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Abstract We introduce a method to reduce the study of the topology of a simpli-
cial complex to that of a simpler one. Applying this method to complexes arising
from graphs, we give topological meaning to classical graph invariants. As a conse-
quence, we answer some questions raised in (Ehrenborg and Hetyei in Eur. J. Comb.
27(6):906–923, 2006) on the independence complex and the dominance complex of
a forest and obtain improved algorithms to compute their homotopy types.

Keywords Simplicial complexes · Monomial ideals · Homotopy type ·
Independence and domination in forests

1 Introduction

In this paper we study the topology of a simplicial complex Δ by introducing a family
c(Δ) of face links that we call the core of Δ. The homotopy types of Δ and each
element of its core are closely related. Indeed, we show that one of the following
happens: either Δ collapses onto a point, or it is simple-homotopic to an iterated
suspension of any element of its core.

The application motivating this method is in the study of the independence and
dominance complexes of a graph, which have been extensively studied in the recent
years [6, 11, 12, 18–21, 27] because of their applications in graph theory, network
analysis, and statistical mechanics. Our method allows us to obtain several results
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on the topology of the independence and dominance complexes. In particular, we
give topological interpretations to some well-known graph invariants (e.g., the dom-
ination number, the independent domination number, the matching number, and the
vertex covering number), which also have been an object of several studies (see, for
instance, [1, 2, 5, 13, 16, 17]). As a consequence, we answer some questions posed
in [12]. Ehrenborg and Hetyei prove that the independence complex of a forest F is
always contractible or homotopic to a sphere and that the dominance complex of a
forest F is always homotopic to a sphere. Hence, they ask for a simple way to deter-
mine whether the independence complex of F is contractible and, if not, to compute
the dimension of the associated sphere, and similarly to compute the dimension of
the sphere associated to the dominance complex of F . We use the cores to answer
these questions, proving that the contractibility of the independence complex of F is
detected by some graph theoretical properties of F . When the independence complex
of F is contractible, it collapses onto a point; when the independence complex of F is
not contractible, it collapses onto the boundary of a cross-polytope whose dimension
equals the domination number of F . Finally, we prove that the dominance complex
of F always collapses onto the boundary of a cross-polytope whose dimension equals
the matching number of F .

The independent domination number and the matching number of a forest F can
be both computed by linear algorithms (see [8]). Hence the results in this work give
an efficient way to compute the dimensions of the spheres associated to F via both
the independence and dominance complex.

For notational convenience, we use the terminology coming from commutative
algebra (specifically monomial ideal theory).

The paper is organized as follows. Section 2 contains the notation and background
needed in the sequel. In Sect. 3 we define the notion of domination between variables
and study its relationship to suspension. In Sect. 4 we introduce and study the main
new concept of this work, namely the core of a simplicial complex; we reduce the
study of the topology of a simplicial complex to the study of its core. In Sect. 5 we
apply the method of the core to the independence complex Δ of a forest F . We find
several conditions which are equivalent to the contractibility of Δ and prove that, if
Δ is not contractible, then it collapses onto the boundary of a cross-polytope whose
dimension equals the domination number of F . In Sect. 6 we apply the method of the
core to the dominance complex Δ of a forest F . We prove that Δ always collapses
onto the boundary of a cross-polytope whose dimension equals the matching number
of F .

2 Notation and Background

If r ∈ Z, r ≥ 0, we let [r] := {1, . . . , r}. The cardinality of a set A is denoted by |A|.
We consider finite undirected graphs G = (V ,E) with no loops or multiple edges.

For all S ⊂ V , let N [S] := {w ∈ V | ∃s ∈ S, {s,w} ∈ E} ∪ S be the closed neigh-
borhood of S; when S = {v}, then we let N [v] = N [{v}]. A set D ⊂ V is called
dominating if for all v ∈ V , N [v] ∩ D �= ∅. A set D ⊂ V is called independent if no
two vertices in D are adjacent, i.e., {v, v′} /∈ E for all v, v′ ∈ D. A vertex cover of G
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is a subset C ⊂ V such that every edge of G contains a vertex of C. A matching of G

is a subset M ⊂ E of pairwise disjoint edges.
We consider the following classical invariants of a graph G which have been ex-

tensively studied by graph theorists (see, for instance, [1, 2, 5, 13, 16, 17]); we let

• γ (G) := min{|D|,D is a dominating set of G} be the domination number of G;
• i(G) := min{|D|,D is an independent dominating set of G} be the independent

domination number of G;
• α0(G) := min{|C|,C is a vertex cover of G} be the vertex covering number of G;
• β1(G) := max{|M|,M is a matching of G} be the matching number of G.

Recall the following well-known result of König (cf. [10], Theorem 2.1.1).

Theorem 2.1 (König) Let G be a bipartite graph. Then α0(G) = β1(G).

We refer the reader to [4] or [10] for all undefined notation on graph theory.
We let X := {x1, . . . , xn} and Z[X] be the polynomial ring with variables

x1, . . . , xn over the integers; we set Z[∅] := Z. Let m,m′ ∈ Z[X]; we write m′|m
if m′ divides m.

Definition 2.2 A simplicial complex Δ on X is a set of subsets of X, called faces,
such that, if σ ∈ Δ and σ ′ ⊂ σ , then σ ′ ∈ Δ. The faces of cardinality one are called
vertices.

Equivalently, a simplicial complex Δ on Z[X] is a finite set of square-free mono-
mials of Z[X] such that, if m ∈ Δ and m′|m, then m′ ∈ Δ.

We do not require that {x} ∈ Δ for all x ∈ X. We frequently identify a set S ⊂
X with the monomial x

ε1
1 · · ·xεn

n , where εi = { 1 if xi∈S;
0 if xi /∈S.

Note that the empty set is
identified with the monomial 1. We refer the reader to [23] for all undefined concepts
from commutative algebra.

Every simplicial complex Δ on Z[X] different from {1} has a standard geometric
realization. Let e1, . . . , en be the standard basis of R

n. The realization of Δ is the
union of the convex hulls of the sets {ei such that xi |m} for each monomial m ∈ Δ.
Whenever we mention a topological property of Δ, we implicitly refer to the geomet-
ric realization of Δ with the topology induced by R

n.
Let I ⊂ Z[X] be a monomial ideal (i.e., an ideal generated by monomials) con-

taining x2
1 , . . . , x2

n . The set of monomials of Z[X] \ I is a simplicial complex on
Z[X] that we denote by R(I). Conversely, given a simplicial complex Δ on Z[X],
let IΔ ⊂ Z[X] be the ideal generated by the monomials not in Δ. Clearly Δ = R(IΔ)

and I = IR(I). Note that IΔ is (essentially) the Stanley–Reisner ideal of the simplicial
complex Δ (see [26]).

As examples, consider the ideals In = (x2
1 , . . . , x2

n), Jn = (x1 · · ·xn, x
2
1 , . . . , x2

n),
and Kn = (x1x2, x3x4, . . . , x2n−1x2n, x

2
1 , . . . , x2

2n). The simplicial complex R(In) is
the (n − 1)-dimensional simplex, and R(Jn) is its boundary; R(Kn) is the boundary
of the n-dimensional cross-polytope, which is the dual of the n-dimensional cube.
Note that the cube, its boundary, and the cross-polytope are not simplicial complexes.
Furthermore R(Kn) is the nth suspension of the simplicial complex {1}.
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From now on, unless explicitly mentioned otherwise, I denotes a monomial ideal
of Z[X] containing x2

1 , . . . , x2
n , and Δ := R(I).

