Corepresentations of Magnetic Point Groups

Arthur P. Cracknell
Department of Physics, University of Singapore, Singapore, 10

(Received September 2, 1965)
The well-established theory due to Wigner of the corepresentations of non-unitary groups is here applied to the magnetic point groups and the results are tabulated. The equivalence of the theory of the corepresentations of the grey groups to the conventional treatment of time-reversal symmetry in space groups is also considered.

§ 1. Introduction

By now the importance of the study of magnetic symmetry is well established. The magnetic groups are non-unitary and the theory originally developed by Wigner ${ }^{1)}$ of the irreducible corepresentations (or "coreps" for short) of nonunitary groups has been applied to them by Dimmock and Wheeler ${ }^{22,3)}$ and by the present author ${ }^{4}$ (hereafter referred to as APC I) with applications to the one-dimensional anti-ferromagnetic Kronig-Penney problem ${ }^{3}$) and the magnetic cubic space groups ${ }^{4}$ particularly $\mathrm{Ia}^{\prime} 3$ and Ia^{\prime}. It seemed to be desirable, without repeating the theory here, to deduce the coreps of all the magnetic point groups and to list the results as concisely as possible.

§ 2. The magnetic point groups

The magnetic point groups were first listed by Tavger and Zaitsev. ${ }^{5)}$ If we include the non-magnetic point groups there are three types of point group, which we shall call types I, II and III by analogy with the previous work on space groups. ${ }^{4}$) They are

I ordinary point groups (32)
II " grey" point groups (32)
and III "black and white" point groups (58)
making a total of 122 point groups altogether. A discussion of the relevance of these various types of magnetic group to the description of real crystals is given by Birss. ${ }^{6}$)

If G is an ordinary point group (type I) then a type II point group, M, is given by

$$
\mathbf{M}=\boldsymbol{G}+R \boldsymbol{G},
$$

where R is the operation of time-inversion. And a type III point group, M, (of which there are 58) is given by

$$
\boldsymbol{M}=\boldsymbol{H}+R(\boldsymbol{G}-\boldsymbol{H}),
$$

where \boldsymbol{H} is a halving subgroup of \boldsymbol{G}. The identification of \boldsymbol{H} for each of the 58 type III groups has been done by, originally, Tavger and Zaitsev, ${ }^{5)}$ Hamermesh 7) and Dimmock and Wheeler ${ }^{3}$) and they are listed in Table I.

Table I. The Magnetic Point Groups.
The magnetic group \boldsymbol{M} is given in the first column and its halving subgroup \boldsymbol{H} of unitary elements is given in the second column. The same information is listed in the Schoenflies notation in the third and fourth columns, but, since this notation is singularly unsuited to the labelling of the magnetic groups, it is \boldsymbol{G} rather than \boldsymbol{M} which is given in the third column.

M	H	G	H
$1{ }^{1}$	1	$C_{i}\left(S_{2}\right)$	C_{1}
2^{1}	1	C_{2}	C_{1}
m^{1}	1	$C_{s}\left(C_{1 h}\right)$	C_{1}
$2 / m^{1}$	2	$C_{2 / 6}$	C_{2}
$2^{1 / m}$	m	$C_{2 h}$	$C_{s}\left(C_{1 n}\right)$
$2^{1 / m}{ }^{1}$	1	$C_{2 h}$	$C_{i}\left(S_{2}\right)$
$22^{12}{ }^{1}$	2	$D_{2}(V)$	C_{2}
$2 m^{1} m^{1}$	2	$C_{2 v}$	C_{2}
$2^{1} m^{1} m$	m	$C_{2 n}$	$C_{s}\left(C_{1 h}\right)$
$m^{1} m^{1} m^{1}$	222	$D_{2 h}\left(V_{h}\right)$	$D_{2}(V)$
$m m m^{1}$	2 mm	$D_{2 h}\left(V_{h}\right)$	$C_{2 v}$
$m^{1} m^{1} m$	$2 / m$	$D_{2 h}\left(V_{h}\right)$	$C_{2 h}$
4^{1}	2	C_{4}	C_{2}
4^{1}	2	S_{4}	C_{2}
$42^{12}{ }^{1}$	4	D_{4}	C_{4}
$4^{12} 22^{1}$	222	D_{4}	$D_{2}(V)$
$4 / m^{1}$	4	$C_{4 n}$	C_{4}
$4^{1 /} m^{1}$	4	$C_{4 n}$	S_{4}
$4^{1 / m}$	$2 / m$	$C_{4 /}$	$C_{2 h}$
$4 m^{1} m^{1}$	4	C_{40}	C_{4}
$4^{1} \mathrm{~mm}^{1}$	2 mm	C_{40}	$C_{2 n}$
$42^{1} \mathrm{~m}^{1}$	4	$D_{2 d}\left(V_{d}\right)$	S_{4}
$4^{12} \mathrm{~m}^{1}$	222	$D_{2 d}\left(V_{i}\right)$	$D_{2}(V)$
$4^{12} 2^{1} m$	2 mm	$D_{2 d}\left(V_{d}\right)$	$C_{2 v}$
$4 / m^{1} m^{1} m^{1}$	422	$D_{4 h}$	D_{4}
$4 / m^{1} \mathrm{~mm}$	4 mm	$D_{4 /}$	$C_{4 v}$
$4^{1} / \mathrm{mmm}$	mmm	$D_{4 /}$	$D_{2 h}\left(V_{h}\right)$
$4^{1} / m^{1} m^{1} m$	$42 m$	$D_{4 h}$	$D_{2 d}\left(V_{d}\right)$
$4 / \mathrm{mm}^{1} \mathrm{~m}^{1}$	$4 / m$	$D_{4 /}$	C_{4}
$32{ }^{1}$	3	D_{3}	C_{3}
$3 m^{1}$	3	$C_{3 n}$	C_{3}
6^{1}	3	$C_{3 h}$	C_{3}
$6 m^{12} 2^{1}$	6	$D_{3 h}$	$C_{3 /}$

M	H	G	H
$\overline{6}^{1} m 2^{1}$	$3 m$	$D_{3 h}$	$C_{3 v}$
$\overline{6}^{1} m^{12}$	32	$D_{3 k}$	D_{3}
6^{1}	3	C_{6}	C_{3}
31	3	$S_{6}\left(C_{3 i}\right)$	C_{3}
$3 m^{1}$	3	$D_{3 d}$	$S_{6}\left(C_{3 i}\right)$
$3^{1} m$	$3 m$	$D_{3 d}$	$C_{3 v}$
$3^{1} m^{1}$	32	$D_{3 d}$	D_{3}
$62^{1} 2^{1}$	6	D_{6}	C_{6}
$6{ }^{12} 2^{1}$	32	D_{6}	D_{3}
$6 / m^{1}$	6	$C_{6 \%}$	C_{6}
$6^{1 / m} m^{1}$	3	$C_{6 \%}$	$S_{6}\left(C_{3 i}\right)$
$6^{1 / m}$	6	$C_{6 h}$	$C_{3 h}$
$6 m^{1} m^{1}$	6	$C_{6 v}$	C_{6}
$6^{1} \mathrm{~mm}^{1}$	$3 m$	$C_{6 v}$	$C_{3 n}$
$6^{1} / \mathrm{mm}^{1} \mathrm{~m}$	$\overline{6} 2 m$	$D_{6 h}$	$D_{3 h}$
$6^{1 /} / m^{1} m^{1} m$	$3 m$	$D_{6 k}$	$D_{3 d}$
$6 / m^{1} m^{1} m^{1}$	622	$D_{6 \hbar}$	D_{6}
$6 / m^{1} m m$	6 mm	$D_{6 h}$	$C_{6 v}$
$6 / \mathrm{mm}^{1} \mathrm{~m}^{1}$	$6 / m$	$D_{6 h}$	$C_{6 n}$
m^{13}	23	T_{h}	T
$4^{13} 3{ }^{1}$	23	T_{d}	T
$4132{ }^{1}$	23	\bigcirc	T
$m^{13} 3{ }^{1}$	432	O_{h}	\bigcirc
$m^{13} 3 m$	$43 m$	O_{h}	T_{a}
$m 3 m^{1}$	$m 3$	O_{h}	T_{h}.

