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Abstract: Corn is an important food crop worldwide, and its yield is directly related to Chinese
food security. Accurate remote sensing extraction of corn can realize the rational application of land
resources, which is of great significance to the sustainable development of modern agriculture. In the
field of large-scale crop remote sensing classification, single-period optical remote sensing images
often cannot achieve high-precision classification. To improve classification accuracy, multiple time
series image combinations have gradually been adopted. However, due to the influence of cloudy
and rainy weather, it is often difficult to obtain complete time series optical images. Synthetic aperture
radar (SAR) data are imaged by microwaves, which have strong penetrating power and are not
affected by clouds. A critical way to solve this problem is to use SAR images to compensate for the
lack of optical images and obtain a complete time series image in the corn-growing season. However,
SAR images have limited wavelengths and cannot provide important wavelengths, such as visible
light bands and near-infrared information. To solve this problem, this study took Zhaodong City, a
vital corn-planting base in China, as the research area; took GF-6/GF-3 and Sentinel-1/Sentinel-2
as remote sensing data sources; designed12 classification scenarios; analyzed the best classification
period and the best time series combination of corn classification; studied the influence of SAR images
on the classification results of time series images; and compared the classification differences between
GF-6/GF-3 and Sentinel-1/Sentinel-2. The results show that the classification accuracy of time series
combinations is much higher than that of single-period images. The polarization characteristics
of SAR images can improve the classification accuracy with time series images. The classification
accuracy of GF series images from China is obviously higher than that of Sentinel series images.
The research performed in this paper can provide a reference for agricultural classification by using
remote sensing data.

Keywords: remote sensing; corn; classification; optical and SAR images

1. Introduction

Food security is a significant factor in ensuring social stability worldwide, and corn
is one of the most important food crops in the world [1]. In recent years, the rapid devel-
opment of remote sensing technology has provided an opportunity for corn extraction.
Remote sensing technology has been widely used in agriculture since its conception [2–4].
Large-scale remote sensing extraction of corn can help farmers improve the efficiency of
field management, assist agricultural departments in carrying out agricultural planting
supervision and statistics, and provide help in corn yield estimation and agricultural
technology services [5].

When using medium- and low-resolution images to extract crops on a large scale, it
is often difficult to guarantee classification accuracy with single-period images [6], while
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multitemporal series images have richer phenological information, which can reflect the
growth cycle of different vegetation and distinguish different ground objects effectively, thus
significantly improving the classification accuracy [7]. Wang, X [8] et al. used Landsat 8 remote
sensing images to construct the NDVI and the first principal component (PCA1) time series of
the main crops to reflect phenological differences among different crops and identify crops in
Xinjiang. Xiong, J. et al. used multi-time series Landsat8 OLI data to classify crops in Hokkaido,
Japan, and the overall accuracy of classification results was very high [9]. Inglada, J. et al.
used multi-time series SAR images and optical images with a high time resolution to classify
early crop types. The research showed that multi-time series images could significantly
improve the accuracy of crop-type classification [10]. Luo, C. et al. used the GEE platform to
collect Sentinel-1 and Sentinel-2 time series images of critical growth period of crops for crop
classification, and the results showed that the classification performance of time series images
was obviously better than that of single period images [11]. Therefore, image time selection
is significant in crop classification, and the use of time series images is an important way to
improve the accuracy of crop classification [12,13].

