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Abstract

In a number of situations, collecting a function
value for every data point may be prohibitively
expensive, and random sampling ignores any
structure in the underlying data. We introduce
a scalable optimization algorithm with no cor-
rection steps (in contrast to FrankWolfe and
its variants), a variant of gradient ascent for
coreset selection in graphs, that greedily selects
a weighted subset of vertices that are deemed
most important to sample. Our algorithm es-
timates the mean of the function by taking a
weighted sum only at these vertices, and we
provably bound the estimation error in terms of
the location and weights of the selected vertices
in the graph. In addition, we consider the case
where nodes have different selection costs and
provide bounds on the quality of the low-cost
selected coresets. We demonstrate the bene-
fits of our algorithm on the semi-supervised
node classification of graph convolutional neu-
ral network, point clouds and structured graphs,
as well as sensor placement where the cost of
placing sensors depends on the location of the
placement. We also elucidate that the empirical
convergence of our proposed method is faster
than random selection and various clustering
methods while still respecting sensor placement
cost. The paper concludes with validation of
the developed algorithm on both synthetic and
real datasets, demonstrating that it outperforms
the current state of the art.

1 INTRODUCTION

In many problems in sociology, finance, computer science,
and operations research, we have networks of intercon-
nected entities and pairwise relations between them. A
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problem that arises often in practice is calculating the
expected value of a variable in the form of the sum of the
values of a smooth function on the nodes of a graph. For
example, in semi-supervised learning with Graph Neural
Networks (GCNs), the generalization error is specified as
the average of the loss functions associated with all the
nodes in a graph. Before the elections, opinion polls are
usually designed to represent the opinions of a networked
population about the candidates in expectation [28]. In
social networks, having a small average distance to other
individuals in the network is considered a key factor to be
influential [1]. In many environmental monitoring, know-
ing average temperature, humidity and water quality of
various regions allow for taking preventive actions against
forest fires and water contamination [20, 36]. Finally, in
health care, monitoring various health measures such as a
population’s average blood pressure, weight, cholesterol
level, allow for designing health strategies and disease
prevention actions [27].

In real-world networks containing millions of nodes and
billions of edges, it is impractical to evaluate the function
at every single node. Therefore, an important question is
how to select a small representative subset (coreset) of
nodes from a million-node graph such that the weighted
sum of function values sampled at the nodes of the subset
can be a good estimate of the sum of function values over
the entire graph [5]. Another constraint that often arises
in practice is that evaluating the function may incur a
cost that is not necessarily equal for all the nodes in the
graph. For example, placing sensors in certain areas may
be more expensive than others [17]. Similarly, measuring
blood pressure of people in hard-to-reach areas is more
expensive. Hence, we wish to find a small representative
weighted subset of nodes subject to a limited budget.

There are main challenges in finding such a small coreset.
First, the selected subset and the corresponding weights
should provide a bound on the estimation error of the first
moment (mean) of the function at all the nodes in the
graph. Moreover, the method should be simple to imple-



ment, computationally inexpensive, and have theoretical
guarantees relating coreset size to both computational
complexity and the quality of approximation. Finally, dif-
ferent nodes may have non-uniform cost, and hence we
need to be able to bound the error of estimating the mean
while finding a low-cost solution.

Very recently, the authors in [27] considered this problem
and provided an upper-bound on the estimation error of
the mean of the function evaluated over the entire graph
with a weighted subset of functions at nodes of an arbi-
trary subset. The provided quadrature-type bound can be
used to bound any mean estimation problem in which the
function is sufficiently low-frequency, i.e., the function
can be expressed in terms of a small number of eigen-
functions (with large eigenvalue) of a lazy random walk
transition matrix on the underlying graph. This includes
problems such as measuring average blood pressure in
a database [27] and subsampled kernel two sample test-
ing [9]. Intuitively, the placements that minimize the
quadrature-type bound have the property that the random
walks starting from every node in the subset and weighted
by its corresponding weight, overlap very little. However,
the problem of finding the near-optimal subset and the
associated weights by minimizing the upper-bound has
remained unaddressed.

