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Cores of Games With Restricted Cooperation 

By U. Faigle I 

Abstract: Games with restricted cooperation are cooperative N-person games with sidepayments, 
where the collection of feasible coalitions need not comprise all subsets of players and thus is re- 
stricted. We study balanced and completely balanced games in this context and derive the cot- 
responding core theorems from a sandwich theorem for set functions within the setting of linear 
programming. In particular, we discuss general convex games, which Edmonds and Giles (1977) 
have shown to be of particular importance also in combinatorial optimization. 

Zusamrnenfassung: Spiele mit besehr~inkter Kooperation sind kooperative N-Personenspiele mit 
Nebenzahlungen, wobei nieht jede Teilmenge yon Spielern zul/issig zu sein braucht. In diesem Sinn 
sind die Kooperationsm6gliehkeiten beschr/inkt. Balancierte und vgllstandig balancierte Spiele 
werden in diesem Zusammenhang untersucht. Die entsprechenden S~itze tiber die Existenz yon 
Kemen werden yon einem Sandwichsatz tibet Mengenfunktionen im Rahmen der linearen Program- 
mierung abgeleitet. Insbesondere werden allgemeine konvexe Spiele diskutiert, deren Bedeutung 
auch ftir die kombinatorische Optimietung Edmonds and Giles (1977) aufgezeigt haben. 

Key words: games, restricted cooperation, core, convex functions. 

1 Introduction 

The model commonly employed for the analysis of cooperative N-person games with 

sidepayments places several structural restrictions on the collection of feasible coali- 

tions. It is assumed that this collection forms an algebra, i.e., that unions and comple- 

ments of feasible coalitions again are feasible coalitions of players. If all individual 

players are allowed to form coalitions by themselves, then the standard model considers 

every subset of players as a feasible coalition. 

In many important situations, however, this model does not  apply. For example, a 

player may have agreed in a treaty to enter a coalition as soon as some other player 

enters it. The latter player will, therefore, be unable to form a coalition by himself 
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even if the first player should be able to do so. Hence it appears necessary to investigate 

a more general model for cooperative games in which cooperation among players is 

restricted to some prescribed collection of subsets, the feasible coalitions of the game, 

without any h priori structure. The difficulty, of course, arises with the question about 

the appropriate solution concepts of such games with restricted cooperation. 

In this paper, we study the core of general cooperative games. As in the classical 

case, every vector in the core of a game is a solution to the problem of finding a 

modular function that dominates the value function of the game on the feasible coali- 

tions and has a prescribed value for the total set of players. Thus we may derive neces- 
sary and sufficient conditions for the existence of the core from a general sandwich 

theorem for set functions in Section 2, which can be interpreted as a statement about 

certain associated primal and dual linear programs - an idea that goes back to Bonda- 

reva (1963). In particular, also the notion of balanced games is meaningful in this 

context and we state the corresponding core theorems in Section 3. Moreover, we give 

conditions for a game to be completely balanced, which means that for every individual 

player a non-negative return can be guaranteed. 

In Section 4 we look at general convex games. They provide a very general model 

for game theoretic convexity and, in fact, are a link to combinatorial optimization, 

where Edmonds and Giles (1977) have shown such structures to play an important 

role. Contrary to classical convex games investigated by Shapley (1971), general con- 

vex games need not have a non-empty core. Obviously necessary conditions, however, 

turn out to be also sufficient for the existence of a core. Moreover, the positive core of 

a completely balanced convex game always arises as the core of some convex game in 

which all subsets of players are feasible coalitions. 

2 A Sandwich  Theorem 

Let S be a finite set and F a  non-empty collection of feasible subsets of S. At the out- 

set, ~ E F is not assumed and we write 

Fo = F U  (0}. 

We furthermore assume to be given two arbitrary functions f : F ~ N and g : F-~ 

such that 

g(A)<~f(A) for all A E F  

g (0 )= f (0 )  =0 if I~eF. 
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Denoting by F, s the IS]-dimensional Euclidean space of all vectors whose components 
are indexed by elements of S, each x E IR s gives rise to a function x : F-~ IR via 

x(A)= ~ Xs for all A E F .  
s ~ A  

For the formulation of our main result, we need the indicator function 1 t: : S -+ IR for 
the subset U C S given by 

lv(s)  = {10 i f s E U  

otherwise. 

