
Coresets for Scalable Bayesian Logistic Regression

Jonathan H. Huggins Trevor Campbell Tamara Broderick
Computer Science and Artificial Intelligence Laboratory, MIT
{jhuggins@, tdjc@, tbroderick@csail.}mit.edu

Abstract

The use of Bayesian methods in large-scale data settings is attractive because of
the rich hierarchical models, uncertainty quantification, and prior specification
they provide. Standard Bayesian inference algorithms are computationally ex-
pensive, however, making their direct application to large datasets difficult or in-
feasible. Recent work on scaling Bayesian inference has focused on modifying
the underlying algorithms to, for example, use only a random data subsample at
each iteration. We leverage the insight that data is often redundant to instead ob-
tain a weighted subset of the data (called a coreset) that is much smaller than the
original dataset. We can then use this small coreset in any number of existing
posterior inference algorithms without modification. In this paper, we develop an
efficient coreset construction algorithm for Bayesian logistic regression models.
We provide theoretical guarantees on the size and approximation quality of the
coreset – both for fixed, known datasets, and in expectation for a wide class of
data generative models. Crucially, the proposed approach also permits efficient
construction of the coreset in both streaming and parallel settings, with minimal
additional effort. We demonstrate the efficacy of our approach on a number of
synthetic and real-world datasets, and find that, in practice, the size of the coreset
is independent of the original dataset size. Furthermore, constructing the coreset
takes a negligible amount of time compared to that required to run MCMC on it.

1 Introduction

Large-scale datasets, comprising tens or hundreds of millions of observations, are becoming the
norm in scientific and commercial applications ranging from population genetics to advertising. At
such scales even simple operations, such as examining each data point a small number of times,
become burdensome; it is sometimes not possible to fit all data in the physical memory of a sin-
gle machine. These constraints have, in the past, limited practitioners to relatively simple statis-
tical modeling approaches. However, the rich hierarchical models, uncertainty quantification, and
prior specification provided by Bayesian methods have motivated substantial recent effort in making
Bayesian inference procedures, which are often computationally expensive, scale to the large-data
setting.

The standard approach to Bayesian inference for large-scale data is to modify a specific inference al-
gorithm, such as MCMC or variational Bayes, to handle distributed or streaming processing of data.
Examples include subsampling and streaming methods for variational Bayes [6, 7, 16], subsampling
methods for MCMC [4, 18, 24], and distributed “consensus” methods for MCMC [8, 19, 21, 22].
Existing methods, however, suffer from both practical and theoretical limitations. Stochastic varia-
tional inference [16] and subsampling MCMC methods use a new random subset of the data at each
iteration, which requires random access to the data and hence is infeasible for very large datasets
that do not fit into memory. Furthermore, in practice, subsampling MCMC methods have been found
to require examining a constant fraction of the data at each iteration, severely limiting the compu-
tational gains obtained [5, 23]. More scalable methods such as consensus MCMC [19, 21, 22]

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

and streaming variational Bayes [6, 7] lead to gains in computational efficiency, but lack rigorous
justification and provide no guarantees on the quality of inference.

An important insight in the large-scale setting is that much of the data is often redundant, though
there may also be a small set of data points that are distinctive. For example, in a large document
corpus, one news article about a hockey game may serve as an excellent representative of hundreds
or thousands of other similar pieces about hockey games. However, there may only be a few articles
about luge, so it is also important to include at least one article about luge. Similarly, one individ-
ual’s genetic information may serve as a strong representative of other individuals from the same
ancestral population admixture, though some individuals may be genetic outliers. We leverage data
redundancy to develop a scalable Bayesian inference framework that modifies the dataset instead of
the common practice of modifying the inference algorithm. Our method, which can be thought of as
a preprocessing step, constructs a coreset – a small, weighted subset of the data that approximates
the full dataset [1, 9] – that can be used in many standard inference procedures to provide posterior
approximations with guaranteed quality. The scalability of posterior inference with a coreset thus
simply depends on the coreset’s growth with the full dataset size. To the best of our knowledge,
coresets have not previously been used in a Bayesian setting.

