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ABSTRACT. A multi-choice game is a generalization of a cooperative game in which
each player has several activity levels. Cooperative games form a subclass of the class
of multi-choice games.

This paper extends some solution concepts for cooperative games to multi-choice games.
In particular, the notions of core, dominance core, Weber set, stable sets and subsolu-
tions are extended. Relations between cores and dominance cores and between cores
and Weber sets are extensively studied. A class of flow games is introduced and relations
with non-negative games with non-empty cores are investigated.
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1. INTRODUCTION

In a cooperative game (N,v), where v : {§ | § C N} — R, cach player has
two choices: to participate or not to participate. If the players in § € N choose to
participate and the players in N\S choose not to participate, then the worth v(S) can
be obtained. Chih-Ru Hsiao and Raghavan (1990) introduced games in which all players
have m ectivity levels (m > 2) at which they can choose to play. We will still generalize
this definition a bit.

A multi-choice game is a game in which each player has an arbitrary number of
activity levels at which he or she can choose to play. In particular, two players may
have different numbers of activity levels. The reward that a group of players can obtain
depends on the effort of the cooperating players. This is formalized as follows. Let
N := {l1,...,n} be a set of players (n € N) and suppose each player i € N has
m; +1 € N activity levels at which he can play. We set M, := {0,1,...,m;} as the
action space of player 1 € N, where the action 0 means not participating. A function
v : [T;en M — R with v(0) = 0 gives for each coalition s = (s1,...,8,) € [Lien Mi the
worth that the players can obtain when each player i plays at level s; € M,.

We denote a multi-choice game by a triple (N, m,v), where N is the set of players,
m € (NU{0})" is the vector describing the number of activity levels for all players, and
v [lien Mi — R is the characteristic function. If there can be no confusion we will
denote a game (N, m,v) by v. We denote the set of all multi-choice games with player
set N by MCV,

An example of a multi-choice game occurs when we consider a large building project
with a deadline and a penalty for every day this deadline is exceeded. Obviously, the
date of completion depends on the effort of all people involved in the project: the greater
their effort the sooner the project will be completed. This situation gives rise to a multi-
choice game. The worth of a coalition where each player works at a certain acitivity
level is defined as minus the penalty that is to be paid given the date of completion of
the project when every player makes the corresponding effort.

In their paper Chih-Ru Hsiao and Raghavan (1990) introduced extended Shapley
values for multi-choice games where all players have the same number of activity levels.
They did so by using weights on activity levels, each level having the same weight for all
players, and provided axiomatic characterizations of the corresponding Shapley values.

I this paper we extend cores and related solution concepts to multi-choice games.
In section 2 we introduce imputations, cores and dominance cores and we investigate
relations between those concepts. We introduce a notion of balancedness and prove a
theorem in the spirit of the theorem of Bondareva (1963) and Shapley (1967). Further, in
section 3 we introduce Weber sets and we explore the relations between cores and Weber
sets, especially for convex games. Also, an extension of the Shapley value is defined.
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Based on the notion of dominance, which is introduced in section 2, we introduce stable
sets and subsolutions in section 4. Finally, in section 5 we consider a special class of
multi-choice games, namely flow games. It is shown that these games can be related to

non-negative multi-choice games with non-empty cores.

Notation. Let N := {1,....n} be a set of players and S C N. By e° we denote the
vector in RV satisfying e? =0ifi ¢ S and ef=1ifieS.
For two sets A and B in the same vector space we set

A+B:={r+y|x€ Aand y € B}

and we denote the convex hull of A by co(A4). Finally, we define the empty sum to be

ZEeTO.

2. IMPUTATIONS, CORE AND DOMINANCE CORE

Let (N,m,v) € MCN. We define M := {(7,7) | ¢ € N,j € M;}. A (level) payoff
vector for the game v is a function = : M — R, where, for all i € N and j € M;\{0},
y; denotes the increase in payoff to player i corresponding to a change of activity from

level j—1 to level j by this player and z;0 = 0 for all i € N.

A payoff vector is called efficient if 3 Z zi; = v(m) and it is called level increase
1EN j=1
rational if, for all i € N and j € M;\{0}, z; is at least the increase in worth that player
¢ can obtain when he works alone and changes his activity from level j —1 to level j; e,
Eij 2 U[jfli} - v({j—-l)e‘).
Definition. A payoff vector is an imputation of v if it is efficient and level increase

rational.
We denote the set of imputations of the game v by I(v). It is easily seen that

Iv)# 0 Z v(mie') < v(m). (1)

tEN

Now let @ be a payoff vector for the game v. If a player i works at his jth level (7 € M;),

]
then he obtains, according to z. the amount > zik. It will often be more natural to
k=0

3
look at these accumulated payoffs. For i € N and j € M; we denote Xig = Y, zi.
k=0
The members of a coalition s € [l.en M, obtain X(s) := 3. X..,. Using this, we come

tEN
to the following



Definition. The core C(v) of the game v consists of all # € I(v) that satisfy X (s) > v(s)
for all s € I—LEN M,.