In this work, we address the question of finding a core-
set of nodes that minimizes the estimation error of the
expected function value over the entire graph, by min-
imizing the upper-bound provided in [27]. Inspired by
the recent work of [6] on Bayesian coreset constructions,
we propose a greedy algorithm to find a small subset of
nodes and their weights that closely approximate the first
moment of the function over the entire graph. Moreover,
we consider an extended problem of having each sampled
node come with a non-uniform cost, a problem that arises
in applications such as sensor placement, marketing, and
other knapsack type problems. We extend our algorithm
to this setting, and characterize through a simple parame-
ter the error in estimating the mean of the function one is
willing to tolerate in order to seek a low cost solution.

The paper is organized as follows. In Section 3, we de-
scribe the mathematical framework of our problem. In
Section 4, we frame the greedy optimization algorithm
for selecting points and weights, both for equal cost of
placement and when there is a placement cost associated.
In Section 5, we prove bounds on the convergence of our
algorithm and bound the mean error of a smooth func-
tion in terms of the algorithmically selected points. In
Section 6, we demonstrate the success of our algorithm
over random sampling and several benchmark unsuper-
vised learning, semi-supervised learning, and clustering
algorithms for a number of different applications.

2 RELATED WORK

The ever increasing size of modern datasets motivated
data reduction techniques as a preprocessing step to speed
up subsequent optimization problems. Existing graph
summarization methods mainly focus on obtaining sparse
subgraphs that can be used to approximate properties
of the original graph (degree distribution, size distribu-
tion of connected components, diameter, or community
structure). Core techniques include graph clustering or
community detection methods [14, 23], bit compression-
based methods [33], sparsification-based [35] and sketch-
ing methods [3, 26], and influence-based methods [31].
While these methods maintain structural properties of the
original graph, they cannot guarantee that an algorithm
working on the summary provides a solution close to the
solution found based on the entire data. For instance,
graph summarization algorithms cannot guarantee that
the function sampled at the selected points has similar
statistics to the function evaluated on the entire network.

In contrast, coresets are weighted subsets of the data,
which guarantee that for the specific problem at hand,
models fitting the coreset also provide a good fit for the
original dataset. This approach has been successfully ap-
plied to a variety of problems including K-means and
K-median clustering [16], mixture models [30], low rank
approximation [10], spectral approximation [2, 25], Nys-
trom methods [2, 32], and Bayesian inference [6]. Coreset
construction methods traditionally perform importance
sampling with respect to sensitivity score, defined as the
importance of the point with respect to the objective func-
tion we wish to minimize, to provide high-probability
solutions [16, 30, 10]. Greedy algorithms, which are spe-
cial cases of the Frank-Wolfe algorithm, were described
more recently to provide worst-case guarantees for prob-
lems such as support vector machines [8], and Bayesian
inference [6]. In this work, we propose a greedy algo-
rithm to construct coresets for estimating the first moment
of a function defined on the nodes of a large graphs.

3 GENERAL FRAMEWORK

Here, we aim to choose a subset of vertices and weights
to be the best representative of the graph. More specifi-
cally, we assume that the dataset V' have some geometric
structure encoded in a graph G = (V, E), where V' and
FE denote the set of nodes and edges. The problem is how
to choose a subset S C V of vertices and weights ws > 0
for every s € S in order to approximate the mean p; with
a weighted approximation /i, where
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The graph can either be given a priori, or constructed on a
point cloud V C R? viaakernel K : V x V — R,. We
must assume that the function f : V' — R must have some
relationship to the graph, or else the optimal sampling
would be a random search. In our context, this assump-
tion takes the form that the function can be expressed in
terms of a small number of eigenfunctions (with large
eigenvalue) of a lazy walk graph transition matrix on the
graph G.

Definition 3.1. The lazy random walk graph ' transition
matrix P on G = (V, E) is constructed by

1
P =

(A—D)+1,
dmaa:
where A denote the (weighted) symmetric adjacency ma-
trix of G such that A;; = Aj; > 0 is the weight of the
edge connecting nodes i and j, D is a diagonal matrix
with D;; = Zj Aij; dmaer = max; Dy;, and I is the
identity matrix.
Definition 3.2. A function f : V. — R is in P for a
lazy walk transition matrix P, with eigendecomposition

P =UAU*, if
f: Z b;Us,

where \; and U; are the eigenvalues and eigenvectors of
P, b; > 0is aweight, and 0 < \ < 1 is a parameter
controlling the degree of smoothness. P) is the subspace
spanned by the eigenfunctions of P associated with eigen-
value > \.