The concept of coresets originated in computational geometry (e.g. [1]), but then became popular
in theoretical computer science as a way to efficiently solve clustering problems such as k-means
and PCA (see [9, 11] and references therein). Coreset research in the machine learning community
has focused on scalable clustering in the optimization setting [3, 17], with the exception of Feldman
et al. [10], who developed a coreset algorithm for Gaussian mixture models. Coreset-like ideas have
previously been explored for maximum likelihood-learning of logistic regression models, though
these methods either lack rigorous justification or have only asymptotic guarantees (see [15] and
references therein).

The job of the coreset in the Bayesian setting is to provide an approximation of the full data log-
likelihood up to a multiplicative error uniformly over the parameter space. As this paper is the first
foray into applying coresets in Bayesian inference, we begin with a theoretical analysis of the quality
of the posterior distribution obtained from such an approximate log-likelihood. The remainder of the
paper develops the efficient construction of small coresets for Bayesian logistic regression, a useful
and widely-used model for the ubiquitous problem of binary classification. We develop a core-
set construction algorithm, the output of which uniformly approximates the full data log-likelihood
over parameter values in a ball with a user-specified radius. The approximation guarantee holds for
a given dataset with high probability. We also obtain results showing that the boundedness of the
parameter space is necessary for the construction of a nontrivial coreset, as well as results charac-
terizing the algorithm’s expected performance under a wide class of data-generating distributions.
Our proposed algorithm is applicable in both the streaming and distributed computation settings,
and the coreset can then be used by any inference algorithm which accesses the (gradient of the)
log-likelihood as a black box. Although our coreset algorithm is specifically for logistic regression,
our approach is broadly applicable to other Bayesian generative models.

Experiments on a variety of synthetic and real-world datasets validate our approach and demonstrate
robustness to the choice of algorithm hyperparameters. An empirical comparison to random subsam-
pling shows that, in many cases, coreset-based posteriors are orders of magnitude better in terms of
maximum mean discrepancy, including on a challenging 100-dimensional real-world dataset. Cru-
cially, our coreset construction algorithm adds negligible computational overhead to the inference
procedure. All proofs are deferred to the Supplementary Material.

2 Problem Setting

We begin with the general problem of Bayesian posterior inference. Let D = {(Xn, Yn)}Nn=1 be
a dataset, where Xn ∈ X is a vector of covariates and Yn ∈ Y is an observation. Let π0(θ) be a
prior density on a parameter θ ∈ Θ and let p(Yn |Xn, θ) be the likelihood of observation n given
the parameter θ. The Bayesian posterior is given by the density πN (θ), where

πN (θ) :=
exp(LN (θ))π0(θ)

EN
, LN (θ) :=

N
∑

n=1

ln p(Yn |Xn, θ), EN :=

∫

exp(LN (θ))π0(θ) dθ.

2

Algorithm 1 Construction of logistic regression coreset

Require: Data D, k-clustering Q, radius R > 0, tolerance ε > 0, failure rate δ ∈ (0, 1)
1: for n = 1, . . . , N do ⊲ calculate sensitivity upper bounds using the k-clustering
2: mn ← N

1+
∑

k
i=1 |G(−n)

i
|e−R‖Z̄

(−n)
G,i

−Zn‖2

3: end for
4: m̄N ← 1

N

∑N
n=1 mn

5: M ←
⌈

cm̄N

ε2 [(D + 1) log m̄N + log(1/δ)]
⌉

⊲ coreset size; c is from proof of Theorem B.1
6: for n = 1, . . . , N do
7: pn ← mn

Nm̄N
⊲ importance weights of data

8: end for
9: (K1, . . . ,KN) ∼ Multi(M, (pn)

N
n=1) ⊲ sample data for coreset

10: for n = 1, . . . , N do ⊲ calculate coreset weights

11: γn ← Kn

pnM

12: end for
13: D̃ ← {(γn, Xn, Yn) | γn > 0} ⊲ only keep data points with non-zero weights