Now let s € HieN M; and @,y € I(v). The imputation y dominates the imputation z

via coalition s, denoted by ydom,z, if
Y(s) < v(s)and Y;,, > X,

for all 2 € C(s). Here C(s) := {i € N | s; > 0} is the carrier of s, the set of players
who participate in s. We say that the imputation y dominates the imputation z if there

exists an s € [[;cy M such that y dom,z.

Definition. The dominance core DC(v) of the game v consists of all + € I(v) for which
there exists no y € I(v) such that y dominates z.

In theorems 1, 2 and 3 we deal with the relations between the core and the dominance

core,

Theorem 1. For each game v the core C(v) is a subset of the dominance core DC(v).
Proof. Let & € C(v) and suppose y € I(v) and s € [[;cn Mi, s # 0, such that y dom,z.
Then
v(s) 2 Y(s) = Z Yo = Z Xy, = X(8) 2 v(s),
1EN 1EN
which clearly gives a contradiction. Therefore, r is not dominated. O

To simplify the proof of theorem 2 we introduce zero-normalized games.

Definition. A multi-choice game v is called zero-normalized if the players cannot gain
anything by working alone, i.e. v(je') =0foralli € N and j € M,.

A multi-choice game a is called additive if the worth of each coalition s equals the sum
of the worths of the players when they all work alone at the level they work at in s, or,

a(s) = Z a(sie')

1EN

in formula,

for all s € [];en M.
For an arbitrary multi-choice game v the zero-normalization of v is the game v that is
obtained by subtracting from v the additive game a with

a(je') == v(je")

for all i € N and j € M;\{0}.



Let v be a zero-normalized game and = a payoff vector for v. Then the condition of
level inercase rationality boils down to the condition > 0. For an additive game a we
have C(a) = DC(a) = I(a) = {x}, where z : M — R is the payoff vector where

iy = a(je') —a((j-1)e')
for all 7 € N and j € M\{0}. Now we have the following

Proposition 1. Let v be an arbitrary game and v, its zero-normalization. Let z be a
payoff vector for this game. Define y : M — R by y,, := T —v(je') + v((7—1)e") for
all : € N and j € M\{0}. Then we have

(1) z € I(v) < y € I(vy)

(1) z € C(v) <= y € C(vy)
(iii) r € DC(v) < y € DC(vy).

We leave the proof of this proposition as an exercise to the reader.

Theorem 2. Let v be a multi-choice game with a non-empty dominance core. Then
the core C(v) equals the dominance core DC(v) if and only if the zero-normalization v
of v satisfies vy(s) < vg(m) for all coalitions s.

Proof. Because of proposition 1 it suffices to prove this theorem for zero-normalized
games. So suppose v is zero-normalized.

Suppose C(v) = DC(v) and let € C(v). Then

vim)= X(m)= Z ZIU + Z Z zi; = v(s)
iEN j=1 iEN j=s,+1
for all s € HieN M;.
Now suppose v(s) < v(m) for all s € [lien Mi. Since C(v) € DC(v) ( theorem 1),
it suffices to prove that ¢ DC(v) for all z € I(v)\C(v). Let r € I(v)\C(v) and
8 € [l;en M; such that X(s) < v(s). Define y : M — R as follows

a-.}+§f’;@ ifieN,je{l,...,8)
ren I

yl} fo— oL o I | |
T ifieN,j€ {si+1,...,m;}.

It follows readily from the definition of y that y is efficient. Since z >0, v(s) > X(s)
and v(m) > v(s), it follows that y > 0. Hence, y is also level increase rational and we
conclude that y € I(v).
Fori € N and j € {1....,s,} we have that Yij > zij. Hence, Yis, > X, forall : € N.
This and the fact that

Y(s)=X(s)+ >} Bs) = &is)

= v(s)
EN j=1 LokeN Sk
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imply that ydom,z. Hence, » ¢ DC(v). O

Theorem 2 was inspired by a similar theorem for cooperative games by Derks (1986).

Using theorems 1 and 2 we can easily prove

Theorem 3. Let v be a multi-choice game with a non-empty core. Then the core C(v)
equals the dominance core DC/(v).