Optical remote sensing images have abundant spectral information, which is the pri-
mary data in remote sensing image classification. However, according to global cloud cover
data from the International Satellite Cloud Climatology Program, more than 66 percent of
the Earth's surface is regularly covered by clouds [14]. Because it is easily affected by cloud
coverage, its practical application is limited [15], which makes it difficult to obtain images
in the best time range and affects classification accuracy. SAR images represent microwave
imaging, and microwave remote sensing has the advantages of all-day, all-weather, and
robust penetration and is not interfered with by clouds [16]. Therefore, combining SAR
images with optical remote sensing images to construct time series images can compensate
for the defects of optical remote sensing images [17,18]. At the same time, SAR images are
sensitive to the physical structure and geometric information of ground objects and can
reflect the physical characteristics of ground objects [19]. Tommaso Orusa et al. pointed
out that the combination of optical and SAR images can reduce the limitations of each
and increase the advantages of each [20]. Erinjery et al. [21] monitored vegetation growth
by combining optical and radar polarization characteristics. Shuai et al. [22] extracted
and mapped corn by constructing radar polarization features with multiple time series.
Lee, C. [23] et al. used Sentinel-1 and Sentinel-2 data to extract winter wheat at the county
scale. Experiments have shown that a combination of SAR images and optical images can
improve winter wheat extraction accuracy. Zhang, C. et al. [24] used Sentinel-1/2 as the
data source to identify crops in cloudy areas south of the Yangtze River and supplemented
the lack of optical images in the cloud period with Sentinel-1 radar images, which solved
the problem of cloud coverage in the optical images. Liu, Z. et al. [25] pointed out that
combining the radar index with the optical remote sensing index can effectively improve
the inversion accuracy of straw coverage. Li, L. et al. [26] pointed out that combining
optical remote sensing images and SAR images has obvious advantages over using only
a single image. Cai et al. pointed out that crop residue retrieval based on optical images
has the disadvantage of signal saturation and is easily affected by weather conditions in
high-coverage areas. In contrast, crop residue retrieval based on SAR images is easily
affected by soil moisture and crop types, which shows that optical images and SAR images
have their advantages and disadvantages [27]. Although SAR images have the advantage
of penetrating clouds, the band information of SAR images is relatively simple, and there is
no sensitive vegetation band, such as visible light and near-infrared, so SAR images have
certain limitations in corn remote sensing extraction. Therefore, the cooperative use of
optical and SAR images may be a potential advantage for agricultural classification [28,29].
The above studies all point out that SAR images play a positive role in remote sensing crop
extraction. However, few studies have been carried out in the field of optical and SAR
multi-time series images for two different types of data. In this study, GF-6 and GF-3 were
selected as representatives of high spatial resolution and low spatial resolution images, and
Sentinel-2 and Sentinel-1 were selected as representatives of high spatial resolution and
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low temporal resolution images, respectively. The classification results of the two types of
data were studied and compared.

This paper aims to explore the cooperative use of optical and SAR images for remote
sensing extraction of corn. The objectives of this paper are as follows: (1) To study whether
the polarization characteristics of SAR images have a positive impact on the classification
results with time series remote sensing images, we examined whether SAR images can
be used to make up and replace the complete optical time series images in rainy weather.
(2) In multi-time series image classification, both spatial resolution and temporal resolution
are important factors for image classification accuracy. In this paper, GF-6 and GF-3 data
are used as representatives of high temporal resolution and low spatial resolution, and
Sentinel-2 and Sentinel-1 are used as representatives of high spatial resolution and low
temporal resolution data. The accuracy difference between the two kinds of time series
image data sets in maize extraction is discussed. This paper studies which contributes more
to the classification results—temporal resolution or spatial resolution.

2. Materials and Methods
2.1. Study Area

Heilongjiang Province, located in Northeastern China, is the northernmost and east-
ernmost provincial administrative region in China and is located in a cold temperate zone
and has a temperate continental monsoon climate. Black land is recognized as the most
fertile land in the world, and the cultivated land in Heilongjiang is mainly black land.
Heilongjiang has always been the most important grain-producing province in China due
to its unique geographic advantages [30,31].

Zhaodong city is located in the middle of the Songnen Plain in Southwestern Heilongjiang
Province, between 125◦22’ E and 126◦22’ N and 45◦10’ N and 46◦20′ N, with little rain in
spring and autumn, hot and rainy conditions in summer, and cold and dry conditions in
winter, seeing Figure 1. Zhaodong city is located in a rare green agricultural area of “cold black
soil” in China, which is mainly composed of chernozem and meadow soil. The inherent cold
black soil is the most fertile soil in China, and its soil fertility, physical and chemical properties,
and soil structure rank first among all kinds of soils. Its unique geographic advantages make
it one of the golden areas for crop planting in China. Corn and rice are mainly planted in this
area, and other lands include fresh corn, grassland, villages and towns, water bodies, and
other crops of dry land. Crops are planted in a single season.
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2.2. Date Preparation
2.2.1. Remote Sensing Data Acquisition

The remote sensing images selected in this paper are GF-6 WFV wide images, GF-3
radar images, Sentinel-1 radar images, and Sentinel-2 images. GF images and Sentienl
images constructed time series images, respectively, for comparison.

GF-3 and GF-6 data were obtained from the China Centre for Resources Satellite Data
and Application. Sentinel 2 images were obtained by the GEE cloud computing platform,
which has a strong cloud-computing capability and big data storage capability. Sentinel-1
images were obtained from the official website of the ESA.