Spectral smoothness on graphs, as in Definition 3.2, is
necessitated by the fact that there is no traditional notion
of gradients on graphs. Theres a large body of work
that shows that eigenfunctions of the kernel with large
eigenvalue are of lower frequency than eigenvectors with
small eigenvalue [11, 15]. Thus spectrally band-limited
functions must themselves be smooth [27]. Our ability
to approximate the mean of the function decays as the
frequency of the function increases, since the function
becomes more chaotic. This is a fundamental limitation,
as functions unrelated to the underlying graph structure
cannot be approximated with a coreset in any way better
than random sampling.

We can also consider the additional constraint that choos-
ing every nodes v € V may come withacostC : V —
R.. We seek an algorithm that will choose the subset of
nodes S C V in a way that is

e Greedy in order to quickly choose and add additional
points,

'A lazy random walk is a walk on a graph with self loops.
Here the probability of taking self loop is inversely proportional
to the degree of the node.

e Minimizes the error in estimation of the mean of f,
and

e Incorporates the cost C'(v) by choosing low-cost
points to the subset.

The motivation for this framework and use of the lazy
walk graph transition matrix comes out of the work in
[27], in which it was noted that the mean error in f can
be bounded in terms of the choice of points and weights,
as in the following

1
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for/ € N,0 < A < 1, and w,s summing to 1. Moreover, n
is the number of vertices of the graph, and ¢, is the binary
vector taking value zero at every index except for s. This
result implies that minimizing the right hand side in terms
of wy and S will yield a stronger bound on the moment
estimation of f. P*J, is the probability distribution of
a random walker starting in s after ¢ jumps. Therefore,
intuitively the subset S that minimize the quadrature-type
bound have the property that the random walks starting
from every node s in the subset and weighted by its corre-
sponding weight w, overlap very little.

3.1 PROBLEM DEFINITION

Similar to the concept of duality in convex optimization,
in order to achieve best results for the upper bound in (2)
we shall minimize it. Therefore, the optimization problem
can be formulated in the following from

2 3
L (] 5 1
minimize £l 5, N Zws Sl I
sSES 2 (3)
subjectto  |S| < K, S CV,
Zws =1, ws>0.

ses

where K is the maximum number of selected vertices.
Several discrete and continuous methods are relevant
when solving the preceding problem in (3). However, the
main issue with such an optimization is the constraint of
choosing S C V, which leads to a difficult combinatorial
optimization problem. For example, one approach related
to (3) is that of computing a cardinality constrained mini-
mization by solving sparse principal component analysis



(PCA) problem [12]. However, solving the sparse PCA
optimization problem entails semidefinite relaxation and
a greedy algorithm to calculate a full set of good solutions,
which is very expensive with total complexity of O(n?)
[13].

A better way to view this problem is in terms of an Lo-
minimization problem on P. Because || f||p, and A are
properties of the function f we’re analyzing (see Def. 3.2)
and independent of the choice of points and weights, we
will drop these terms in discussion of the optimization
scheme, when appropriate. Similarly, we will drop the
dependence on ¢ for notational simplicity and simply deal
with an arbitrary lazy random walk matrix P. This is
not an issue as P’ is also a lazy random walk transition
matrix, with eigenvalues .

We can also rewrite our cost as a matrix multiplication
Pw = P} wyd,, and define our target function to be
the normalized ones vector %]1. We note that the cost
function of (3) can be reframed by the above notational
changes, as well as bringing the % inside the norm, to
arrive at
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where the first equality comes from the fact that
(Pw,1) = 1, and the second equality comes from the
fact that || 21]|3 = L and completing the square. To this
end, (3) can be posed in an equivalent form as

. 1
minimize HPw ——1
w

2
subject to Z Lw; >0 < K 4)

Problem (4) shifts the original mean bound in (3) into a
constrained least squares problem for finding the optimal
weights w. Due to the shifting of 11 inside the norm,
we are no longer constrained to have ) ., w; = 1 (dis-
cussed in detail in Appendix C). With that being said, our
algorithm still has a weight normalization 5* that arises
in (6) and will push ||w]||; close to 1.

