queuing the neighbours of the last reduced pair to minimize the ef-
fect of the order on the depth of reduction without sacrificing its speed.

Algorithm 6.1 (Coreduction)
function Coreduction (S-complex S, a generator s)
begin

Q := empty queue of generators;
enqueue(Q,s);
while Q �= ∅ do begin

s := dequeue(Q);
if bdS s contains exactly one element t then begin

S := S \ {s};
foreach u ∈ cbdS t do
if u �∈ Q then enqueue(Q,u);

S := S \ {t};
end
else if bdS s = ∅ then
foreach u ∈ cbdS s do
if u �∈ Q then enqueue(Q,u);

end;
return S;

end;

As we commented in Sect. 5, the above form of the algorithm should be applied
only to connected sets and in the general case the algorithm should be applied inde-
pendently to each connected component of the set. In the actual implementation it is
not difficult to combine the coreduction algorithm with the separation to connected

108 Discrete Comput Geom (2009) 41: 96–118

components, so that the two algorithms work in tandem and there is no need to scan
the input twice.

Also let us comment that in the actual implementation it is preferable to use two
independent data structures to represent Q: a set and a queue, because apart from the
standard queue operations we also verify whether a given cube is already contained
in the queue or not, which cannot be done efficiently for queues.

Theorem 6.2 Algorithm 6.1 called with an S-complex S returns a subset S′ of S

such that H(S) ∼= H(S′). Moreover, if S is such that for some M > 0 and for every
s ∈ S there are at most M elements in bdS s, then the “while” loop is passed at
most 2M cardS times.

Proof Put

K := {
k ∈ N | the “while” loop is passed at least k times

}
.

For k ∈ K let Sk , sk and tk denote, respectively, the contents of variable S, s and t

on entering the kth pass of the “while” loop. If k − 1, k ∈ K , then either Sk = Sk−1
or Sk = Sk−1 \ {sk, tk}. The latter case happens when (sk, tk) is a coreduction pair. It
follows from Theorem 4.1 and Corollary 3.6 that H(Sk) ∼= H(Sk+1).

Observe that if an element t ∈ S contributes its coboundary elements to Q as an
element of a coreduction pair (s, t), then it is removed from S, so it may never again
contribute in this role. Similarly, if an element s with zero boundary contributes its
coboundary elements to Q, it may never again do it in this role, because it is not in
the coboundary of any element, so it may not reappear in Q. Therefore each element
of S may appear in Q at most 2M times. It follows that the “while” loop is passed
at most 2M cardS times. �

As an immediate corollary we get

Corollary 6.3 Assume that for some constant M > 0 and for every s ∈ S the cardi-
nalities of bdS s and cbdS s are bounded by M and let n denote the cardinality of S.
Then Algorithm 6.1 runs in O(2M2n) time when S is implemented as a bit array
(bitmap) and in O(2M2n logn) time when S is implemented as a binary search tree.
In particular, in the case of a cubical complex implemented as a bitmap Algorithm 6.1
runs in O(2d2n), where d denotes the embedding dimension of the cubical set.

Finally let us remark that Algorithm 6.1 may be easily extended so that its
“while” loop is also used to separate the connected components of the input. As
we explained in Sect. 5 such a separation is needed if one wants to fully benefit from
coreductions in the case of simplicial and cubical complexes. The separation of com-
ponents may be done as preprocessing but combining it with Algorithm 6.1 improves
the overall efficiency.

7 Numerical Experiments

The coreduction homology algorithm for cubical sets and Z coefficients has been im-
plemented by the first author. The implementation, in the following referred to as CR,

Discrete Comput Geom (2009) 41: 96–118 109

is available from [18]. This Web page also provides documentation, the benchmark
program and sample inputs used in the numerical experiments presented in this sec-
tion. CR also constitutes a part of the libraries [29] and [28]. A version for simplicial
complexes and general S-complexes with arbitrary ring coefficients is in preparation.
The cubical version of CR accepts on input a list of elementary cubes as well as
bitmaps. It switches to the implementation of [11] when no more coreductions are
available. The output contains Betti numbers and torsion numbers.

We compared CR with all cubical homology programs available from the Com-
putational Homology Project Web page [28]. These programs and the benchmark
software may be easily compiled in one executable, which makes the comparison
straightforward and reliable. The strongest competitors are the following two pro-
grams

BK Geometrically controlled algebraic reductions by W. Kalies [13], based on [14]
AS Reductions via acyclic subspace by M. Mrozek [18], based on [20].