§ 3. The coreps of the magnetic point groups

The character tables of the ordinary point groups (type I) are reproduced in many books on group theory, see, e.g. Heine. ${ }^{8}$) The grey magnetic groups are direct product groups of \boldsymbol{G} with the group $(E+R)$. The deduction of their character tables too is therefore trivial; they are tabulated by Dimmock and Wheeler. ${ }^{\text {s) }}$ This means that the only groups which need to be considered here are the 58 black and white magnetic groups (type III). We shall consider one or two examples in detail and simply tabulate the results for all the other groups. In what follows the term "magnetic group" is used to cover only type III groups, and we refer to the theory of $\$ 4$ of APC I in which the only necessary alteration is to replace $\overline{\boldsymbol{G}}^{k}, \overline{\boldsymbol{H}}^{k}$ and $\overline{\boldsymbol{M}}^{k}$ of that paper by $\boldsymbol{G}, \boldsymbol{H}$ and \boldsymbol{M} respectively. In labelling the point-group elements we follow the notation of Altmann and Bradley ${ }^{9}$) with the symmetry operations having the meaning that they have there but acting on the points of space instead of on the axes, but this has no important consequences here, for it only affects the labelling of some of the irreducible representations of a few of the point groups.

§4. An example, m^{13}

From Table I it can be seen that for this group the unitary subgroup \boldsymbol{H} is the point group $23(T)$, whose character table is given in Table II. The

Table II. The character table of the point group $23(T)$.

	E	$3 C_{2 m}$	$4 C_{3 n}{ }^{-}$	$4 C_{3 n}{ }^{+}$
A	1	1	1	1
${ }^{1} E$	1	1	ω	ω^{*}
${ }^{2} E$	1	1	ω^{*}	ω
T	3	-1	0	0

$\omega=\exp (2 \pi i / 3)$.
fact that the elements of $(\boldsymbol{G}-\boldsymbol{H})$ have been multiplied by R does not affect the division of a group into classes, thus since $m 3\left(T_{h}\right)$ has 8 classes and is a direct product group $23 \times 1\left(T \times C_{i}\right)$ we can write

$$
\begin{align*}
m^{1} 3 & =23+\text { R.I. } 23 \\
(& =T+\text { R.I.T) }
\end{align*}
$$

This group is a direct product of $23(T)$ and the group $(E+R . I)$, and it has 8 classes also:

E	$R I$
$C_{22}, C_{2 y}, C_{2 z}$	$R \sigma_{x}, R \sigma_{y}, R \sigma_{z}$
$C_{31}^{-}, C_{32}^{-}, C_{-3}^{-}, C_{34}^{-}$	$R S_{61}^{+}, R S_{62}^{+}, R S_{63}^{+}, R S_{64}^{+}$
$C_{31}^{+}, C_{32}^{+}, C_{33}^{+}, C_{34}^{+}$	$R S_{61}, R S_{62}, R S_{63}, R S_{64}$

If we use the theory of coreps in $\S 4$ of APC I and choose $\boldsymbol{a}_{0}=R . I$ then $\overline{\boldsymbol{\Delta}}(\boldsymbol{u})$ $=\boldsymbol{\Delta}\left(\boldsymbol{a}_{0}{ }^{-1} \boldsymbol{u} \boldsymbol{a}_{0}\right)^{*}=\boldsymbol{\Delta}(\boldsymbol{u})^{*}$. For the reps A and T of the unitary subgroup $\boldsymbol{H}, \boldsymbol{\Delta}(\boldsymbol{u})$ is real so that $\boldsymbol{\Delta}(\boldsymbol{u})$ and $\boldsymbol{\Delta}(\boldsymbol{u})^{*}$ are equivalent and identical so that $\beta \beta^{*}=+\mathbf{1}$ $=+\boldsymbol{\Delta}\left(\boldsymbol{a}_{0}{ }^{2}\right)$ and the coreps of \boldsymbol{M} are of the first type. β may be $+\mathbf{1}$ or $-\mathbf{1}$ so that we get the reps A, A, T and \underline{T} given in Table III. For the complex

$$
\text { Table III. The character table of } m^{13} \text {. }
$$

	E	$3 C_{2 m}$	$4 C_{3 n}{ }^{-}$	$4 C_{3 n}{ }^{+}$	$R I$	$3 R \sigma_{m}$	$4 R S_{6 n}{ }^{+}$	$4 R S_{6 n}{ }^{-}$
A	1	1	1	1	1	1	1	1
\underline{A}	1	1	1	1	-1	-1	-1	-1
T	3	-1	0	0	3	-1	0	0
\underline{T}	3	-1	0	0	-3	1	0	0

reps ${ }^{1} E$ and ${ }^{2} E$ of $\boldsymbol{H}, \boldsymbol{\Delta}(\boldsymbol{u})$ and $\boldsymbol{\Delta}(\boldsymbol{u})^{*}$ are inequivalent, and the corep derived from $\Delta(\boldsymbol{u})$ is thus of the third type so that from Eq. (4.4) of APC I

$$
\begin{array}{r}
D(\boldsymbol{u})=\left(\begin{array}{cc}
\Delta(\boldsymbol{u}) & 0 \\
0 & \vec{\Delta}(\boldsymbol{u})
\end{array}\right), \\
D\left(\boldsymbol{u}_{0} \boldsymbol{u}\right)=\left(\begin{array}{cc}
0 & \Delta(\boldsymbol{u}) \\
\Delta(\boldsymbol{u})^{*} & 0
\end{array}\right)
\end{array}
$$

so that from ${ }^{1} E$ and ${ }^{2} E$ we get the matrices shown in Table IV. These two
Table IV. Coreps of $m^{13} 3$ derived from ${ }^{1} E$ and ${ }^{2} E$ of $23(T)$.

	$D(\boldsymbol{a})$			$\boldsymbol{D}\left(\boldsymbol{a}_{0} \boldsymbol{u}\right)$	
	$1 E$	${ }^{2} E$		${ }^{1} E$	${ }^{2} E$
E	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	RI	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$C_{2 m}$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$R \sigma_{m}$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$C_{3 n}{ }^{-}$	$\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{*}\end{array}\right)$	$\left(\begin{array}{ll}\omega^{*} & 0 \\ 0 & \omega\end{array}\right)$	$R S_{601}{ }^{+}$	$\left(\begin{array}{ll}0 & \omega \\ \omega^{*} & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & \omega^{*} \\ \omega & 0\end{array}\right)$
$\mathrm{C}_{3 n}{ }^{+}$	$\left(\begin{array}{ll}\omega^{*} & 0 \\ 0 & \omega\end{array}\right)$	$\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{*}\end{array}\right)$	$R S_{6 n}{ }^{-}$	$\left(\begin{array}{ll}0 & \omega^{*} \\ \omega & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & \omega \\ \omega^{*} & 0\end{array}\right)$

corepresentations are equivalent and irreducible.
The case which we have considered illustrates that some of the 58 magnetic point groups (of type III) are direct product groups. If $(\mathbb{G}-H)=P H$ where the elements E and P form a group, then

$$
\begin{align*}
\boldsymbol{M} & =\boldsymbol{H}+R(\boldsymbol{G}-\boldsymbol{H}) \\
& =\boldsymbol{H}+R P \boldsymbol{H},
\end{align*}
$$

which is still a direct product group because E and $R P$ also form a group. However, this does not really effect any great shortening of the work because with non-unitary groups there is no simple way of getting the coreps of direct product groups like that used for the reps of unitary groups which are direct product groups. Therefore one still has to examine each of the reps $\boldsymbol{\Delta}(\boldsymbol{u})$ of the unitary subgroup \boldsymbol{H} whether or not \boldsymbol{M} is a direct product group.