For the basic concepts of simplicial homology, we refer the reader to [24]. We
identify the free Abelian group of simplicial chains on Δ with the quotient Z[X]/I :
the chains of dimension i − 1 are the span of the monomials of degree i. Choose an
order on X; this induces a boundary map δ on the simplicial chains. We denote by
Z(Δ) the Z-module of cycles on Δ and by H̃(Δ,Z) the reduced homology groups
with integer coefficients of Δ. A quasi-isomorphism of degree r is a morphism of
chains sending chains of degree k to chains of degree k + r which induces an isomor-
phism in homology.

Let M be a finitely generated graded Z[X]-module M ; we denote the (multi-
graded) Hilbert series of M by H(M;x1, . . . , xn). The multi-graded face polynomial
FΔ(x1, . . . , xn) of Δ is the polynomial of Z[X]

FΔ(x1, . . . , xn) :=
∑

m∈Δ

m = H
(
Z[X]/I ;x1, . . . , xn

)
.

The face polynomial FΔ(t) of Δ is the polynomial

FΔ(t) :=
∑

m∈Δ

tdegm = FΔ(t, . . . , t).

The reduced Euler characteristic of Δ is ẽ(Δ) := −FΔ(−1).
We note that the simplicial complexes R((x1, . . . , xn)) = {1} and R(Z[X]) = ∅

are different: we call {1} the (−1)-dimensional sphere, and ∅ the (−1)-dimensional
simplex. The empty simplex R(Z[X]) is contractible. For n ≥ 1, let Sn−2 :=
R((x1 · · ·xn, x

2
1 , . . . , x2

n)), the sphere of dimension n − 2. Consistently with these
conventions, the reduced Euler characteristic of the (−1)-dimensional sphere is −1,
while the reduced Euler characteristic of the (−1)-dimensional simplex is 0.

Let x ∈ Z[X] be a monomial, and define the simplicial complexes

(Δ : x) := {m ∈ Δ | xm ∈ Δ} = R(I : x),

(Δ,x) := {m ∈ Δ | x � m} = R(I, x),

where (I : x) = {m ∈ Z[X] | xm ∈ I }, and (I, x) is the ideal generated by I and x.
The simplicial complexes (Δ : x) and (Δ,x) are usually called respectively link and
face-deletion of x. If I1, . . . , Ik ⊂ Z[X] are monomial ideals containing x2

1 , . . . , x2
n ,

then we define

join(R(I1), . . . ,R(Ik)) := {
lcm

{
mi, i ∈ [k]} | mi ∈ R(Ii)

}
.

If x and y are monomials, let

Ax

(
Δ) := join

(
Δ, {1, x}),

Σx,y(Δ) := join
(
Δ, {1, x, y}).
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If x, y ∈ X, then Ax(Δ) and Σx,y(Δ) are both simplicial complexes. If x �=
y ∈ X and they are coprime with the faces of Δ, then Ax(Δ) and Σx,y(Δ) are called
respectively the cone on Δ with apex x and the suspension of Δ. If x �= y and x′ �= y′
are variables in X coprime with all the faces of Δ, then the suspensions Σx,y(Δ) and
Σx′,y′(Δ) are isomorphic; hence in this case sometimes we drop the subscript from
the notation. It is well known that if Δ is contractible, then Σ(Δ) is contractible,
and that if Δ is homotopic to a sphere of dimension k, then Σ(Δ) is homotopic to a
sphere of dimension k + 1.

We recall the notions of collapse and simple-homotopy (see [9]). Let σ ⊃ τ be
faces of a simplicial complex Δ, and suppose that σ is maximal and deg(τ ) =
deg(σ ) − 1. If σ is the only face of Δ properly containing τ , then the removal of
σ and τ is called an elementary collapse. If a simplicial complex Δ′ is obtained from
Δ by an elementary collapse, we write Δ � Δ′.

Equivalently in terms of ideals, an elementary collapse is obtained by adding to
the monomial ideal I a monomial τ such that

• τ is a monomial not in I , and
• there is a unique variable a such that σ := aτ is also not in I .

When Δ′ is a subcomplex of Δ, we say that Δ collapses onto Δ′ if there is a
sequence of elementary collapses leading from Δ to Δ′.

Definition 2.3 Two simplicial complexes Δ and Δ′ are simple-homotopic if they are
equivalent under the equivalence relation generated by �.

It is clear that if Δ and Δ′ are simple-homotopic, then they are also homotopic,
and that a cone collapses onto a point.

Let a ∈ X. If a ∈ I , then a is not a vertex of Δ. Since we are interested in study-
ing Δ, we identify I ⊂ Z[X] with J ⊂ Z[X \ {a}] whenever I = (J, a), because the
associated simplicial complexes on X and X \ {a} are the same. Note that, in general,
a monomial ideal J has a unique minimal generating set M consisting of monomials.
If J = IΔ, then we let M = B ∪ {x2

1 , . . . , x2
n} with B ∩ {x2

1 , . . . , x2
n} = ∅ and we call

the elements of B the minimal square-free generators of IΔ. It follows from the defi-
nitions that (I : a) = (I, a) if and only if Δ is a cone with apex a; equivalently, Δ is
a cone with apex a if and only if a divides no monomial of B .

We give the following easy result for further reference.

Lemma 2.4 Let Δ be a simplicial complex, and let x ∈ Z[X] be a monomial; then
Δ = Ax(Δ : x) ∪ (Δ,x).

Proof There is an exact sequence

0 → Z[X]/(I : x)
·x−→ Z[X]/I −→ Z[X]/(I, x) → 0,

and hence FΔ = xF(Δ:x) + F(Δ,x). On the other hand, the multi-graded face polyno-
mial of Ax(Δ : x)

⋃
(Δ:x)(Δ,x) is

F(Δ:x) + xF(Δ:x) + F(Δ,x) − F(Δ:x).

Note that x is coprime with all vertices of (Δ : x). �
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3 Domination

In this section we introduce the notion of domination between variables in a mono-
mial ideal I ⊂ Z[X] containing x2

1 , . . . , x2
n and we give some preliminary results on

the topology of the simplicial complex R(I). The concept of domination is in fact
purely combinatorial, since it uses the notion of collapse; a collapse is an instance of
deformation retract, and hence the topological properties follow.

Since domination and suspension are closely related, we start with some remarks
on suspensions of simplicial complexes. It is immediate that the suspension Σx,yΔ is
a cone with apex a if the simplicial complex Δ is a cone with apex a, independently
of whether or not x and y are vertices of Δ. On the contrary, if two simplicial com-
plexes are simple-homotopic, it does not follow in general that their suspensions are
homotopic. The next lemma analyses the question of lifting collapses to suspensions.

Lemma 3.1 Let Δ � Δ′ be simplicial complexes, σ ⊃ τ the faces removed in the
elementary collapse, and x, y ∈ X, x �= y. Then the simplicial complex Σx,y(Δ) col-
lapses onto Σx,y(Δ

′) unless one of the following is satisfied:

(1) x|τ , y � σ and y σ
x

/∈ Δ′, y τ
x

∈ Δ′;

(2) y|τ , x � σ and x σ
y

/∈ Δ′, x τ
y

∈ Δ′.

In these last cases the two suspensions have different Euler characteristics.

Proof For notational convenience, we may write a for the singleton {a}.
Notice that Δ = Δ′ ∪ τ ∪ σ and hence

Σx,y

(
Δ) = Σx,y

(
Δ′)∪τ ∪σ ∪ lcm{x, τ }∪ lcm{x,σ }∪ lcm{y, τ }∪ lcm{y,σ }, (3.1)

where the unions need not be disjoint. We separate six mutually exclusive cases.
Case 1. x, y|σ . We show that Σx,y(Δ) = Σx,y(Δ

′). By (3.1) it suffices to check
that σ ∈ Σx,y(Δ

′). By hypothesis there is t ∈ {x, y} such that t |τ ; then σ
t

∈ Δ′ and
hence σ ∈ Σx,y(Δ

′).
Case 2. x, y � σ . The union (3.1) is disjoint, and Σx,y(Δ

′) is obtained from
Σx,y(Δ) by the elementary collapses of the faces xσ ⊃ xτ and yσ ⊃ yτ (in any
order), followed by the collapse of the faces σ ⊃ τ .