Theorem 1: Under the above hypotheses, 

a) The following are equivalent: 

a l )  There exists some x E IR s such that 

g(A)<~x(A)<.f(A) forall A EF.  

n m 

a2) ForallA1 . . . . .  A n , B I , . . . , B  m EFwithi=iE 1Ai=j=l ]~ 1Bj' 

n m 

Y~ g(Ai) ~< ~: f(8/).  
i = l  j = l  

b) The following are equivalent: 

b t) There exists some x E IR s, x ~> 0, such that 

g ~ ) ~ x ~ ) ~ f ~ ) ~ r ~ l A E F .  

n m 

b2) For aliA1, ..., An,B1 ..... Bm@ Fo with i=1 ~' 1A id /=l  ~ 1Bj' 

Y1 m 

i = 1  1 = i  
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Remark: Kindler (1986) has derived an analogue of Theorem 1 for possibly infinite S 
from Kaufman's (1966) theorem on additive functionals on semigroups provided F is 
dosed union and intersection with ~ ~ F and f submodular, i.e., 

f(A U B) + f(A N B) <~f(A) + f(B). [] 

Proof of Theorem I: To verify part a), observe first that (a2) is necessary for (at) to 
hold. To see also the sufficiency of (aa), note that (al)  amounts to saying that the 
primal linear program 

max 0 �9 x 

such that 

x(A)<f(A) for all A E F  

-x(A) <~-g(A) for all A ~F  

x E IR s unrestricted 

has a (feasible) solution. According to the duality theorem of linear programming (see, 
e.g., Chv~ttal 1983), this is the case exactly when the associated dual linear program 

min Z f ( A ) . y  A - Z g(A)z A 
A ~ F  A E F  

such that 

YA = E zA for all s E S  
A E F  A ~-F 
s ~ A  s ~ A  

YA ~>O, zA />0 for all A E F  

does not admit of a (feasible) solution yielding a negative value of the dual objective 
function. We will show that the latter property holds. 
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Suppose there are non-negative IFl-dimensional vectors y and z such that for all 

s E S ,  

Y A  = ~" Z A  
A E F  A E F  
s E A  s C A  

and 

~, f (A )y  A < ~, g(A)z a. 
A E F  A E F  

There is no loss in generality if we assume that y and z have rational components. We 

now clear the denominators and thus see that y and z may be chosen to have integer 

components only. But then y and z obviously violate (a2). 
Part b) follows exactly the same way upon taking into account that the primal 

linear program stipulates x ~> 0 and, therefore, the equality constraints in the dual 
program have to be modified to inequalities 

YA t> ~ ZA f0rall s ES. 
A EF A @F 
s E A  s E A  

[] 

A specialization of Theorem 1 will be useful in the analysis of the existence of the 

core of a game in the next section. To this end, we assume that there exists a sub- 

system L C F of subsets of S satisfying the following conditions: 

(i) S ~ L  

(ii) For all A, B E L such that there exists some F G F with F C A ~ B, we have 

A ~ B E L .  

Hence we may associate with each F E F a unique set f E L via 

/~= n {L EL  :FC_L}.  



410 U. Faigle 

Corollary 2: The following are equivalent: 

( c l )  There exists some x E IR s, x >/0, such that 

g(A) <<.x(A) for all A E F  

g(L) = x(L) for all L E L. 

(c2) For all A 1 . . . . .  A n E Fo, L 1 . . . . .  L m E L with 

?1 m 

g(&)< Y, g(L i) 
i = 1  ] = 1  

tl ttl 

Z 1Ai~< Z i=1 i=1 1L/' 

Proof: Choosing f = x for an application of Theorem 1, it is immediate that (c 1) 
implies (c2). 

Conversely, if (c2) holds, we define for all A E F, 

f(A) = g(~). 

In view o fA C C_ .4, (c2) guarantees g(A) <.f(A). 
Furthermore, for all A1, ...,An, B1 . . . . .  B m E F  o with 

tl rn 

have i=1 ~ 1Ai ~</=1 ~ 1/~j and therefore 

n m 

1Ai~< ~ we i=1 ]=I 1B]' 

tl tt/ m 

:~ g(A;)< ~ g(Bj)= ~ f(sj). 
i = 1  ] = 1  j = l  

Thus condition (b2) of Theorem 1 is satisfied. Because g(L)=f (L)  for every L EL ,  
also (c l )  must be true. [] 
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If we do not insist that the solution vector x E F, s be non-negative, we obtain 

Corollary 3." The following are equivalent: 

(d l )  There exists some x E IR s such that 

g(A)<~x(A) for all A E F  

g(L) = x(L) for all L E L .  