§5. Tables of coreps of all 58 magnetic point groups

In Table V we identify for each magnetic point group \boldsymbol{M} the unitary subgroup \boldsymbol{H}, the classes in the set $(\boldsymbol{G}-\boldsymbol{H})$ and the element \boldsymbol{a}_{0} chosen in deducing the coreps of M.

The elements and character table of the unitary subgroup \boldsymbol{H} for any of the magnetic groups can be found by reference to the part of Table VI indicated in column two of Table V. The type of the coreps derived from the reps of HI is also indicated at the right-hand side of each character table in Table VI;

Table V. The classes in ($\boldsymbol{G}-\boldsymbol{I} \boldsymbol{I})$.
In column three elements in the same class in $(\boldsymbol{G}-\boldsymbol{H})$ are separated by commas, the classes are separated by semicolons, each element in columns three and four is understood to be multiplied by the factor R.

M	VI	Classes in ($\boldsymbol{G}-\boldsymbol{H}$)	\boldsymbol{a}_{0}
11	a	I	I
2^{1}	a	$C_{2 z}$	$C_{2 z}$
m^{1}	a	σ_{z}	σ_{z}
$2 / m^{1}$	b	$I ; \sigma_{z}$	I
$2^{1 / m}$	b	I; $C_{2 z}$	I
$2^{1 / m^{1}}$	b	$C_{2 z} ; \sigma_{z}$	$C_{2 z}$
$22^{12}{ }^{1}$	b	$C_{2 z} ; C_{2 y}$	$C_{2 x}$
$2 m^{1} m^{1}$	b	$\sigma_{x} ; \sigma_{y}$	σ_{v}
$2^{1} m^{1} m$	b	$C_{2 z} ; \sigma_{x}$	$C_{2 z}$
$m^{1} m^{1} m^{1}$	c	$I ; \sigma_{2 z} ; \sigma_{y} ; \sigma_{z}$	I
$m m m^{1}$	c	$C_{2, x} ; C_{2 y} ; I ; \sigma_{z}$	I
$m^{1} m^{1} m$	c	$C_{2 x} ; C_{2 y} ; \sigma_{x x} ; \sigma_{y}{ }^{\prime}$	$C_{2, s}$
$4{ }^{1}$	b	$\mathrm{C}_{4 z}{ }^{+}$; $\mathrm{C}_{4 z}{ }^{-}$	$\mathrm{C}_{4 z}{ }^{+}$
41	b	$S_{4 z}{ }^{-} ; S_{4 z}{ }^{+}$	$S_{4 z^{-}}$
$42^{1} 2^{1}$	e	$C_{2 x}, C_{2 y} ; C_{2 a}, C_{2 b}$	$C_{2 x}$
$4{ }^{12} 2{ }^{1}$	c	$C_{4 z}{ }^{+}, C_{4 z}{ }^{-} ; C_{2 a}, C_{2 b}$	$C_{2 \alpha}$
$4 / m^{1}$	e	$I ; S_{4 z}{ }^{-} ; \sigma_{z} ; S_{4 z}{ }^{+}$	I
$4^{1} / m^{1}$	e	$I ; C_{4 z}{ }^{+} ; \sigma_{z} ; C_{4 z}{ }^{-}$	I
$41 / m$	c	$C_{4 z}{ }^{+} ; C_{4 z}{ }^{-} ; S_{4 z}{ }^{+} ; S_{4 z}{ }^{+}$	$\mathrm{C}_{4 z}{ }^{+}$
$4 m^{1} m^{1}$	e	$\sigma_{x}, \sigma_{y} ; \sigma_{d a}, \sigma_{d b}$	σ_{ν}
$4^{1} \mathrm{~mm}^{1}$	c	$C_{4 z}{ }^{+}, C_{4 z}{ }^{-} ; \sigma_{l d a}, \sigma_{d b}$	$\sigma_{d n}$
$42^{1} m^{1}$	e	$C_{23}, C_{2 y} ; \sigma_{d d a}, \sigma_{d b}$	$\mathrm{C}_{2, n}$
$4^{12} \mathrm{~m}^{1}$	c	$S_{4 z}{ }^{-}, S_{4 z}{ }^{+} ; \sigma_{d \alpha}, \sigma_{d b}$	$\sigma_{d a}$
$4^{12} 2^{1} m$	c	$S_{4 z}{ }^{-}, S_{4 z}{ }^{+} ; C_{2 a}, C_{2 b}$	$C_{2 a}$
$4 / m^{1} m^{1} m^{1}$	9	$I ; \sigma_{z} ; S_{4 z}{ }^{-}, S_{4 z}{ }^{+} ; \sigma_{x z}, \sigma_{y} ; \sigma_{d a}, \sigma_{d b b}$	I
$4 / \mathrm{m}^{1} \mathrm{~mm}$	9	$I ; \sigma_{z} ; S_{4 z}{ }^{-}, S_{4 z}^{+} ; C_{2 a,}, C_{2 y} ; C_{2 a t}, C_{2 b}$	I
$4^{1} / \mathrm{mmm}$	d	$C_{4 z}{ }^{+}, C_{4 z}{ }^{-} ; C_{2 a}, C_{2 b} ; S_{4 z}{ }^{-}, S_{4 z}{ }^{+} ; \sigma_{d a}, \sigma_{d b}$	$C_{2 a}$
$4^{1 /} m^{1} m^{1} m$	9	$I ; \sigma_{z} ; C_{4 z}{ }^{+}, C_{4 z}{ }^{-} ; \sigma_{x}, \sigma_{y} ; \sigma_{d a}, \sigma_{d b}$	I
$4 / \mathrm{mm}^{1} \mathrm{~m}^{1}$	f	$C_{2,2}, C_{2 y} ; C_{2 a}, C_{2 b} ; \sigma_{x i}, \sigma_{y y} ; \sigma_{d t a}, \sigma_{d l b}$	$C_{2 ;}$
32^{2}	h	$C_{21}{ }^{\prime}, C_{22}{ }^{\prime}, C_{23}{ }^{\prime}$	$C_{21}{ }^{\prime}$
$3 m^{1}$	h	$\sigma_{d 1}, \sigma_{d 2}, \sigma_{d 3}$	$\sigma_{d \mathrm{l}}$
6^{1}	h	$I ; S_{6}{ }^{-} ; S_{6}{ }^{+}$	I
$6 m^{12}{ }^{1}$	l	$C_{21}{ }^{\prime}, C_{22}{ }^{\prime}, C_{23}{ }^{\prime}, \sigma_{d 1}, \sigma_{d 2}, \sigma_{d 3}$	C_{21}^{\prime}
$6^{1} m 2^{1}$	j	$\sigma_{z}^{\prime} ; S_{6}{ }^{-}, S_{6}{ }^{+} ; C_{21}{ }^{\prime}, C_{22}{ }^{\prime}, C_{23}{ }^{\prime}$	σ_{z}
$6^{1} m^{12}$	${ }^{j}$	$\sigma_{z} ; S_{6}^{-}, S_{6}^{+} ; \sigma_{d 1}, \sigma_{d 2} \sigma_{d 3}$	σ_{z}
6^{1}	h	$C_{6}{ }^{+} ; C_{6}{ }^{-} ; C_{2}$	C_{2}
31	h	$I ; S_{6}{ }^{-} ; S_{6}{ }^{+}$	I
$3 m^{1}$	i	$C_{21}{ }^{\prime}, C_{22}{ }^{\prime}, C_{23}{ }^{\prime} ; \sigma_{d 1}, \sigma_{d 2} \sigma_{d 3}$	$C_{21}{ }^{\prime}$
${ }^{1} 1 m$	j	$I ; S_{6}{ }^{-}, S_{6}{ }^{+} ; C_{21}{ }^{\prime}, C_{22}{ }^{\prime}, C_{23}{ }^{\prime}$	I
$3^{1} m^{1}$	j	$I ; S_{6}{ }^{-}, S_{6}{ }^{+} ; \sigma_{d 1}, \sigma_{d 2}, \sigma_{d 3}$	I