Proof. 1t suffices to prove the theorem for zero-normalized games (see proposition 1).
So suppose v is zero-normalized. From the first part of the proof of theorem 2 we see
that the fact that C(v) # 0 implies that v(s) < v(m) for all s € [],cy Mi. Because
C(v) € DC(v) (cf. theorem 1), we know that DC(v) # 0. Now theorem 2 immediately
implies C'(v) = DC(v). O

Considering theorem 3 one might ask oneself if there actually exist games where the core
is not equal to the dominance core. The answer to this question is given in example 1,
where we provide a multi-choice game with an empty core and a non-empty dominance
core. To simplify the notations in examples we represent a payoff vector @ : M — R by
;“::‘m"'“'m":'. where a;; := ;; if i € N and j € M;\{0} and
ay; is left out (#) if 1 € N and j > m,.

a deficient matrix [a;;]%

Example 1. Let (N, m,v) be the multi-choice game where N = {1,2}, m = (2,1) and
v((1,0)) = ©((0,1)) = 0, v((2,0)) = 1/4 and »((1,1)) = v((2,1)) = 1. An imputation
should satisfy the following (in)equalities:

it T12+ T2 =1
ryq 20,20, 20
Ty > 1f4.

Henee, we obtain

B 0 1/4 3/4 1/4 0 1
I(f)-rfj{[3/4 *]‘[ﬂ - P lo i
Note that for this game an imputation can only dominate another imputation via the
coalition (1,1) and, since &, ; 4+ z2; < 3/4 for all = € I(v), this gives us

DC(U}=CO{[3?4 114] , [3{}4 154]}‘

Finally. for none of the elements r of the dominance core z; ; + 75, > v((1,1)). Since
C(v) € DC(v) this gives us C'(v) = 0. Note that for the zero-normalization v of v it
holds that vg((1,1)) =1 > 3/4 = v»p((2,1)).
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For the game in example 1 both the core and the dominance core are convex sets. This

is generally true, as is stated in

Theorem 4. Let v be a multi-choice game. Then the following two assertions hold:
(1) C(v) is convex

(ii} DC(v) is convex.

Proof. We omit the proof of part (i), because this is a simple exercise. We now prove part

(ii). It suffices to prove that DC(v) is convex if v is zero-normalized. So, suppose v is

zero-normalized. Obviously, if DC(v) = @, then it is convex. Now suppose DC(v) # 0.
We define a game (N,m,w) and we show that DC(v) = DC(w) = C(w). For all

= HiEN AI'
w(s) := min{v(s),v(m)}.

It is easily seen that
w(m) = v(m). (2)

Since DC(v) # 0, we know that I(v) # @. Since v is zero-normalized, this implies
v(m) >0 (cf. (1)) and
w(je') = min{v(je'),v(m)} =0 (3)

forall: € N and j € M,.
Using (2) and (3) we see that
I(w) = I(v).

Now let s € n:‘eN M; and let x,y € I(v) = I(w). Since w(s) < v(s) we see that if
2 domyy in w, then & dom,y in v. On the other hand, if # dom,y in v, then

X(s) < v(s)

and

X=X~ Y 5 <oim)

EN j=1 IEN j=3;+1

and therefore X(s) < w(s) and z dom,y in w.
We conclude that
DC(w) = DC(v). (4)

This implies that DC(w) # 0. Since w is zero-normalized (cf. (3)) and
w(s) = min{v(s),v(m)} < v(m) = w(m),

theorem 2 shows that

C(w) = DC(w). (5)
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Now (4), (5) and part (i) of this theorem immediately imply that DC(v) is convex. [

The next theorem is an extension of the theorem of Bondareva (1963) and Shapley
(1967) to multi-choice games and gives a necessary and sufficient condition for the non-

emptiness of the core of a game.

Definition. A multi-choice game v is called balanced if for all maps A : [lien Mi = Ry

Z As)e€®) = N
"Enie ” M;

satisfving

it hiolds that

E A(s)vo(s) < vo(m),
’EH.-EN M;
where vy is the zero-normalization of v,

Note that this definition coincides with the familiar definition of balancedness for co-
operative games (N, (1,..., 1),v) e MCN,

Theorem 5. Let v be a multi-choice game. Then the core C(v) of v is non-empty if
and only if v is balanced.

Proof. It sullices to prove the theorem for zero-normalized games.  So suppose o is
zero-normalized.