The optimization problem (4) we construct has been con-
sidered previously [34, 21], however these have limita-
tions in the context of our graph problem. Briefly, [34]
considers cardinality regularized loss function minimiza-
tion subject to simplex constraints, which yields a compu-
tational complexity O(n?) for our graph problem. Sim-
ilarly, [21] has theoretical guarantees only under the re-
stricted isometry property [7]. Moreover, it assumes the

size of the subset K is known, which may vary in an a
posteriori fashion in our applications. Finally, we extend
the literature by providing guarantees on the convergence
rate explicitly in terms of the number of selected elements
and the rate at which the error decreases as we sample
more coreset points.

We also note that the Problem (4) can be solved by relax-
ing the nonconvex cardinality constraint ) . 1[w; > 0] <
K to a simplex constraint ) . || P;||w; = >, || ;|| for the
columns P; of the matrix P, and using the FrankWolfe
(FW) algorithm that iteratively chooses the point most
aligned with the residual error. However, there are some
problems for which FW performs very poorly for any
number of iterations because FW must scale the objec-
tive function in Problem (4) suboptimally by > . w; || P ||
rather than || 1|, in order to maintain feasibility [6]. In
this paper, we mainly focus on the above-mentioned con-
strained optimization problem. In the following section,
we provide a new radial optimization algorithm for prob-
lem (4) and demonstrate that it yields theoretical guaran-
tees at a significantly reduced computational cost. More
importantly, in contrast to FW and its extensions [22], the
algorithm developed in this work has no correction steps
and geometric error convergence.

4 OPTIMIZATION ALGORITHM

The optimization problem in (4), despite involving a least
squares cost function, is nonconvex in w due to the car-
dinality constraint. Inspired from [6], without any loss
of generality, the weights, w could be scaled by an arbi-
trary constant 8 > 0 without affecting feasibility. This
motivates rewriting (4) as

minimize H BPw — l]l
w, n 9
subject to Z 1[w; >0 < K &)
w; 2 076 2 0

Following [6] we now begin by solving the optimization
problem in 8. We define 5* as the solution to the problem
(5) given w which can be computed analytically as

o.(yee) (i)
ax< 0,
| Puwll [
1 Pw \"
= ————max<0,| —— ] 1,.
nll Pu] { (nPwn) }

Substituting 5* in the objective above and expanding the
square, the weighted subset of nodes (coreset) can be
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found by solving:

i i( ma"{ (upwn) })

minimize
subject to Z Tw; >0 < K
i

(M

This result shows that the minimum of the problem in
(7) occurs by alignment of the vectors Pw and %]l in-
dependent of their norm. Finally, we define P(w) =

> wiuﬁ—ju ,and P* = ” ﬂ” L —=1. With that in

mind, we can reformulate (7) in an equlvalent maximiz-
ing problem as in the following

maximize P(w)’ P*
w

subject to Z 1w; >0 < K
b ®)

[1P(w)|l =1

w; >0

According to the constraints in (8), we are optimizing the
objective over a unit hypersphere rather than the simplex.
Before solving the problem in (8), we extend it to a more
general case where nodes have different selections costs,
and then we provide a new algorithm for solving it.

4.1 OPTIMIZATION WITH SELECTION COST

In many applications, selecting some reference points rep-
resenting the whole data involve some factors such as cost
of selection associated to each data. For example, placing
sensors in certain regions may be more expensive than
others. Similarly, measuring blood pressure of people in
hard-to-reach areas is more expensive. In problems such
as these, it is natural to seek a trade-off between the two
goals of minimizing the error (selecting nodes S C V
that maximize alignment of P(w) and P*) and the cost
of choosing nodes in S. To this end, we incorporate a
new parameter C' into the problem controlling the cost
associated with each node. In what follows, we will focus
on the reparameterized maximization problem, which can
be written as:

maximize P(w)? P* — AC(S)
subjectto  |S| < K for S = {i : w; > 0} ©)
[P(w)]| =1

Now we provide a greedy algorithm, sample cost greedy
iterative geodesic ascent (SCGIGA), for the above opti-
mization problem. At every iteration, the algorithm finds

the point indexed by v* for which the geodesic between
P(w) and P(v*) is most aligned with the geodesic be-
tween P(w) and P*. We then find the set of all vertices
for which the alignment is within x-percent of the align-
ment of v*, for a parameter 0 < x < 1. Among such
points, we add the vertex with minimum cost to the so-
lution. Once the point has been added, the algorithm
reweights the coreset and iterates. SCGIGA detailed in
Algorithm 1 outlines how to solve the optimization prob-
lem in (9). It is noteworthy that SCGIGA is a general
algorithm which is also valid for the case where there
are equal costs associated with every data point. This
corresponds to £ = 1 in our settings.

A benefit of the greedy approach is that increasing the
number of coreset points to K + 1 simply requires adding
the next point for geodesic ascent and marginally chang-
ing the weights. This is unlike [21], in which changing to
the K + 1 simplex requires recomputing the optimization
scheme and in no way guarantees keeping the previous K
selected data points. Similarly, this formulation allows us
to easily incorporate nonuniform cost of sampling points.

We note that the most expensive computation in Algo-
rithm 1 is (P,, P(w)) across v, but that P(w) is the sum
of at most K vectors and each loop only adds one addi-
tional vector. Thus we can store previous inner products
and only take different weighted combinations on each
iteration, so each loop only requires n inner products.
Hence, Algorithm 1 has average complexity O(Knm),
where m is the average sparsity of a column.

We will establish the convergence guarantees and rate in
Section 5, and connect this convergence to bounding the
estimate of the mean of f as in (2). But first, we wish
to establish that incorporating cost of sampling into the
optimization does not significantly impact the resulting
minimum value, and thus results in a close to optimal
greedy bound on the error in estimating the mean of f.
The gap can be characterized by the one parameter « to be
chosen by the user, and choosing the minimal cost point
among the set of vertices similar to v* only scales the
resulting bound by a factor of k.

Theorem 1. Let CF . be the sum of the k largest ele-

11—k
ments of C. If we choose A\ < T [PV then the

solution to (9), P(w*), satisfies

P(w*)T P* > kmax P(w)” P*.

The proof can be found in the Appendix.

Theorem (1) implies we will never incur too much loss to
the original objective by incorporating cost of selecting
the nodes that minimize the error. Similarly, this implies
that we can make every greedy choice and step in what-
ever fashion is deemed best for cost, as long as the choice



Algorithm 1 Algorithm of SCGIGA
1: Initialization wg < 0

. Py
2 Yo eV, P, « 1By

3: fork € {0,...,K} do
: ap — ASLP(wk)) Pwy)

11— (T, P(wg)) P(w)]]

P, —(P,,P(wy))P(wy)
Vv €V, kv < 1B (P Plws)) Plws)

4
5
6: v* 4— arg maxvevakTa;w
7
8
9

> find vertex that maximizes alignment
W+ {v € ViarTag, > /iak.TakU*}
> find vertices within x-percent of max

10: v — arg mingew Cy
11: > find vertex in W with min cost
122 Go=(zx1P)
13 Go= (g1, Plw))
14 G = (Py,, P(wyg))
15: & 06142
(Co—C162)+(¢1—CoC2) .

16: > choose the step size
17- - (17§k)wk+5kluk

' Vi1 ||(1_5k)P(“)k)+5kPUk I
18: > update the weight
19: end
20: end for
21: w = Pwy > Scale weights by

22: S ={v e V|w, >0}
23: Sample f at nodes in S

24 fip =) eswof(v)
25: return fis, w

is within x of the optimal step direction.

S THEORETICAL ASPECTS

Here we examine the guarantees that Algorithm 1 yield
for bounding the error in estimating the mean of f € P,
where P, is the subspace spanned by the eigenfunctions
of P associated with eigenvalues > A. We will derive the
general theorem for arbitrary x, and as a special case we
recover the results when all the nodes have equal selection
cost (k = 1).