GF-6, a low-orbit optical satellite and the Chinese first precision agriculture obser-
vation satellite, was successfully launched in June 2018. GF-6 is divided into a 2-m
panchromatic/8-m multispectral camera and a 16-m multispectral medium-resolution
wide camera. In this paper, GF-6 WFV wide images were used; the spatial resolution
was 16 m, the width was 800 km, and the revisit period was 4 days. The images included
8 bands: violet band from 0.40 to 0.45 µm, blue band from 0.450 to 0.52 µm, green band from
0.52 to 0.59 µm, yellow band from 0.59 to 0.63 µm, red edge 1 band from 0.69 to 0.73 µm,
red edge 2 band from 0.73 to 0.77 µm, and near-infrared band from 0.77 to 0.89 µm.

The sensor carried by the GF-3 satellite was a C-band multi-polarization synthetic
aperture radar with a resolution of 5 m. The GF-3 data selected in this paper were L1A data,
and the imaging mode was Fine Strip Mode 2 (FS2), which has two polarization modes:
HH and HV. Polarization is one of the essential properties of electromagnetic waves.
The propagation and scattering of electromagnetic waves represent vector phenomena,
and polarization is used to express the vector phenomenon of electromagnetic waves.
Polarization characteristics are sensitive to the physical characteristics and geometric
shapes of ground objects and can reflect the differences in physical characteristics between
ground objects well.

The Sentinel-2 satellite is a product of the European Space Agency’s Copernicus
program. It consists of two satellites, Sentinel-2A and Sentinel-2B. The 2A satellite was
successfully launched in June 2015, and the 2B satellite was successfully launched in March
2017. After the two satellites were networked, the revisit period was 5 days, and the
image width was 290 km. Both satellites carry a multispectral imager MSI, which contains
13 bands. The band information is shown in Table 1.

Table 1. Spectral parameters of Sentinel-2 images.

Wavelength Band Spatial Resolution Center Wavelength/nm

B2—Blue

10 m

490
B3—Green 560
B4—Red 665
B 8—Nir 842

B5—Red edge

20 m

705
B6—Red edge 740

B7—Edge of the Nir plateau 783
B8a—Narrow Nir 865

B11—Swir 1610
B12—Swir 2190

B1—Coastal aerosol
60 m

443
B9—Water Vapor 945

The Sentinel-1 satellites consist of two polar-orbiting satellites, A and B, equipped with
C-band synthetic aperture radar, and the revisit period is 6 days. Star 1A was successfully
launched in April 2014, and Star 1B was successfully launched in April 2016. They operate
day and night and can provide continuous images. Sentinel-1 includes four imaging modes.
The images selected in this paper were in the IW imaging mode, which is the default
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mode of Sentinel-1 on land, and its width is 250 km. The data type is SLC data, which has
two polarization modes: VV and VH.

The growth period of corn in Northeast China is from May to September. Due to cloud
cover, complete optical images of GF-6WFV could not be obtained in June, so GF-3 SAR
images were selected. Due to cloud cover, complete Sentinel-2 optical images could not be
obtained in July and August, so Sentinel-1 SAR images were selected. According to the
cloud coverage in optical images, a cloudless image was selected in each growth period to
form the time sequence image of the whole growth period; Table 2 shows the time of each
growth period and the corresponding image.

Table 2. Image acquisition at each growth stage.

May June July August September

Corn growth period Seedling stage Jointing stage Heading stage Milk ripening stage Maturation stage

GF images GF-6 GF-3 GF-6 GF-6 GF-6

Sentinel images Sentinel-2 Sentinel-2 Sentinel-1 Sentinel-1 Sentinel-2

2.2.2. Ground Data Acquisition

To ensure the accuracy of selecting sample areas on satellite images, the team con-
ducted a two-week field investigation in the study area in October 2021 and obtained
679 sampling points. Portable GPS positioning equipment was used to record the posi-
tion information of various subjects, with an error of less than 5 m. The collected point
information was imported into ArcGIS to determine the position of all kinds of features.

2.2.3. Remote Sensing Data Preprocessing

The preprocessing of GF-6 images was completed in ENVI. Radiometric calibration,
atmospheric correction, and ortho-correction were carried out for GF-6 data, and then
the vector boundary was trimmed. Radiometric calibration converts the DN value of
the image into radiant brightness. The FLAASH atmospheric correction model was used
for atmospheric correction. Atmospheric correction converts the radiation brightness
of the image into apparent reflectance. Ortho-correction was based on ASTER GDEM
data. After ortho-correction, a terrain correction image is obtained. The GF-3 SAR image
was preprocessed by PIE-SAR. First, radiation correction and complex data conversion
were completed, multi-view processing was carried out to reduce the amount of data and
eliminate some noise, Enlee filtering was used to denoise it, and finally, geocoding was
carried out.