$62^{12}{ }^{1}$	l	$C_{21}{ }^{\prime}, C_{22}{ }^{\prime}, C_{23}{ }^{\prime} ; C_{21}{ }^{\prime \prime}, C_{22}{ }^{\prime \prime}, C_{23}{ }^{\prime \prime}$	$\mathrm{C}_{21}{ }^{1}$
61221	J	$C_{2} ; C_{6}{ }^{+}, C_{6}{ }^{-} ; C_{21}{ }^{\prime \prime}, C_{22}{ }^{\prime \prime}, C_{23}{ }^{\prime \prime}$	C_{2}
$6 / \mathrm{m}^{1}$	l	$I ; S_{3}{ }^{-} ; S_{3}{ }^{+} ; S_{6}{ }^{-} ; S_{6}{ }^{+} ; \sigma_{h}$	I
$6^{1 / m} m^{1}$	i	$C_{6}{ }^{+} ; C_{6}{ }^{-} ; C_{2} ; S_{3}{ }^{+} ; S_{3}{ }^{-} ; \sigma_{h}$	C_{2}
$61 / m$	l	$I ; S_{6}{ }^{-} ; S_{6}{ }^{+} ; C_{2} ; C_{6}{ }^{+} ; C_{6}{ }^{-}$	I
$6 m^{1} m^{1}$	l	$\sigma_{d 1}, \sigma_{d 2}, \sigma_{d 3} ; \sigma_{v 1}, \sigma_{v 2}, \sigma_{v 3}$	$\sigma_{d \downarrow}$
$6^{1} \mathrm{~mm}^{1}$	j	$C_{2} ; C_{6}{ }^{+}, C_{6}{ }^{-} ; \sigma_{v 1}, \sigma_{v 2}, \sigma_{v 3}$	C_{2}
$6^{1} / \mathrm{mm}^{1} \mathrm{~m}$	n	$\begin{aligned} & I ; C_{2} ; S_{6^{+}}^{+}, S_{6}^{-} ; C_{6}^{+}, C_{6}^{-} ; \sigma_{d 1}, \sigma_{d 2}, \sigma_{d 3} ; \\ & C_{21}{ }^{\prime \prime}, C_{22^{\prime \prime}}, C_{23}^{\prime \prime} \end{aligned}$	I
$6^{1 / m^{1} m^{1} m}$	k	$\underset{\sigma_{v 1}, \sigma_{v 2}, \sigma_{v 3}}{C_{2} ; \sigma_{h} ; C_{6}^{+}, C_{6}^{-} ; S_{3}^{-}, S_{3}^{+} ; C_{21}^{\prime \prime}, C_{22}{ }^{\prime \prime} C_{23}^{\prime \prime} ;}$	C_{2}
$6 / m^{1} m^{1} m^{1}$	n	$\begin{aligned} & I ; \sigma_{h} ; S_{6}^{+}, S_{6}^{-} ; S_{3}^{+}, S_{3}^{-} ; \sigma_{d 1}, \sigma_{d 2}, \sigma_{d 3} ; \\ & \sigma_{v 1}, \sigma_{v 2}, \sigma_{v 3} \end{aligned}$	I
$6 / \mathrm{m}^{1} \mathrm{~mm}$	n	$\begin{aligned} & I ; \sigma_{h} ; S_{6}^{+}, \stackrel{S_{6}^{-}}{C_{21}{ }^{\prime \prime}} ; S_{22^{\prime \prime}}^{C_{23}}, S_{3}^{+}, S_{3}^{-} ; C_{21^{\prime}}, C_{22^{\prime}} C_{23^{\prime}} ; \end{aligned}$	I
$6 / \mathrm{mm}^{1} \mathrm{~m}^{1}$	m	$\begin{aligned} & C_{21}^{\prime}, C_{22^{\prime}}, C_{23^{\prime}} ; C_{21^{\prime \prime}}, C_{22^{\prime \prime}}, C_{23}{ }^{\prime \prime} ; \\ & \sigma_{d 1}, \sigma_{d 2}, \sigma_{d 33} ; \sigma_{v 1}, \sigma_{v 2}, \sigma_{v 3} \end{aligned}$	$C_{21}{ }^{1}$
m^{13}	o	$\begin{aligned} & I ; \sigma_{2}, \sigma_{y}, \sigma_{z} ; S_{61-}^{-}, S_{62}-, S_{63}^{-}, S_{64}^{-} \\ & S_{61}{ }^{+}, S_{62}{ }^{+}, S_{63}, S_{64}^{+} \end{aligned}$	I
$413 m^{1}$	o		$\sigma_{d a}$
$4^{13} 3{ }^{1}$	o	$\begin{aligned} & C_{2 a}, C_{2 b}, C_{2 c,}, C_{2 d}, C_{2 e}, C_{2 f} ; C_{4 x}{ }^{+}, C_{4 y}{ }^{+}, \\ & C_{4 z}, C_{4 x},-, C_{4 y}, C_{4 z}- \end{aligned}$	$C_{2 a}$
$m^{1} 3 m^{1}$	q		I
$m^{13} m$	q		I
$m 3 m{ }^{1}$	p		$C_{2 a}$

although this is independent of the choice of a_{0}, the actual a_{0} chosen in deducing this is indicated in the last column of Table V. Table VII lists matrices for those cases where reps of the unitary subgroup \mathbb{H} are degenerate. These tables contain all the information which it is necessary to have available in order to write down the coreps of any magnetic point group instantly.

Table VI. The representation $\boldsymbol{D}\left({ }_{(z)}\right)$ of the unitary subgroup H of M, and the corepresentations of M, (integral spin).
(a)

| 1^{1} | 2^{1} | m^{1} | E | 1^{1} | 2^{1} | m^{1} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | A | A | 1 | 1 | 1 | 1 |

(b)

(d)

| $4^{1} / m m m$ | E | C_{22} | $C_{2 y}$ | $C_{2 z}$ | I | σ_{x} | σ_{y} | σ_{z} | $41 / m m m$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| A_{g} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $B_{3 g}$ | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 3 |
| $B_{2 g}$ | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 3 |
| $B_{1 g}$ | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 |
| A_{u} | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 |
| $B_{3 u}$ | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 3 |
| $B_{2 u}$ | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 3 |
| $B_{1 u}$ | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 |

(e)

| | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $42^{12} 2^{1}$ | $4 / m^{1}$ | | E | $C_{4 z}{ }^{+}$ | $C_{2 z}$ | $C_{4 z}{ }^{-}$ | $42^{1} 2^{1}$ | $4 / m^{1}$ | |
| | | $4^{1} / m^{1}$ | E | $S_{4 z}{ }^{-}$ | $C_{2 z}$ | $S_{4 z}{ }^{+}$ | | | $41 / m^{1}$ |
| A | A | A | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| B | B | B | 1 | -1 | 1 | -1 | 1 | 1 | 1 |
| ${ }^{1} E$ | ${ }^{1} E$ | ${ }^{1} E$ | 1 | i | -1 | $-i$ | 1 | 3 | 3 |
| ${ }^{2} E$ | ${ }^{2} E$ | ${ }^{2} E$ | 1 | $-i$ | -1 | i | 1 | 3 | 3 |