Theorem 2. Let f € Py with mean iy as in (1), and
assume there is a cost for selecting every nodev €V, i.e.,
C(v) : V = Ry and a slack parameter k. If we choose
the set of points S and weights wg using Algorithm 1 such
that |S| = K, then

/1l py nvi
Mf_zwsf(s) S Ag/\ \/ﬁ?
ses
where v = O((1 — k%€2)5/2) for some ¢ and n =

2
\/1 — k2 max;cy < HIJZEH , ﬁ]l> .

The proof can be found in the Appendix.

The main ideas of this theorem are three-fold. The first
series of lemmas that must be proved are extensions of
the core lemmas in [6], which establish that the error
is a contractive map after each update, which is later
used in a fixed point theorem to show convergence and
rate. The extensions we make here are: 1) generalize
their results to graphical geometries, rather than the log-
likelihood construction proposed in [6], and 2) allow for
a  relaxation of the greedy choice and prove how this
relaxation affects the contractive mapping.

The second main idea behind this theorem is to show that
the x-relaxation does not significantly affect the fixed
point argument to show convergence of the cost-aware
greedy algorithm as the number of chosen points grows.
This again borrows from [6] in this more general setting,
but the argument effectively comes down to propagating
the additional error accrued by the cost-aware algorithm.

The final main idea behind this theorem is connecting
the coreset choice to the first moment quadrature bound
in [27]. This comes from a shifting of the bound in (2)
to allow for weights to not necessarily have to sum to
1, and the recognition that this bound for general points
and weights chosen is equivalent to the bound being mini-
mized in (4).

We wish to note that the bound established in Theorem 2
may not be sharp for the first few points greedily sampled,
but does become sharp asymptotically due to fixed point
convergence. The bound on the first moment estimate of
f in terms of (2) is close to sharp if there is a spectral gap
at A [27].

As a particular case of this theorem, when we always
choose the optimal greedy node independent of cost, we
recover the following guarantee.

Corollary 3. Let f € Py, and choose the set of points
S and weights ws using Algorithm 1 such that |S| = K.
Then

1fllpy nox

T

— )K/2) for some ¢ and n =

Hf — Zwsf (S) <

seSs

where v = O((1

2
1 — max;cy <HI€73H’ ﬁ]l> .

The proof of this corollary is a special application of
Theorem 2, which is proved in the Appendix.

6 EMPIRICAL EVIDENCE

In this section, we evaluate our model on several sets of
experiments. In order to compare both cases of our algo-
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Figure 1: Classification accuracy obtained from a GCN model after a number of semi-supervised training iterations for

different algorithms.

rithm, i.e., when there are non-uniform costs on selecting
different data points (x # 1) and when there are equal
costs associated with every data point (x = 1) we con-
sider a fixed cost on each data randomly generated from
a uniform distribution over [0, 1). Similarly, in all exam-
ples involving point clouds, the generated graph comes
from a K'-nearest neighbor construction with 10 nearest
neighbors.

6.1 GRAPH CNN CLASSIFICATION

One example of the importance of bounding means comes
in semi-supervised learning. In such a problem, the goal is
to approximate a function A : V' — R™ using a paramet-
ric model hy (such as the graph convolutional network).
The goal is to minimize

1
Loy = v Z 1hg(v) = h(v)]1?,

veV

where L is a loss functional, chosen judiciously depending
upon the application. However, in the event that sampling
h is expensive, the goal is to choose a coreset S C V in
order to estimate Ly v with a quadrature formula and the
empirical risk

Lgs = Zwvllho(v) — h(v)||.

veS

The quadrature error in this context, |Lg ¢ — Lg |, is
exactly the generalization error, and is now re-expressed
as the estimation of the mean of the function f(v) =
||lho(v) — h(v)||?. Theorem 2 applies in the situation
that h € P, and that hy is sufficiently regularized to
satisfy hy € Py. We note that the || - ||? remains mostly
low-frequency as the frequency of pointwise product of
eigenfunctions can be bounded [29]. This implies that
sampling h only at .S, and training hg on .S, one can bound
the generalization error on V' \ S using Theorem 2.