Sentinel-2 images represent L2A data, which were preprocessed with radiometric
calibration and atmospheric correction. The preprocessing of the Sentinel-1SAR images
was carried out in SNAP. First, radiation correction and orbit correction were carried out.
Second, Deburst was carried out to remove the dark band of the pulse band in the IW
image to merge all practical regions of the burst band. Third, the polarization matrix and
multi-looking processing were carried out. Fourth, Lee filtering was used to remove speckle
noise. Finally, geocoding was carried out.

2.3. Research Methods
2.3.1. Vegetation Index

Four vegetation indices were selected as spectral characteristics, namely, the normal-
ized difference vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation
index (DVI), and green band chlorophyll index (CIgreen). Table 3 shows the expressions and
names of the four vegetation indexes.Vegetation has different absorption and reflection to
different wavelengths. It has an absorption in the wavelength bands of 450 nm (blue band)
and 650 nm (red band) and a small amplitude reflection in the wavelength band of 540 nm
(green band). The 690~7770 nm band (red edge band) is the sensitive band of vegetation,
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and the spectral reflection of vegetation changes the fastest in this band. The application of
the red edge band is one of the high-tech means used to identify crop remote sensing and
realize accurate classification of vegetation features [32], while there is a vital reflection in
the band with a central wavelength of 820 nm (near-infrared band).

Table 3. The formulae for different vegetation indices.

Index Name Formula

Normalized Differential Vegetation Index (NDVI) NDVI = ρnir−ρr
ρnir+ρr

Ratio Vegetation Index (RVI) RVI = ρnir
ρr

Differential Vegetation Index (DVI) DVI = ρnir − ρr

Chlorophyll Index (CIgreen) CIgreen =
ρnir
ρg
− 1

The NDVI highlights green vegetation using the characteristics of high reflection in
the near-infrared band and strong absorption in the red band. The NDVI is one of the most
widely used vegetation indices for vegetation classification. The RVI is sensitive to densely
covered areas and can identify lush corn fields; the DVI is more sensitive to the change
in grassland and woodland with low vegetation coverage, while the CIgreen is the green
band chlorophyll index, which is sensitive to vegetation with high chlorophyll content. The
formulas for calculating the four vegetation indices are as follows.

2.3.2. SAR Polarization Feature

HH and HV of GF-3 SAR images and VV and VH of Sentinel-1 SAR images are all
polarization features. Polarization is one of the properties of electromagnetic waves and
represents critical information in addition to frequency, amplitude, and phase. The scatter-
ing and propagation of electromagnetic waves is a vector phenomenon, and polarization
reflects this phenomenon. Radar signals can transmit horizontal (H) or vertical (V) electric
field vectors and receive horizontal (H), vertical (V), or both return signals. The polarization
characteristics of SAR images are sensitive to the dielectric constant, physical characteris-
tics, and geometry of target objects; therefore, polarization characteristics can significantly
increase the ability of satellite images to distinguish the types and features of target objects
in physical dimensions. HH and HV were selected as corn classification features in GF-3
image, and VV and VH were selected as corn classification features in Sentinel-1 image.

2.3.3. Classification Methods

In this paper, the random forest (RF) method proposed by Breiman in 2001 was used
for classification. The random forest algorithm uses the idea of ensemble learning to
integrate multiple decision trees, and decision trees are its basic units. Sampling and
splitting rule discrimination are two key links. N samples are extracted by the bootstrap
random sampling method for training, and multiple decision trees are constructed for each
resampled example by node random splitting technology. Finally, multiple decision trees
are combined, and the final classification result is determined by the voting result of each
decision tree. The characteristics of random forest are as follows: it can run effectively on
large datasets, and it has high prediction accuracy, high operation efficiency, strong stability,
and good robustness.

2.3.4. Classification Scene Design

In Figure 2, May is the seedling stage of corn, June is the jointing stage, July is the
heading stage, August is the milk ripening stage, and September is the maturation stage.
Because of the different NDVI variation curves of vegetation during the growth cycle of
corn (Figure 2), twelve classification scenes were constructed based on spectral features,
time series combinations, and random forest (RF) algorithms, as shown in Table 4. Due to
the lack of GF-6 optical images in June, the NDVI in June was calculated from Sentinel-2
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images. From May to July, the NDVI values of all kinds of ground objects changed greatly,
which indicated that all kinds of ground objects grew rapidly during this period. However,
the change in the NDVI value slowed from July to August, indicating that the growth state
of various ground objects did not change much after reaching its peak in July. The period
from May to July was defined as the rapid growth period, while the period from July to
September was defined as the stable period. Figure 2 shows that the distinction between
corn and other features was smaller from May to July, and the distinction between corn
and other features became larger from July to September.
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Table 4. Classification scenes.