In particular, both BK and AS significantly outperform the standard homology al-
gorithm based on sparse matrix implementation of Smith Normal Form (see [20]).
Therefore we restrict the presentation of the comparison only to the case of CR, BK
and AS with the exception of dimension three, where we also add the results for AS3,
a version of AS based on configuration lookup tables. AS3 is particularly fast, but it
is not available in dimensions higher than three due to double exponential growth of
the number of configurations.

Given a cubical set X ⊂ R
d , put

K(X) := {
Q | Q ⊂ X, Q is an elementary cube in R

d
}
,

Kq(X) := {
Q ∈ K(X) | dimQ = q

}
,

|X| := card K(X),

|X|q := card Kq(X),

dimX := max
{
dimQ | Q ∈ K(X)

}
,

embX := d.

We will refer to dimX as the dimension of X and to embX as the embedding dimen-
sion of X. We say that X is a full cubical set if

⋃
K(X) = ⋃

Kd(X). The cubical
homology algorithms are oriented primarily on full cubical sets, because full cubical
sets appear in a natural way in raster graphics, where pixels or voxels correspond to
full elementary cubes. Full cubical sets may be stored very efficiently as bitmaps.
General cubical sets may also be stored as bitmaps, but then the memory requirement
doubles for every dimension.

Obviously, the running time of a cubical homology algorithm depends on the size
of the input and the dimension of the space. In case of a general cubical set the size
of input is |X|; however, in the case of a full cubical set there is no need to store the
lower dimensional cubes, so in this case by the size of input we mean |X|d . Note that

|X|d ≤ |X| ≤ 3d |X|d ,

110 Discrete Comput Geom (2009) 41: 96–118

hence in a fixed embedding dimension these two measures are asymptotically equiv-
alent.

Every cubical set stored as a bitmap may be transformed with no cost into a full
cubical set with the same homology and the same size. From the geometrical point
of view this is achieved by blowing up every element of K(X) into a full cube. On
the bitmap level this operation is just a reinterpretation of bits, so no running cost is
involved. The opposite operation may be performed too, but this carries some cost
depending linearly on the size of the set and exponentially on the dimension of the
space.

The AS and BK implementations are designed for full cubical sets but without any
extra cost, via the reinterpretation described above, they deal with general cubical sets
too. In contrast, CR requires a general cubical set on input. When a full cubical set is
provided, it must be first decomposed into all its faces. For this reason we study two
versions of CR. The first one, denoted CRg, assumes a general cubical set on input,
i.e. all the faces must already be included in the input. The second one, denoted CRf,
accepts a full cubical set on input, generates all the lower dimensional faces and
continues with the coreduction process. In the case of CRf the cost of generating the
lower dimensional faces constitutes a part of the total cost of this algorithm. In order
to compare the algorithms on full cubical sets we send general or full cubical sets to
CRf, AS and BK. By using CRf we ensure that even in the case of a general cubical
set the coreduction algorithm, similarly to AS and BK, first reinterprets the data as if
it were a full cubical set, then generates the lower dimensional faces and only after
that the proper algorithm starts. In order to compare the algorithms on general cubical
sets, we send general cubical sets to CRg, AS and BK.

For every tested set we provide its dimension d and its embedding dimension e.
Unless otherwise stated, the times presented in this section were obtained on a
3.6 GHz PC with Pentium 4 processor and 2 GB RAM running Windows XP with
virtual memory turned off. All the software were compiled with gcc compiler ver-
sion 3.4.2 ported for MS Windows XP.

Table 1 presents the tests performed on several rescalings of six general cubical
sets: four cubical spheres of dimension d = 2,3,4,5 and embedding dimension e =
3,4,5,6, respectively, Bing’s house [2] embedded in R

3 and Klein bottle embedded
in R

4. Bing’s house and Klein bottle are built of two-dimensional elementary cubes.
The bottom row of every table contains a rough measure of complexity α of the
programs obtained by finding the best fit of the data to the function T = cnα . Note
that in theory α cannot be less than one. However, the situation when a substantial
cost independent of the size of input is present may show up as α less than one,
especially when and the remaining cost is close to linear.

According to the results of experiments gathered in Table 1, CR shows best per-
formance with the exception of full cubical sets in dimension 3, when AS3 is slightly
better. CR’s advantage over the other programs is particularly strong in higher em-
bedding dimensions.