Case 3. σ = xτ , y � σ . By (3.1) we have Σx,y(Δ) = Σx,y(Δ
′) ∪ τ ∪ σ ∪ yτ ∪ yσ ;

collapsing successively the faces yσ ⊃ yτ and σ ⊃ τ , we conclude.
Case 4. σ = yτ , x � σ . Follows by symmetry from Case 3.
Case 5. x|τ , y � σ . Note that σ

x
∈ Δ′ and hence σ ∈ Σx,y(Δ

′). Thus by (3.1) we
have Σx,y(Δ) = Σx,y(Δ

′) ∪ yτ ∪ yσ . We have

yσ ∈ Σx,y

(
Δ′) ⇐⇒ y σ

x
∈ Δ′

⇓ ⇓
yτ ∈ Σx,y

(
Δ′) ⇐⇒ y τ

x
∈ Δ′

and hence
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Fig. 1 The simplicial
complexes R(I) and R(J )

• if y σ
x

∈ Δ′, then Σx,y(Δ) = Σx,y(Δ
′);

• if y τ
x

/∈ Δ′, then Σx,y(Δ
′) is obtained by the elementary collapse of the faces

yσ ⊃ yτ of Σx,y(Δ);
• if y σ

x
/∈ Δ′ and y τ

x
∈ Δ′, then (3.1) is satisfied. Note that Σx,y(Δ) = Σx,y(Δ

′) ∪
yσ ; thus the Euler characteristics of Σx,y(Δ) and Σx,y(Δ

′) differ by one.

Case 6. y|τ , x � σ . Follows by symmetry from Case 5. �

Remark 3.2 Note that if at least one among x or y is not a vertex of Δ′, then Σx,y(Δ)

collapses onto Σx,y(Δ
′), since (1) and (2) cannot be satisfied.

Example 3.3 Consider the following ideals of Z[x, y,u, v]:
• I = (xy, yu, x2, y2, u2, v2),
• J = (xy, yu, xv, x2, y2, u2, v2).

The complex R(I) collapses onto R(J ) by the elementary collapse of the faces
xuv ⊃ xv. On the other hand, Σx,y(R(I)) is the three-dimensional simplex with
vertices x, y,u, v, while Σx,y(R(J )) is its boundary. This is case (1) of Lemma 3.1.

We now give the main definition of this section.

Definition 3.4 Let a, b ∈ X; a dominates b in I if R(I) is not a cone with apex b

and R(I, a) is a cone with apex b.

Note that a dominates b in I if and only if every minimal square-free generator
of I divisible by b is also divisible by a and there are such monomials. Loosely
speaking, if a dominates b, then R(I) is composed out of two cones: the cone R(I, a)

with apex b and the cone with apex a on the subcomplex R(I : a) ⊂ R(I, a) (see
Fig. 2). The apex a is not a vertex of R(I, a), while b might be a vertex of R(I : a).

An immediate consequence of Lemma 2.4 is that, if a, b ∈ X and a dominates
b in I , then R(I) is homotopic to Σ(R(I : a)). In fact we can prove that R(I) is
simple-homotopic to Σ(R(I : a)).

Theorem 3.5 Let a dominate b in I , and let I ′ = (I, ab′, (b′)2) ⊂ Z[X][b′]. Then

(1) R(I ′) collapses onto R(I),
(2) R(I) collapses onto Σa,b(R(I : a)),
(3) R(I ′) collapses onto Σa,b′(R(I ′ : a)).
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Fig. 2 The variable a

dominates b

In particular, R(I) is simple-homotopic to Σ(R(I : a)).

R(I ′)
collapses collapses

R(I)

collapses

Σa,b′(R(I ′ : a))

Σa,b(R(I : a)) Σ(R(I : a))

Proof (1) By definition R(I) ⊂ R(I ′). We show that there is a sequence Δ0 :=
R(I ′) � Δ1 � · · · � Δs := R(I) of simplicial complexes, where s is the number of
faces of R(I ′) containing b and b′, and Δi is obtained from Δi−1 by the elemen-
tary collapse of a face σ containing b and b′ and the face τ = σ

b
. Let Δ0 := R(I ′);

suppose that Δj has been defined for all j ≤ i ≤ s.
If i = s, then bb′ is not a face of Δi , since at each step we remove exactly one face

containing bb′. In this case we are done, since we have already removed the faces
σ = bb′ and σ

b
= b′, and thus Δs = R(I).

If i < s, we define Δi+1 as follows. Note that bb′ is a face of Δi , since we removed
fewer than s faces containing bb′, and let f bb′ be a maximal face of Δi contain-
ing bb′. We prove first that the only face strictly containing f b′ is f bb′. Let qf b′ be
a maximal face of Δi containing f b′, and assume by contradiction that qf b′ �= f bb′.
Clearly a does not divide qf , since ab′ ∈ I ′, and b cannot divide q , since f bb′ is
maximal. By the assumption on the elementary collapses, the faces of R(I ′) not con-
taining b′ are not affected by the collapses. Hence qf b is a face of R(I, a), since a

dominates b and a � qf , and it is also a face of Δj for all j ≤ i; the monomial qf bb′
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is a face of Δ0 and not of Δi by maximality. Hence there is an index j < i such that
Δj+1 is obtained by removing the faces σ = qf bb′ and σ

b
, contradicting the fact that

qf b′ ∈ Δi .
By what we just proved, we may collapse the faces qf bb′ and qf b′. We define

Δi+1 to be the result of this collapse. Iterating this procedure, we conclude.
(2) The simplicial complex Σa,b(R(I : a)) is a subcomplex of R(I). Let σ be a
maximal face of R(I) not in Σa,b(R(I : a)); we show that σ contains b and that
we may collapse σ and σ

b
. Note that σ does not contain a, since σ is not a face of

Σa,b(R(I : a)), and hence σ is a face of R(I, a); since R(I, a) is a cone of apex b and
σ is maximal, σ contains b. Write σ = τb; if τa is a face of R(I), then τ ∈ R(I : a)

and hence τb ∈ Σa,b(R(I : a)). Since this is not the case, if τh is a face of R(I)

containing τ , then h is not divisible by a and hence τh is a face in R(I, a); thus
lcm{τh, b} is also a face of R(I, a), and by maximality of σ = τb we conclude that
h|b. Thus the only face of R(I) strictly containing τ is σ . Hence we may collapse
the faces σ and τ to obtain a simplicial complex Δ′. Note that (Δ′, a) is again a cone
with apex b, and we may iterate this procedure and conclude.
(3) Follows from part (2), since a dominates b′ in I ′.

The last statement follows since Σa,b′(R(I ′ : a)) is isomorphic to the abstract
suspension Σ(R(I : a)), because a, b′ /∈ R(I ′ : a) = R(I : a). �

Example 3.6 Let I = (x1x2x3, x
2
1 , x2

2 , x2
3) and J = (x1x2, x3x4, x

2
1 , x2

2 , x2
3 , x2

4). We
have that x3 dominates x1 in I and x3 dominates x4 in J ; moreover, R(I : x3) =
R(J : x3) is the simplicial complex consisting of the two points x1, x2. Hence both
R(I) and R(J ) are simple-homotopic to the boundary of the 2-dimensional cross-
polytope (a square) by Theorem 3.5. Whereas the simplicial complex R(J ) is actually
the boundary of the 2-dimensional cross-polytope, the simplicial complex R(I) is the
boundary of the 2-dimensional simplex (a triangle).