Scenes Feature Combination Data Algorithm

S1 May + spectral characteristics (NDVI RVI DVI CIgreen ρb ρgρnir1) GF6 RF
S2 July + spectral characteristics (NDVI RVI DVI CIgreen ρb ρgρnir1) GF6 RF
S3 August + spectral features (NDVI RVI DVI CIgreen ρb ρgρnir1) GF6 RF
S4 September + spectral characteristics (NDVI RVI DVI CIgreen ρb ρgρnir1) GF6 RF
S5 5,6,7 months + spectral characteristics (NDVI RVI DVI CIgreen ρb ρg ρnir1) + HH HV GF6/GF3 RF
S6 7,8,9 months + spectral characteristics (NDVI RVI DVI CIgreen ρb ρg ρnir1) GF6 RF
S7 5,7,8,9 months + spectral characteristics (NDVI RVI DVI CIgreen ρb ρg ρnir1) GF6 RF
S8 5,6,7,8,9 months + spectral characteristics (NDVI RVI DVI CIgreen ρb ρg ρnir1) + HH HV GF6/GF3 RF
S9 5,6,7 months + spectral characteristics (NDVI RVI DVI CIgreen ρb ρg ρnir1) + VV VH Sentinel-1/2 RF
S10 7,8,9 months + spectral characteristics (NDVI RVI DVI CIgreen ρb ρg ρnir1) + VV VH Sentinel-1/2 RF
S11 5,6,9 months + spectral characteristics (NDVI RVI DVI CIgreen ρb ρg ρnir1) Sentinel-1 RF
S12 5,6,7,8,9 months + spectral characteristics (NDVI RVI DVI CIgreen ρb ρg ρnir1) + VV VH Sentinel-1/2 RF

Note: ρb represents the reflectivity of the blue band, ρg represents the green band, and ρnir1 represents near-
infrared band 1.

Scenes S5 and S6 show the classification effects from May to July and July to September,
respectively. Scenes S1–S4 are GF-6 single growth period images, which were used to
screen the best classification period. Scenes S5–S8 are GF-6 different growth time series
combinations, which were used to screen the best time series combinations and evaluate
the influence of SAR images on classification results. Scenes S9–S12 are the classification
results of Sentinel series images, which were compared with Chinese GF images to evaluate
the overall classification effect of the two images.
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To better illustrate the above approach, a workflow diagram was drawn, as shown
in Figure 3.

Land 2022, 11, x FOR PEER REVIEW 9 of 18 
 

 
Figure 3. Workflow methodology of corn land extraction. 

2.4. Accuracy Evaluation 
In this paper, four indices were used to evaluate the accuracy of the classification 

results: overall accuracy (OA), Kappa coefficient, producer accuracy (PA), and user accu-
racy (UA). The four indices were calculated based on the confusion matrix. OA = ∑ ௑೔೔೙೔సభ∑ ∑ ௑೔ೕ೙ೕసభ౤౟సభ   (1)

Figure 3. Workflow methodology of corn land extraction.



Land 2023, 12, 398 9 of 17

2.4. Accuracy Evaluation

In this paper, four indices were used to evaluate the accuracy of the classification
results: overall accuracy (OA), Kappa coefficient, producer accuracy (PA), and user accuracy
(UA). The four indices were calculated based on the confusion matrix.

OA =
∑n

i=1 Xii

∑n
i=1 ∑n

j=1 Xij
(1)

Kappa =
N ∑n

i=1 Xii −∑n
i=1(Xi+ + X+i)

N2 −∑n
i=1(Xi+ + X+i)

(2)

PA =
Xjj

X+j
(3)

UA =
Xii
Xi+

(4)

where N represents the number of training samples, and n represents the number of
classification categories. Overall accuracy (OA) refers to the percentage of verification
points correctly classified by all categories to the total number of verification points. The
Kappa coefficient is an index used to evaluate the consistency between classification
results and real results, and its value is between 0 and 1. The larger its value is, the better
the consistency and the higher the classification accuracy. Producer accuracy refers to the
probability that the real data of this category are correctly classified. User accuracy refers
to the proportion of checkpoints falling into this category that are correctly classified in
this category.

3. Results
3.1. Corn Field Extraction Accuracy in Different Time Series of GF-6/GF-3 Images

The classification results of the corn multisequence combination and single period
image based on the GF3/GF6 image (S1–S8) are shown in Table 5.

Table 5. Classification results at different growth stages based on GF3/GF6 images.