The topology of examples gathered in Table 1 is relatively simple. To see how the
algorithm behaves under more complicated topology, we tested it on some random
cubical sets. To generate a random full cubical set X in R

d we run through every full
elementary cube Q contained in [0, n]d for some fixed integer n > 0 and selected Q

Discrete Comput Geom (2009) 41: 96–118 111

Table 1 Homology computation time in seconds for various sets and various algorithms

Size CRg CRf AS3 AS BK

86402 0.05 0.38 0.14 6.7 23.3

117602 0.08 0.50 0.19 9.6 38.0

153602 0.09 0.67 0.27 12.7 87.0

194402 0.13 0.86 0.34 16.2 60.7

240002 0.14 1.08 0.41 20.8 80.1

290402 0.17 1.28 0.53 26.7 91.1

α 1.0 1.0 1.1 1.1 1.1

Cubical sphere (dim = 2, emb = 3)

Size CRg CRf AS3 AS BK

74341 0.05 0.44 0.27 12.4 32

132321 0.08 0.80 0.39 21.9 58

206901 0.13 1.27 0.61 34.6 76

298081 0.19 1.80 0.84 49.7 182

405861 0.23 2.52 1.23 71.3 221

530241 0.31 3.34 2.02 94.2 385

α 1.0 1.0 1.0 1.0 1.3

Bing’s House (dim = 2, emb = 3)

(a) (b)

Size CRg CRf AS BK

1776 <0.016 0.02 0.5 5

13920 0.016 0.11 3.6 90

46800 0.031 0.42 11.9 408

110784 0.093 1.00 27.9 1911

216240 0.156 2.02 55.3 4320

α 1.0 1.0 1.0 1.4

Cubical sphere (dim = 3, emb = 4)

Size CRg CRf AS BK

1382 <0.015 0.03 0.4 3

12522 0.015 0.14 3.2 32

34830 0.047 0.42 8.4 94

68306 0.079 0.95 16.4 201

112950 0.141 1.92 27.6 335

α 1.0 1.0 1.0 1.1

Klein bottle (dim = 2, emb = 4)

(c) (d)

Size CRg CRf AS BK

1298 <0.015 0.016 4 25

4442 <0.015 0.078 16 129

9458 0.016 0.172 43 358

16346 0.031 0.297 87 649

25106 0.047 0.469 146 1089

α − 1.1 1.3 1.3

Cubical sphere (dim = 4, emb = 5)

Size CRg CRf AS BK

728 <0.015 0.05 52 594

3944 <0.015 0.17 433 –

9720 <0.015 0.44 1311 –

18056 0.031 0.89 2590 –

28952 0.063 1.48 4344 –

α − 0.9 1.2 –

Cubical sphere (dim = 5, emb = 6)

(e) (f)

to X with a fixed probability p ∈ (0,1). To generate a random general cubical set X in
R

d we first run through every zero-dimensional cube (vertex) Q contained in [0, n]d
for some fixed integer n > 0 and we selected Q to the set of vertices of X with a fixed
frequency p ∈ (0,1). Then we added to X every elementary cube whose all vertices
belonged to the generated set of vertices. The distribution of Betti numbers of such
random cubical sets crucially depends on the probability p. One can expect that when
p is not large enough, the chances of closing a cycle are too small. On the other hand,
when p is too large the chances for the cycle to be nontrivial are also small, so that

112 Discrete Comput Geom (2009) 41: 96–118

Table 2 Homology computation time in seconds for random cubical sets in R
3 and their rescalings. The