Suppose C'(v) # @ and r € C(v). Then we define a payoff vector y : M — R by

0 ifie Nandje{2,...,m;}
* ml
Yij*=\ Y z;; fieNandj=1,
i=1

Then, obviously, y € C(v). Further, we can identify y with the vector (y1,1,...,¥yn.1).
This proves that C(v) # @ if and only if there exist zy,...,z, € Ry such that

Zz,- =v(m) (6)
tEN

anl

Y zzous) (7)

1EC(s)

for all s € [];en M.
Obviously, there exist z;,...,2, € Ry satisfying (6) and (7) if and only if

v(m) = min{ Z zi|z;€Rforalli € N and Z z; 2 v(s)for all s € H M;}. (8)
1IEN 1EC(s) EN



From the duality theorem of linear programming theory we know that (8) is equivalent

to

v(m) = max{ Z Als)u(s) | Z A(s)eC®) = N

’enieh’ M; ‘!EHEEN M;
A(s) > 0forall s € ] M) (9)
1IEN

Having in mind the map A : [[,cy Mi — R with A(m) = 1 and A(s) = 0 for all s # m,
we see that (9) is equivalent to v being balanced. O

3. THE WEBER SET

Weber (1988) considered for each cooperative game (N, v) the convex hull of all n!
marginal vectors corresponding to v and he showed that the core of a game is always
a subset of this so-called Weber set. Shapley (1971) showed that for convex games the
core coincides with the Weber set and Ichiish: (1983) proved the converse, i.e. a game
for which the core coincides with the Weber set is convex.

In this section we will extend the definition of the Weber set to multi-choice games
and investigate the relations between the core and the Weber set of a multi-choice game.
First we define the marginal vectors of a multi-choice game. Let (N,m,v) € MCV.
Suppose the coalition m forms step by step, starting from the coalition (0,...,0) and
where in each step the level of one of the players is increased by 1. So, in particular,
there are ) .., m, steps in this procedure. Now assign for every player to each level
the marginal value that is created when that player reaches that particular level from
the level directly below. This is formalized as follows:

Define Mt := {(i,j) | i € N, j € M;\{0}}. An admissible permutation (for v) is a
bijection o : M+ — {1,..., 2 ien ™Mi} satisfying

o((2,7)) <e((i,j +1))

forallie N and j € {1,..., m; — 1}. The number of admissible permutations for v is

(Xien mi)!
H;‘eN(m:!) ;

Now let ¢ be an admissible permutation and let (7, ) € M*. The predecessing coalition
of (1,7) with respect to o, denoted by p(e,(i,j)), is given by

pe(e.(i,))) = max {{ € My | o((k,€)) < o((.5))} U {0}

9



for all k € N, and the marginal vector w” : M — R corresponding to o is defined by
w; = v(p(o.(i,7)) +e') —v(p(o,(2,7)))

for all i € N and j € M;\{0}.
In general the marginal vectors of a multi-choice game are not necessarily imputations,

but for zero-monotonic games they are.

Definition. A multi-choice game v is called zero-monotonic if its zero-normalization is

monotonic, i.e.
vg(s) < wo(t)

for all st € H:EN M; with s < t.
We leave the proof of the following theorem to the reader.

Theorem 6. Let v be a zero-monotonic multi-choice game. Then for every admissible
permutation ¢ the marginal vector corresponding to ¢ is an imputation of v.

Definition. The Weber set W(v) of a multi-choice game v is the convex hull of the
marginal vectors of v, or, in formula,

W(v) := co{w” | ¢ is an admissible permutation for v}.

Let (N,m,v) € MC" and let  : M — R and y : M — R be two payoff vectors for the
game v. We say r 13 weakly smaller than y if

X(s) < ¥(s)

for all s € [[;eny Mi. Note that this does not imply that z;; < y,; for all i € N and
J € M,. Let us consider an example.

Example 2. Let (N,m,v) be the multi-choice game where N = {1,2}, m = {2,1} and
0((1,0)) = o((0,1)) =1, »((2,0)) = 2, »((1,1)) = 3 and v((2,1)) = 5. Now consider
the two core-elements r and y, defined by

I i SO |21

p=ily Lla@=lg |-
Then r is weakly smaller than y, since X((1,0)) < ¥Y((1,0)), X((1,1)) < Y((1,1)) and
X(#) =Y {(s) for all other s.
What is causing this is the fact that, although according to both payoff vectors player

1 gets 3 for playing at his second level, according to y he gets 2 for playing at his first
level and according to = he gets only 1 at the first level.