The following lemmas are needed in the next section.

Lemma 3.7 Let Δ � Δ′ be simplicial complexes, and let σ ⊃ τ be the faces removed
in the elementary collapse. Then

(1) any cycle of Δ is a combination of faces different from σ ;
(2) any cycle of Δ is homologous to a combination of faces different from τ ;
(3) the inclusion Δ′ ⊂ Δ induces an isomorphism in homology.

Proof Write σ = aτ and choose an order of the variables such that a is first.
(1) Let z = cσ + ∑

A�=σ cAA be a cycle. Since

0 = ∂z = cτ − ca∂τ +
∑

A�=σ

cA∂A,

we have c = 0, because the face τ is properly contained only in σ .
(2) Let z = dτ + ∑

A�=τ cAA and note that z − ∂(dσ ) has the required property.
(3) Let z = ∂(cσ + dτ + ∑

A�=σ,τ cAA). By part (2) we may assume that the
coefficient of τ in z is zero and hence that c = 0. Then z is the boundary of
−d∂σ + dτ + ∑

A�=σ,τ cAA, and we are done. �



Discrete Comput Geom (2008) 40: 444–468 453

Remark 3.8 If Δ′ is obtained from Δ by a sequence of elementary collapses, then the
inclusion Δ′ ⊂ Δ induces an isomorphism in homology.

Lemma 3.9 Let a dominate b in I , and let I ′ = (I, ab′, (b′)2) ⊂ Z[X][b′]. Then
the inclusion R(I) ⊂ R(I ′) induces an isomorphism in homology whose inverse is
induced by the map ϕ̄ of chains given by

m �−→

⎧
⎪⎨

⎪⎩

m if m does not contain b′,
b m

b′ if m contains b′ and does not contain b,

0 if m contains bb′,

where m is any face of R(I ′), with the variables ordered so that a < b′ < b < x for
all remaining variables x.

Proof First of all, we check that ϕ̄ is a map of chains. Let m ∈ R(I ′) be a face; we
only need to consider the case m = b′m′ with m′ not containing b. In this case, m′
cannot contain a, since ab′ is not a face of R(I ′), and, because a dominates b in I , it
follows that bm′ is a face of R(I), as needed. Let ῑ be the map of chains induced by
the inclusion R(I) ⊂ R(I ′), and let z be a cycle in R(I ′). To conclude it is enough
to check that z − ῑ(ϕ̄(z)) is a boundary in R(I ′). We may write z = b′bA + b′B + C,
where the chains in A,B do not contain b, b′, and the chains in C do not contain b′;
note that the chains in A,B cannot contain a since ab′ is not a face. Since z is a cycle,
we have

0 = ∂z = bA − b′A + b′b∂A + B − b′∂B + ∂C,

which implies that −(A+∂B) = 0 since it is the coefficient of the faces containing b′
and not containing b. Hence we may write z− ῑ(ϕ̄(z)) = b′bA+(b′−b)B = ∂(b′bB).
Note that b′bB is a chain since the faces in B do not contain a and bB is a chain. �

We note that applying ϕ̄ to a chain simply deletes all terms containing the face bb′
and replaces b′ by b in all remaining terms.

4 Resolutions and Cores

In this section we introduce the notions of resolution and core of a monomial ideal
I ⊂ Z[X] containing x2

1 , . . . , x2
n , and we deduce topological properties of the simpli-

cial complex R(I) from the resolution and the core of I .
Let (a1, . . . , ar ) be a sequence of variables of Z[X] and, for i ∈ [r + 1], let Ii :=

(I : a1 · · ·ai−1).

Definition 4.1 A resolution of I is a sequence A = (a1, . . . , ar ) such that, for all
i ∈ [r], either R(Ii) is a cone with apex ai , or there exists bi ∈ X such that ai domi-
nates bi in Ii .
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We call c(A) := Ir+1 the core of A, d(A) := r the depth of A, and

c(I ) := {
c(A) | A is maximal

}
,

d(I ) := min
{
d(A) | A is maximal

}

respectively the core and the depth of I .
The resolution A is spherical if the simplicial complex R(Ii) is not a cone of apex

ai for all i ∈ [r]. The ideal I is spherical if it admits a maximal resolution which
is spherical, conical if it admits a resolution which is not spherical, and simple if
(x1, . . . , xn) ∈ c(I ).

Remark 4.2 We shall see that the properties of being spherical and conical are mutu-
ally exclusive (cf. Theorem 4.10).

Note that if R(I) is a cone with apex b and a �= b, then R(I : a) is a cone with
apex b. Hence if A is a resolution of I and R(c(A)) is a cone with apex b, then all
maximal resolutions extending A must contain b.

Theorem 4.3 Let A = (a1, . . . , ar ) be a resolution of I .

• If A is conical, then R(I) collapses onto a point.
• If A is spherical and ai dominates bi in (I : a1 · · ·ai−1), then R(I) collapses

onto join(Σ,R(c(A))), where Σ := join({1, a1, b1}, . . . , {1, ar , br}). In particular,
R(I) is simple-homotopic to Σd(A)(R(c(A))).

Proof If R(I) is a cone of apex a1, then it collapses onto the point a1. Otherwise by
Theorem 3.5 the simplicial complex R(I) collapses onto Σa1,b1R(I : a1).

Suppose first that A is spherical and proceed by induction on r . By Theorem 3.5
part (2), the simplicial complex R(I) collapses onto Σa1,b1R(I : a1). If r = 1,
we are done. Suppose r ≥ 2. Let A′ = (a2, . . . , ar ) and Σ ′ := join({1, a2, b2}, . . . ,
{1, ar , br}). Note that c(A′) = c(A). To conclude, it suffices to show that
Σa1,b1R(I : a1) collapses onto Σa1,b1 join(Σ ′,R(c(A′))) = join(Σ,R(c(A))).

By induction, R(I : a1) collapses onto join(Σ ′,R(c(A′))), since A′ is a spherical
resolution of (I : a1). Since a1 is not a vertex of R(I : a1), we apply repeatedly
Lemma 3.1 (see Remark 3.2) to conclude.

Suppose now that A is conical. Let i be the smallest index such that R(I :
a1 · · ·ai−1) is a cone with apex ai . By what we just proved, R(I) collapses onto
C := Σa1,b1 · · ·Σa1−1,bi−1R(I : a1 · · ·ai−1). Since C is an iterated suspension of a
cone, it is a cone; thus C and hence R(I) collapse to a point. �

Remark 4.4 Let a1, . . . , ar be distinct variables, and let b1, . . . , br be variables such
that aj �= bi for all j ≤ i. Hence

r + 1 ≤ s := ∣
∣{a1, . . . , ar , b1, . . . , br}

∣
∣ ≤ 2r.

Let Σ := Σa1,b1 · · ·Σar,br ({1}). If s = 2r , then Σ is the boundary of the r-
dimensional cross-polytope. If s = r +1, then Σ is the boundary of the r-dimensional
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simplex. In the cases where r + 1 < s < 2r , the complex Σ is a hybrid of the two
extreme cases. All the complexes thus obtained are simple-homotopic.

The first case where Σ may be different from the boundary of a simplex or a
cross-polytope is for r = 3. Let I = (x1x2, x3x4x5, x

2
1 , . . . , x2

5), and let (a1, a2, a3) =
(x1, x3, x4) and (b1, b2, b3) = (x2, x5, x5). We have that ai dominates bi in (I :
a1 · · ·ai−1) and s = 5; the simplicial complex R(I) is the suspension of the boundary
of a triangle.

The following result gives an explicit description of the homology of a simplicial
complex Δ in terms of the homology of the core of a resolution of Δ.