14: return D̃

Our aim is to construct a weighted dataset D̃ = {(γm, X̃m, Ỹm)}Mm=1 with M ≪ N such that the

weighted log-likelihood L̃N (θ) =
∑M

m=1 γm ln p(Ỹn | X̃m, θ) satisfies

|LN (θ)− L̃N (θ)| ≤ ε|LN (θ)|, ∀θ ∈ Θ. (1)

If D̃ satisfies Eq. (1), it is called an ε-coreset of D, and the approximate posterior

π̃N (θ) =
exp(L̃N (θ))π0(θ)

ẼN
, with ẼN =

∫

exp(L̃N (θ))π0(θ) dθ,

has a marginal likelihood ẼN which approximates the true marginal likelihood EN , shown by Propo-
sition 2.1. Thus, from a Bayesian perspective, the ε-coreset is a useful notion of approximation.

Proposition 2.1. Let L(θ) and L̃(θ) be arbitrary non-positive log-likelihood functions that satisfy

|L(θ)− L̃(θ)| ≤ ε|L(θ)| for all θ ∈ Θ. Then for any prior π0(θ) such that the marginal likelihoods

E =

∫

exp(L(θ))π0(θ) dθ and Ẽ =

∫

exp(L̃(θ))π0(θ) dθ

are finite, the marginal likelihoods satisfy | ln E − ln Ẽ | ≤ ε| ln E|.

3 Coresets for Logistic Regression

3.1 Coreset Construction

In logistic regression, the covariates are real feature vectors Xn ∈ R
D, the observations are labels

Yn ∈ {−1, 1}, Θ ⊆ R
D, and the likelihood is defined as

p(Yn |Xn, θ) = plogistic(Yn |Xn, θ) :=
1

1 + exp (−YnXn · θ)
.

The analysis in this work allows any prior π0(θ); common choices are the Gaussian, Cauchy [12],
and spike-and-slab [13]. For notational brevity, we define Zn := YnXn, and let φ(s) := ln(1 +
exp(−s)). Choosing the optimal ǫ-coreset is not computationally feasible, so we take a less direct
approach. We design our coreset construction algorithm and prove its correctness using a quantity
σn(Θ) called the sensitivity [9], which quantifies the redundancy of a particular data point n –
the larger the sensitivity, the less redundant. In the setting of logistic regression, we have that the
sensitivity is

σn(Θ) := sup
θ∈Θ

N φ(Zn · θ)
∑N

ℓ=1 φ(Zℓ · θ)
.

3

Intuitively, σn(Θ) captures how much influence data point n has on the log-likelihood LN (θ) when
varying the parameter θ ∈ Θ, and thus data points with high sensitivity should be included in the
coreset. Evaluating σn(Θ) exactly is not tractable, however, so an upper bound mn ≥ σn(Θ) must
be used in its place. Thus, the key challenge is to efficiently compute a tight upper bound on the
sensitivity.

For the moment we will consider Θ = BR for any R > 0, where BR := {θ ∈ R
D | ‖θ‖2 ≤ R};

We discuss the case of Θ = R
D shortly. Choosing the parameter space to be a Euclidean ball is

reasonable since data is usually preprocessed to have mean zero and variance 1 (or, for sparse data,
to be between -1 and 1), so each component of θ is typically in a range close to zero (e.g. between
-4 and 4) [12].

The idea behind our sensitivity upper bound construction is that we would expect data points that
are bunched together to be redundant while data points that are far from from other data have a large
effect on inferences. Clustering is an effective way to summarize data and detect outliers, so we
will use a k-clustering of the data D to construct the sensitivity bound. A k-clustering is given by k
cluster centersQ = {Q1, . . . , Qk}. Let Gi := {Zn | i = argminj ‖Qj−Zn‖2} be the set of vectors

closest to center Qi and let G
(−n)
i := Gi \ {Zn}. Define Z

(−n)
G,i to be a uniform random vector from

G
(−n)
i and let Z̄

(−n)
G,i := E[Z

(−n)
G,i] be its mean. The following lemma uses a k-clustering to establish

an efficiently computable upper bound on σn(BR):

Lemma 3.1. For any k-clustering Q,

σn(BR) ≤ mn :=
N

1 +
∑k

i=1 |G
(−n)
i |e−R‖Z̄(−n)

G,i
−Zn‖2

. (2)

Furthermore, mn can be calculated in O(k) time.

