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CORES AND RELATED SOLUTION CONCEPTS
FOR MULTI-CHOICE GAME5

by

A. van cíen Nouwelandl, J. Potters2, S. Tijsr and J. Zarzuelo3

ABSTRACT. A multi-choice ga,me is a generalization of a cooperative game in which
each player has several activity levels. Cooperative games form a subclass of the class
of multi-choice games.

This paper extends some solution concepts for cooperative games to multi-choice games.
In particular, the notions of core, dominance core, We,ber set, stable sets and subsolu-
tiuns are extended. Relations between cores and dominance cores and between cores
and VVeber sets are extensively studied. A class of flow games is introduced and relations
with non-negative games with non-empty cores are investigated.
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1. INTRODUCTION

Iu si cooperative game ( N, c~ ), whc~re ~r~ :{ S ~ S C N} ~ 68, c~acli playc~r lia~
t.~~.o choices to part.icipate or not to participate. If the players in S C N choose tu
part.icipa.te and the players in N~S choose not to participate, then the worth v(S) can
lir vbtainc~d. Clailc-Rrc H.wiao a.nd Raghavan (1cJcJ0) introdncc~cl garnc~s in wliich all lilayc~rs
have m act.iui.ty le.~ael9 (m ~?) at which they can choose to play. We will still generalize
this definit.ic~n a bit.

A rratclti-choice game is a game in which each player has an arbitra.ry number of
artivity levels at which he or she can choose to play. In particular, two players may
have different numbers of activity levels. The reward that a group of players can obtain
depends on the effort of the cooperating players. This is formalized as follows. Let
N:- { 1, ..., re } be a set of players (n. E RI) and suppose each player í E N has
in, f 1 E I~I act,ivity levels at which he can play. We set 16I, :- {0, 1, . .., m; } as the
action spacc~ of player i E N, where the~ act.ion 0 means not participating. A fimcti~n
v:~jEN 11I, --~ 8~ with v(0) - 0 gives for each coalition s -(sr, ..., s„ ) E~iEN ~~~ the
worth that the players can obtain when each player i plays at level s; E M;.

We denote a multi-choice game by a triple (N, m, v), where N is the set of players,
m E(I~I U{0})N is the vector describing the number of activity levels for all players, and
v:~~EN lll; ~~ is the claaracteri.vt.ic furaction.. If therc~ can he no rnnfusion wc~ will
de~notr a gauu~ (N, rri, ~c~) by u. We denote the set of a.ll multi-choicc~ gaanes with playc~r
sc~t .~' b~. .1IC~.

An example of a multi-choice game occurs when we consider a large builcling project
with a deadline and a penalty for every day this deadline is exceeded. Obviously, the
date of completion depends on the effort of all people involved in the project: the greater
their effort the sooner the project will be completed. This situation gives rise to a multi-
choice game. The worth of a coalition where each player works at a certain acitivity
level is defined as minus the penalty that is to be paid given the date of completion of
thc. project whc~n every player makes the corresponding effort.

In their paper Chih-Ru Hsiao and Raghavan (1990) introduced extended Shapley
v~~lues for multi-choice games where all players have the same number of activity levels.
They did so by using weights on activity levels, each level having the same weight for all
players, a.ncl provicle~cl axioma.tic cha.racterizations of the corresponcling Shapley values.

In this paper we extend cores and re~lated solution concepts to multi-choice games.
In section 2 we introdirce imputations, cores and dominance cores and we investigate
relations between those concepts. We introduce a notion of balancedness and prove a
thc~orem in the spirit of the theorem of Bondareva (1963) and Shapley (1967). Further, in
section 3 we introduce Weber sets and we explore the relations between cores and Weber
set~, especially for convex games. Also, an extension of the Shapley value is definecí.
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Based on the notion of dominance, which is introduced in section 2, we introduce stable
sets and subsolutions in section 4. Finally, in section 5 we consider a special class of
inulti-choice games, namely flow games. It is shown that these games can be related to
non-negative multi-choice games with non-empty cores.

Not~ction. Let N:- { 1, ..., n} be a. set of players and S C N. By es we denote the
vcctor in ff8'~` satisfying es - 0 if i~ S and e S- 1 if i E S. -
F~ir two sets A and B in thc same vector space we set

AfB:- {.x-}-y~;rEAandyEB}

aud we denote the convex hull of A by co(A). Finally, we define the empty sum to be
zero.

2. IMPUTATIONS, CORE AND DOMINANCE CORE

Let (1V, irc, v) E MCN. We define M :- {(i, j) ~~i E N, j E M,}. A( level) payoff
vcctor for the game v is a function x: M-~ If~, where, for all i E N and j E M;`{0},
2r; j denotes the increase in payoff to player i corresponding to a change of activity from
level j- 1 to level j by this player and .T; o - 0 for all i E N.

.R;
A pa.yoff vector is called e~cient if ~ ~ x;j - v( rra) and it is called level áncrea.Re

iEN j-1
rrationril if, fur all i E N and j E ll~l;~{0}, x ;j is at least the increase in worth that pla.yc~r
i can obtain when he works alone and changes his activity from level j-1 to level j, i.e.
x;j ) v(je') - v~(j-1)e`~.

Definition. A payoff vector is an imp2ctation of v if it is efficient and level increase
rational.