Theorem 4.5 Let A = (a1, . . . , ar ) be a spherical resolution of I , and suppose
that ai dominates bi in Ii := (I : a1 · · ·ai−1). Then there is a quasi-isomorphism
ϕ : Z(R(c(A))) → Z(R(I)) of degree r .

Furthermore ϕ = π ◦ ϕ′, where π is a map sending each face σ to ±σ and

ϕ′ : Z(
R

(
c(A)

)) −→ Z
(
R(I)

)
,

z �−→ ∏
(ai − bi)z

(with the convention that all terms containing a square are zero).
For all orderings of the variables such that a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ar < br < x

for all remaining variables x, π is the identity map.

Proof If r = 0, let ϕ = id . By induction on r we reduce to the case r = 1, since a
composition of quasi-isomorphisms is a quasi-isomorphism and the degrees add. To
simplify the notation, let a = a1 and b = b1. Choose an order of the variables such
that a, b are the first two variables and a < b.

Suppose first that ab ∈ I . Define ϕ to be the multiplication by (a − b). Since
Σa,b(R(I : a)) is a subcomplex of R(I), ϕ(z) is a chain, and we immediately see
that it is a cycle. The fact that ϕ is a quasi-isomorphism of degree one follows
from the Mayer–Vietoris sequence associated to the decomposition Σa,b(R(I : a)) =
Aa(R(I : a)) ∪ Ab(R(I : a)): in fact, H̃∗(Aa(R(I : a)),Z) ⊕ H̃∗(Ab(R(I : a)),Z) =
(0), and

0 H̃∗
(
Σa,b

(
R(I : a)

)
,Z

) δ

H̃∗−1
(
R(I : a),Z) 0

is exact. By Theorem 3.5 and Remark 3.8, the inclusion Σa,b(R(I)) ⊂ R(I) induces
an isomorphism ι in homology. We are done, since ϕ induces in homology the com-
position ι ◦ δ−1.

If ab /∈ I , consider the ideal I ′ = (I, ab′, (b′)2) ⊂ Z[X][b′]. By the previous case
we know that the multiplication by (a − b′) induces an isomorphism of degree one
between the homology of R(I ′ : a) and the homology of Σa,b′(R(I ′ : a)). We have
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the following commutative diagram:

Z
(
R(I ′ : a)

) (a−b′)·
Z

(
Σa,b′

(
R(I ′ : a)

))
Z

(
R(I ′)

)

ϕ̄

Z
(
R(I : a)

) ϕ

Z
(
R(I)

)

where ϕ̄ is the map of Lemma 3.9. Since ϕ is a composition of quasi-isomorphisms
by the previous step and Lemmas 3.7 and 3.9, ϕ also is a quasi-isomorphism, and we
are done. �

We shall see that for the independence and dominance complexes of forests, the
map π of Theorem 4.5 always is the identity.

For the reader’s convenience, we state explicitly the following easy results that
will be used frequently in the sequel.

Lemma 4.6 Let a1, a2, a3 ∈ Z[X] be distinct variables.

(1) If a1 dominates a2 in I , then either a1 dominates a2 in (I : a3) or R(I : a3) is a
cone with apex a2.

(2) If a1 dominates a2 and a2 dominates a3 in I , then a1 dominates a3 in I .
(3) If (a1, a2) is a resolution of I , R(I : a1a2) is not a cone, and a2 dominates a3 in

I , then (a2, a1) also is a resolution of I .

Proof (1) Let M (resp. M ′) be the set of minimal square-free generators of I

(resp. (I : a3)) that are divisible by a2; note that M ′ ⊂ M : a3. Since a1 dominates a2
in I , it follows that all monomials of M are divisible also by a1; because a3 �= a1, a2,
also all monomials of M ′ are divisible also by a1. Moreover M �= ∅. If M ′ �= ∅, then
a1 dominates a2 in (I : a3); if M ′ = ∅, then R(I : a3) is a cone with apex a2.
(2) Since a1 dominates a2, every square-free minimal generator of I divisible by a2
is also divisible by a1. Since a2 dominates a3, every square-free minimal generator
of I divisible by a3 is also divisible by a2 and hence by a1a2.
(3) If a1 is the apex of a cone in R(I), then everything is clear. Otherwise we may
assume that a1 dominates b1 in I with b1 �= a2: indeed, if a1 dominates a2, since a2
dominates a3 in I , it follows that a1 also dominates a3 �= a2 in I by part (2). Applying
part (1), either a1 dominates b1 in (I : a2), and we are done, or R(I : a2) is a cone
with apex b1, and hence also R(I : a2a1) is a cone with apex b1, contradicting the
assumption. �

The symmetric group on X acts naturally on Z[X]. This action need not preserve
the ideal I , but in some cases it does. We denote by σxy the transposition of the
variables x and y.

Lemma 4.7 Let A = (a1, . . . , ar ) be a spherical resolution of I , and suppose that
R(c(A)) is not a cone. Let a /∈ {a1, . . . , ar}, a dominate b in I , and Ii := (I :
a1 · · ·ai−1) for i ∈ [r]. Then at least one of the following happens:



Discrete Comput Geom (2008) 40: 444–468 457

(1) the sequence (a1, . . . , ar , a) is a spherical resolution;
(2) there is an index i ∈ [r] such that a dominates ai in Ii , ai dominates a in Ii ,

the sequence A′ = (a1, . . . , ai−1, a, ai+1, . . . , ar ) is a spherical resolution, and
c(A) = σaai

(c(A′)).

Proof For i ∈ [r], let ai dominate bi in Ii . If b �= a1, then by Lemma 4.6 part (1) a

dominates b in I1, since R(I1) cannot be a cone, because R(c(A)) is not a cone. Thus,
if b �= ai for all i ∈ [r], we prove that we are in case (1) by iterating this argument.
Otherwise, suppose that there is an index i such that b = ai . Then ai dominates bi in
Ii , and a dominates b = ai in I and hence in Ii by Lemma 4.6 part (1). If a �= bi , by
Lemma 4.6 part (2) a dominates also bi , we may replace b by bi and reduce to the
case b �= ai .

It remains to treat the case where a = bi and b = ai : in this case, a and ai mu-
tually dominate each other in Ii . Hence every square-free minimal generator of Ii

divisible by a is divisible by ai , and conversely. Thus exchanging a and ai is an iso-
morphism of Z[X] that fixes Ii . Hence the sequence (a1, . . . , ai−1, a, ai+1, . . . , ar ) is
a resolution of I . This is case (2). �

Remark 4.8 The proof of Lemma 4.7 implies that if b /∈ {a1, . . . , ar}, then (1) cer-
tainly holds.

Corollary 4.9 Let A = (a1, . . . , ar ) be a spherical resolution of I , and let a /∈
{a1, . . . , ar} dominate b in I . Suppose that R(c(A)) is not a cone.

(1) If b /∈ {a1, . . . , ar}, then the sequence (a1, . . . , ai, a, ai+1, . . . , ar ) is a spherical
resolution for 0 ≤ i ≤ r .

(2) If A is a maximal resolution, then there exists i ∈ [r] such that a dominates
ai in Ii , ai dominates a in Ii , A′ = (a, a1, . . . , ai−1, ai+1, . . . , ar ) is a maximal
resolution, and c(A) = σaai

(c(A′)).