10



Now we are ready to formulate

Theorem 7. For cach nmlti-choice game 0 and ecach core-clement & of ¢ there is a
vector y in the Weber set of v that is weakly smaller than .
Proof. We will actually prove that for each multi-choice game v and each x € EF(U)

there is a vector y € W(v) such that y is weakly smaller than =, where

é{u] ={r: M —=R|X(m)=uv(m), X(s) > v(s)forall s € H M;
iEN
and z;p =0 for all i € N}

is a core-catcher (i.e. C(v) C é(v}). We will do so by induction to the number of levels
involved in the game v. We distinguish two basic steps,

e Let (N.m,v) be a multi-choice game where |N| = 1 and m,; € N is arbitrary. Then
there is only one marginal vector y, which satisfies

y1j = v(je') = v((j — 1)e')
for all j € {1,...,m;}. Suppose z € C(v). Then

X(mye') = v(mye') = Y(mye') and
X(je') > v(je') = Y(je') for all j € {1,...,m; }.

Hence, y is weakly smaller than .
e Let (N,m.v) be a multi-choice game where |[N| = 2 and m = (1,1). Then there are

two marginal vectors,

y] - [ U(f]} ] Y y2: [U(E"Fﬂz)—l’(ez)]‘

ve! + e?) — v(el) v(e?)
Suppose ¢ € 6( v). Then
21,1 2 v(e'), x5 2 v(e?) and 21y + 22, = v(e' +¢*).

Hence, r is a convex combination of y' and y?. We conclude that = € W(v).

e Now let (N,m,v) be a multi-choice game such that [{f € N | m; > 0} > 2 and
> ientu > 2. Suppose we already proved the statement for all multi-choice games
(N.m,7) with 2N i < 2 jen Mi- Since, obviously, C(v) and W(v) are both convex
sets, it suffices to prove that for all extreme points z of C(v) we can find a y € W(v)

such that y is weakly smaller than . So, let # be an extreme point of 6( v). Then let

11



t € [liex Mi be such that 1 < 3. vt < 3. o mi —1 and X(t) = v(t). We split up
(N.m.,v) into two games, (N.t,u) and (N,m — t,w), defined by

u(s) :=v(s) for all s € H m; with s < ¢

IEN
and
w(s) :=v(s+1)—v(t) for all s € H M; with s <m —¢.
1EN
We also split up r into two parts, 2% : {(i,j) | i € N, j € {0,..., ti}} — R and

" :{(2,j) |1 € N, j € {0,...,m; —t;}} — R defined by
ri; =z foralli€ N and j € {0,...,t]}

and
A Taj+t; if!ENandje {1,...‘?71,' _tl}
U0 ifie Nand j =0.
Now r" € ﬁ( u), becanse X"(#) = X(#) = o(t) = u(t) and X"(s) = X(s) > v(s) = u(s)
for all s € [[,cy M; with s < t. Further, +* € C(w), because

m;—i;

XY(m—t)= Z Z Tij4e, = X(m) — X(t) = v(m) —o(t) = w(im — )

1EN =1

and N
X*(8) =30 3 wura = X(s+8) = X(8) 2 (s +1) — v(t) = w(s)
1EN j=1
for all s € [[,cn M; with s <m —¢.
Hence, using the induction hypothesis, we can find y* € W(u) such that y" is weakly
smaller than 2" and y* € W(w) such that y* is weakly smaller than z*.
For the payoff vector z! : {(z,j) | 1 € N,j € {0,...,t;}} — R for u and the payoff
vector 2% : {(i,j) | # € N.j € {0,...,m; —;}} — R for w we define the payoff vector
(21,2%): M — R for v as follows:

gt 2 o 2l ifie N and j € {0,...,t;}
SR T .E"ZJ_',._ iffEN&!ldjE {t.-+1,..‘,m.-}.

Then y := (y",y") is weakly smaller than z = (2%, 2"). Hence, the only thing to prove
vet is that y € W(v).

We prove that (W(u),W(w)) = {(z',2?) | 2! € W(u), 22 € W(w)} is a subset of
Wi(v). Note that (W(u), W(w)) and W () are convex sets. Hence, it suffices to prove

12



that the extreme points of (W(u), W(w)) are elements of W(v). Suppose (z!,2?) is an
extreme point of (W (u), W(w)). Then, obviously, 2! is a marginal vector of u and 2? is
a marginal vector of w. Let o be an admissible permutation for u and p an admissible
permutation for w such that z' is the marginal vector of u corresponding to o and 2?2
is the marginal vector of 1w corresponding to p. Then (z',2?) is the marginal vector of

v corresponding to the admissible permutation 7 for v defined by

s JalEEN ifie Nandje{1,...,1}
MEIN =Y g5, = 1)) + Syewts Hi€N andj € {8 +1,...,mg).
Hence, (2!, z%) € W(v) and this completes the proof. O

For the class of convex multi-choice games we can say more about the relation between

the core and the Weber set.