~~Ve denote the set of imputa.tions of the game v by I(v). It is ea„sily seen that

I(v) ~ ~ ~ ~ i~(m,e') C v(m).
~EN

(1)

Now let ~ be a payoff vector for the game v. If a player i works at his j th level ( j E 11I, ),
j

then he obtains, according to x, the amount ~~;k. It will often be more natural to
k-0

Jlook at these accumulated payoffs. For i E N and j E M; we denote N,j:- ~;r;k.
k-0The iuc~mberti of a coalition .. E j[,E,v ~'l, obt.ain .~(s) :- ~-~~a;. Using this, wc~ come

iEN
to the following
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Deflnitiou. Thc~ corr. C(ri) of the game v consists of all a E I(v) that satisfy Ji (.v) 1 v(s)
fc,r a.ll ., E jIiEN ~1:.

Now lct s E~iEN A1; and a~, y E I(v). The imputation y dominat.es the imput.ation x
via coalition s, denoted by ydornsx, if

Y"(s) G v(s) and Y19, ~ X;,;

for all i E C(s). Here C(s) :- {i E N ~ s; 1 0} is the carrier of s, the set of players
who ptisticipate in .ti. We say that the imputation y dominates the imput,a.tion ~ if there
c~zicts ru~i s E~,EN 1bf; sucli that ydornyT.

Definition. The dominance core DC(v) of the game v consists of all x E I(v) for which
there esists no y E I(v) such that y dominates ~.

In theorems 1, 2 and 3 we deal with the relations between the core and the dominance
core.

Theorem 1. For each game v the core C(v) is a subset of the dominance core DC(v).
Proof. Lct. .r E C(v) and snpposc y E I(v) and s E ~iEN 111i, s~ 0, such that ydom,~.
Then

v(s) ~ Y(s) - ~ , Yis~ J ~ , Xist - X(s) ? v(s)~
iEN iEN

which clearly gives a contradiction. Therefore, ~ is not dominated. 0

To simplify the proof of theorern 2 we introduce zero-normalized garnes.

DeHuition. A iuidt.i--choicc gamc~ v is callc~cl zcro-norzrtalized if thc~ playc~rs cannot t;run
a.rrything by workirrg alone, i.e. t~(je`) - 0 for all i E N and j E Mi.
A multi-choice ga.me a is called additive if the worth of each coalition s equals the sum
of the wort.hs of the players when they a11 work alone at the level they work at in s, or,
in formula,

a(s) - ~ a(s;e')

iEN

for all s E ~iEN ~1,.
For an arbitrary- multi-choice game z~ the zero-norrnalizatàon of v is the game vo that is
obta.ined by subtracting from v the additive game a with

a~(je') :- v(je`)

for rill é E 1~' and j E RI,~{0}.
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Let v be a zero-normalized game and x a payoff vector for v. Then the condition of
1~~~-c~l incrc~asc~ rationality hoils down to the coudition .r ~ 0. For an additive ganre a t~~e
have C(cc) - DC(a) - I(a.) - {.r}, where x : a1 -~ F~ is the payoff vector wherc

:r;j :- n(.)c~) - o((J-1)c'~)

fi,r nll i E ~- aud j E ~ll,~{0}. Nciw wc~ h~tvc~ thc~ follciwing

Propositio~i 1. Let z~ he an arbitrary game and vo its zero-normalization. Let x be a
l~ayoff vector for this game. Define y: M -~ 63 by y;j :- x~j - v(je`) f v((j-1)e') for
all i E N aucí j E 11I, `{ 0} . Then wc have
(i) x E I(v) ~ y E IÍoo)
(ii) x E C(v) ~~ y E C(vo)
(iii) x E DC(v) ~ y E DC(v~).

We leave the proof of this proposition as an exercise to the reader.

Theorem 2. Let v be a multi-choice game with a non-empty dominance core. Then
t,lic~ corc~ C(v) eqita.ls the drnrrin~irzce core DC(v) if ancl ouly if the zero-norznaliza.tion vo
of v sa.tisfies vo(s) G vo(m} for all coalitions s.
Proof. Because of proposition 1 it suffices to prove this theorem for zero-normalized
games. So suppose v is zero-normalized.
Suppose C(v) - DC(v) and let x E C(v). Then

v(m) - N(m) - ~
tEN j-1

f ~ ~ x,j ~ v(,)l
IEN j-s;fl

foI' a.ll N E ~iEN ~~~i'

Now suppose v(s) G v(m) for all s E ~;EN 11~1,. Since C(v) C DC(v) ( theorem 1),
it sutfices to prove that x~ DC(v) for all x E I(v)~C(v). Let x E I(v)~C(v) and
s E~iEN Rí; such that X(s) G v(s). Define ,y : M~ R as follows

Z.i~ ~ v~s)- K(s)

kEN sk

yij '- v(nt)-v(s)
kENtmk-9k~

if i E N, j E {1,...,s;}

ifi EN,j E {s;-}-1,...,m;}.

It follows readily from the definition of y that y is efficient. Since x~ 0, v(s) ) X(s)
and v(m.) 1 v(s), it follows that y) 0. Hence, y is also level increase rational ancí we
conclude that y E I(v).
For i E N azid j E{1, ..., s; } we have that y, j~ x,j. Hence, Y',9; ) N,y, for all i E N.
This ancl the fact that

Y~(s) -X(s)-~-
~

- t~(s)
v(s) - N(s)

iE.~1 j-] ~EN Sk
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iluply that ydomy~. Hence, .r ~ DC(v). 0

Theorem 2 was inspired by a similar theorem for cooperative games by Derks (1986).
l;ti~iug t,heorctns 1 ~lnd 2 wc' r~tn c~asily provc

Theorem 3. Let v be a multi-choice game with a non-empty core. Then the core C(v)
ecluals the dominance core DC(v).