Scenes Months Data Overall Accuracy OA/% Kappa Corn PA/% Corn UA/%

S1 5 GF-6 78.61 0.7251 55.42 52.68
S2 7 GF-6 86.01 0.8210 82.40 89.74
S3 8 GF-6 89.16 0.8599 86.10 91.72
S4 9 GF-6 86.95 0.8312 81.95 93.05
S5 5,6,7 GF-6/3 91.10 0.8853 86.83 85.86
S6 7,8,9 GF-6 89.54 0.8654 89.26 93.07
S7 5,7,8,9 GF-6 93.09 0.9108 85.23 92.69
S8 5,6,7,8,9 GF-6/3 93.37 0.9143 89.39 91.97

As shown in Table 5, in the single growth period image, the overall accuracy, Kappa
coefficient, and corn producer accuracy in August were higher than those in other periods,
which were 89.16%, 0.8599, and 86.10%, respectively, while only the corn user accuracy was
slightly lower than that in September, which was 91.72%. Therefore, in the single growth
period images, the most suitable season for corn classification was August. The precision
in May was the lowest, which was lower than that in other months. The reason for this was
that in May, all kinds of ground features in Zhaodong city were in the bud, corn had just
been sown, and there was little difference between ground features, which made it difficult
to distinguish them. However, August was the period when all kinds of ground objects
were growing vigorously, and there were significant differences between them.

Among the multigrowth period temporal images, the total classification accuracy,
Kappa coefficient, and corn producer accuracy of the time series images in 5,6,7,8,9-month
were the highest. Nevertheless, the corn user accuracy was slightly lower than other
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time series images, which were 93.37%, 0.9143, 89.39%, and 91.97%, respectively. Over-
all, 5,6,7,8,9 month time series images had the best effect. The time series images of
5,6,7,8,9-month included 5 periods of corn and contained more phenological informa-
tion; therefore, the overall classification effect was the best. In the 5,6,7 month time series
images and the 7,8,9-month time series images, the overall accuracy and Kappa coefficient
of the 5,6,7-month time series images were slightly higher than those of the 7,8,9-month
time series images. However, the producer accuracy and user accuracy of corn were lower
than those of 7,8,9-month time series images. In summary, the classification effect of the
time series combination was obviously better than that of the single period image.

3.2. Influence of SAR Images on Corn Field Extraction Accuracy

Four classification scenes, S7, S8, S11, and S12, were designed to explore the influence
of SAR images on the improvement in classification accuracy of time series image combi-
nations. Scenes S7, S8, S11, and S12 reflect the experimental results of the GF images and
Sentinel images, respectively.

Figure 4 shows the classification results of scenes S7, S8, S11, and S12. When the
polarization features of the SAR image were added, the misclassification was reduced.
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Figure 4. Classification results based on optical and SAR remote sensing images (reference frame:
WGS84/UTM51N). Note: Figure (a) shows the classification results of S7 with GF6 optical data, Figure
(b) shows the classification results of S8 with GF6 optical data and GF-3 SAR, and Figure (c) shows
the classification results of S11 with Sentinel-2 optical data. Figure (d) shows the classification results
of S12 with Sentinel-2 optical data and Sentinel-1 SAR data.

As shown in Figure 5a, after adding SAR images, the overall accuracy, Kappa coef-
ficient, and corn PA increased by 0.30%, 0.035, and 4.16%, respectively, in the GF series
images, and only corn UA decreased by 0.72%. Therefore, GF-3 SAR images could improve
the accuracy of multiple temporal image classification in Chinese GF series images. As
shown in Figure 5b, the overall accuracy, Kappa coefficient, and corn PA increased by 1.79%,
0.0227, and 0.68%, respectively, in the Sentinel series images. The UA of corn only decreased
by 0.11%. Therefore, in Sentinel series images, Sentinel-1SAR images could greatly improve
the accuracy of multiple temporal image classification. There were many cloudy and rainy
weather events in June, July, and August on the Songnen Plain in Northeast China, which
led to serious cloud coverage in some optical remote sensing images. SAR images were not
affected by clouds. Therefore, SAR images compensated for the defects of optical images,
which is very important in multitemporal image research. Therefore, in Chinese GF series
images and Sentinel images, the addition of SAR images could improve the classification
accuracy of ground objects in multiple time sequences.
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3.3. Comparison of Classification Accuracy between GF and Sentinel in Time Series Images
Combined with Optical and SAR

Six classification scenes, S5, S6, S8, S9, S10, and S12, were designed to compare the
classification accuracy of the time series combination of GF-6 WFV and GF-3 SAR images
with Sentinel-2/1 images. The classification results are shown in Table 6.