Definition. A multi-choice game v is called convex if
v(sAt)+u(sViE) > o(s)+o(t) (10)
for all s, € HieN M,. Here
(s At), :=min{s;,t;} and (s V t); := max{s;,t;}

forall7 € N.

For a convex game v it holds that
v(s+1t) —v(s) > v(F+1t)—v(3) (11)

for all 5,5,1 € [[;cn M satisfying < s, 5, =s;foralli € C(t)and s+t € [Lien M.
This is seen by putting s and 5+ ¢ in the roles of s and ¢ in expression (10). In fact,

every ginne satisfying expression (11) is convex, but we do not need this fact.

Theorem 8. Let v be a convex multi-choice game. Then the Weber set W(v) is a
subset of the core C(v).

Proof. Let o be an admissible bijection for v. Note that it suffices to prove w® € C(v).
Efficiency of w? follows immediately from its definition. That w? is level increase
rational follows straightforwardly when we use expression (11). Now let s € [],cn M..
The bijection o induces an admissible bijection o' : {(¢,5) |1 € N, j € {1,...,s;}} —
{1....,3.en $i} in an obvious way. Since p(a’,(i,j)) < p(e,(i,j)) for all i € N and
§ Bl $; }, convexity of v implies



forall i € N and j € {1,....s;}. Hence.

Z Z w; = z Z.:w};-' = v(a):

teEN 3=0 1EN =0

We conclude that w? € C(v). O

The converse of theorem 8 is not true. We provide an example of a convex game v with
P

Wiv) S C(v).

Example 3. Let (N, m,v) be the multi-choice game where N = {1,2}, m = (2,1) and
v is the convex game defined by v((1,0)) = v((2,0)) = ©v((0,1)) = 0, »((1,1)) = 2 and
v({2.1)) = 3. There are three marginal vectors,

0 0 0 1 2 1
m|:|:3 *],wz:[g *] andw3=[0 *].

Some calculation shows that C(v) = co{w;, w;, w3, r}, where

-39

We see that o & eo{w;, wa, w3} = W(e).

The core element = in example 3 seems to be too large: note that w; is weakly smaller
than o and wj is still in the core C(v). This inspires to the following

Definition. For a multi-choice game v the set Cuin(v) of minimal core elements is
defined as follows
Chmin(v) := {z € C(v) | there is no y € C(v) such that y # z and

y is weakly smaller than x}.

Now we can formulate

Theorem 9. Let v be a convex multi-choice game. Then the Weber set W(v) is the
convex hull of the set Cpyin(v) of minimal core elements.

Proof. We start by proving that all marginal vectors are minimal core elements. Let o
be an admissible bijection for v. Then w” € C(v) (cf. theorem 8). Suppose y € C(v) is
such that y # w” and y is weakly smaller than w?. Let i € N and j € M;\{0} be such
that Y(je') < ZJ.=1 w7 and consider ¢ := p(e,(¢,5)) + ¢'. Then

te
Y() =) Yitet)< Y 3 wi=v(t), (12)

keN keN =0

14



where the inequality follows from the fact that {; = j and the last equality follows
from the definitions of ¢ and w”. Now (12) implies that y & C(v). Hence, we see that
w?” € Cin(v). This immediately implies that

W(v) C co(Cnin(v)). (13)

Now let = be a minimal core element. We prove that z € W(v). According to theorem
7 we can find a payoff vector y € W(v) that is weakly smaller than z. Using (13) we see
that y € colCpin(v)) € C(v). Since r is minimal we may conclude that r =y € W(u).
Henee, W) = co(Cminlv)). O

Note that theorem 9 implies that for a convex cooperative game (N, v) the core
C'(v) equals the Weber set T (v). Instead of concentrating on the convex hull of the
marginal vectors of a multi-choice game, we ean also consider the avernge of thie marginal

vectors of a game. For cooperative games this will give us the Shapley value.

Definition. Let (N 12,0) be a multi-choice game. Then the eztended Shapley value
G(N,m,v) is the average of all marginal vectors of v, or, in formula

Tienmi)!

.oyl
B(N,m,v):= Hae}\(‘m ) Zw,1

where the sum is taken over all admissible permutations for v. An interesting question
now is if this value does have anything to do with the values that Chih-Ru Hsiao
and Raghavan (1990) defined, starting with axioms that are analogues of axioms that
characterize the Shapley value for cooperative games. We found an example of a multi-
choice game for which the extended Shapley value does not equal any of the values of
Chib-Bu Hstao and Raghavan (1990). For this example we refer to a future paper.