Proof (1) The result follows from Lemma 4.6 part (3) by induction on r − i, the case
r − i = 0 being Lemma 4.7 by Remark 4.8.
(2) Since A is maximal, we are in case (2) of Lemma 4.7. Thus there is an in-
dex i ∈ [r] such that a dominates ai , ai dominates a in Ii , and the sequence
A′′ = (a1, . . . , ai−1, a, ai+1, . . . , ar ) is a spherical resolution. From Lemma 4.7 it fol-
lows that c(A) = σaai

(c(A′′)). Hence A′′ is maximal. Otherwise, if a′′ dominated b′′
in c(A′′), then σaai

(a′′) would dominate σaai
(b′′) in σaai

(c(A′′)). By applying re-
peatedly Lemma 4.6 part (3) we deduce that A′ is also a maximal resolution and it is
spherical. Clearly c(A′) = c(A′′). �

We can now prove the main result of this section.

Theorem 4.10 Let I be a spherical ideal. Then all resolutions of I are spherical,
all maximal resolutions of I have the same depth, and I has a unique core up to
permutation of the variables.
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Proof Let A = (a1, . . . , ar ) and A′ = (a′
1, . . . , a

′
s) be maximal resolutions of I , and

suppose that A is spherical. We proceed by induction on r . If r = 0, then the only
maximal resolution of I is the empty resolution; thus I is its own core, and we are
done.

Suppose that r ≥ 1. Note first that a′
1 is not the apex of a cone, since oth-

erwise every maximal resolution of I would contain a′
1 and I would not admit

maximal resolutions that are spherical. If a′
1 /∈ {a1, . . . , ar}, then we may apply

Lemma 4.7 to deduce that there is an index i such that a′
1 dominates ai and

Ā = (a1, . . . , ai−1, a
′
1, ai+1, . . . , ar ) is a spherical resolution. Moreover we have

c(A) = σa′
1ai

(c(Ā)), and hence also Ā is maximal. Thus we may replace A by Ā

and assume that there is an index i such that a′
1 = ai . Applying Corollary 4.9, we

may assume that A = (a′
1, a2, . . . , ar ), since changing the order of the elements of a

maximal resolution does not affect the core of the resolution. In this case, we have
that (a2, . . . , ar ) and (a′

2, . . . , a
′
s) are both maximal resolutions of (I : a′

1) and the first
one is spherical. By induction we deduce that r = s and that there exists a permutation
σ of the variables (different from a′

1) such that

c(A) = (
(I : a′

1) : a2 · · ·ar

) = σ
((

(I : a′
1) : a′

2 · · ·a′
r

)) = σ
(
c(A′)

)

and (a′
2, . . . , a

′
r ) is a spherical resolution of (I : a′

1). Hence A′ = (a′
1, a

′
2, . . . , a

′
r ) is a

spherical resolution of I , and the proof is complete. �

Example 4.11 Consider the ideal I ⊂ Z[x1, . . . , x7] generated by x2
1 , . . . , x2

7 and by
the six monomials x1x2, x3x7, x5x6, x5x7, x1x3x4, and x2x3x4. The sequences A1 =
(x5, x4) and A2 = (x3, x6) are both maximal spherical resolutions of I . The cores
are

c(A1) = (
x4, x5, x6, x7, x1x2, x1x3, x2x3, x

2
1 , x2

2 , x2
3

)
,

c(A2) = (
x3, x5, x6, x7, x1x2, x1x4, x2x4, x

2
1 , x2

2 , x2
4

)
,

and σx3x4(c(A1)) = c(A2).

5 The Independence Complex

In this section we apply the techniques developed in Sects. 3 and 4 to the indepen-
dence complex of a forest.

Let G = (V ,E) be a graph with vertex set V = {x1, . . . , xn}. Let G ⊂ Z[X] be the
ideal generated by x2

1 , . . . , x2
n and by xixj for all {xi, xj } ∈ E. The ideal G is called

the edge ideal of G, and the simplicial complex R(G) is called the independence
complex of G. The faces of the independence complex are the independent sets of G.
In particular, if n = 0, then G := (0) ⊂ Z. We have

(G,v) = G \ {v},
(G : v) = G \ N [v],

(5.1)
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where for all S ⊂ V , G \ S is the graph obtained by removing from G the vertices in
S and all the edges having a vertex in S as an endpoint.

Let a and b be vertices of G. The simplicial complex R(G) is a cone of apex a if
and only if a is an isolated vertex of G. It follows from (5.1) that a dominates b in
G if and only if b is a leaf and a is adjacent to b. Thus, using Theorem 4.3, we have
proved the following:

Proposition 5.1 Let F be a forest. Then F is simple, and either

• F is conical, and then R(F) collapses onto a point, or
• F is spherical, and then R(F) collapses onto the boundary of a cross-polytope of

dimension d(F ).

Proof Since a forest always has either a leaf or an isolated vertex, the result follows
from the discussion preceding the proposition. �

The fact that R(F) collapses either onto a point or onto the boundary of a cross-
polytope can also be proved using Lemma 3.2 of [11].

The next corollary gives several characterizations of when F is conical and con-
sequently when spherical.

Corollary 5.2 Let F be a forest. The following are equivalent:

(1) the ideal F is conical;
(2) the complex R(F) is contractible;
(3) the reduced Euler characteristic ẽ(F ) is 0;
(4) the reduced Euler characteristic ẽ(F ) is even;
(5) there is a sequence (a1, . . . , ar ) of vertices such that ai is adjacent to a leaf of

Fi := F \ N [{a1, . . . , ai−1}] and Fr+1 contains an isolated vertex;
(6) for all maximal sequences (a1, . . . , ar ) of vertices such that ai is adjacent to a

leaf of Fi := F \ N [{a1, . . . , ai−1}], there is i such that Fi contains an isolated
vertex;

(7) there is a vertex v such that R(F \ {v}) and R(F \ N [v]) are either both con-
tractible or both not contractible;

(8) for all vertices v, the complexes R(F \ {v}) and R(F \ N [v]) are either both
contractible or both not contractible.

Proof The equivalence of (1)–(6) follows at once from Theorem 4.10 and Re-
mark 4.2. By Lemma 2.4, we have

ẽ(F ) = ẽ(F , v) − ẽ(F : v).

Thus ẽ(F ) is even if and only if ẽ(F , v) ≡ ẽ(F : v) (mod 2). Since (F , v) = F \ {v}
and (F : v) = F \ N [v], we may conclude using the equivalence of (2) and (4). �

We now analyze the problem of computing the depth of F . Hence, when F is
spherical, we determine the dimension of the associated sphere. We prove that the
depth of F equals the independent domination number of F .



460 Discrete Comput Geom (2008) 40: 444–468

Fig. 3 The graph F

Fig. 4 The graph F

The dominating sets and the independent dominating sets of a graph have been
studied by several graph theorists (see, for instance, [5, 16, 22]). The following
lemma, which will be needed in the sequel, gives a result on the independent domi-
nating sets of a forest.

Lemma 5.3 Let F be a forest with at least one edge. There are independent domi-
nating sets of F of cardinality i(F ) containing a vertex at distance one from a leaf.

Proof We may assume that F is a tree. Proceed by induction on the number of edges
of F . If the number of edges of F is at most three, then the result is clear.

Suppose that F is as shown in Fig. 3, where T is a tree containing the vertex e.
Let D be an independent dominating set of F of cardinality i(F ). If e ∈ D, then by
minimality b ∈ D, and we are done. If e, d /∈ D, then necessarily a, c ∈ D. Hence
also (D \ {a, c}) ∪ {b, d} is an independent dominating set of F of cardinality i(F )

and we are done. Suppose finally that e /∈ D and d ∈ D. If b ∈ D, then we are done;
otherwise a must be in D, and we may replace a by b.