Table 6. Classification results of Chinese GF series and Sentinel series images.

Scenes Months Data Overall Accuracy/% Kappa Corn PA/% Corn UA/%

S5 5,6,7 GF-6/3 90.58 0.8786 84.66 85.58
S6 7,8,9 GF-6 89.54 0.8654 89.26 93.07
S8 5,6,7,8,9 GF-6/3 93.37 0.9143 89.39 91.97
S9 5,6,7 Sentinel-2/1 83.79 0.7931 75.69 79.58

S10 7,8,9 Sentinel-2/1 87.44 0.8373 86.82 87.08
S12 5,6,7,8,9 Sentinel-2/1 88.32 0.8505 86.49 89.87

As shown in Table 6, compared with Chinese GF-6/GF-3 images and Sentinel-1/2
images, the classification accuracy of GF-6/GF-3 images was better than that of Sentinel-1/2
images. In the comparison of classification scenes S5 and S9 (5,6,7-month), S6 and S10
(7,8,9-month), and S8 and S12 (5,6,7,8,9-month), the classification accuracy of GF images
was higher than that of Sentinel images. S8 and S12 were the two scenes with the highest
classification accuracy of the GF and Sentinel images, respectively. In the comparison of S8
and S12 classification scenes, the overall accuracy, Kappa coefficient, corn PA, and corn UA
of Sentinel series images were lower by 5.05%, 0.0638, 2.90%, and 2.10%, respectively.

On the Songnen Plain in Northeast China, June, July, and August fall in the cloudy
and rainy season, and optical images are easily affected by cloud cover, which makes
them unusable. The GF-6 satellite has a shorter revisit period; therefore, it is easier to
obtain cloud-free, high-quality images. SAR images cannot achieve the classification
accuracy of optical images because of their few features, which leads to the classification
accuracy of Sentinel series images being lower than that of Chinese GF series images.
GF-6 WFV images have an advantage in time series image classification because of their
high temporal resolution.
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Figure 6 shows an enlarged view of the local area in Figure 4b,d. It shows the classifi-
cation results of the two images in detail, with the classification results of GF time series
images on the left and Sentinel images on the right. There were many misclassifications in
Sentinel temporal images, and the classification results were messy. In comparison, there
were fewer misclassifications in GF temporal images.
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In the classification of remote sensing images of time series, the classification accuracy
of images with high temporal resolution and low spatial resolution is higher than that of
images with high spatial resolution and low temporal resolution.

4. Discussion

Any crop has its own specific growth cycle, and the growth state of crops in each period
is various; therefore, the classification results of different growth periods are diverse. For a
wide range of medium-resolution remote sensing classifications, a single remote sensing
image can no longer meet the accuracy of ground object extraction [33,34]. First, this
study verified the advantages of time series images in terms of classification accuracy
compared with single temporal images. Taking experiments S1–S4 as an example, in the
seedling stage of corn, the overall classification precision and extraction accuracy of corn
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were extremely low. The reason for this was that all plants, including corn, were in the
germination state at the seedling stage, the difference between various vegetation was
small, and the separability was not obvious. Therefore, the overall classification accuracy
and extraction precision of corn were lower. In August, the total classification accuracy,
Kappa coefficient, and extraction precision of corn all reached their highest values. In
this period, corn reached a more vigorous state, and the separability between various
vegetation types became more obvious; therefore, the classification effect was the best in
milk maturity. By observing the periodic fluctuation curve of the NDVI, we found that July
was the dividing line, and the change from May to July was large, while the change from
July to September was small. Therefore, this paper examined the time series classification
effects of May–July, July–September, and May–September. The results showed that the
total accuracy and Kappa coefficient of the series combination in May–July were higher
than those in July–September, while the extraction accuracy of corn was lower than that in
July–September. The reason for this was that the growth state of each vegetation changed
greatly from May to July, which contained more phenological information; therefore,
the overall classification effect from May to July was better. In comparison, the difference
between corn and other vegetation from July to September increased, and the differentiation
was higher; therefore, the extraction effect of corn from July to September was better. From
May to September, the classification effect of the full-cycle time series image combination
was better than all the above classification results. This shows that the classification effect
of multiple time series image combinations can greatly improve classification accuracy, and
it is a significant way to classify large-scale crops by remote sensing.