Given the above discussion, we seek to test our algorithm
on semi-supervised document classification in citation net-
works datasets, namely, Cora and semi-supervised node
classification in a stochastic block model graph with 200
vertices and 10 clusters. We train a two-layer graph con-
volutional neural network (GCN) as described in [19] and

we follow the same pre-processing techniques as well.
We compare against the same baseline methods as in the
experiments presented in our paper tested on Cora dataset
which is a real citation network dataset with 2, 708 nodes
and 5,429 edges as well as a stochastic cluster-based
graph datasets.

A GCN takes a feature matrix and an adjacency matrix as
inputs and for every vertex of the graph produces a vector,
whose elements correspond to the score of belonging
to different classes. An identity matrix is added to the
original adjacency matrix in order to enforce self loops.

The neural network is trained in a semi-supervised set-
ting, where the network is fed with the feature and ad-
jacency matrices of the entire graph while the loss is
only computed on the labeled vertices. Here the labeled
vertices are the subset of vertices that are picked by the
proposed method on the normalized adjacency matrix.
We train both datasets for a maximum of 100 epochs
using Adam [18] with a learning rate of 0.01 and early
stopping with a window size of 10, i.e. we stop training if
the validation loss does not decrease for 10 consecutive
epochs (as was done in [19]). The results are summarized
in Figure 1. Despite small fluctuations due to random ini-
tialization, as expected, the test accuracy tends to increase
as more labeled points are utilized for training. Further,
as can be seen from the figure our proposed algorithm,
SCGIGA, has superior performance in selecting the sub-
set of data that comprises the most representative points
of clusters. Lastly, because of the existence of outliers in
a random graph, the accuracy of the proposed algorithm
starts to improve slowly at about 60% accuracy. However,
we note that the model is trained with only 10% of data
which was considered to be the labeled ones, so this also
implicitly suggests that our algorithm successfully picks
out the most informative nodes.

6.2 MEAN FUNCTION ON CLUSTERED DATA

A standard unsupervised learning task is to learn clusters
from data, either on a graph or a point cloud, and use
those clusters to select points and weights for averaging
a function. Standard clustering algorithms include K-
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means clustering and spectral clustering 2.

The first experiment we run is on Gaussian model with
three components. The components have the mean vec-
tors of [1 — 3],[—3 2], [3 0], and all have the covariance
matrix of the identity matrix, /. The components con-
tain 20%, 30%, and 50% of the data. The function we
choose to model is a simple smooth function that is an
indicator function of the small cluster (1 on the small
cluster, 0 on other clusters). The results in Fig. 2 for
the Gaussian Model show the error comparison of three
algorithms including FW, K-means and spectral clus-
tering (SPC) versus the number of clusters (centroids)
or reference points. The performance of the algorithms
is quantified by an error metric which is defined as the

2
Err = ‘Z‘S‘:k asf (S) — /if‘ . For fairness to compa-
rable algortihms, as in K-means, FW and SPC is defined
as the ratio of the data in each cluster to the whole data,
while as = w; in our algorithm. Here, f is the the indi-
cator function on the small cluster and ¢ is the mean of
the function.

As is evident from the figure, our algorithm outperforms
K-means, FW and spectral clustering for the whole range
of the number of reference points. As can bee seen in
this figure the maximum number of the reference data
is 14 out of 10000 and our results reveal that the cost of
the optimal solution (Ccog) is 5.920, while the cost we
got with our cost aware algorithm, i.e., the cost of sub-
optimal solution (C'cso) is 0.106. The more surprising
observation in these figures is that even in the case where
a fixed cost associated with each data in which results in
our algorithm to yield a sub-optimal solution (the solution
which is in the x percent of the optimal) our algorithm
continues to do very well and work better than standard
algorithms. Also note that for only 3 reference points,
which would lead to an ideal coreset of one point per
cluster, SCGIGA considerably reduces the error compared
to the competing algorithms.

*In multivariate statistics spectral clustering techniques gets
rid of some of the eigenvalues of the similarity matrix of the data
to perform nonlinear dimensionality reduction before clustering
in fewer dimensions.