Proof. It sufFices to prove the theorem for zero-normalized games (see proposition 1).
So suppose t~ is zero-normalized. From the first part of the proof of theorem 2 we see
that the fact that C(v) ~(~ implies that v(s) G v(m) for all s E~;E~, M;. Be~cause
C(c~) C DC(v) (cf. theorem 1), we know that DC(v) ~ 0. Now theorem 2 immediately
implies C(c~) - DC(v). ~

Considering theorem 3 one might ask oneself if there actually exist games where the core
is not equal to the dominance core. The answer to this question is given in example 1,
w-hc~r(~ wc itrovide a multi-choice ga.me with an empty core a.nd a non-F:mpty dorninan(~c'
curc~. To sinlplify the notatious in examples we represent a payoff vector :r : M~ C~ by
a l]!`h('1('llt I13iLtr1X ~G~J~i li~~~~

{m~,...,m.. }
Where (lt~ :- T~~ lf R E N alld ~ E~1i`{n} aIl(1

(t, l is ]c~ft oltt (~) if i E N and j 1 tn,.

Example 1. Let (N,~n,v) be the multi-choice game where N- {1,2}, m-(2, 1) and
z~((i,0)) - c~((0, 1)} - 0, v((2,0)} - 1~~ a.nd v((1, 1)) - v((2, 1)) - 1. An imputation a
sllould sat.isfy the following (in)equalities:

~l,t -~ ~I,2 ~ :cz,l - 1

rl,i ? ~~ xz,l ? ~

xI,2 ? 1~4.

Hr,uc`e. w(~ olitain

I, ~.(~~ f 0 1~41 r3~4 1~41 r0 111O- 13i4 ~J IL(1 ~J'l0 ~JJ
Note that. for this game an imputation can only dominate a.nother imputation via the
coalition (1.1) and, since al,i -}- az,l C 3~4 for a11 a E I(v), this gives us

DC(v) - co {~3~4
1~4~ ~364 1~4~ ~

Finally, for none of the elements r of the dominance core xI,I f~2,1 ~ v((1,1)). Since
C(cj C DC'(~z~) this gives us C(v) - ~. Note that for the zero-normalization vo of v it
holds that t~~((1, 1)) - 1) 3~4 - vo((2, 1)).
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For the ga.me in example 1 both the core and the domina,nce core are convex sets. This
is generall~~ t.rue, as is stati,d in

Theorem 4. Let v be a multi-choice game. Then the following two assertions hold:
( i) C( r) is convex
( ii 1 DC( i. ) is convex.

Proof. We ornit the proof of part (i), because this is a simple exercise. We now prove part
( ii ). It suífices to prove that DC(a) is convex if v is zero-normalized. So, suppose v is
zero-normalized. Obviously, if DC(v) - ~, then it is convex. Now suppose DC(v) ~ 0.
~~'e define a game ( N, rn, u~) and we show that, DC(v) - DC(u~) - C(w). For all
.. E ~,F,v -~I~

It is easily seen that

w(s) :- rnin{c~(s),v(ni~)}.

w(m) - v(m). (2)

Since DC( t~) ~~, we know that I(v) ~~. Since v is zero-normalized, this implies
z~ ( ~n )~ 0( cf. (1) ) and

v~(jF~') - min{v(je'),v(~iz)} - 0

for a11 i. E 1~' a.nd j E A7;.

USiiig ( 2) and ( 3) we see that

(3)

I(tu) - I(v).

N~nv lc,t .ti E ~~EN M; and let r,y E I(v) - I(w). Since xn(s) G v(s) we sc~e that if
.~- dom,9~ in iu, then ~ domsy in v. On the other hand, if ~ domsy in i~, then

~(~) C v(s)

and
m;

~j - ~ ~ ~ij C ti(m~
iEN j-1 iEN'j-9:t1

and therefore .Ï (s) G i~,( ~) and a dom,gy in w.
We conclude tha.t

DC(w) - Dc(v).

This irnplies that DC(w) ~ 0- Since u~ is zero-norma.lized (cf. (3)) and

w(s) - min{v(s), v(m)} C v(m) - w(~n),

th~~~irem 2 shows that

C(ic~) - DC(w).

(4)

(5)
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1Vow (4), (5) and part (i) of this theorem immediately imply that DC(v) is convex. ~

The next theorem is an extension of the theorem of Bondareva (1cJ63) and Shapley
(19G7) to multi-choice games and gives a necessary and sufiicient concíition for the non-
emptiness of the core of a game.

Definition. A multi-choice ~arne v is callecl balanced if for all maPs ~:~iEn, M, --~ ~}
tia r isft-ing

~` ~(s)ec(9) - eN

sE~1;EJV M,

it holds tl~i~i~t

~ ~(s)vo(s) C v
aE~.E~, M;

whrri~ r~u is th~~ zcro-nonna,liza.tion of t~.

Nut~~ that t.liis definitiou coincides with the familiar definition of balancedness for co-
~i~ii~raliv~~ ~;aines (N,(1, . , 1),~r~) E AICN.

Theorem 5. Let v be a multi-choice game. Then the core C(v) of v is non-empty if
au~l ~inlv if ~~~ is ba.la.uc~d.
1',„uJ. It tiiilliri~s t~~ ~~r~iv~~ th~, th~~„r~,i,i f~~r i,~~r~~-u~iriii,i.liic~cl y;~~.uu,s. So tinii~icisi~ r; iti
zrru-nurinalizecl.