sets were generated and processed as full cubical sets

Size CR AS3 AS BK

1592318 1.03 1.25 198 2716

2974304 1.81 2.11 379 3549

4984602 2.92 3.38 646 7048

7740620 4.41 4.83 1012 −
α 0.9 0.9 1.0 −

p = 0.3, dim = emb = 3

Betti: 5, 676, 5

Size CR AS3 AS BK

2432700 2.09 3.2 323 4481

4599206 3.64 5.2 622 –

7771072 5.75 7.6 1243 –

12139338 8.56 10.9 2168 –

α 0.9 0.8 1.2 –

p = 0.5, dim = emb = 3

Betti: 1, 563, 38

Size CR AS3 AS BK

3196734 4.7 12.5 659 5900

6113878 8.0 19.4 1274 –

10412662 14.7 27.5 2128 –

16360302 18.8 37.6 2878 –

α 0.9 0.7 0.9 –

p = 0.7, dim = emb = 3

Betti: 1, 60, 297

Size CR AS3 AS BK

3874985 4.1 12.3 697 7467

7497607 7.3 20.9 1460 –

12872733 11.8 29.7 2546 –

20345819 18.0 43.3 4002 –

α 0.9 0.7 1.1 –

p = 0.9, dim = emb = 3

Betti: 1, 1, 417

the maximum number of nontrivial cycles is observed for some intermediate value of
p that depends on q . However, more numerical experiments are needed in order to
get a better understanding of this dependence and to formulate some hypotheses.

Table 2 shows homology computation times for rescalings of four cubical sets
in R

3 generated as full cubical sets with the probability p of selecting a full cube
to the set, respectively, 0.3, 0.5, 0.7 and 0.9. Table 3 shows the time of homology
computations of a few subsets of a random general cubical set generated in dimension
4 and 5. The performance of CRg for these examples is skipped. However, let us
mention that in these cases CRg is 6 to 12 times better than CRf. Also here the
superiority of CR is clearly visible.

To see how the performance of CR depends on the embedding dimension, Table 4
presents computation times of CRf and AS for random cubical sets whose vertices
were selected with fixed frequency 0.3 and whose size is of the same order of mag-
nitude but the embedding dimension varies from 3 to 7. From the last column of this
table we see that the superiority of CR over AS grows with dimension.

Table 5 presents four extreme cases of homology computations by CR. The first
two cases are taken from a numerical simulation of Cahn–Hillard equations [10].
The other two cases concern the minimal face consistent cubical set containing all
the solutions on some energy sublevel sets for a randomly chosen k-SAT problem
with 12 variables and 50 clauses, i.e. close to the critical value 4.3 of the ratio of the
number of clauses to the number of variables, where the high complexity of the k-Sat
problem is conjectured to concentrate [15].

Discrete Comput Geom (2009) 41: 96–118 113

Table 3 Homology computation time in seconds for random cubical sets in R
3 and R

4 and their subsets.
The sets were generated as random general cubical sets and converted to full cubical sets before processing

Size Betti CRf AS BK

10348 541, 279 0.125 0.72 58

13434 650, 406 0.156 1.05 188

16470 769, 517 0.187 1.27 280

19363 898, 625 0.218 1.52 383

α 0.9 1.2 3.0

p = 0.3, dim = emb = 4

Size Betti CRf AS BK

62636 24, 2988, 20 0.53 20 598

116284 36, 5552, 38 1.06 52 2430

168750 48, 8060, 54 1.56 102 5490

222480 54, 10493, 71 2.09 160 13489

α 1.1 1.6 2.4

p = 0.6, dim = emb = 4

Size Betti CRf AS BK

14883 31, 1044, 2 0.41 14 3014

32674 40, 2256, 6 0.86 38 13619

50549 49, 3419, 13 1.36 73 –

68102 53, 4627, 20 1.88 113 –

α 1.0 1.4 –

p = 0.5, dim = emb = 5

Size Betti CRf AS BK

34045 1, 0, 8, 14 0.44 51442 5148

56211 1, 0, 8, 30 0.74 – –

78812 1, 0, 10, 51 1.09 – –

100558 1, 0, 12, 67 1.48 – –

α 1.1 – –

p = 0.95, dim = emb = 5

Table 4 Dependence of the computation time on dimension

Dimension Size Betti CRf AS AS/CRf

4 13730 610, 402 0.157 0.97 6.2

5 12135 330, 685 0.469 4.8 10.2

6 12162 217, 987 1.48 22.4 15.1

7 14031 143, 1406 7.23 188 26.0

Table 5 Computation time in the case of large size and large dimension

Dimension Size Betti CRg CRf

3 8392997 1, 1057 – 4.38

4 350000000 1, 7, 352 – 935

12 135351 1, 0, 0, 1, 4, 5, 0 0.77 −
12 332309 1, 0, 0, 0, 0, 1, 1 1.92 −

Direct comparison of CR with homology programs not available in [28] is more
complicated, because of difficulties in compiling various packets together and dif-
ferences in input formats. However, some rough comparison is possible. Recently
A. Urbańska [25] compared CRf with homology algorithms using sparse implemen-
tations of Smith diagonalization algorithms available in the LinBox library [30]. The
experiments were performed on SGI Altix with 64 Itanium 2 processors. She found

114 Discrete Comput Geom (2009) 41: 96–118

that the algorithms in LinBox cannot compete with CR, at least not for the class of
problems, where the complex is large and the homology to be computed is simple.
For instance, the computation of the homology of Klein bottle built out of 380 full
four-dimensional cubes with CR turned out to be more than 20 times faster than with
LinBox. And in the case of a cubical set built out of about 8 million three-dimensional
cubes CR was more than 1300 times faster.