The bound in Eq. (2) captures the intuition that if the data forms tight clusters (that is, each Zn is
close to one of the cluster centers), we expect each cluster to be well-represented by a small number

of typical data points. For example, if Zn ∈ Gi, ‖Z̄(−n)
G,i −Zn‖2 is small, and |G(−n)

i | = Θ(N), then

σn(BR) = O(1). We use the (normalized) sensitivity bounds obtained from Lemma 3.1 to form an
importance distribution (pn)

N
n=1 from which to sample the coreset. If we sample Zn, then we assign

it weight γn proportional to 1/pn. The size of the coreset depends on the mean sensitivity bound,
the desired error ε, and a quantity closely related to the VC dimension of θ 7→ φ(θ · Z), which we
show is D + 1. Combining these pieces we obtain Algorithm 1, which constructs an ε-coreset with
high probability by Theorem 3.2.

Theorem 3.2. Fix ε > 0, δ ∈ (0, 1), and R > 0. Consider a dataset D with k-clustering Q. With
probability at least 1 − δ, Algorithm 1 with inputs (D,Q, R, ε, δ) constructs an ε-coreset of D for
logistic regression with parameter space Θ = BR. Furthermore, Algorithm 1 runs in O(Nk) time.

Remark 3.3. The coreset algorithm is efficient with an O(Nk) running time. However, the algorithm
requires a k-clustering, which must also be constructed. A high-quality clustering can be obtained
cheaply via k-means++ in O(Nk) time [2], although a coreset algorithm could also be used.

Examining Algorithm 1, we see that the coreset size M is of order m̄N log m̄N , where m̄N =
1
N

∑

n mn. So for M to be smaller than N , at a minimum, m̄N should satisfy m̄N = õ(N),1

and preferably m̄N = O(1). Indeed, for the coreset size to be small, it is critical that (a) Θ is
chosen such that most of the sensitivities satisfy σn(Θ) ≪ N (since N is the maximum possible
sensitivity), (b) each upper bound mn is close to σn(Θ), and (c) ideally, that m̄N is bounded by
a constant. In Section 3.2, we address (a) by providing sensitivity lower bounds, thereby showing
that the constraint Θ = BR is necessary for nontrivial sensitivities even for “typical” (i.e. non-
pathological) data. We then apply our lower bounds to address (b) and show that our bound in
Lemma 3.1 is nearly tight. In Section 3.3, we address (c) by establishing the expected performance
of the bound in Lemma 3.1 for a wide class of data-generating distributions.

1Recall that the tilde notation suppresses logarithmic terms.

4

3.2 Sensitivity Lower Bounds

We now develop lower bounds on the sensitivity to demonstrate that essentially we must limit our-
selves to bounded Θ,2 thus making our choice of Θ = BR a natural one, and to show that the
sensitivity upper bound from Lemma 3.1 is nearly tight.

We begin by showing that in both the worst case and the average case, for all n, σn(R
D) = N , the

maximum possible sensitivity – even when the Zn are arbitrarily close. Intuitively, the reason for
the worst-case behavior is that if there is a separating hyperplane between a data point Zn and the
remaining data points, and θ is in the direction of that hyperplane, then when ‖θ‖2 becomes very
large, Zn becomes arbitrarily more important than any other data point.

Theorem 3.4. For any D ≥ 3, N ∈ N and 0 < ǫ′ < 1, there exists ǫ > 0 and unit vectors
Z1, . . . , ZN ∈ R

D such that for all pairs n, n′, Zn · Zn′ ≥ 1− ǫ′ and for all R > 0 and n,

σn(BR) ≥
N

1 + (N − 1)e−Rǫ
√
ǫ′ /4

, and hence σn(R
D) = N.