(d2) 
r/ m 

Fora l lA1 ..... AnEF,  L 1 , . . . , L m E L w i t h  ~, 1Ai-  ] 1L] , 
n m l = 1  

~2 g(A~)< X g(L/). 
l = 1  ] = 1  

Proof." Choose a vector c E IR s with the property 

g(Al)+C(A1)<~g(A2)+c(A2) foral l  A 1 C A  2 E F :  

Set t ingf(A)  = g(A) + c(A), we conclude as before from Theorem 1 the equivalence of 

(d ] )  There exists some x E IR s such that 

g(A)+c(A)<~x(A)+c(A) for all A E F  

g(L) + c(L) = x(L) + c(L) for all L E L. 

r/ m 

(d~) Fo ra l lA  1 . . . .  ,AnEF,  L I , . . . ,L  m E L w i t h i =  ~1 1Ai=/=~I l z / '  

?l m 

2: (g(A,) + c(A,)) .<< Z (g(Zi) + c(Lj)). 
/ = I  / = 1  

These conditions, however, are equivalent to (d I ) and  (d 2). [] 
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We remark that in the conditions (b2) and (c2) we may, of course, replace Fo by F if 
we state that f be non-negative on F or L. 

3 G a m e s  Wi th  R e s t r i c t e d  C o o p e r a t i o n  

We propose a general model for a cooperative game with a finite set S of players. It 

does not assume that every coalition U_C S of  players be feasible and thus takes into 

account the situation, for instance, where some players may only join a coalition if 
some other players join the same coalition as well. 

Definition: A (finite)game with restricted cooperation is a quadruple F = (S, F, v, Vo), 

where S is the finite set of players, F a nonempty collection of  subsets of S called 

feasible coalitions, v :,F ~ gt the value function, with v(0) = 0 and v o E N the value of 

the game F. If v and vo are non-negative, F is a positive game. 

A solution of the game F is a fair distribution of  its value Vo among the players. 
As usual, we therefore define the core C(v) of the game P to consist of all undominated 
imputations, i.e., vectors x E ~ s  such that 

(i) ~, xs>~v(A) for all A E F  
sEA 

(ii) ~ x s = V o. 
s~S 

Note that we do not require that an imputation necessarily be non-negative. Indeed, 
individual players may end up with a negative payoff if they do not have the strength 

to secure a non-negative payoff by forming individual coalitions. As far as the existence 

of C(v) is concerned, it is clear that our model remains essentially the same if we as- 

sume S E F and v(S) = v o. Hence we will make this assumption for the following 

discussion. Our aim is to show that the classical theorems on the existence of cores 
also hold true in this wider context. 

Call the game P = (S, F, v, vo) balanced if for all A x . . . . .  An  E F and m E N: 

1 n 1 n 
- -  Z IAi = I  s implies - -  ~ v ( A i ) ~ v  o. 
m i=i m i=l 
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Then we obtain a generalization of  the theorem of Bondareva (1963) (see also Shapley 

1967) by taking L = {S} in Corollary 3. 

Theorem 4: The game P = (S, F, v, v0) is balanced if and only if C(v) :/= O. [] 

The game P = (S, F, v, Vo) is said to be exact if for all A E F, 

v ( A ) =  min x(A). 
x~C(v) 

Choosing L = {A, S} in Corollary 3, we thus arrive at the analogue of a result due to 
Schmeidler (1972): 

Theorem5: P=(S ,F , v ,  Vo)is exact if and only if for all A, A 1 , . . . , A n E F  and 

m, k C N ,  

n i1 

X 1Ai=m �9 1 s +k �9 1A implies ~, v(Ai)<.mvo +kv(A). 
i = 1  i = 1  

[] 

Let us define the positive core of the game F = (S, F, v, Vo) as 

c § (v) : ( x  ~ c ( v )  x >1 o }. 