$4 m^{1} m^{1}$		E	$C_{4 z}{ }^{+}$	$C_{2 z}$	$C_{4 z}{ }^{-}$	$4 m^{1} m^{1}$	
	$42^{1} m^{1}$	E	$S_{4 z}-$	$C_{2 z}$	$S_{4 z}{ }^{+}$		
A	A	1	1	1	1	1	$42^{1} m^{1}$
B	B	1	-1	1	-1	1	1
${ }^{1} E$	${ }^{1} E$	1	i	-1	$-i$	1	1
${ }^{2} E$	${ }^{2} E$	1	$-i$	-1	i	1	1

$4 / \mathrm{mm}^{1} \mathrm{~m}^{1}$	E	$\mathrm{C}_{4 z}{ }^{+}$	$C_{2 z}$	$\mathrm{C}_{4 z}{ }^{-}$	I	$S_{4 z}{ }^{-}$	σ_{z}	$S_{4 z}{ }^{+}$	$4 / \mathrm{mm}^{1} \mathrm{~m}^{1}$
A_{g}	1	1	1	1	1	1	1.	1	1
B_{g}	1	-1	1	-1.	1.	-1	1	-1	1
${ }^{1} E_{g}$	1.	i	-1	$-i$	1	i	-1	$-i$	1
${ }^{2} E_{g}$	1	-i	-1	i	1	$-i$	-1	i	1
A_{u}	1	1	1	1	-1	-1	-1	-1	1
B_{u}	1	-1	1	-1	-1	1	-1	1	1
${ }^{1} E_{u}$	1	i	-1	$-i$	-1	$-i$	1	i	1
${ }^{2} E_{u}$	1	-i	-1	i	-1	i	1	-i	1

(g)

$4 / m^{1} m^{1} m^{1}$	$4 / m^{1} \mathrm{~mm}$	$4^{1} / m^{1} m^{1} m$	E E E	$\begin{aligned} & C_{2 z} \\ & C_{2 z} \\ & C_{2 z} \end{aligned}$	$\begin{aligned} & C_{4 z} \pm \\ & C_{4 z} \pm \\ & S_{4 z} \pm \end{aligned}$	$\left\lvert\, \begin{aligned} & C_{2 x, y} \\ & \sigma_{x, y} \\ & C_{2 x, y} \end{aligned}\right.$	$\begin{aligned} & C_{2 a, b} \\ & \sigma_{d a, b} \\ & \sigma_{d a, b} \end{aligned}$	$4 / m^{1} m^{1} m^{1}$	$4 / m^{1} \mathrm{~mm}$	$4^{1 / m^{1} m^{1} m}$
A_{1}	A_{1}	A_{1}	1	1	1	1	1	1	1	1.
A_{2}	A_{2}	A_{2}	1.	1	1	-1	-1	1	1	1.
B_{1}	B_{1}	B_{1}	1	1	--1.	1	-1	1	1	1
B_{2}	B_{2}	B_{2}	1	1	-1	-1	1	1	1	1
E	E	E	2	-2	0	0	0	1	1	1

(h)

32^{1}	$3 m^{1}$	6^{1}	6^{1}	3^{1}	E	$C_{3}{ }^{+}$	$C_{3}-$	32^{1}	$3 m^{1}$	6^{1}	6^{1}	3^{1}
A	A	A	A	A	1	1	1	1	1	1	1	1
${ }^{1} E$	$1 E$	${ }^{1} E$	${ }^{1} E$	$1 E$	1	ω	ω^{*}	1	1	3	3	3
${ }^{2} E$	1	1	ω^{*}	ω	1	1	3	3				

(i)

$3 m^{1}$	$6^{1} / m^{1}$	E	$C_{3}{ }^{+}$	$C_{3}{ }^{-}$	I	$S_{6}-$	$S_{6}{ }^{*}$	$3 m^{1}$	$6^{1 / m^{1}}$
A_{g}	A_{g}	1	1	1	1	1	1	1	1
${ }^{1} E_{g}$	${ }^{1} E_{g}$	1	ω	ω^{*}	1	ω	ω^{*}	1	3
${ }^{2} E_{g}$	${ }^{2} E_{g}$	1	ω^{*}	ω	1	ω^{*}	ω	1	3
A_{u}	A_{u}	1	1	1	-1	-1	-1	1	1
${ }^{1} E_{u}$	${ }^{1} E_{u}$	1	ω	ω^{*}	-1	$-\omega$	$-\omega$	1	3
${ }^{2} E_{u}$	${ }^{2} E_{u}$	1	ω	ω^{*}	ω	-1	$-\omega^{*}$	$-\omega$	1

(j)

| $6^{1} m 2^{1}$ | | $3^{1} m$ | | | $6^{1} m m^{1}$ | E | $C_{3 \pm}$ | $\sigma_{d 1,2,3}$ | $6^{1} m 2^{1}$ | $3^{1} m$ | $6^{1} m m^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $6^{1} m^{1} 2$ | | $3^{1} m^{1}$ | $6^{1} 22^{1}$ | | E | $C_{3} \pm$ | $C_{21,2,3}^{\prime}$ | $6^{1} m^{12}$ | $3^{1} m^{1}$ | $6^{1} 22^{1}$ |
| A^{1} | A_{1} | A^{1} | A_{1} | A_{1} | A^{1} | 1 | 1 | 1 | 1 | 1 | 1 |
| A_{2} | A_{2} | A_{2} | A_{2} | A_{2} | A_{2} | 1 | 1 | -1 | 1 | 1 | 1 |
| E | E | E | E | E | E | 2 | -1 | 0 | 1 | 1 | 1 |

(k)

$6^{1} / m^{1} m^{1} m$	E	$C_{3}{ }^{ \pm}$	$C^{\prime}{ }_{21,2,3}$	I	$S_{6}{ }^{\mp}$	$\sigma_{\alpha 11,2,3}$	$6^{1} / m^{1} m^{1} m$
$A_{1 g}$	1	1	1	1	1	1	1
$A_{2 g}$	1	1	-1	1	1	-1	1
E_{g}	2	-1	0	2	-1	0	1
$A_{1 u}$	1	1	1	-1	-1	-1	1
$A_{2 u}$	1	1	-1	-1	-1	1	1
E_{u}	2	-1	0	-2	1	0	1

(1)

$6 m^{12}{ }^{1}$	$6{ }^{212}{ }^{1}$	$6 / m^{1}$	$6^{1 / m}$	$6 m^{1} m^{1}$	E E	$S_{3}{ }^{-}$ $C_{6}{ }^{+}$	$\begin{aligned} & C_{3}^{+} \\ & C_{3}^{+} \end{aligned}$
A^{\prime}	A	A	A^{\prime}	A	1	1	1
${ }^{1} E^{\prime \prime}$.	${ }^{1} E_{1}$	${ }^{1} E_{1}$	${ }^{1} E^{\prime \prime}$	${ }^{1} E_{1}$	1	$-\omega^{*}$	ω
${ }^{2} E^{\prime \prime}$	${ }^{2} E_{1}$	${ }^{2} E_{1}$	${ }^{2} E^{\prime \prime}$	${ }^{2} E_{1}$	1	$-\omega$	ω^{*}
$A^{\prime \prime}$	B	B	$A^{\prime \prime}$	B	1	-1	1
${ }^{2} E^{\prime}$	${ }^{2} E_{2}$	${ }^{2} E_{2}$	${ }^{2} E^{\prime}$	${ }^{2} E_{2}$	1	${ }^{\omega}$	ω^{*}
${ }^{1} E^{\prime}$	${ }_{1} E_{2}$	${ }^{1} E_{2}$	${ }^{1} E^{\prime}$	${ }^{1} E_{2}$	1	ω^{*}	ω