The proof of Theorem 3.4 is based on choosing N distinct unit vectors V1, . . . , VN ∈ R
D−1 and

setting ǫ = 1−maxn 6=n′ Vn ·Vn′ > 0. But what is a “typical” value for ǫ? In the case of the vectors
being uniformly distributed on the unit sphere, we have the following scaling for ǫ as N increases:

Proposition 3.5. If V1, . . . , VN are independent and uniformly distributed on the unit sphere SD :=
{v ∈ R

D | ‖v‖ = 1} with D ≥ 2, then with high probability

1−max
n 6=n′

Vn · Vn′ ≥ CDN−4/(D−1),

where CD is a constant depending only on D.

Furthermore, N can be exponential in D even with ǫ remaining very close to 1:

Proposition 3.6. For N = ⌊exp((1− ǫ)2D/4)/
√
2 ⌋, and V1, . . . , VN i.i.d. such that Vni = ± 1√

D

with probability 1/2, then with probability at least 1/2, 1−maxn 6=n′ Vn · Vn′ ≥ ǫ.

Propositions 3.5 and 3.6 demonstrate that the data vectors Zn found in Theorem 3.4 are, in two
different senses, “typical” vectors and should not be thought of as worst-case data only occurring
in some “negligible” or zero-measure set. These three results thus demonstrate that it is necessary
to restrict attention to bounded Θ. We can also use Theorem 3.4 to show that our sensitivity upper
bound is nearly tight.

Corollary 3.7. For the data Z1, . . . , ZN from Theorem 3.4,

N

1 + (N − 1)e−Rǫ
√
ǫ′ /4

≤ σn(BR) ≤
N

1 + (N − 1)e−R
√
2ǫ′

.

3.3 k-Clustering Sensitivity Bound Performance

While Lemma 3.1 and Corollary 3.7 provide an upper bound on the sensitivity given a fixed dataset,
we would also like to understand how the expected mean sensitivity increases with N . We might
expect it to be finite since the logistic regression likelihood model is parametric; the coreset would
thus be acting as a sort of approximate finite sufficient statistic. Proposition 3.8 characterizes the
expected performance of the upper bound from Lemma 3.1 under a wide class of generating dis-
tributions. This result demonstrates that, under reasonable conditions, the expected value of m̄N is
bounded for all N . As a concrete example, Corollary 3.9 specializes Proposition 3.8 to data with a
single shared Gaussian generating distribution.

Proposition 3.8. Let Xn
indep∼ N(µLn

,ΣLn
), where Ln

indep∼ Multi(π1, π2, . . .) is the mixture compo-
nent responsible for generating Xn. For n = 1, . . . , N , let Yn ∈ {−1, 1} be conditionally indepen-
dent given Xn and set Zn = YnXn. Select 0 < r < 1/2, and define ηi = max(πi −N−r, 0). The
clustering of the data implied by (Ln)

N
n=1 results in the expected sensitivity bound

E [m̄N] ≤ 1

N−1 +
∑

i ηie
−R
√

AiN−1η−1
i

+Bi

+
∑

i:ηi>0

Ne−2N1−2r N→∞→ 1
∑

i πie−R
√
Bi

,

2Certain pathological datasets allow us to use unbounded Θ, but we do not assume we are given such data.

5

(a) (b) BINARY10 (c) WEBSPAM

Figure 1: (a) Percentage of time spent creating the coreset relative to the total inference time (in-
cluding 10,000 iterations of MCMC). Except for very small coreset sizes, coreset construction is a
small fraction of the overall time. (b,c) The mean sensitivities for varying choices of R and k. When
R varies k = 6 and when k varies R = 3. The mean sensitivity increases exponentially in R, as
expected, but is robust to the choice of k.

where Ai := Tr [Σi] +
(

1− ȳ2i
)

µT
i µi, Bi :=

∑

jπj

(

Tr [Σj] + ȳ2jµ
T
i µi − 2ȳiȳjµ

T
i µj + µT

j µj

)

,

and ȳj = E [Y1|L1 = j].

Corollary 3.9. In the setting of Proposition 3.8, if π1 = 1 and all data is assigned to a single cluster,

then there is a constant C such that for sufficiently large N , E [m̄N] ≤ CeR
√

Tr[Σ1]+(1−ȳ2
1)µ

T
1 µ1 .