Then even a positive balanced game may have C+(v) = 0. To see this, take F = (A, S} 
with v(A) > v o > 0. Hence calling P completely balanced if C+(v) --/: O, Corollary 2 

yields 

Theorem 6." P = (S, F, v, v o) is completely balance d if and only if for all A 1 . . . . .  A n E F o 
and m E N, 

I n 1 n 
- -  ~, 1Ai<~ls implies - -  ~, v(Ai)<.Vo. 
m i=1 m i=1 

[] 

Although a positive balanced game need not be completely balanced, certain proper- 

ties of  the collection F of feasible coalitions may ensure that a game is completely 

balanced if it is balanced at all. From Theorem 4 and Theorem 6, for example, it is 
not  hard to derive the following sufficient condition. 
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Proposition 7: Let P = (S, F, v, vo) be a positive balanced game such that for all 
A, B E F, A n B E F and S - A E F holds. Then F is completely balanced. [] 

It is also apparent that C(v) = C+(v) if each player of the game P can form a feasible 

coalition without including any other player. The converse of the statement is not 
necessarily true as the next example demonstrates. 

Example 8: Let S = (1 ,2 ,  3) and let F consist of S together with all 2-element subsets 
of S. If 

= I3  if A = S  
v(a)  

[2 otherwise, 

then C(v) = C+(v) = {(1, 1, 1)) G0.  [] 

Nevertheless, for a large class of games, a certain converse holds. 

Theorem 9: Let I ~ = (S, F, v, Vo) be a positive balanced game such that A f~ B E F  

whenever A, B E F. Then C(v) = C + (v) if and only if {s) E F for all s E S. 

Proof." Suppose there exists a E S with {a) ~ F. 

We claim that C(v) --/: C+ (v). 
Let A be the smallest feasible coalition containing a. Since A q: {a), there exists 

some b E A  - {a}. Consider any imputation x E C(v) together with an arbitrary real 
number e > 0 and define x e E F, s via 

f 

e ~ x s - e  if s=a 

Xs = l x s + e  if s =b 

xs otherwise. 

Then x e E C(v) and x e q~ C+ (v) if e is large enough. [] 



Cores of Games With Restricted Cooperation 415 

Note that  the proof of Theorem 9 moreover shows: if the feasible coalitions of the 

positive balanced game P are closed under intersection, then C(v) is unbounded unless 

C(v) = C+(v). In other words, even membership in a strong coalition is no guarantee 
for a non-negative individual payoff  if one lacks the strength to form an individual 
coalition. 

4 Convex Games 

Recall that  a set function f i s  convex (a.k.a. supermodular)if  it satisfies the inequality 

f(A) +f(B) <f(A u 8) +f(~i n 8) 

for arbitrary subsets A and B. It is well-known that every game with a convex value 

function is balanced if every subset of  players forms a feasible coalition (see, e.g., 

Shapley 1971). We will now discuss convexity in the context  o f  games with restricted 
cooperation.  This broader concept of  convexity corresponds to the analogous extension 

of the notion of submodularity in combinatorial optimization, where it has proved 
very useful (see, e.g. Edmonds and Giles 1977 and Fujishige 1984). 

Consider the game P = (S, F, v, Vo), where we again assume S E F and v(S) = Vo. 

Let/~ consist of  all those subsets A C_ S which can be written as 

A = A  l UAz U . . . U A k ,  

where A 1, A2 . . . . .  Ak are pairwise disjoint feasible coalitions of  r'. We define the set 
function ~ on r via 

~(A) = max ~ v(Ai)  , 
t 

where the maximum is taken over all representations of  A as a union of pairwise dis- 

joint  feasible coalitions. Setting Vo = ~(S), we thus obtain a game I ~ = (S, F,  9, Vo) and 
observe 
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Lemma 1 O: [" is closed under taking disjoint unions of coalitions and 0 is superadditive, 
i.e., for all A, B E f with A N B = 0, 

0(A) + 0(B) <~ ~(A U B). 

Moreover, if 90 = Vo, then C(~) = C(v). [] 

FoUowing Edmonds and Giles (1977) we say that two subsets A, B C S form a crossing 
pair if A UB--/:S and A A B : ~ 0  and, furthermore, A\B q:Oq=BX~A. F i s  a crossing 
family if A U B E F and A N B E F whenever A, B E F are a crossing pair. 

We now say that the game F = (S, F, v, Vo) is convex if F is a crossing family and 
for every crossing pair A, B E F 

v(A) + v(B) <~ v(A U B) + v(A n B). 

A special case is given by an intersecting convex game P, where for all A, B E F with 

A NB=/:O,A U B E F a n d A  N B E F a n d  

v(A) + v(B) <~ v(A U B) + v(A n B). 