σ_{h}	$C_{3}{ }^{-}$	$S_{3}{ }^{+}$	$6 m^{1} 2^{1}$			$6^{1 / m}$	
C_{2}	C_{3}^{-}	C_{6}^{-}		$62^{1} 2^{1}$	$6 / m^{1}$		$6 m^{1} m^{1}$
1	1	1	1	1	1	1	1
-1	ω^{*}	$-\omega$	1	1	3	3	1
-1	ω	$-\omega^{*}$	1	1	3	3	1
-1	1	-1	1	1	1	1	1
1	ω	ω^{*}	1	1	3	3	1
1	ω^{*}	ω	1	1	3	3	1

(m)

	E	$C_{6}{ }^{+}$	$C_{3}{ }^{+}$	C_{2}	$C_{3}{ }^{-}$	$C_{6}{ }^{-}$
$6 / m m^{1} m$						
A_{g}	1	1	1	1	1	1
${ }^{1} E_{1 g}$	1	$-\omega^{*}$	ω	-1	ω^{*}	$-\omega$
${ }^{2} E_{1 g}$	1	$-\omega$	ω^{*}	-1	ω	$-\omega^{*}$
B_{g}	1	-1	1	-1	1	-1
${ }^{2} E_{2 g}$	1	ω	ω^{*}	1	ω	ω^{*}
${ }^{1} E_{2 g}$	1	ω^{*}	ω	1	ω^{*}	ω
A_{u}	1	1	1	1	1	1
${ }^{1} E_{1 u}$	1	$-\omega^{*}$	ω	-1	ω^{*}	$-\omega^{*}$
${ }^{2} E_{1 u}$	1	$-\omega$	ω^{*}	-1	ω	$-\omega^{*}$
B_{u}	1	-1	1	-1	1	-1
${ }^{2} E_{2 u}$	1	ω	ω^{*}	1	ω	ω^{*}
${ }^{1} E_{2 u}$	1	ω	ω	1	ω^{*}	ω

I	$S_{3}-$	$S_{6}-$	σ_{h}	$S_{6}{ }^{+}$	$S_{3}{ }^{-}$	$6 / m^{1} m^{1}$
1	1	1	1	1	1	1
1	$-\omega^{*}$	ω	-1	ω^{*}	$-\omega$	1
1	$-\omega$	ω^{*}	-1	ω	$-\omega^{*}$	1
1	-1	1	-1	1	-1	1
1	ω	ω^{*}	1	ω	ω^{*}	1
1	ω^{*}	ω	1	ω^{*}	ω	1
-1	-1	-1	-1	-1	-1	1
-1	ω^{*}	$-\omega$	1	$-\omega^{*}$	ω	1
-1	ω	$-\omega^{*}$	1	$-\omega$	ω^{*}	1
-1	1	-1	1	-1	1	1
-1	$-\omega$	$-\omega^{*}$	-1	$-\omega$	$-\omega^{*}$	1
-1	$-\omega^{*}$	$-\omega$	-1	$-\omega^{*}$	$-\omega$	1

(n)

$6^{1 / m m^{1} m}$	$6 / m^{1} m^{1} m^{1}$	$6 / \mathrm{m}^{1} \mathrm{~mm}$	$\begin{aligned} & E \\ & E \\ & E \end{aligned}$	$\begin{gathered} \sigma_{h} \\ C_{2 z} \\ C_{2 z} \end{gathered}$	$\begin{aligned} & C_{3} \pm \\ & C_{3} \pm \\ & C_{3} \pm \end{aligned}$	$\begin{aligned} & S_{3} \mp \\ & C_{6} \pm \\ & C_{6} \pm \end{aligned}$	$\begin{gathered} C_{2 i} \prime^{\prime} \\ C_{2 i}^{\prime} \\ \sigma_{d i} \end{gathered}$	$\begin{array}{r} \sigma_{v i} \\ C_{2 i}{ }^{\prime \prime} \\ \sigma_{v i} \end{array}$	$6^{1} / \mathrm{mm}^{1} \mathrm{~m}$	$6 / m^{1} m^{1} m^{1}$	$6 / \mathrm{m}^{1} \mathrm{~mm}$
$A_{1}{ }^{\prime}$	A_{1}	A_{1}	1	1	1	1	1	1	1	1	1
$A_{2}{ }^{\prime}$	A_{2}	A_{2}	1	1	1	1	-1	-1	1	1	1
$A_{1}{ }^{\prime \prime}$	B_{1}	B_{2}	1	-1	1	-1	1	-1	1	1	1
$A_{2}{ }^{\prime \prime}$	B_{2}	B_{1}	1	-1	1	-1	-1	1	1	1	1
$E^{\prime \prime}$	E_{1}	E_{1}	2	-2	-1	1	0	0	1	1	1
E^{\prime}	E_{2}	E_{2}	2	2	-1	-1	0	0	1	1	1

(o)

$m^{1} 3$	$4^{1} 3 m^{1}$	$4^{1} 32^{1}$	E	$C_{2 m}$	$C_{3 j}{ }^{-}$	$C_{3 j}{ }^{+}$	m^{13}	$4^{1} 3 m^{1}$	4^{132}
A	A	A	1	1	1	1	1	1	1
${ }^{1} E$	$1 E$	${ }^{1} E$	1	1	ω	ω^{*}	3	1	1
${ }^{2} E$	${ }^{2} E$	${ }^{2} E$	1	1	ω^{*}	ω	3	1	1
T	T	T	3	-1	0	0	1	1	1

$m=x, y, z . \quad j=1,2,3,4$.
(p)

| $m 3 m^{1}$ | E | $C_{2 m}$ | $C_{3 j}{ }^{-}$ | $C_{3 j}{ }^{+}$ | I | σ_{m} | $S_{6 j}{ }^{+}$ | $S_{6 j}$ | $m 3 m^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{g} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| ${ }^{1} E_{g}$ | 1 | 1 | ω | ω^{*} | 1 | 1 | ω | ω^{*} | 1 |
| ${ }^{2} E_{g}$ | 1 | 1 | ω^{*} | ω | 1 | 1 | ω^{*} | ω | 1 |
| T_{g} | 3 | -1 | 0 | 0 | 3 | -1 | 0 | 0 | 1 |
| A_{u} | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 |
| ${ }^{1} E_{u}$ | 1 | 1 | ω | ω^{*} | -1 | -1 | $-\omega$ | $-\omega^{*}$ | 1 |
| ${ }^{2} E_{u}$ | 1 | 1 | ω^{*} | ω | -1 | -1 | $-\omega^{*}$ | $-\omega$ | 1 |
| T_{u} | 3 | -1 | 0 | 0 | -3 | 1 | 0 | 0 | 1 |

(q)

$m^{1} 3 m^{1}$		E	$C_{3 j}{ }^{ \pm}$	$C_{2 m}$	$C_{2 p}$	$C_{4 m} \pm$	$m^{1} 3 m^{1}$	
	$m^{1} 3 m$	E	$C_{3 j^{ \pm}}$	$C_{2 m}$	$\sigma_{d p}$	$S_{4 m}{ }^{ \pm}$		$m^{1} 3 m$
A_{1}	A_{1}	1	1	1	1	1	1	1
A_{2}	A_{2}	1	1	1	-1	-1	1	1
E	E	2	-1	2	0	0	1	1
T_{1}	T_{1}	3	0	-1	-1	1	1	1
T_{2}	T_{2}	3	0	-1	1	-1	1	1

Table VII. Matrices for degenerate reps.

$$
\begin{aligned}
& \alpha=\left(\begin{array}{lr}
-1 / 2 & \sqrt{ } 3 / 2 \\
-\sqrt{ } 3 / 2 & -1 / 2
\end{array}\right) ; \\
& \varepsilon=\left(\begin{array}{lr}
1 & 0 \\
0 & 1
\end{array}\right) ; \\
& \\
& \lambda=\left(\begin{array}{cr}
1 & -1 / 2 \\
\sqrt{3} / 2 & -\sqrt{ } 3 / 2 \\
0 & -1 / 2
\end{array}\right) ; \\
& \lambda
\end{aligned}
$$