4. STABLE SETS AND SUBSOLUTIONS

In section 2 we introduced the notion of dominance between imputations. The
dominance core was defined using this notion: DC(v) is the set of undominated impu-
tations. In this section we introduce some other sets of payoff vectors for multi-choice
games which are based on the notion of domination, stable sets and subseolutions.

Let (N.m,v) € MCV and let 2/") := {4 | A C I(v)}. We introduce two maps,
D :2ftv) _, 21(x) and U ; 21(0) 5 21(0) where

D(A):={z € I(v) | there exists an a € A that dominates z}

15



and

U(A) :== I(v)\D(A)

for all A C I{v). The set D(A) consists of all imputations that are dominated by
sowe element of A. The set U(A) consists of all imputations that are undominated by

elements of A. Hence,

DC(v) =U(I(v)).

A set A C I(v) is internally stable if elements of A do not dominate each other. i.e.
AND(A) = 0, and it is externally stable if all imputations not in A are dominated by
an imputation in A, i.e. I(v)\A C D(A).

Definition (cf. von Neumann and Morgenstern (1944)). A set A C I(v) is called
a stable set if it is both internally and externally stable. It is easily seen that a set
A C I(v) is stable if and only if 4 is a fixed point of U, i.e. U(A) = A.

The extension of the following theorem from cooperative games towards multi-choice
games is straightforward and therefore we will omit the proof.

Theorem 10. Let v be a multi-choice game. Then the following two assertions hold:
(i) Every stable set contains the dominance core as a subset.
(i1) If the dominance core is a stable set, then there are no other stable sets.

Lucas (1966) showed that there exist cooperative games without a stable set. Therefore,
since all our definitions are consistent with the corresponding definitions for cooperative
games, we may conclude that multi-choice games do not always have a stable set.

Now let A C I(v) and z € I(v). Then x is protected by A if each imputation that
dominates r is on its turn dominated by an element of A. The set A is self-protecting
if each @ € A is protected by A. It is not hard to see that for all A C I(v)

{z € I(v) | z is protected by A} = U?*(A).

Definition (cf. Roth (1976)). A set A C I(v) is called a subsolution if it is internally
stable, self-protecting and does not protect any element of I(v)\A. It is easily seen that
a set A is a subsolution if and only if it is internally stable and a fixed point of U2,

The following theorem is a straightforward extension of a corresponding theorem of Roth

(1976) for cooperative games.

Theorem 11. Let v be a multi-choice game. Then the following assertions hold:
(1) Each stable set is a subsolution.

(i1) A subsolution cannot contain a stable set as a proper subset.

(1i1) Every subsolution contains the dominance core as a subset.

(iv) Every multi-choice game has at least one subsolution.

16



5. FLOW GAMES

Lot N be a set of players and let e € (NU {0}V, A Hlow situation consists of
a directed network with one source and one sink and for each arc its capacity and a
simple multi-choice game, the control game, that describes which coalitions are allowed

to use the are.

Definition. A multi-choice game v is called simple if v(s) € {0,1} for all s € [,y M;

and v(m) = 1.

If £ is an arc in the network and w is the (simple) control game for are £, then a coalition
s is allowed to use arc € if and only if w(s) = 1. The capacity of an arc £ in the network
is denoted by ¢; € (0,00). The flow game corresponding to a flow situation assigns to
a coalition s the maximal flow that coalition s can send through the network from the
source to the sink.

For cooperative games it was shown by Curiel, Derks and Tys (1989) that a non-
negative game is balanced if and only if it is a flow game corresponding to a flow situation
in which all control games are balanced. Furthermore, Kala: and Zemel (1982) proved
that a non-negative cooperative game is totally balanced if and only if it is a flow game
corresponding to a flow situation in which all arcs are controlled by a single player. Here,
a cooperative game is ealled totally balanced if all its subgames are balanced. Example

4 shows that we cannot generalize the theorems mentioned above to multi-choice games.

Definition. A simple multi-choice game v is called dictatorial if there exist : € N and
7 € M\{0} such that v(s) =1 if and only if s; > j for all s € [],cn M.

A multi-choice game v is called totally balanced if for every s € [[;cy M; the subgame
(N.s,v|s) is balanced, where v|,(#) ;= v(¢) for all ¢t € HieN M; with t < s.

Example 4. Let (N,m,v) be the multi-choice game where N = {1,2}, m = (2,1)
and v is the flow game corresponding to the flow situation with the directed network
as represented in figure 1, the capacities ¢g;, = 2, ¢4, = ¢4, = ¢¢, = 1 and the control

ames wy, ,...,we, defined by
g 1 4 Yy

1 ifs;>1
cuter=mi={} 23
. . T 1 if\‘)‘; 2 2
Wes($) '_{ else
and
ey f1 ifsr>1
we,(s) = {0 else.