Lemma 11: Let F = (S, F, v, vo) be an intersecting convex game. Then f is closed 
under union and intersection of coalitions and for all A, B E f 

~(A) + ~(8) < O(A u B) + O(An B). 

Proof." 0 E/~ is obtained as the empty representation of feasible coalitions of F. The 
closedness under intersection is a direct consequence of de Morgan's laws: 

n m l  

UAtn U Bj=U(&nBj). 
i=1  l = t  l,i  

Suppose that 9 is not convex on F and that 

n 

A = A 1 L.J ... U An with ]~ v(Ai) = ~(A) 
i = l  
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B = Bi  U ... U Bm with 
m 
z v(Bi)  = o (a )  

1=1 

yield 

~(A) + 0(B) > O(A u B) + ~(A n B) 

and that n is as small as possible among all such counterexamples. 

Assume first n /> 2 and l e tA '  ---A 1 U ... U A n _  1 . Then 

O(A' U (A n U B)) + O(A' {3 (An U B)) >1 fJ(A') + ~(An U B) 

f}(A. U B) + O(A. n B) >I O(A,) + 5(B) 

Since A n n B and A'  n (An U B) are disjoint, we have 

O(A n B) >t O(A. n B) + O(A' n (A, u B)). 

Therefore, O(A) = ~(A') + f;(An) yields 

0(A) ,  ~(B) ~< O(A u B) + ~(A n B), 

a contradiction. Hence n = 1 and we may assume as well that also m has been chosen 

as small as possible. Then A = A 1 must have a non-empty intersection with each of the 

Bi's , and thus also the sets A 1 U B1, A 1 U B I U B2 . . . .  are members of the intersecting 

family F. Now 

~(A) + ~,(B) = v (A~)  + v(B1) + . . .  + v ( B , , )  

~ '/)(A 1 gB1)+v(B2)'l-...+V(Bm)+V(A1 n B 1 )  

<~ v(A~ UB~ u B2) + v(B3) + ... + V(Bm) + v(A, n B 1 )  + v(A~ n B2) 

~ v ( A  UB) + v(A 1 n BI )  + ... + v(A 1 n B m )  

o(.4 u B) + O(An B), 

a contradiction, which completes the proof. [] 
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Proposition 12: Let P = (S, F, v, %) be anintersectingconvex game. Then P is balanced 

if and only if for all pairwise disjoint feasible coalitions A I , A 2 , . . . , A n  E F  with 

A 1 U A 2 U . . . U A  n=S,  

v(A ~ ) + v(A 2 ) + . . .  + v(A . ) < Vo . 

Moreover, P is completely balanced if and only if for all pairwise disjoint feasible 

coalitions A l, A2 . . . . .  A n E Fo, 

v(A ~ ) + v(A 2 ) + .. .  + v ( A . )  < Vo. 

Proof: The conditions are clearly necessary and ensure v 0 = v0. To see that they are 
also sufficient, we consider the associated convex game I ~. 

Choose a vector c E IR s such that for all A C B E F, 

~(A) + c(A) < ~;(B) + c(B) 

and define for every subset X C S, 

f (X)  = max { ~(A) + c(A) : A C_ X, A E P }. 

Since ~ +~ is convex and monotone on Je, f i s  convex and monotone with respect to all 

subsets of  S and therefore defines a convex game in the sense of Shapley (1971) with 

value f (S)  = v o + c(S). Hence C(f) :/= ~ and the observation 

x - c E C ( ~ )  if x E C ( f )  

implies C ( ~ )  = C(v) --/: O. 
For the second statement we define for X C S, 

f ' ( X ) -  max {~(A) :A  C_X,A E F ) .  
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Again f '  is convex and monotone. Furthermore, the condition given guarantees f '(S) = 

O(S) = Vo. Now C+(f ') -r 0 and 

x E C + ( 5 )  if and only if x E C + ( f ' ) .  

which finishes the proof. [] 

Note that the proof of Proposition 12 exhibits an intersecting convex game r' to be 

completely balanced if and only if its non-negative core C+(v) is the core of some 
positive convex game in which all subsets of players constitute feasible coalitions. 

We now discuss the case where the convex game F = (S, F, v, Vo) is not necessarily 

intersecting. Then the previous construction may not work as F need not be closed 

under union and intersection (to see this, take, for example, S = (1, 2, 3 ) and F = 

( (1 ,2} ,  (1 ,3} ,  {2, 3}}). Note, however, that the set family dual to Fis  intersecting. 