(g)

H of $4 / m^{1} m^{1} m^{1}$ $422\left(D_{4}\right)$	H of $4 / m^{1} m m$ $4 m m\left(C_{4 v}\right)$	H of $41 / m^{1} m^{1} m$ $42 m\left(D_{2 d}\right)$	Matrix
E	E	E	
$C_{2 z}$	$C_{2 z}$	$C_{2 z}$	ε
$C_{4 z}{ }^{+}$	$C_{4 z}{ }^{+}$	$S_{4 z}{ }^{+}$	$-\varepsilon$
$C_{4 z}$	$C_{4 z}$	$S_{4 z}{ }^{-}$	$-\rho$
$C_{21^{\prime \prime}}$	$\sigma_{d 1}$	$\sigma_{d 1}$	ρ
$C_{22^{\prime}}^{\prime \prime}$	$\sigma_{d 2}$	$\sigma_{d 2}$	κ
$C_{21^{\prime}}$	$\sigma_{v 1}$	$C_{21^{\prime}}$	$-\kappa$
$C_{22^{\prime}}$	C_{22}^{\prime}	λ	

(j)

	Matrix
E	ε
C_{3}^{+}	β
$C_{3}-$	α
C_{21}^{\prime} or $\sigma_{d 1}$	λ
$C_{22^{\prime}}$ or $\sigma_{d 2}$	μ
C_{23}^{\prime} or $\sigma_{d 3}$	ν

(k)

		Matrix f	Matrix for E_{u}
	E	ε	ε
.	$\mathrm{C}_{3}{ }^{+}$	β	β
	$\mathrm{C}_{3}{ }^{-}$	α	α
	$C_{21}{ }^{\prime}$	λ	λ
	$C_{22}{ }^{\prime}$	μ	μ
	$C_{23}{ }^{\prime}$	ν	ν
	I	ε	$-\varepsilon$
	$S_{6}{ }^{-}$	β	$-\beta$
	$S_{6}{ }^{+}$	α	$-\alpha$
	$\sigma_{d 1}$	λ	$-\lambda$
\cdots	$\sigma_{d 2}$	μ	$-\mu$
	$\sigma_{d 3}$	ν	$-\nu$

(n)

H of $6^{1 / \mathrm{mm}^{1} \mathrm{~m}}$ $\overline{6} m 2\left(D_{3 \hbar}\right)$			H of $6 / m^{1} m^{1} m^{1}$$622\left(D_{6}\right)$			H of $6 / \mathrm{m}^{1} \mathrm{~mm}$ $6 \mathrm{~mm}\left(C_{6 v}\right)$		
	Matrices			Matrices			Matrices	
	E^{\prime}	$E^{\prime \prime}$		E_{1}	E_{2}		E_{1}	E_{2}
E	ε	ε	E	ε	ε	E	ε	ε
$\mathrm{C}_{3}{ }^{-}$	${ }^{\alpha}$	α	$\mathrm{C}_{6}{ }^{-}$	$-\beta$	α	$\mathrm{C}_{6}{ }^{-}$	$-\beta$	α
$\mathrm{C}_{3}{ }^{+}$	β	β	$C_{6}{ }^{+}$	- α	β	$\mathrm{C}_{6}{ }^{+}$	$-\alpha$	β
$C_{21}{ }^{\prime}$	λ	$-\lambda$	$\mathrm{C}_{3}{ }^{-}$	α	β	$\mathrm{C}_{3}{ }^{-}$	α	β
$\mathrm{C}_{22}{ }^{\prime}$	μ	$-\mu$	$\mathrm{C}_{3}{ }^{+}$	β	α	$\mathrm{C}_{3}{ }^{+}$	β	α
$C_{23}{ }^{\prime}$	ν	$-\nu$	C_{2}	$-\varepsilon$	ε	C_{2}	$-\varepsilon$	ε
$\sigma_{v 1}$	λ	λ	$C_{21}{ }^{\prime}$	λ	λ	$\sigma_{v 1}$	λ	λ
$\sigma_{v 2}$	μ	μ	$C_{22}{ }^{\prime}$	μ	ν	$\sigma_{v 2}$	μ	ν
$\sigma_{v 3}$	ν	ν.	$C_{23}{ }^{\prime}$	ν	μ	$\sigma_{v 3}$	ν	μ
σ_{h}	ε	$-\varepsilon$	$C_{21}{ }^{\prime \prime}$	$-\lambda$	λ	$\sigma_{d 1}$	$-\lambda$	λ
$S_{3}{ }^{-}$	α	$-\alpha$	$C_{22}{ }^{\prime \prime}$	- μ	ν	$\sigma_{d 2}$	$-\mu$	ν
$S_{3}{ }^{+}$	β	- β	$C_{23}{ }^{\prime \prime}$	- ν	μ	$\sigma_{d 3}$	$-\nu$	μ

(q)

	Matrix
$E, C_{2 k}, C_{2 y}, C_{2 z}$	ε
$C_{31}{ }^{+}, C_{32}{ }^{+}, C_{33}{ }^{+}, C_{34}{ }^{+}$	β
$C_{31}{ }^{-}, C_{32}{ }^{-}, C_{33^{-}}, C_{34}{ }^{-}$	${ }^{\alpha}$
$C_{4 z}{ }^{+}, C_{4 z}{ }^{-}, C_{2 a}, C_{2 b}$) or $S_{4 z}{ }^{-}, S_{4 z}{ }^{+}, \sigma_{d a v}, \sigma_{d b}$	2
$\left.C_{40}{ }^{+}, C_{4 x}{ }^{-}, C_{2 d}, C_{2 f}\right\} \quad\left\{S_{4 x}{ }^{-}, S_{4 x}{ }^{+}, \sigma_{d d}, \sigma_{d j}\right.$	${ }^{\mu}$
$C_{4 y}{ }^{+}, C_{4 y}{ }^{-}, C_{2 c}, C_{2 e}$, $S_{4 y}{ }^{-}, S_{4 y}{ }^{+}, \sigma_{d e}, \sigma_{d e}$	ν

(o), (p), (q)

For the triply degenerate representations in case (p) the matrices for the elements $I \times R$, where R is an element in column one, are the same as for R in T_{g} and are minus those for R in T_{u}. In case (q) the matrix of an element in column two or three is given by postmultiplying the given matrix, which is for the element in column one, by

$$
\begin{aligned}
& \left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \text { for } T_{1} \\
& \text { or }\left(\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \text { for } T_{2}
\end{aligned}
$$

(p), (q)	(q)	(q)	Matrix
E	$C_{2 a}$	$\sigma_{d a}$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$\mathrm{C}_{31}{ }^{+}$	$\mathrm{C}_{4 y}{ }^{-}$	$S_{44}{ }^{+}$	$\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$\mathrm{C}_{31}{ }^{-}$	$C_{4, x}{ }^{+}$	$S_{4 s i}{ }^{-}$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
$\mathrm{C}_{32}{ }^{+}$	$C_{4 y}{ }^{+}$	$S_{4 y}{ }^{-}$	$\left(\begin{array}{rrr}0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right)$
$\mathrm{C}_{32}{ }^{-}$	$C_{4,3}{ }^{-}$	$S_{43}{ }^{+}$	$\left(\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0\end{array}\right)$
$C_{33}{ }^{+}$	C_{2},	$\sigma_{d c}$	$\left(\begin{array}{rrr}0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$C_{33}{ }^{-}$	$C_{2 f}$	${ }^{\sigma} d f$	$\left(\begin{array}{rrr}0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0\end{array}\right)$