Zomorodian and Carlsson presented in [27] the times resulting from the 2.2 GHz
Pentium processor homology computations of a simplicial representation of Klein
bottle consisting of 12,000 simplices. The times are 0.01 s for Z2 coefficients, 0.23 s
for Z3, Z5 and Z3203 coefficients and 0.5 s for rational coefficients. The most similar
case in our experiments is Klein bottle treated as a general cubical set built out of
12,522 elementary cubes of dimension at most 2. Table 1d shows 0.015 s as the
computation time for this case. When rescaled from the 3.6 GHz clock to the 2.2 GHz
clock this would be 0.025 s. This is 2.5 times slower than the case of Zomorodian and
Carlsson for Z2 coefficients but 9 to 20 times faster than the case of field coefficients.
Let us recall that CR computes the homology over Z coefficients.

8 Complexity

In this section we discuss the computational complexity of the coreduction homology
algorithm. Obviously it depends on the size of the S-complex left after the reduction.
We do not yet have a deep understanding of the structure of the output of Algo-
rithm 6.1. For this, more numerical experiments are needed. We do have a conjecture
and a partial result, which to some extent explains why we believe the conjecture
might be true. This partial result is also important in applications to some algorithms
in rigorous numerics of dynamical systems (see [19]).

In the following we restrict our attention to S-complexes coming from cubical sets
and we also assume that the queue used to keep candidates for coreductions in Al-
gorithm 6.1 is sorted with respect to the lexicographic order induced from R

d . Note
that the complexity of such a modified algorithm is O(n logn) regardless of the stor-
age method used for sets. The first restriction is purely for simplicity. What concerns
the other restriction is irrelevant for the complexity result discussed in this section,
because the argument presented does not have any chance to go below O(n logn)

anyway.
Given a cubical set X put

γ (X) := |X′|
|X| ,

where X′ denotes the S-complex returned by Algorithm 6.1. The following proposi-
tion is straightforward.

Proposition 8.1 Assume that for a certain class of cubical sets we have

γ (X) = O

(
1

|X|μ
)

(5)

Discrete Comput Geom (2009) 41: 96–118 115

for some μ ∈ (0,1). Then the complexity of finding homology in this class by means
of Algorithm 6.1 followed by another homology algorithm applied to X′ is

O
(|X|α(1−μ)

)

if the complexity of the other homology algorithm is O(|X|α) and μ < 1 − 1
α

.

The question is: Under what assumptions can we guarantee that (5) is satisfied?
We have the following conjecture.

Conjecture 8.2 Consider a class of q-dimensional cubical sets such that any two of
them are homeomorphic under a certain class of homeomorphisms. Then γ restricted
to this class satisfies (5) with μ = 1

q
.

If the conjecture is true, then in particular the coreduction algorithm reduces the
complexity of computing homology in a fixed topology class of a two-dimensional
set from O(|X|α) to O(|X| α

2). Recall that by the dimension of a cubical set we mean
the maximal dimension of the elementary cubes contained in the cubical set. For in-
stance, the Klein bottle may be represented as a two-dimensional cubical set although
the minimum embedding dimension for this set is four. Also note that the reduction
algorithm reduces the dimension of the set embedded in R

d to d − 1.
In applications to rigorous numerics of dynamical systems certain algorithms are

used (see [19]) that produce cubical sets whose homology must be verified. To guar-
antee certain properties, these algorithms frequently subdivide the cubical sets, so
that although the topology of the outcome is relatively simple, the sets are built of
huge chunks of frequently subdivided cubes. In order to stick to cubical sets whose
vertices have integer coefficients as considered in this paper, it is convenient to re-
place the process of subdivision by the process of rescaling. By a rescaling we mean
a homeomorphism of the form

Rn : R
d � x → nx ∈ R

d

for some integer n > 0. By an n-rescaling of a cubical set X we mean the image of
X under Rn.