5nhpose C( v) ~~ and .r E C(v). Then we define a payoff vector ,y : M ~ éi by

0 if i E N and j E{2,...,m,}
m;

y`~'- ~~;~ ifiENand j-1.

Then, obviously, y E C(v). Further, we can identify y with the vector (yl,l, ..., y~,i ).
Thi, lirovc~ti t.hat C( r~ )~~ if and only if there exist zi ,..., z,~ E éB~ such that

~
iEN

an~l

- z'(m) (6)

~ z, 1 v(s)

~EC(s)

f(ll :lll .Y E ~,EN ~~t'
Oln~iously, there exist zi ,..., z„ E ~é~ satisf5~ing ( 6) and ( 7) if and only- if

z~(m) - niin{ ~ ti, ~ z, E V~ for all ~i E N and ~ x; 1 v(s) for all s E~ R1;}. (8)
iEa'

~-r

iEC(s) iEN

~



From the cluality theorem of linear programming theory we know that (8) is equivalent

to

z~(rn) - max{ ~ ~(s)v(s) ~ ~ ~(5)e~~~~ - eN,

~E~~Erv A1~ sE~;EN M;

~(S) 1 ~) {lli' alí N E ~ :~1~}.

Having in mind the map ~:~iEn, lll; -~ 6~ with ~(m) - 1 and ~(s) - 0 for all s~ m,
we see that (9) is equivalent to z~ being ba,lanced. O

3. THE wEBER SET

We(,c r (1988) considerc~cl for Pa.ch coopera.tive game (N, v) thP ccnrvex hull of all n!
marginal vectors corresponding to v and he showed that the core of a game is always
a subset of this so-called Weber set. Shapley (1971) showed that for convex games the
cc~re coincides with the Weber set and Ichái9hi (1983) proved the converse, i.e. a game

for which the core coincides with the Weber set is convex.
In this section we will extend the definition of the Weber set to rnulti-choice games

and investigate the relations between the core and the Weber set of a multi-choice game.
First we define the marginal vectors of a multi-choice game. Let (N, m, v) E A7CN.
Supposc tLe coalition m forms step by step, starting from the coalition (0, ..., 0) and
where in c~ich step t.he levcl of one of the players is incretitied by 1. So, in part.ic-iilar,
there are ~iEN 11z, steps in this procedure. Now assign for every player to each level
thc~ marginal value that is created when that player reaches that particular level from
tlie level directly below. This is formalized as follows:
Define NI~ :- {(i, j) ~ i E N, j E Mi~{0}}. An adrnissible ~errrzutation (for v) is a
bijection o : M} --~ {1,...,~iE~,nz;} satisfying

a((~,7 )) c o((~,7 f 1))

for all i E.~' and j E{ 1, ..., mi - 1}. The number of admissiUle permutations for v is

t
~~iEIV m;~.

11iEN(~ni~)
.

Now let Q he an adrnissible permutation and let (i, j) E M}. The ~redecessing coalition
of 1 i, j) ~uith, respect to ~, cíenoted by ~(o-, (i, j)), is given by

p,~(rr, ( i, j)) - max {f E íl~lk ~~((k, ~)) C rl((i, j))} U{0}

~



for all k E N, and the marginal vector u~o : M~ 6é correspondirrg t.o Q is defined by

ino~ :- r'(P(a. (i,7 )} ~ f~) - v(P(a, ( r,J )})

for all r E.~' and j E RI;`{0}.
In geu~~ral tlre marginal ve~cturs of a nrulti-choice game are not necessarily impiitatiorrs,
but for zero-monotonic games they are.

Definition. A multi-choice game v is called zero-nconotonic if its rero-normalization is
monotonic, i.e.

i~o(s) C vo~t)

for all .s, t E~;EN :I1; with s C t.

We leave the proof of the following theorem to the reader.

Theorem 6. Let v be a zero-monotonic multi-choice game. Then for every admissible
permi.itation Q the marginal vector corresponding to a is an imputation of v.

Definition. The Weber set i~V(v) of a multi-choice game v is the convex hull of the
in~irgiua,l vectors of v, or, in formula,

W(i~) :- co{z~~o ~ o is an admissible permutation for v}.

Let (N, n~, rr) E 1VIC. N and let a: M-; 6é and y: M -r ~ be two payoff vectors for the
garne i~. ~Ve say ~ iy weakly sn-r.aller than y if

X(s) G }'(s)

for all s E~;EN M;. hote that this does not imply that ~;~ C y;~ for all i E N ancí
j E?L7,. Let us consider an example. -

I~xaniple 2. Let (N, rn,v) be tl~ie rnulti-choice game where N- {1, 2}, rn - {2, 1} and
~'(t 1.(1)) -~~((0, 1)) - 1, i'l(2,0)) - 3, 'v((1, 1)) - 3 and v((2, 1)) - 5. Now consider
the two core-elements x and y, defined by

:r - ~~ ~~' y- ~2 ~~

Then .r is wealay srnaller than y, since?í((1,0)) C Y((1,0)), X((1,1)) C Y((1, 1)) and
~-( y) - }-(.,) for all othc~r ...

~~Vhat iti causing thiti is tlie fact that, although according to both hayotf vecturs player
1 gets 3 for playing at his second level, according to y he gets 2 for playing at his first
level and according to .x he gets only 1 at the first level.

10



Now we are ready to formulate

'1'heorenc 7. ['or c~a.cli ninlti rhoic-c, ~;,iini~ r. ,i,ttcl c~ach corc~-c~lc~nic~nt, .r of t~ t.lrc~rc~ iti a
vc~ctor y in the ~Veber set of 2~ that is weakly smaller tharr x.