Therefore, we consider the collection 

D = (D c S :  S\D EF'} 

of complements of members of/P. As in l_emma 1 1, we have for all A, B EF and 
A UB:C=SifA f ' )B~O, 

"~(A) + O(B) ~ O(A U B) + "o(An B). 

Hence we obtain for all D, E E D with D (~ E 4: O, 

w(D) + w(L3 >1 w(D u E) + w(D n E), 

where w(D) = Vo - f;(S\D) is submodular. Consider the collection D of all subsets of S 

which can be written as disjoint unions of members olD.  As before, we then conclude 
that/9 is closed under union and intersection and for all D,. E E/9, 

e(D) + ~(E)/> ~(D u E) + ~(D n E), 
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where 

n 

W(D) = rain ~ w(Di) 
i = 1  

with the minimum taken over all representations D = D 1 U ... U D n by pairwise dis- 

joint members of D. Hence we obtain 

F* = (A C_S : S \ A  ~ID) 

as a collection of subsets of S that contains F and is closed under union and intersec- 

tion. Moreover, for all A, B ~ F * ,  

v*(A) + v*(8) <<- v*(A u 8) + v*(A n B), 

where v*(A)  = ~ ( S ) - W ( S k A ) .  Thus P* = (S, F*,  v*, v*(S)) is a convex game with 

C(v* ) --/= r 
Because v*(S) = ~(S) ,  it is clear that v*(S) <~ Vo. On the other hand, tracing back 

the construction for v*, one quickly verifies for each x E IR s with x(S)  = Vo, 

x e C(v) implies x(S) <~ v~(S). 

Hence v*(S) = v o is necessary for C(v) q: r Conversely, this condition is also sufficient 

since C(v*) r r Hence we obtain the following result. 

Theorem 13: Let F = (S, F, v, Vo) be any convex game. Then P is balanced if and only 

if 

Vo = v*(s).  

Moreover, P is completely balanced if and only if 

Vo = v*(S)/> O. [] 
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One can also characterize general balanced convex games in the spirit of Proposition 

12 by employing the technique of  "uncrossing dual variables" introduced by Edmonds 

and Giles (1977). We say that a collection A I . . . .  , A  n of (not necessarily distinct) 

members of F is crossfree if there are no two members Ai, A] such that Ai ~ A] ~ Ai, 

Ai  N A ]  r 1 6 2  a n d A / U A ]  --/:S. 

Proposition 14: Let F = (S, F, v, Vo) be any convex game. Then F is balanced if and 

only if for every cross-free A 1 . . . .  , A n E F, m E IN, 

1 ~ 1Ai 1 S implies v(Ai)<~Vo. - -  = - -  

rr/ l = 1  m i = l  

Moreover, P is completely balanced if and only if for every crossfree A 1, .-., An EF0 ,  

m E N ,  

1 ~ 1Ai 1S implies 1 ~ v (A i )<Vo .  - -  = - -  

m i = l  rrt  i = 1  

Proof.' We prove the first statement and note that for F to be balanced the stated con- 

dition must be satisfied. 
To show that the condition is also sufficient, assume that F is not balanced. Then 

there is a collection A 1, ..., An E F a n d  an integer m E tN such that 

1 n 1 n 

- -  ]~ 1A =1 s but - -  E v ( A i ) > v  o. 
m i = 1  i m i = 1  

We must show that this collection can be assumed to be cross-free. To see this, choose 
among all these collections one that minimizes 

n 

2~ [Ai[ . IS\Ai[.  
i = l  

We claim that this collection is cross-free. Suppose to the contrary that A 1 (3 A 2 r r 

A 1 U A  2 :#S, A 1 ~ A2 ~ A1, say. Then cons iderA ' l ,A  ~ . . . . .  A n E F ,  where 
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A~ =A1 UA2 

A~ =A1 nAu  

A~ = A t i = 3, 4, . . . ,  n. 

Then clearly 

1 n 1 n 
- -  Z 1Ai =1 s and --  ~ v(A~)>Vo 
m i=1 m i=1 

because v(AI)  + v(A2) <<- v(A1 U A 2 )  + V(AI N A 2 ) .  But 

n /1 

IA~I" ISX~l~l < ~1 IAel" ISNAil, 
i = l  i = 1  

cont rad ic t ing  the choice o f A  1 . . . .  , An. [] 
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