We have the following theorem

Theorem 8.3 Consider the class of all n-rescalings of a fixed q-dimensional cubical
set X0. Then γ restricted to this class satisfies (5) with μ = 1

q
. In particular, the

complexity of finding homology in this class is

O
(|X|α(1− 1

q
))

.

Before we sketch the proof of this theorem, let us consider the outcome of Algo-
rithm 6.1 on the rescalings of cubical Bing’s house by factors of 2 and 5, respectively
(presented in Fig. 3). Note that the reduced sets contain no vertices and every edge
left has exactly two elements in its coboundary except one edge whose cobound-
ary cardinality is three. Moreover, the reduced set expands under the rescaling only
linearly. This is a hint how to proceed with the proof.

116 Discrete Comput Geom (2009) 41: 96–118

Fig. 3 Cubical Bing’s house (top) and the outcome of Algorithm 6.1 on two Bing’s house rescalings: by
factor 2 (bottom left) and by factor 5 (bottom right)

Proof We sketch the proof for q = 2. The details, especially for q > 2, are technically
complicated and will be published elsewhere. Since the considered dimension is 2,
we use the terminology vertices, edges and faces, respectively, for zero-, one- and
two-dimensional elementary cubes.

Let X be a cubical set in the considered class and let n > 0 be an integer satisfying
X = Rn(X0). Denote by X′ the outcome of Algorithm 6.1 applied to X. Obviously
|X|2 = n2|X0|2. It is enough to show that

|X′|2 ≤ 4n|X0|2. (6)

Indeed, if (6) is satisfied, then

|X′| ≤ 9|X′|2 ≤ 36n|X0|2 = 36|X0|
1
2
2 |X| 1

2 = O
(|X| 1

2
)

and consequently γ (X) = O(1

|X| 1
2
).

It remains to prove (6). First, observe that we can assume that X is connected,
because if not, we can apply the algorithm and the argument separately to each con-
nected component of X. Let us assume that all vertices, edges and faces in X are
ordered under the lexicographic order induced from R

d .
Given a face F0 in X0, the minimal edge in the boundary of F0 in X0 is called the

base of F0. An edge is called a support in X0 if it is a base of a face in X0. The index
of a support E0 in X0 is the number of all faces in X0 which are under E0 in the

Discrete Comput Geom (2009) 41: 96–118 117

lexicographic order. We say that an edge E in X is a skeleton covered by an edge E0
in X0, if it is contained in the image of E0 under Rn. We say that a vertex, an edge or
a face in X is internal if it does not contain the image of any vertex in X0 under Rn.

First we claim that Algorithm 6.1 applied to X removes all internal skeleton edges
of X covered by a support of X0. Note that any edge removed by Algorithm 6.1 is re-
moved either as a member of a vertex-edge or edge-face coreduction pair. Moreover,
every vertex is removed, because the connectedness of X implies that X′ contains
no vertices. A case study argument based on tracing the reduction of vertices, the
location of the edge with respect to the other edges and the order in which the edges
are removed from the queue shows that all the skeleton internal edges covered by a
support of zero index are removed in a vertex-edge reduction. A similar induction
argument shows that all the internal skeleton edges covered by a support of positive
index as well as all the internal faces are removed in an edge-face reduction. There-
fore the number of internal faces in X′ which are covered by one face in X0 does not
exceed 4n, which proves (6). �

We believe that in principle a similar proof should go through for the class of
homeomorphsims which factorize as a composition of rescalings and other homeo-
morphisms which keep the size bounded.

9 Conclusions and Final Remarks

The method of coreductions introduced in this paper is a novel way of reducing large
complexes in linear time to proportions in which the classical cubical algorithms
can take over. Experiments based on cubical sets show that coreduction homology
algorithm performs much better than other cubical homology algorithms available so
far, particularly for low-dimensional sets in high dimensions. Moreover it is possible
to adapt the coreduction homology algorithm to maps. The first tests show that in
the case of maps the gain over the existing homology algorithms for maps is even
stronger. Details will be published elsewhere.

Acknowledgements The authors thank an anonymous referee for some valuable comments which
helped to improve and correct the presentation of the paper.