Prnof. We will actually pmve that for each multi-choice game v and each x E G'(v)
th~re is a ~-~~ctor y E LV(c~) such that y is weakly smaller than x, where

C( u) :- {.r : M ~ 6iq ~.V(tn) - v(m.), X(s) ? v(s) for all s E ~ M;
~Eh'

and :r;~ - 0 for all i E N}

is a core-catcher (i.e. C(v) C C(v)). We will do so by induction to the number of levels

involved in the game v. We distinguish two basic steps.

~ Let (N, rza, v) be a. ntulti-choice game where ~N~ - 1 and mt E I~I is arbitrary. Then
th~~rc~ i, ouly onc marginrtl vc~ctor y, wliich satisfies

yt~ - z'(.7e1) -'z'((J - 1)et)

for all j E{ 1, ..., mr }. Suppose x E C(v). Then

X(m.tet) - v(mtet) -Y(mtet) and

Í(jet ) 1 v(~et) - Y(~et) for all j E{1,...,mt}.

Hence, ~ is weakly smaller than .r..
~ Let (N, rrz, v) be a multi-choice garrte where ~N~ - 2 and zra -( 1, 1). Then there are
two marginal vectors,

~ v(ei) 2 ~ v(et f e~) - v(e~)
y- v(e~ -F e~) - v(et ) and y v(e2) .

Suliliotie x E C(ri). Then

.rt,c 1 v(e' ), xz,t ? v(c~~) a.nd x~,t -~ xa,i - v(e' ~ e~).

Hence, a~ is a convea combination of y' and y~. We conclude that x E W(v).
~~~ow let (.N,m,v) be a multi-choice game such that ~{i E N ~ m; ) 0}~ ) 2 and

~~Eh, rn; 1 2. Suppose we already proved the statement for all multi-choice games
(1~~ , m, i~) with ~~E-y m; C~~E~, m;. Since, obviously, C(v) and W(v) are both convex
sets, it suffices to prove that for all extreme points x of C(v) we can find a y E W(v)
snrh tliat r~ iti weaklv smallc~r tlian .r. So, let a~ he an eztreme point of C(~~~). Then let.
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t E ~,E.y M; be such that 1 c ~~EN t; C~;EN m; - 1 and X(t) - v(t). We split up
(~~", ~nz, v) into two games, (N, t, ie) and (N, m- t, u~), defined by

u(s):-v(s)forallsE ~m; withsGt
iEN

and
cv(s) :- v(s f t) - v(t) for all s E ~ M; with s G m- t.

iEN

VVc alsci Split up :r into two part.s, a~" :{(~i, J ) ~ a E N, j E {0, . .., t; }} --~ ~ and
a-u' :{( i, j ) ~~i E N, j E{ 0, ... , ~n; - t; }} -~ 9~ defined by

x;,j :- :r;j for a11 i E N and j E{0 t},..., ~

ancl
Ti,jte, if i E N and j E{1,...,m.; -t;}
0 ifiENand j-0.

Nc~w .r" E C'(tc), bccautic 1"(t) -,~(t) - r~(t) - 7c(t) aiid .1"(s) -.~(s) ~ v(.,) - ic(.5)
for a.ll Y E ~;E,v M; wit.h s c t. Furt.her, r"' E C(iu), because

m; -t;

.~v'(m - t) - ~ ~ xi,jfc~ - X( m) - ~(t) - v(m) - v(t) - w(m - t)
iEN j-1

a.nd

:EN j-1

,~~~(s) - ~ .jtc; - -I (s -~ t) - X(t) 1 v(s -~ t) - v(t) - w(s)

for all s E~;E~, M; with s C m- t.
Hc:ncc, using the induction hypothesis, we can find yu E LV(u) such that yu is weakly
sinallcr than ~~u and yw E Lf'(u~) such that yv' is weakly smaller than xu'.
For thc payoff vector z~ :{(i,j) ~ i E N,j E{0,...,t;}} -~ ~ for u and the payoff
vector z2 : {( i., j) ~ i E 1V. j E {0, ..., nZ; - t; }} --~ FF for ev we define the payoff vector
(:~, z'- ): AI --~ IR for v as f~llows:

(i~ ,z) ~;~j if i E N anci j E{0,...,t;}
~~ ~- {-; c. if i E N and j E{t; f 1, .. ., ~rz; }.` j-

Then r~ :- ( fu,yw) is weakly smaller than x-(~u,.xw). Hence, the only thing to provc~
yet is that y E IV(v).
~~ce prove that (W(u),W(u,)) :- {(zi,x~) ~ z~ E liV(u), w~ E W(u~)} is a subset of
iT-(c~). Notc~ that (T6"(u},[~'(u~)) acid ti~'(v) are convex sets. Hence, it sufiices to prove

12



that the extreme points of (W(u),W(w)) are elements of W(v). Suppose (zt,z~) is an
extreme point of (il'(~u), 6F(w)). Then, obviously, zt is a marginal vector of u and z~ is
a marginal vector of w. Let a be an admissible permutation for u a.nd p an admissible
permutation for w such that zt is the marginal vector of u corresponding to a and z2
is tlte rnarginal vector of tu corresponding to p. Then (zt,z~) is the marginal vector of
i~ corresponding to the adtnissible perntutation T for v defined by

(a((i,j)) if i E N and j E{1,...,t;}
r((~,J)) :- Sl p((i,j-t;))-}-~.E~,t; ifiENandjE{t;fl,...,m;}.

Hc~nce, ( zt , i~ ) E G~(v ) and this completes the proof. ~

For the class of convex multi-choice games we can sa.y more about tlte relation between
the core and the ~'eber set.

Defiiiition. A multi-choice game v is called conve~ if

w(s n t) -~ v(s V t) 1 v(s) ~ v(t) (10)

for all s, t E~;E," ?f7;. Here

(S n t)i :- min{Si,t;} arld (s ~J t); :- maX{s;, t;}

for all i E N.

For a convc~x game v it holds that

~t~(s } t) - v(s) ~ v(s -~ t) - v(s) (11)

for all s, s, t E ~~E~,16I; satisfying s G s, s; - st for all i E C(t) and s~ t E ~;EN 117;.
This is seen by putting s a~nd s-}- t in the roles of s and t in expression (10). In fact,
cv~~ry ~;:nn~~ tiat.itifyinfi c~xpres5i~n (11 ) is mtn-ex, bnt wc~ do not nc~c~d this fact.

Theoreni 8. Let v~ be a cunvex multi-choice game. Then the Weber set T~'(v) is a
Sllbti('t, of t,he COre C~~'U).

Proof. Let. a be an admissible~ bijection for w. Note that it suf~ices to prove wo E C(v).
Efliciency of wo follows immediately from its definition. Tha.t wo is level increase
rational follows straightfor~-ardly when we use expression (11). Now let s E~;E~, M;.
The bijection Q induces an admissible bijection Q' :{(i, j) ~ i E N, j E{1, ... , s;}} --~
{ 1, .. ,~;E,v s; } in a.n obvious way. Since~ p(o', (i, j)) C p(v, (i, j)) for all i E N and
j E{ 1, .....~, }, convexity of t~ implies -

0 0w;~ C w;~

13



for all i E-~' and j E { 1, ..., s; }. Hence.

iEN j-0 iEN j-0