3.4 Streaming and Parallel Settings

Algorithm 1 is a batch algorithm, but it can easily be used in parallel and streaming computation
settings using standard methods from the coreset literature, which are based on the following two
observations (cf. [10, Section 3.2]):

1. If D̃i is an ε-coreset for Di, i = 1, 2, then D̃1 ∪ D̃2 is an ε-coreset for D1 ∪ D2.

2. If D̃ is an ε-coreset for D and D̃′ is an ε′-coreset for D̃, then D̃′ is an ε′′-coreset for D,
where ε′′ := (1 + ε)(1 + ε′)− 1.

We can use these observations to merge coresets that were constructed either in parallel, or sequen-
tially, in a binary tree. Coresets are computed for two data blocks, merged using observation 1,
then compressed further using observation 2. The next two data blocks have coresets computed
and merged/compressed in the same manner, then the coresets from blocks 1&2 and 3&4 can be
merged/compressed analogously. We continue in this way and organize the merge/compress oper-
ations into a binary tree. Then, if there are B data blocks total, only logB blocks ever need be
maintained simultaneously. In the streaming setting we would choose blocks of constant size, so
B = O(N), while in the parallel setting B would be the number of machines available.

4 Experiments

We evaluated the performance of the logistic regression coreset algorithm on a number of synthetic
and real-world datasets. We used a maximum dataset size of 1 million examples because we wanted
to be able to calculate the true posterior, which would be infeasible for extremely large datasets.

Synthetic Data. We generated synthetic binary data according to the model Xnd
indep∼ Bern(pd), d =

1, . . . , D and Yn
indep∼ plogistic(· |Xn, θ). The idea is to simulate data in which there are

a small number of rarely occurring but highly predictive features, which is a common real-
world phenomenon. We thus took p = (1, .2, .3, .5, .01, .1, .2, .007, .005, .001) and θ =
(−3, 1.2,−.5, .8, 3,−1.,−.7, 4, 3.5, 4.5) for the D = 10 experiments (BINARY10) and the first
5 components of p and θ for the D = 5 experiments (BINARY5). The generative model is the same
one used by Scott et al. [21] and the first 5 components of p and θ correspond to those used in the

6

(a) BINARY5 (b) BINARY10 (c) MIXTURE

(d) CHEMREACT (e) WEBSPAM (f) COVTYPE

Figure 2: Polynomial MMD and negative test log-likelihood of random sampling and the logistic
regression coreset algorithm for synthetic and real data with varying subset sizes (lower is better
for all plots). For the synthetic data, N = 106 total data points were used and 103 additional data
points were generated for testing. For the real data, 2,500 (resp. 50,000 and 29,000) data points of
the CHEMREACT (resp. WEBSPAM and COVTYPE) dataset were held out for testing. One standard
deviation error bars were obtained by repeating each experiment 20 times.

Scott et al. experiments (given in [21, Table 1b]). We generated a synthetic mixture dataset with

continuous covariates (MIXTURE) using a model similar to that of Han et al. [15]: Yn
i.i.d.∼ Bern(1/2)

and Xn
indep∼ N(µYn

, I), where µ−1 = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1) and µ1 = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0).

Real-world Data. The CHEMREACT dataset consists of N = 26,733 chemicals, each with D = 100
properties. The goal is to predict whether each chemical is reactive. The WEBSPAM corpus consists
of N = 350,000 web pages, approximately 60% of which are spam. The covariates consist of the
D = 127 features that each appear in at least 25 documents. The cover type (COVTYPE) dataset
consists of N = 581,012 cartographic observations with D = 54 features. The task is to predict the
type of trees that are present at each observation location.

4.1 Scaling Properties of the Coreset Construction Algorithm

Constructing Coresets. In order for coresets to be a worthwhile preprocessing step, it is critical
that the time required to construct the coreset is small relative to the time needed to complete the in-
ference procedure. We implemented the logistic regression coreset algorithm in Python.3 In Fig. 1a,
we plot the relative time to construct the coreset for each type of dataset (k = 6) versus the total in-
ference time, including 10,000 iterations of the MCMC procedure described in Section 4.2. Except
for very small coreset sizes, the time to run MCMC dominates.