In the study of the time series combination of corn, the optical image in June could not
be collected because of cloud coverage. This problem is significant in the field of remote
sensing [35–38]. In this paper, SAR images were used instead, and two series of images
were selected, namely, GF-6/GF-3 and Sentinel-1/Sentinel-2. Through Experiments S7
and S8, it could be found that after adding SAR images in June, the overall classification
accuracy, Kappa coefficient, and corn extraction accuracy improved to a certain extent. In
the experiment of Sentinel-1/Sentinel-2 images, the optical images in July and August
could not be used, and Sentinel-1SAR images were used instead. Through the experimen-
tal results of S11 and S12, it could be found that after adding SAR images, the overall
classification accuracy, Kappa coefficient, and corn extraction accuracy were improved.
These two groups of experiments prove that the polarization characteristics of SAR images
can play an important role in time series image classification to improve the accuracy of
classification. In the time series image classification experiment, when optical images could
not be used in a certain period, SAR images could be used instead.

In comparison, Sentinel series data were used earlier, which are relatively mature data
and are widely favored in the field of scientific research. Different remote sensing images
have great differences in viewpoint, illumination, and resolution [39]. GF-6 WFV data
have two additional red edge bands [40,41], which have certain advantages in vegetation
monitoring. The experimental results of S5–S12 showed that the classification accuracy
of the GF-6/GF-3 images was significantly higher than that of the Sentinel-1/Sentinel-2
images. SAR images were slightly worse than optical images in image classification because
they did not have important bands, such as visible-light and near-infrared bands. In the
comparison between S5 and S9, Sentinel 2 lacked optical images in July, GF-6 WFV lacked
optical images in June, and GF-6 WFV optical images contained a longer time span and
richer phenological information; therefore, GF6/GF3 images had a better classification
effect. In the comparison between S6 and S10, S7 and S11, and S8 and S12, the classification
accuracy of GF6/GF3 was higher than that of Sentinel-1/Sentinel-2. The possible reason for
this was that the revisit period of the GF-6 WFV image is 4 days, and the revisit period of
the Sentinel-2 binary star combination is 5 days. GF-6 makes it easier to obtain high-quality
optical images; therefore, GF-6 WFV images have more advantages in time series image
classification. In temporal image classification, the effect of high temporal resolution is
greater than that of high spatial resolution.
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SAR image is microwave imaging, without visible-light, near-infrared, and other
important bands, and is fundamentally different from optical image, so it cannot be com-
pletely replaced. The experimental results in this paper also showed that in multi-time
series images, if the number of SAR images introduced is large, the classification accuracy
is lower. This shows that SAR image is limited in image classification. Therefore, in the face
of cloud cover, cloud removal is the best way. At present, image cloud removal technology
is not mature enough; there is still a long way to go. Cloud removal processing of satellite
images will be important for crop classification now and in the future.

Multi-time series images will inevitably lead to an increase in the amount of data. This
paper spent a lot of time and energy in the preprocessing stage of the images. In future
research, Google Earth Engine and PIE-Engine cloud computing platforms can be used.
This will reduce the workload of image preprocessing and improve efficiency.

5. Conclusions

Corn growing has five periods in Zhaodong (May–September). In terms of a single
growth period, the classification accuracy in May was the lowest, while the classification
accuracy in August was the highest. The classification accuracy can be greatly improved by
using the time series combination of the whole growth stage. The overall accuracy, Kappa
coefficient, corn PA, and corn UA were 93.37%, 0.9143, 89.39%, and 91.97%, respectively.

SAR polarization characteristics can improve the classification accuracy of time series
images because SAR images are sensitive to the spatial characteristics of ground objects.
In June, July, and August, the vacancy of optical images was compensated. In GF-6 and
GF-3 images, the overall accuracy, Kappa coefficient, corn PA and improved accuracy were
0.30%, 0.035, and 4.16%, respectively, after adding GF-3 SAR images. In the Sentinel series
images, the overall accuracy, Kappa coefficient, corn PA and improved accuracy were
1.79%, 0.0227, and 0.68%, respectively, after adding Sentinel-1 images, while corn UA only
decreased by 0.11%. The results of the two kinds of image classification have proved that
SAR image has a positive effect on multi-time series image classification.

The classification accuracy of the time series combination of Chinese GF-6 and GF-3
was higher than that of Sentinel-2 and Sentinel-1 images. The GF series was 5.05%, 0.0638%,
2.90%, and 2.10% higher than the Sentinel series in regard to 4 indices, total precision, Kappa
coefficient, corn PA, and corn UA, respectively. This indicates that temporal resolution
plays a more important role in the classification of multi-temporal images.

By studying the data of the GF and Sentinel series, this paper makes a more compre-
hensive contribution to the field of optical and SAR multi-temporal image classification.
This study provides a valuable reference for crop classification with optical and SAR time
series images.
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