~~~e conclude that ~u~o E C(v). ~

The c~nn'c~rtic of thc~e~rciii S is not. tru~~. VGe prcwide a,n ~~xample of a e~oiivF~x gamc v with
Í~t'(u) ~ C(u).

Example 3. Let (N,nz,v) be the multi-choice game where N- {1,2}, m-(2,1) and
~~ is the convex game defined by v((1,0)) - v((2,0)) - v((0, 1)) - 0, v((1, 1)) - 2 and
c( ('?, 1) )- 3. T'here are three marginal vectors,

0 0 0ivi - , u'z -3 ~ 2 ~ J and tu3 - [ 0

5ome calculation shows that C(v) - co{w~, wzi w3, ~}, where

r - L 3 O J0 ~

We~ sce that, .r ~ co{iv~,w2iiu~} - YV(v).

The core element a in example 3 seems to be too large: note that w3 is weakly smaller
than :r and w3 is still in the core C(v). This inspires to the following

Defiuition. For a multi-choice game v the set Cmi„(v) of minima,l core elements is
cíefined as follows

Cmin(2~) -- {~ E C(v) ~ there is no y E C(v) such that y~~ and

y iti wc,alay sinaller than a~}.

~ow we can formulate

Theorem 9. Let i~ be a convex multi-choice game. Then the ~Veber set GV(v) is the
convex liull of the set Cm;n ( i~ ) of minimal core elements.
Proof. ~~'e start by proving that all marginal vectors are minimal core elements. Let a
lx~ an adniiti5ible hijection for v. Then w" E C(v) (cf. theorem 8). Suppose y E C(v) is
such that y~ wo and y is weakly smaller than wo. Let i E N and j E 117;`{0} be such
that }'(je`) G~p-~ z~;Q and considert:-~(a,(i,j))-~e`. Then

fk

~.~t~ - ~ ~ ~tkek) C ~ ~2"kP - T '(t),

kE V kE1V P-o

14



where t11e inequality follows from the fact that f, - j and the last equality follows
from the definitions of t and ~cvo. Now (12) implies that y~ C(v). Hence, we see that
mo E Cm;,,(c~). This immediately implies that

W(U) C CO(Cmin(T~))- (13)

Now~ let .r be a minimal core element. We prove that ~ E W(v). According to theorem
i we can find a payoff vector y E W(L) that is weakly smaller than ~. IIsing (13) we see
th.~t y E c~r~(C,,,;,,(v)) C C(z~). Since :r is rninimal we may conclude that .c - y E 4ir(v).

I~~'llcl', 1'~~1~~) - ~n(C~min(~~~))- ~

Notc that theorem 9 implies that for a convex cooperativc game ( N, z~ ) the core
C(n) cctiials thc Weber set i~I'(v). Instcad of conccntra.ting on thc rnnvex lntll of the
iuart;iu.~l v~~rtcirs c~f a nudti c~liciicc~ ga.in~~, wc~ c~an also cunsidc,r thc~ av~,ragc, cif t,hc~ ma.rginal
vr~-tors of a game. For cooperative garnes this will give us the Shaplcy value.

Ueftuition. Lc~t (-V, rr~, r~) lic a rrutlti-clioice garne. Then thc exl.czaded Shaylr.y vahie
d~( ti', ni, ~r ) is t11e average of all marginal vectors of v, or, in forrnula

~t~( ~V m v) :- tEtv~ ) ~ wo

(~iEN
t7t{)1 ~i

0

whcre the siun is taken over all admissible permutations for v. An interesting question
now is if this value does have anything to do with the values that Cháh-Rzc Hsiao
and Raghavan (1990) defined, starting with axioms that are analogues of axioms that
characterire the Shapley value for cooperative games. We found an example of a multi-
choice ~;ame for which the Pxtended Shapley value does not equal any of the values of
Ch.i.lc-R,~~c H.~za.n and Ra,gleavaz~, (19cJ0). For this example we refer to a future paper.