3More details on our implementation are provided in the Supplementary Material. Code to recreate all of
our experiments is available at https://bitbucket.org/jhhuggins/lrcoresets.

7

https://bitbucket.org/jhhuggins/lrcoresets

Sensitivity. An important question is how the mean sensitivity m̄N scales with N , as it determines
how the size of the coreset scales with the data. Furthermore, ensuring that mean sensitivity is
robust to the number of clusters k is critical since needing to adjust the algorithm hyperparameters
for each dataset could lead to an unacceptable increase in computational burden. We also seek to
understand how the radius R affects the mean sensitivity. Figs. 1b and 1c show the results of our
scaling experiments on the BINARY10 and WEBSPAM data. The mean sensitivity is essentially
constant across a range of dataset sizes. For both datasets the mean sensitivity is robust to the choice
of k and scales exponentially in R, as we would expect from Lemma 3.1.

4.2 Posterior Approximation Quality

Since the ultimate goal is to use coresets for Bayesian inference, the key empirical question is how
well a posterior formed using a coreset approximates the true posterior distribution. We compared
the coreset algorithm to random subsampling of data points, since that is the approach used in
many existing scalable versions of variational inference and MCMC [4, 16]. Indeed, coreset-based
importance sampling could be used as a drop-in replacement for the random subsampling used by
these methods, though we leave the investigation of this idea for future work.

Experimental Setup. We used adaptive Metropolis-adjusted Langevin algorithm (MALA) [14, 20]
for posterior inference. For each dataset, we ran the coreset and random subsampling algorithms
20 times for each choice of subsample size M . We ran adaptive MALA for 100,000 iterations on
the full dataset and each subsampled dataset. The subsampled datasets were fixed for the entirety
of each run, in contrast to subsampling algorithms that resample the data at each iteration. For the
synthetic datasets, which are lower dimensional, we used k = 4 while for the real-world datasets,
which are higher dimensional, we used k = 6. We used a heuristic to choose R as large as was
feasible while still obtaining moderate total sensitivity bounds. For a clustering Q of data D, let

I := N−1
∑k

i=1

∑

Z∈Gi
‖Z − Qi‖2 be the normalized k-means score. We chose R = a/

√
I ,

where a is a small constant. The idea is that, for i ∈ [k] and Zn ∈ Gi, we want R‖Z̄(−n)
G,i −Zn‖2 ≈ a

on average, so the term exp{−R‖Z̄(−n)
G,i − Zn‖2} in Eq. (2) is not too small and hence σn(BR) is

not too large. Our experiments used a = 3. We obtained similar results for 4 ≤ k ≤ 8 and 2.5 ≤
a ≤ 3.5, indicating that the logistic regression coreset algorithm has some robustness to the choice
of these hyperparameters. We used negative test log-likelihood and maximum mean discrepancy
(MMD) with a 3rd degree polynomial kernel as comparison metrics (so smaller is better).

Synthetic Data Results. Figures 2a-2c show the results for synthetic data. In terms of test log-
likelihood, coresets did as well as or outperformed random subsampling. In terms of MMD, the
coreset posterior approximation typically outperformed random subsampling by 1-2 orders of mag-
nitude and never did worse. These results suggest much can be gained by using coresets, with
comparable performance to random subsampling in the worst case.

Real-world Data Results. Figures 2d-2f show the results for real data. Using coresets led to better
performance on CHEMREACT for small subset sizes. Because the dataset was fairly small and
random subsampling was done without replacement, coresets were worse for larger subset sizes.
Coreset and random subsampling performance was approximately the same for WEBSPAM. On
WEBSPAM and COVTYPE, coresets either outperformed or did as well as random subsampling in
terms MMD and test log-likelihood on almost all subset sizes. The only exception was that random
subsampling was superior on WEBSPAM for the smallest subset set. We suspect this is due to the
variance introduced by the importance sampling procedure used to generate the coreset.