The case of paths follows from what we said. Thus we assume that F is not a path.
Let G be the smallest subtree of F containing all vertices whose valence in F is at
least three, and let v be a vertex whose valence in G is at most one. Such a vertex
exists, since G is a tree and either it is a single vertex or it has at least one leaf. All
components of the forest F \ {v}, except for at most one, are paths with an endpoint
adjacent to v. By what we said above, we may assume that these paths consist of at
most three vertices. For i ∈ [3], we let si be the number of such paths with i vertices.
Note that s1 + s2 + s3 ≥ 2, since v has valence at least three. For ease of presentation,
we introduce the relevant notation in Fig. 4; the graph T is a tree and may be empty.
We consider two cases.

Case 1. There exists an independent dominating set D of F with |D| = i(F )

containing v. If s1 ≥ 1, then we are done. If s3 ≥ 1, then we are again done, since
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we may suppose that D contains c1, . . . , cs3 . Thus we assume that s1 = s3 = 0,
s2 ≥ 2, and b1, . . . , bs2 ∈ D. Let us consider the tree F ′ = (F \ {bs2}) \ {as2}. We
have i(F ′) = i(F ) − 1. Indeed, D \ {bs2} is an independent dominating set of F ′ of
cardinality i(F ) − 1; conversely, if D′ is an independent dominating set of F ′, then
D′ ∪ {bs2} is an independent dominating set of F . By induction there exists an inde-
pendent dominating set D′′ of F ′ of cardinality i(F ′) containing a vertex adjacent to
a leaf l. The vertex l is a leaf also in F , since the unique vertex of F ′ with a different
valence in F is v and v is not a leaf in F ′. Thus D′′ ∪{bs2} is the required independent
dominating set.

Case 2. Every independent dominating set of F of cardinality i(F ) does not con-
tain v. Let D be an independent dominating set of F with |D| = i(F ). If s2 ≥ 1, then
we may assume that D contains a1, . . . , as2 , and we are done. If s1 ≥ 1, then we may
assume that s3 = 0, since otherwise D contains c1, . . . , cs3 by minimality. Thus either
s1 ≥ 2 and s2 = s3 = 0, or s1 = s2 = 0 and s3 ≥ 2.

If s1 ≥ 2 and s2 = s3 = 0, then we consider the tree F ′ = F \ {es1}; by a similar
reasoning as before we have i(F ′) = i(F ) − 1, and we conclude by the induction
hypothesis.

Suppose finally that s1 = s2 = 0 and s3 ≥ 2. We may assume that c1 /∈ D; hence
x, d1 ∈ D, and by minimality c2, . . . , cs3 ∈ D. This concludes the proof. �

The following result gives a strict link between dominating sets of a forest F and
resolutions of the ideal F .

Theorem 5.4 Let F be a forest; then i(F ) = d(F ). If F is spherical, then γ (F ) =
d(F ).

Proof Let (a1, . . . , ar ) be any maximal resolution; clearly {a1, . . . , ar} is an indepen-
dent dominating set by (5.1), and we deduce that i(F ) ≤ d(F ). Thus we only need to
prove that i(F ) ≥ d(F ).

Proceed by induction on i(F ), the base case being clear. If E = ∅, then the result
is clear. So we may assume that F has at least one edge. Let D be an independent
dominating set of minimum size. By Lemma 5.3 we may assume that D contains
a vertex a1 at distance one from a leaf. We have i(F \ N [a1]) = i(F ) − 1, since
D \ {a1} is an independent dominating set of F \ N [a1], and if D′ is an independent
dominating set of F \ N [a1], then D′ ∪ {a1} is an independent dominating set of F .
Moreover d(F ) ≤ d(F : a1)+ 1. By induction d(F : a1) ≤ i(F \N [a1]), and the first
equality follows. Note that, in case F is spherical, we do not need to separate the two
inequalities by Theorem 4.10.

To prove the second statement, we proceed by induction on the number of vertices
of F . Since both γ and d are additive on connected components, we may assume that
F is a tree. If F is a single edge, then the result is clear, since any dominating set of
minimum size and any maximal resolution must contain one of the endpoints of the
edge. Thus, without loss in generality, we only consider dominating sets of minimum
size containing all vertices adjacent to a leaf.
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Suppose that a dominates b in F and that the distance of b from the closest vertex
of valence different from two is at least three. By Theorem 4.10, a can be completed
to a maximal resolution of depth d(F ), and hence we have

d(F : a) = d(F ) − 1,

γ
(
F \ N [a]) = γ (F ) − 1,

since any dominating set of F must contain at least one of a and b, and if it con-
tains the other vertex adjacent to a, then we may simply “push it away” from a. By
induction we have d(F : a) = γ (F \ N [a]) and we conclude in this case.

Moreover, if a dominates b1 and b2, b1 �= b2, then d(F ) = d(F \ {b2}) and
γ (F ) = γ (F \ {b2}), and we conclude by induction.

Thus we may assume that no vertex of F dominates more than one vertex and that
the distance of a leaf from a vertex of valence at least three is at most two. Since F

is spherical, no vertex of F has two leaves at distance one and two, respectively. Let
v be a leaf of the smallest tree containing all vertices of valence at least three of F .
The forest F \ {v} has at most one component which is not a path with an endpoint
adjacent to v. With our reductions, all path components created by removing v consist
of exactly one edge:

The graph F

We have d(F ) = d(F \ {as, bs}) + 1 and γ (F ) = γ (F \ {as, bs}) + 1, and we con-
clude by induction. �

Note that by Corollary 5.2 being conical or spherical can be defined in purely
graph theoretic terms. As a consequence of Theorem 5.4, we have proved the follow-
ing graph theoretic result.

Corollary 5.5 Let F be a forest such that F is spherical. Then γ (F ) = i(F ). �

Remark 5.6 As shown in [3, 7, 8, 14], the domination and independent domination
numbers of a forest can be computed by linear algorithms. Hence there are efficient
ways to compute the dimension of the sphere associated to a forest F such that F is
spherical.

The problem of characterizing when the domination number equals the indepen-
dent domination number appears in [22]; the forests for which this equality holds
have been studied in [25].
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A tree F with i(F ) − γ (F ) = k

The equality stated in Corollary 5.5 may be false if F is conical; indeed, the dif-
ference i(F ) − γ (F ) can be any natural number.

Example 5.7 Consider the following tree T .

The tree T

Let us check that the sequence of vertices (a1, a2, a3) is a spherical resolution of T .
First of all, the vertex a1 dominates b1 (and each of the other four leaves adjacent
to a1). The simplicial complex R(T : a1) is the same as the simplicial complex asso-
ciated to the edge ideal of the graph T1 = T \ N [a1]:

The tree T1

We have that a2 dominates b2 in T1 and (T1 : a2) is the edge ideal of the graph T2:

The tree T2

Now a3 dominates b3 in T2, and the ideal (T2 : a3) is the edge ideal of the empty tree.
Thus R(T ) � Σ3(S−1) � S2. Note that the independent domination number and the
domination number of T are both equal to 3, as predicted by Corollary 5.5.
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The dominating sets of minimum cardinality

The following corollary of Theorem 4.5 gives an explicit generator of the reduced
homology of the independence complex R(F) of a forest F .

Corollary 5.8 Let F be a forest such that F is spherical, let A = (a1, . . . , ar ) be a
maximal resolution of F , and suppose that ai dominates bi in (F : a1 · · ·ai−1). Then
there is an order of the variables such that a1 < b1 < a2 < b2 < · · · < ar < br are the
first 2r variables; with such an order, the reduced homology of R(F) is generated by
the cycle

z :=
r∏

i=1

(ai − bi).

Proof The core c(A) is the ideal generated by X. Hence a homology generator of
R(c(A)) is the class associated to the cycle 1 (in degree −1). Since ai, bi ∈ (F :
a1 · · ·ai) for all i, it follows that all the variables ai and bi are distinct. Thus there
exists an order of the variables such that a1 < b1 < a2 < b2 < · · · < ar < br are the
first 2r variables, and the result follows by Theorem 4.5. �

The cycle z of Corollary 5.8 is a cross-cycle in the sense of [18]. Assuming that
the homotopy type of F is a sphere, Corollary 5.8 can be proved also using Proposi-
tion 3.1 of [18].