4. STABLE SETS AND SUBSOLUTIONS

In section 2 we introduced the notion of domiuance between imputations. The
dominance core was definecí using this notion: DC(v) is the set of undominated impu-
tations. In this section we introduce some other sets of payoff vectors for multi-choice
games which are based on the notion of domination, stable sets and subsolutions.

Let (N, rn, v) E MC~ and let 2~~"~ :- {.~ ~ A C I(v)}. We introduce two maps,
D : 2[~''t -~ 21(''~ and I' :~Ir~.) -, ~Ift~), where ~

D(d) :- {:r E I(z~) ~ there exists an a E~ that dominates .r}
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and
U(-a) :- 1(z~)~~(A)

f~~r ~,ll A C 1(v). Th~~ sct D(A) consists of all impiit~ztions that a.re dominatcd by
tioine eleinc~nt. of A. The set U(A ) consists of all imputations that are undominated by
elements of .4. Hence,

DG(v) - U(I(v)).

A set A C I(t~) is ínternally stable if elements of A do not dominate each other, i.e.
A rl D(.4) - N, a.nd it is eaf.crrzally st.ahle if all impnta,tions not in .9 are dominatccí by
an iniputation in A. i.e. I(c')~A C D(A).

Deftnition ( cf. von Neunzann and Morge.nstern ( 1944)). A set .4 C I(v) is called
a stablr. get if it is both internally and externally stable. It is easily seen tha,t a set
A C I(v) iti stable if and only if .9 is a fixed point of U, i.e. U(A) - A.

The extension of the following theorem from cooperative games towards multi-choice
gamPS is straightforward and therefore we will omit the proof.

Theorem 10. Let r be a multi-choice game. Then the following two assertions hold:
(i) Every stable set contains the dominance core as a subset.
(ii) If the dominance core is a stable set, then there are no other stable sets.

Lacas (1966) showed that there exist cooperative games without a stable set. Therefore,
since all our definitions are consistent with the corresponding definitions for cooperative
games, we may conclude that multi-choice games do not always have a stable set.

Now let A C I(v) and .r E I(v). Then a is protecte.d by A if ea.ch imputation that
doininates r is on its turn dominated by an element of A. The set A is 9elf-protecting
if each a E A is protected by A. It is not hard to see that for all A C I(v)

{~ E I(z~) ~,r is protected by A} - U~(A).

Definition (cf. Roth (1976)). A set A C I(v) is called a sub9olution if it is internally
stahlc,, self-protecting and does not protect any element of I(v)~A. It is easily seen that
a set A is a subsolution if and only if it is internally stable and a fixed point of U~.

Thc followiug theorem is a st.raightforward extension of a corrPSponcíing theorem of Roth
(19iG) for cooperative games.

Theoretn 11. Let v be a multi-choice game. Then the following assertions hold:
(i) Each stable set is a subsolution.
(ii) A siibti~~lution ~~aiiuot cunt.ain a. stablc~ s~~t as a proper siibset.
(iii) Erery sub,olution contains the dominance core as a subset.
(i~-) Every inulti-choice game has at least one subsolution.
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5. FLOW GAMES

Lc~t N bc~ :I set c,f pl.,y~~rs :,ucl Ic~t rn E(N U{0})N. A flc,w tiit,,:,ti„u ,'c,u,itits c,f
a directed network with one source anci one sink and for each arc its capacity and a
simple multi-choice game, the control game, that. describes which coalitions are allowed
to use the arc.

Definition. A multi-choice garne v is called sirrcple if v(s) E{0,1} for all s E~;E,~ 11~I,

asld v(ria) - 1.

If C' is an arc in the network and u~ is the (simple) control game for arc e, then a coalition
s is allowed t.o use arc 1' if and only if u~(s) - 1. The capacity of an arc Q in the network
is deuoted by ce E (0, oo). The flow game corresponding to a flow situation assigns to
a coalition s the maxinral flow tha.t coalition s can send through the network from the
source to the sink.

For cooperative games it was shown by Curiel, Derks and Tájs (1989) that a non-
negati~'e game is balanced if and only if it is a flow game corresponding to a flow situation

in ~ahich all control games are balanced. Furthermore, Kalai and Zerrcel (1982) proved
that a non-negative cooperative game is totally balanced if and only if it is a flow game
corresponding to a flow situatiou in which all ares are controlled by a single player. Here,
:,. rc,c,~x,r:,ti~.c, t;aule is callerl tot:,lly bal.,nc~c~cl if all its snbg:,Ines .,.re lr~la.ncc~cl. Exrlallplc~
4 shows that we cannot generalize the theorelns mentioned above to Inulti-choice garrres.

Definition. A simple multi-choice game v is called dictatorial if there exist i E N and
j E 11I;~{0} such that v(s) - 1 if and only if s, 1 j for all s E~;E~, ~11;.

A multi-choice game v is called totally balanced if for every s E ~;EN M; the subga.me
(N, s, v~s) is balanced, where v~,(t) :- v(t) for all t E~;E~, M; with t C s.

Example 4. Let (N,~n,v) be the multi-choice game where N- {1,2}, m -(2,1)

and v is the flow game corresponding to the flow situation with the directed network

a.s represented in figure 1, the capacities cc, - 2, cc2 - ce3 - c(4 - 1 a.nd the control

gaIIleti 7f~e~ ,..., tUQq defllled by

1 ifs111
u'i,(~5~ - 'Lpz(s) :- p else,

- f 1 ifsl )2
tL'f3(b) .- l 0 else

aucl
-~1 ifs211roe~ ( ` ) : 0 else.
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SouRCe .e', 2~`' ~ Slhl~.~.