We consider another experiment on clustered graphical
data. In Fig. 2 a stochastic block model with three clusters
is designed where the first cluster contained 10% of the
data and the other two clusters contain 50% and 40%
of the data. Then we define an indicator function on
the small cluster, and we look for the average function
value on these three clusters. As can be seen from these
figures, our algorithm estimates the mean very well while
random sampling (RNDS) needs more reference points to
catch up the mean. More importantly, in this experiment
by selecting 28 reference data, Ccos = 15.159 while
Ccso = 0.075.

Further, Fig. 2 sketches the impact of the shaping parame-
ter, £ from (3), in our formulation on the error behavior of
the same stochastic block model. Clearly, incorporating
a multi-step kernel yields much better performance in
estimating the cluster coresets and weights.

Finally Fig. 3 shows three Gaussian clusters with the
same mean vectors and covariance matrices as in the first
experiment is considered. These two figures demonstrate
the way that the proposed algorithm selects points when
there is varying cost associated with each point and the
special case of equal costs for choosing each point. In the
figure, when there is a higher average cost of sampling on
the largest cluster compared to the smallest, the algorithm
adapts to resample in a way not simply proportional to
the number of points in each cluster. In contrast, when
no cost is associated the number of selected points are
obviously less than that of the largest component.

6.3 SHORTEST PATH ON GRAPH

In this set of experiments, we assume that a graph G or an
adjacency matrix is given. The goal is to find the average
distance from a vertex to the rest of the graph, where the
distance between two points is computed using Dijkstras
algorithm °. In this experiment, rather than computing
the shortest path between a given node and every other
node on the graph, we calculate the shortest path between

3Dijkstras algorithm is a greedy nature algorithm that looks
for the minimum weighted vertex on every iteration.



Figure 3: 2% of coresets selected two cases, variable sampling cost with £ = 0.2 (left) and uniform cost (right). The
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the given node and just the reference points S. This is of
particular cost benefit on trees that have large diameter
(maximum distance between two nodes) but low average
path distance (e.g., trees, powerlaw graphs, etc).

Fig. 4 shows the results of the comparison of our algo-
rithm, FW, Betweenness Centrality (BC) and random
sampling (RS) on a Powerlaw Tree graph [4]. The error
is defined as the difference between the weighted average
distance of each vertex of the graph from the reference
vertices and the average distance of each vertex from all
the vertices of the graph. Fig. 4 also demonstrates the
same results for a randomly generated graph. In these two
figures, both cases i.e., when fixed but different costs are
associated with each data (vertex) and when equal costs
on the data are included.

Ego Networks In this experiment we consider a spe-
cial type of network called an Ego Network. In an Ego
Network, there is a central vertex (ego vertex) which the
network highly depends on or revolves around. We con-
sider the real-world Facebook Ego Networks dataset with
4,964 nodes [24]. The dataset contains the aggregated
network of some users’ Facebook friends. In this dataset,
vertices represent individuals on Facebook, and edges be-
tween two users mean they are Facebook friends. The Ego
Network connects a Facebook user to all of his Facebook
friends and are then aggregated by identifying individuals
who appear in multiple Ego Network. Algorithms such as
betweenness centrality (BC) were proposed to measure
the importance (centrality) of a user in the network. These
algorithms select a user as a central one by looking at how

many shortest paths pass through that user (vertex). The
more shortest paths that pass through the user, the more
central the user is in the Facebook network. We run our
algorithm on the Facebook dataset to choose the central
nodes. We then compare our algorithm with the BC and
FW in terms of the error performance metrics described
in the first experiment. The results in Fig. 4 show that
the developed algorithm in this work perform better in
selecting the central points in the Facebook graph.

7 DISCUSSION AND CONCLUSIONS

In this paper, we introduced a scalable, and theoretically-
sound algorithm for minimizing the estimation error of
the expected value of a function over entire graph. Our
proposed method can be applied to semi-supervised clas-
sification in graph neural networks (GCNs), social net-
work graphs, point clouds, and on many other applica-
tions where a similarity metric between data points can
be defined. We provided theoretical guarantees on the
convergence of the estimated mean and validated its ef-
ficiency empirically on real and synthetic datasets. Our
work also opens up the notion of optimizing when there
is a non-uniform cost of sampling, and provides a simple
parameter for the trade off between accuracy and cost.
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