17



h
SRR .g' = \h‘\i/ S‘l‘-'\'l'(

Figure 1

The games wy,,. .., wy, are dictatorial. We calculate v((0,1)) = 0, v((1,0)) = 1, and
v((2,0)) = v((1,1)) = v((2,1)) = 2. It is easily seen that v is not even balanced.

In order to avoid the difficulties we have in example 4, we restrict ourselves to zero-

normalized games. Then we have the following

Theorem 12. Consider a flow situation in which all control games are zero-normalized
and balanced. Then the corresponding flow game is non-negative, zero-normalized and
balanced.

Proof. 1t is obvious that v is zero-normalized and non-negative. Now let L = {¢,,. .. )
be a set of arcs with capacities ¢y, ..., ¢, and control games 1w, ... s wy such that every
directed path from the source to the sink contains an are in L and the capacity of
L. Y _, ¢, is minimal. From a theorem of Ford and Fulkerson (1956) we find that
vim) = 3 7_ ¢ and v(s) < 3F_ c,w,(s) forall s € [lien Mi. Now let " € C(w,)
for all r € {1,...,p}. Define y := 3°7_, ¢,2". Then

P P
Y(im) = Z e ()= Z crwr(m) = v(m) (14)
r=] =1
and
P P
Y[.s]:Zc,.X'(S)ZZc,-w,(.s)Ztr(s), (13)
r=1 r=1

for all s € H:EN M,.
Now let 1 € N and j € M;\{0}. Since ¢, > 0 and zj; 2 0forall r € {1,...,p} it easily
follows that

P
Yi; = Zcrl'}} > 0. (16)
r=]1
Now (14), (15) and (16) imply that y € C(v). Hence, v is balanced. ]

We can prove the converse of theorem 12 using

Theorem 13. Each non-negative zero-normalized balanced multi-choice game is a

non-negative linear combination of zero-normalized balanced simple games.

18



Proof. Let v be a non-negative zero-normalized balanced game. We provide an algorithm
to write v as a non-negative linear combination of zero-normalized balanced simple
games.
Suppose v # 0 and let z € C(v). Let k € N be the smallest integer in

{1 € N | there exists a j € M;\{0} such that ;; > 0}
and let ¢ be the smallest integer in {j € M \{0} | zx; > 0}. Further,

B := min{ ke, min{ v(s)|s€ H M;, sk > £, v(s) > 0}}
tEN

and
w{s)::{l ifﬁka’and-lj(s))O
0 else.
Let v:=v — ﬂw and let T : M — R be deﬁned by

=  Jape—B Wi=kandj=~2
i = ez else.

Then w is a zero-normalized balanced simple game and 8 > 0. Furthermore, T is a
non-negative zero-normalized game and T € C(7). Note that v = T 4+ Bw. Further,
{(2,) € M| 7,; > 0}| < |{(i,j) € M| 25 > 0}] or
I{s € [Tien Mi| 9(s) > 0}| < [{s € [[;en Mi| v(s) > 0}].
If 7 # 0 we can follow the same procedure with ¥ in the role of » and 7 in the role of
a. It s casily seen that if we keep on repeating this procedure, then after only finitely
mauy steps we will obtain the zero game. Suppose this happens after q steps. Then we
have found 3y,...,8, > 0 and zero-normalized balanced simple games wy, ..., wy such

that
q
f= Z Bty i |
r=1

The algorithm we described in the proof of theorem 13 is a generalization of an algorithm
by Derks (1987) for traditional cooperative games.

Theorem 14. Let v be a non-negative zero-normalized balanced game. Then v is a flow
game corresponding to a flow situation in which all control gamnes are zero-normalized
and balanced.

Proof. According to theorem 13 we can find k € N, 81,..., 8 > 0 and zero-normalized
balanced simple games w;, ..., wg such that

k
g = E Brwy.
r=1
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Consider the flow situation with k ares as represented in figure 2,

s,

SouR. Cowrg . Sink
(l‘kwu
Figure 2
where for each » € {1,...,k} the capacity restriction of arc ¢, is given by 3, and the

control game of {, is w,. It is easily seen that the flow game corresponding to the flow
situation described is the game v. O

Combining theorems 12 and 14 we obtain

Corollary 1. Let v be a non-negative zero-normalized multi-choice game. Then v is
balanced if and only if v is a flow game corresponding to a flow situation in which all

control games are zero-normalized and balanced.
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