Figure 1

The games ~me, ,..., u~e, are dictatorial. We calculate v((0, 1)) - 0, z~((1, 0)) - 1, and
z~( ( 2, 0))-~c,( (1, 1) ) - v( (2, 1) )- 2. It is easily seen that v is not even balanced.

In order to avuid the dií~iculties we have in example 4, we restrict ourselves to zero-
normalizecí gantes. Then we have the following

Theoretn 12. Consicíer a flow situation in which all control games a.re zero-normalized
and balancecí. Then the corresPonding flow game is non-negative, zero-normalized and
halancecl.
Proof. It. is ob~-ious that v is zero-normalized and non-negative. Now let L-{Pt ,..., ep }
lx~ a se~t of ares wit.h eapacities cl ,..., c~ and control games ic~l ,..., v~p sueh that every
clirc~rtc,cl ~ritlt frotn tlic~ tic~tu~cc~ to the sink conta.ins a.n arc iu L sl,nd thc crtltac-it,y of
L. ~,~-t cr, is minimal. From a theorem of Ford and Fealkerson (195G) we fincl that
v(cra) -~~-t cr and v(s) c ~p-t crwr(s) for all s E~;En, M;. Now let xr E C(wr)
for all r E {1.... ,p}. Define y:- ~p-t crxr. Then

alld

1''(7)Z) - ~ fr.~r~~~ -~ Crr~'r~171.) - 71~77t) (14)

r-1 r-]

~~~') - ~ Cr~~ r(S) ~ ~, Cru'r(S) ~ r'~S)~ (li7)
r-1 r-1

for a.ll .. E ~ E N Al, .
Now lct r E N and j E a-I;` { 0}. Since cr ] 0 and x ~ ) 0 for all r E { l, ..., p} it easily
foll~iws thar

P

tJij - ~Crxi~ ~ 0. ~16)
r-1

Nrnv (14), (15) and (16) imply that y E C. (v). Hence, v is balanced. ~

Wc cau lirc~~~c~ tltc c-otlvc,t:tic~ cif t.hc~oreni 12 using

Theorem 13. Each non-negative zero-normalized balanced rnulti-choice game is a
non-neg~cti~.c~ linca.r mmbination of zero-normalized balanced simple garnes.
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Pruof. Let ~~ be a non-negat,ive zero-normalized balanced gaine. We providc an algorit,hm
to write v as a non-negative linear combination of zero-normalized balanced simple
games.

SuPpose v~ 0 and let x E C(v). Let k E N be the smallest integer in
{i E.~ ~ there exists a j E i17;~{0} such that x;~ ) 0}

and let Q be the smallest integer in {j E Mk~{0} ~ xk~ 1 0}. Further,

~i :- min{ xke, min{ v(s) ~ s E~ M;, s,~ ) Q, v(s) ) 0}}
iEN

and
w(s) :- ~ 1 if sk ] P and v(s) ) 0

0 else.
Let v:- v-~3w and let i: M-~ D~ be defined by

xAe-,(3 ifi-kandj-e
~a~ :- x;~ else.

Then w is a zero-normalized ba.lanced simple game and ~) 0. Furthermore, v is a
non-negative zero-normalized game and x E C(v). Note that v- v-h ~iw. Further,

~{(z,7) E 11~I~ x,~ ) 0}~ C ~{(z,7) E M~ x;~ ) 0}~ or

I{~ E II,EN ~~~I v(~) ~ 0}~ ~ ~{s E II,EN M~I v(s) ~ 0}~.
If i~ ~ 0 wc~ ca.n follow t.he sante procedure wit,h v in the role of ~r~ a.nd :r, in the rolc~ of
.r. It is c~a,tiily seeii that if wr keep on rcpcating t,his proceditre, t,hen a.fter only fiiiitcly
maaiy steps we will obtain the zero game. Suppose this happens after q steps. Then we
have formd ~31i ..., a4 7 0 and zero-normalized balanced simple games wl ,..., wq such
that

9

il - ~ ~jr20r.

r-1

The algorithm we described in the proof of theorem 13 is a generalization of an algorithm
by Derk9 (198~) for traditional cooperative games.

Theorem 14. Let v be a non-negative zero-normalized balanced game. Then v is a flow
~;,uu~~ ~'orrc".poudin~ t,o si. flow sitiia.tion in which a.ll control gaancs arc, zero-nornisilizc~d
.~n~l l~,~l.~u~~~~d.
Pruuf. Accordiiig to thc~orcm 13 we c-aii find l~ E RI, ~3i, ...,~i,~ ~ 0 and zc~ro-norm~i.lized
balanced simple games w~ ,..., io,~ such that

Z' - ~ (~r2Ur.

r-1
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Consider the flow situation with k ares as represented in figure 2,

SouRClt,

Figure 2

S~nk

where for each r E{ 1. ..., k} the capacity restriction of arc fT is given by ~3, a,nd the
control game of P~ is w,.. It is easih~ seen that the flow game corresponding to the flow
sit.uation described is the game i~. ~

Combining theorems 12 and 14 we obtain

Corollary 1. Let i~ be a non-negative zero-normalized multi-choice game. Then v is
halanced if and only if v is a flow game corresponding to a flow situation in which all
control ganres are zero-normalized and balanced.
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