References

1. Basu, S.: On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic
sets. Discrete Comput. Geom. 22, 1–18 (1999)

2. Bing, R.H.: Some aspects of the topology of 3-manifolds related to the Poincaré Conjecture. In: Saaty,
T.L. (ed.) Lectures on Modern Mathematics, vol. II, pp. 93–128. Wiley, New York (1964)

3. Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for Betti numbers of simplicial com-
plexes on the 3-sphere. Comput. Aided Geom. Des. 12, 771–784 (1995)

4. Donald, B.R., Chang, D.R.: On the complexity of computing the homology type of a triangulation.
In: Proc. 32nd Ann. IEEE Sympos. Found. Comput. Sci., pp. 650–661 (1991)

5. Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Oxford University Press, London
(1986)

118 Discrete Comput Geom (2009) 41: 96–118

6. Dumas, J.-G., Saunders, B.D., Villard, G.: On efficient sparse integer matrix Smith normal form com-
putations. J. Symb. Comput. 32, 71–99 (2001)

7. Dumas, J.-G., Heckenbach, F., Saunders, D., Velker, V.: Computing simplicial homology based on
efficient smith normal form algorithms. In: Algebra, Geometry and Software Systems, pp. 177–207.
Springer, Berlin (2003)

8. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete
Comput. Geom. 28, 511–533 (2002)

9. Friedman, J.: Computing Betti numbers via combinatorial Laplacians. In: Proc. 28th Ann. ACM Sym-
pos. Theory Comput., pp. 386–391 (1996)

10. Gameiro, M., Mischaikow, K., Wanner, Th.: Evolution of pattern complexity in the Cahn–Hilliard
theory of phase separation. Acta Mater. 53, 693–704 (2005)

11. Kaczynski, T., Mrozek, M., Ślusarek, M.: Homology computation by reduction of chain complexes.
Comput. Math. Appl. 35, 59–70 (1998)

12. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Mathematical Sci-
ences, vol. 157. Springer, New York (2004)

13. Kalies, W.: Chom—A Cubical Homology Program (1999). http://www.math.fau.edu/kalies/chom.
html

14. Kalies, W., Mischaikow, K., Watson, G.: Cubical approximation and computation of homology. In:
Conley Index Theory, vol. 47, pp. 115–131. Banach Center Publications, Warsaw (1999)

15. Kirkpatrick, S., Selman, B.: Critical behaviour in the satisfiability of random Boolean expressions.
Science 264, 1297 (1994)

16. Massey, W.S.: Homology and Cohomology Theory. Dekker, New York (1978)
17. Mischaikow, K., Mrozek, M., Pilarczyk, P.: Graph approach to the computation of the homology of

continuous maps. Found. Comput. Math. 5, 199–229 (2005)
18. Mrozek, M.: Homology Software (2006). http://www.ii.uj.edu.pl/~mrozek/software/homology.html
19. Mrozek, M.: Index pairs algorithms. Found. Comput. Math. 6, 457–493 (2006)
20. Mrozek, M., Pilarczyk, P., Zelazna, N.: Homology algorithm based on acyclic subspace. Comput.

Math. Appl. (2008, accepted)
21. Mrozek, M., Batko, B.: Homology of representable sets (2008, submitted)
22. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)
23. Steenrod, N.E.: Regular cycles of compact metric spaces. Ann. Math. 41, 833–851 (1940)
24. Storjohann, A.: Near optimal algorithms for computing Smith normal form of integer matrices. In:

Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ISAAC
1996, pp. 267–274 (1996)

25. Urbańska, A.: Smith normal form algorithms for sparse matrices with applications to homology com-
putations. M. Sc. Thesis, Jagiellonian University, Kraków (2007) (in Polish, with English Abstract)

26. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Matrix Anal. Appl. 2,
77–79 (1981)

27. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33, 249–274
(2005)

28. Computational Homology Project: http://chomp.rutgers.edu
29. Computer Assisted Proofs in Dynamics: http://capd.wsb-nlu.edu.pl
30. Project LinBox: Exact computational linear algebra: http://www.linalg.org

http://www.math.fau.edu/kalies/chom.html
http://www.math.fau.edu/kalies/chom.html
http://www.ii.uj.edu.pl/~mrozek/software/homology.html
http://chomp.rutgers.edu
http://capd.wsb-nlu.edu.pl
http://www.linalg.org

	Coreduction Homology Algorithm
	Abstract
	Introduction
	S-complexes
	Regular Subsets of S-complexes
	Reduction Pairs
	An Example
	Coreduction Homology Algorithm
	Numerical Experiments
	Complexity
	Conclusions and Final Remarks
	Acknowledgements
	References