$C_{34}{ }^{+}$	$C_{2 e}$	$\sigma_{d e}$	$\left(\begin{array}{rrr}0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right)$
$C_{34}{ }^{-}$	$C_{2 i t}$	$\sigma^{\sigma} d d$	$\left(\begin{array}{rrr}0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0\end{array}\right)$
$C_{2 x}$	$\mathrm{C}_{4 z}{ }^{-}$	$S_{4 z}{ }^{+}$	$\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$
$C_{2 y}$	$C_{4 z}{ }^{+}$	$S_{4 z}{ }^{-}$	$\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
$C_{2 z}$	$C_{2 b}$	$\sigma_{d b}$	$\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$

§6. Example of use of Tables

We now consider as an example in the use of these tables the case of $m^{1} 3$. To use Tables V, VI and VII to find the coreps of this magnetic point group we use columns two and four of Table V; column two refers the reader to the appropriate section of Table VI, and column four states which element from $R(G-H)$ was used as \boldsymbol{a}_{0} in the construction of Table VI. As Wigner ${ }^{1)}$ demonstrates, the actual choice of \boldsymbol{a}_{0} does not affect the coreps when they are finally derived but does involve differences in the algebra of their derivation; however, having made a choice of \boldsymbol{x}_{0} for a particular group it is important to keep to that choice when writing down all the coreps. A useful check of the derivation of the types of the coreps in Table VI can be made by deriving them using several different choices of \boldsymbol{a}_{0}, and this has in fact been done, in each case at least two different \boldsymbol{a}_{0} have been used (except in the trivial case where ($G-\mathbb{H}$) contains only one element anyway). Thus for m^{13} we refer to section (o) of Table VI where we see that reps A and T of H lead to coreps of the first type with $\beta=+1$ and therefore $\beta^{-1} \beta=+\boldsymbol{\Delta}\left(\boldsymbol{a}_{0}^{2}\right)$. For reps ${ }^{1} E$ and ${ }^{2} E$ the coreps derived from them are of the third type. Therefore in all these cases, knowing $\boldsymbol{a}_{0}=R I$ from column four of Table V and, where relevant, β, it is straightforward to write down the matrices $D(\boldsymbol{u})$ and $\boldsymbol{D}\left(\boldsymbol{a}_{0} \boldsymbol{u}\right)$ in each of the coreps of the magnetic group $m^{1} 3$ using Eqs. (4-2)-(4.4) of APC I. This will yield just the matrices which were previously obtained for this group in $\S 4$.

So far we have used $\Delta\left(\boldsymbol{a}_{0}{ }^{2}\right)=+\boldsymbol{1}$ where $\boldsymbol{a}_{0}{ }^{2}$ contains a factor R^{2}. This applies to the case of a system with integral rather than half-integral spin magnetic moments. For the case of half-integral spins the only effect is to change over the first and second types of coreps. Therefore for the case of half-integral spins, the coreps listed in Table VI as being of the first type are now of the second type.

§ 7. The consequences of invariance under time inversion

The conventional treatment of systems having time-reversal symmetry, also due to Wigner ${ }^{10}$ and neatly summarised by Herring ${ }^{11)}$ and Elliott, ${ }^{12)}$ although it was developed long before the derivation of the magnetic point groups and space groups, is exactly equivalent to the consideration of the theory of the corepresentations of the grey magnetic groups.

The effect of the operation of time inversion is to reverse the spin magnetic moment of an atom or ion and therefore a crystal which is invariant under the operation of time inversion belongs to one of the type II Shubnikov groups or " grey" groups. The type II Shubnikov group, \boldsymbol{M}, is given by Eq. (2•1),

$$
\boldsymbol{M}=\boldsymbol{G}+R \boldsymbol{G}
$$

so that it is natural to choose as \boldsymbol{a}_{0} the operation of time inversion itself. For an electron with spin $S=1 / 2, R^{2}=(-1)^{2 S}=-1$ and therefore

$$
\Delta\left(a_{0}{ }^{2}\right)=-1
$$

The reps $\boldsymbol{A}(\boldsymbol{u})$ of the unitary subgroup \boldsymbol{G} are just the ordinary space-group reps, and there are three possibilities to consider:
(i) $\boldsymbol{\Delta}(\boldsymbol{u})$ is real
(ii) $\boldsymbol{\Delta}(\boldsymbol{u})$ is complex and is equivalent to $\boldsymbol{\Delta}(\boldsymbol{u})^{*}$ and (iii) $\boldsymbol{\Delta}(\boldsymbol{u})$ is complex and is not equivalent to $\boldsymbol{\Delta}(\boldsymbol{u})^{*}$.
In case (i) then the reps $\boldsymbol{\Delta}(\boldsymbol{u})$ and $\overline{\boldsymbol{\Delta}}(\boldsymbol{u})\left(=\boldsymbol{\Delta}(\boldsymbol{u})^{*}\right)$ are obviously not only equivalent but also identical so that $\beta=+\mathbf{1}$ and therefore $\beta \beta^{*}=+\mathbf{1}$ so that by Eq. (7•2)

$$
\boldsymbol{\beta} \beta^{*}=-\boldsymbol{\Delta}\left(\boldsymbol{a}_{0}^{2}\right)
$$

and the corep of \boldsymbol{M} is of the second type and is given by Eq. (4.3) of APC I which shows that there is an extra degeneracy. In case (ii) $\boldsymbol{\Delta}(\boldsymbol{u})$ and $\overline{\boldsymbol{L}}(\boldsymbol{u})$ $\left(=\boldsymbol{\Delta}(\boldsymbol{u})^{*}\right)$ are equivalent but necessarily not identical and $\beta \beta^{*}=-\mathbf{1}$, therefore

$$
\beta \beta^{*}=-\mathbf{1}=+\Delta\left(\boldsymbol{a}_{0}^{2}\right) .
$$

The coreps of \boldsymbol{M} are therefore of the first type and are given by Eq. (4.2) of APC I and there is thus no extra degeneracy in this case. Finally in case (iii) the corep of \boldsymbol{M} is obviously of the third type and is given by Eq. (4.4) of APC I. Thus case (iii) leads to an extra degeneracy. Summarising then we find
(i) an extra degeneracy
(ii) no extra degeneracy
and (iii) an extra degeneracy.
For an even number of electrons $R^{2}=(-1)^{2 S}=+1$ so that $\Delta\left(\boldsymbol{a}_{0}{ }^{2}\right)=+\mathbf{1}$ and the results for cases (i) and (ii) are interchanged, while the result for case (iii) is left unaltered.

The above conclusions are just the same as those of the more conventional view of time reversal originally due to Wigner ${ }^{10)}$ and neatly summarised in Heine's book ${ }^{8}$ § 19 .

Acknowledgements

The author is indebted to Professor K. M. Gatha for his interest and encouragement in this work.

References

1) E. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, 1959).
2) J. O. Dimmock and R. G. Wheeler, Phys. Rev. 127 (1962), 391.
3) J. O. Dimmock and R. G. Wheeler, The Mathematics of Physics and Chemistry, vol. II, edited by H. Margenau and G. M. Murphy (van Nostrand, 1964), chapter 12.
4) A. P. Cracknell, Prog. Theor. Phys. 33 (1965), 812.
5) B. A. Tavger and V. M. Zaitsev, Zh. éksp. teor. Fiz. 30 (1956), 564. (English translation, Soviet Phys. JETP 3 (1956), 430).
6) R. R. Birss, Symmetry and Magnetism (North-Holland, 1964).
7) M. Hamermesh, Group Theory (Addison-Wesley, 1962).
8) V. Heine, Group Theory in Quantum Mechanics (Pergamon, 1960).
9) S. L. Altmann and C. J. Bradley, Phil. Trans. Roy. Soc. (London) A255 (1963), 199.
10) E. P. Wigner, Nachr. Akad. Wiss. Göttingen; Math. Phys. Kl. (1936), 546.
11) C. Herring, Phys. Rev. 52 (1937), 361.
12) R. J. Elliott, Phys. Rev. 96 (1954), 280.