6 The Dominance Complex

In this section we apply the techniques that we developed in Sections 3 and 4 to the
dominance complex of a forest.

Let G be a graph with vertices x1, . . . , xn. Let G� be the ideal generated by
{∏x∈N [xi ] x}ni=1 and x2

1 , . . . , x2
n . The ideal G� is called the star ideal of G, and the

simplicial complex R(G�) is called the dominance complex of G. The faces of the
dominance complex of G are the complements of the dominating sets of G. The
dominance complex of G is never a cone, since every variable divides some minimal
generator of G�.

Let a ∈ X; we have

(G� : a) =
((

G \ {edges containing a})�
,

∏

y∈N [a]\{a}
y

)
.
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If a dominates b, then b is adjacent to a, and all vertices adjacent to b are also adjacent
to a, i.e., N [b] ⊂ N [a]. Hence if a dominates b, we have (G� : a) = (G\ {a})�. Thus,
when F is a forest, F� is always spherical and simple, since the vertex adjacent to a
leaf dominates the leaf; this is the unique way a vertex may dominate another one in
a forest. The following theorem relates the dominance complex of a forest F to the
matching number β1(F ) and the vertex covering number α0(F ), which are known to
be equal (see Theorem 2.1).

Theorem 6.1 Let F be a forest; then

(1) F� is simple;
(2) the dominance complex of F collapses onto the boundary of a cross-polytope of

dimension d(F �);
(3) β1(F ) = α0(F ) = d(F �).

Proof (1) Follows from the remarks preceding the statement of the theorem.
(2) Follows from Theorem 4.3, since if a dominates b in I , then b is a leaf and
ab = N [b] ∈ I .
(3) Let (a1, . . . , ar ) be a maximal resolution of F , and suppose that ai dominates bi

for i ∈ [r]. Clearly {{a1, b1}, . . . , {ar , br}} is a matching of F , and {a1, . . . , ar} is a
vertex cover of F . Since for any graph, the size of a matching is always at most the
size of a vertex cover, the result follows. �

Remark 6.2 As shown in [8, 14, 15], the matching number of a forest F can be com-
puted by linear algorithms. Hence there are efficient ways to compute the dimension
of the sphere associated to the dominance complex of F .

A consequence of Theorem 6.1 is that the removal of a single vertex of F decreases
the depth of F� by at most one: given any matching M of maximum size of F ,
removing a vertex forces the removal of at most one edge from M .

Example 6.3 Consider the following tree T .

The tree T

Let us check that the sequence of vertices (a1, a2, a3, a4) is a resolution of T �. First
of all, the vertex a1 dominates b1 (and each of the other four leaves adjacent to a1).
The ideal (T � : a1) is the star ideal of the graph T1 = T \ {edges containing a1}:
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The forest T1

Note that the simplicial complexes associated to T �
1 and to the star ideal of the graph

T1 \ {isolated vertices of T1} are the same; thus, in what follows, we always remove
isolated vertices. We have that a2 dominates b2 in T �

1 and (T �
1 : a2) is the star ideal

of the graph T2:

The tree T2

Now a3 dominates b3 in T �
2 , and the ideal (T �

2 : a3) is the star ideal of the tree T3:

The tree T3

Finally, a4 dominates b4 in T �
3 , and the ideal (T �

3 : a4) is the star ideal of the empty
graph. Thus R(T �) � Σ4(S−1) � S3. Note that the matching number and the vertex
covering number of T are both equal to 4, as predicted by Theorem 6.1.

A matching and a vertex cover of maximum cardinality

We state a corollary of Theorem 4.5 corresponding to the result of Corollary 5.8
about the independence complex. Note that despite the substantial difference between
the dominance complex and the independence complex, the statements of Corollar-
ies 5.8 and 6.4 are completely analogous. The machinery of the core allows for an
identical proof of the two results. Therefore, here we omit the proof.
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Corollary 6.4 Let F be a forest and A = (a1, . . . , ar ) be a maximal resolution of F�,
and suppose that ai dominates bi in (F � : a1 · · ·ai−1). Then there is an order of the
variables such that a1 < b1 < a2 < b2 < · · · < ar < br are the first 2r variables; with
such an order, the reduced homology of R(F�) is generated by the cycle

z :=
r∏

i=1

(ai − bi).

Note that F \ {a1, . . . , ar} has no edges and the complementary of {a1, . . . , ar} is
a maximal face of R(F�). Hence the cycle z of Corollary 6.4 is a cross-cycle in the
sense of [18].

Remark 6.5 Clearly, if F has no isolated vertices, then γ (F ) ≤ α0(F ). Thus
d(F ) ≤ d(F �). In particular, if F is spherical, then the sphere associated to the inde-
pendence complex has dimension at most the dimension of the sphere associated to
the dominance complex.
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13. Erdős, P., Tuza, Z.: Vertex coverings of the edge set in a connected graph. In: Graph Theory, Combi-

natorics, and Algorithms, Kalamazoo, MI, 1992, vols. 1, 2, pp. 1179–1187. Wiley-Interscience, New
York (1995)

http://arxiv.org/abs/arXiv:math/0701890v2
http://arxiv.org/abs/arXiv:math/0508148v1


468 Discrete Comput Geom (2008) 40: 444–468

14. Goodman, S., Hedetniemi, S., Mitchell, S.: Some linear algorithms on trees. In Proceedings of the
Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic
Univ., Boca Raton, FL, 1975. Congressus Numerantium, vol. XIV, pp. 467–483. Utilitas Math., Win-
nipeg (1975)

15. Goodman, S., Hedetniemi, S., Tarjan, R.E.: b-matchings in trees. SIAM J. Comput. 5(1), 104–108
(1976)

16. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Monographs
and Textbooks in Pure and Applied Mathematics, vol. 208. Marcel Dekker, New York (1998)

17. Henning, M.A., Yeo, A.: Total domination and matching numbers in claw-free graphs. Electron. J.
Comb. 13(1), 59 (2006)

18. Jonsson, J.: Certain homology cycles of the independence complex of grid graphs. Preprint
19. Klivans, C.: Threshold graphs, shifted complexes, and graphical complexes. arXiv:math/0703114v1

[math.CO]
20. Kozlov, D.: Complexes of directed trees. J. Comb. Theory Ser. A 88(1), 112–122 (1999)
21. Kozlov, D.: Directed trees in a string, real polynomials with triple roots, and chain mails. Discrete

Comput. Geom. 32(3), 373–382 (2004)
22. Laskar, R., Walikar, H.B.: On domination related concepts in graph theory. In: Combinatorics and

Graph Theory. Lecture Note in Mathematics, vol. 885, pp. 308–320. Springer, Berlin (1981)
23. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics,

vol. 227. Springer, New York (2005)
24. Munkres, J.R.: Elements of Algebraic Topology. Perseus Books, London (1984)
25. Mynhardt, C.M.: Vertices contained in every minimum dominating set of a tree. J. Graph Theory

31(3), 163–177 (1999)
26. Stanley, R.: Combinatorics and Commutative Algebra, 2nd edn. Progress in Mathematics, vol. 41.

Birkhäuser, Basel (1996)
27. Wassmer, A.: A dual independence complex. PhD thesis, Technische Universität Berlin (2005)

http://arxiv.org/abs/arXiv:math/0703114v1

	Cores of Simplicial Complexes
	Abstract
	Introduction
	Notation and Background
	Domination
	Resolutions and Cores
	The Independence Complex
	The Dominance Complex
	Acknowledgements
	References