For both the synthetic and real-world data, in many cases we are able to obtain a high-quality logistic
regression posterior approximation using a coreset that is many orders of magnitude smaller than
the full dataset – sometimes just a few hundred data points. Using such a small coreset represents
a substantial reduction in the memory and computational requirements of the Bayesian inference
algorithm that uses the coreset for posterior inference. We expect that the use of coresets could lead
similar gains for other Bayesian models. Designing coreset algorithms for other widely-used models
is an exciting direction for future research.

Acknowledgments

All authors are supported by the Office of Naval Research under ONR MURI grant N000141110688. JHH is

supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship.

8

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via coresets. Combinato-
rial and computational geometry, 52:1–30, 2005.

[2] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Symposium on Discrete
Algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

[3] O. Bachem, M. Lucic, S. H. Hassani, and A. Krause. Approximate K-Means++ in Sublinear Time. In
AAAI Conference on Artificial Intelligence, 2016.

[4] R. Bardenet, A. Doucet, and C. C. Holmes. On Markov chain Monte Carlo methods for tall data.
arXiv.org, May 2015.

[5] M. J. Betancourt. The Fundamental Incompatibility of Hamiltonian Monte Carlo and Data Subsampling.
In International Conference on Machine Learning, 2015.

[6] T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan. Streaming Variational Bayes. In
Advances in Neural Information Processing Systems, Dec. 2013.

[7] T. Campbell, J. Straub, J. W. Fisher, III, and J. P. How. Streaming, Distributed Variational Inference for
Bayesian Nonparametrics. In Advances in Neural Information Processing Systems, 2015.

[8] R. Entezari, R. V. Craiu, and J. S. Rosenthal. Likelihood Inflating Sampling Algorithm. arXiv.org, May
2016.

[9] D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In Symposium
on Theory of Computing. ACM Request Permissions, June 2011.

[10] D. Feldman, M. Faulkner, and A. Krause. Scalable training of mixture models via coresets. In Advances
in Neural Information Processing Systems, pages 2142–2150, 2011.

[11] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-
means, pca and projective clustering. In Symposium on Discrete Algorithms, pages 1434–1453. SIAM,
2013.

[12] A. Gelman, A. Jakulin, M. G. Pittau, and Y.-S. Su. A weakly informative default prior distribution for
logistic and other regression models. The Annals of Applied Statistics, 2(4):1360–1383, Dec. 2008.

[13] E. I. George and R. E. McCulloch. Variable selection via Gibbs sampling. Journal of the American
Statistical Association, 88(423):881–889, 1993.

[14] H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli, pages 223–242,
2001.

[15] L. Han, T. Yang, and T. Zhang. Local Uncertainty Sampling for Large-Scale Multi-Class Logistic Re-
gression. arXiv.org, Apr. 2016.

[16] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. The Journal of
Machine Learning Research, 14:1303–1347, 2013.

[17] M. Lucic, O. Bachem, and A. Krause. Strong Coresets for Hard and Soft Bregman Clustering with
Applications to Exponential Family Mixtures. In International Conference on Artificial Intelligence and
Statistics, 2016.

[18] D. Maclaurin and R. P. Adams. Firefly Monte Carlo: Exact MCMC with Subsets of Data. In Uncertainty
in Artificial Intelligence, Mar. 2014.

[19] M. Rabinovich, E. Angelino, and M. I. Jordan. Variational consensus Monte Carlo. arXiv.org, June 2015.

[20] G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin distributions and their discrete
approximations. Bernoulli, 2(4):341–363, Nov. 1996.

[21] S. L. Scott, A. W. Blocker, F. V. Bonassi, H. A. Chipman, E. I. George, and R. E. McCulloch. Bayes and
big data: The consensus Monte Carlo algorithm. In Bayes 250, 2013.

[22] S. Srivastava, V. Cevher, Q. Tran-Dinh, and D. Dunson. WASP: Scalable Bayes via barycenters of subset
posteriors. In International Conference on Artificial Intelligence and Statistics, 2015.

[23] Y. W. Teh, A. H. Thiery, and S. Vollmer. Consistency and fluctuations for stochastic gradient Langevin
dynamics. Journal of Machine Learning Research, 17(7):1–33, Mar. 2016.

[24] M. Welling and Y. W. Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In Interna-
tional Conference on Machine Learning, 2011.

9

