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substance to deform reversibly under stress. Viscous ma-
terials, on the other hand, flow when an external shear 
force is applied and do not regain their original shape 
when the force is removed. Viscoelastic materials exhibit 
characteristics of both viscosity and elasticity, resulting in 
energy dissipation when stress is applied. The energy lost 
in this process is called ‘hysteresis’. Young’s modulus, also 
known as the ‘tensile modulus’ or ‘elastic modulus’, is a 
quantitative measure of the stiffness of an elastic material. 
It is defined as the ratio of the stress along an axis over the 
strain along that axis. For many materials, Young’s mod-
ulus is essentially constant over a range of strains. Such 
materials are called ‘linear’. Nonlinear materials do not 
have a constant proportion of stress versus strain. Most 
materials are linear for a specific range of stress values and 
beyond this range lose their linear elasticity and become 
nonlinear.

  Composite materials are materials made from two or 
more constituent materials with significantly different 
physical or chemical properties that, when combined, 
produce a material with characteristics different from the 
individual components. The individual components re-
main separate and distinct within the finished structure. 
‘Anisotropy’ is the property of being directionally depen-
dent, as opposed to ‘isotropy’, which implies identical 
properties in all directions. It can be defined as a differ-
ence, when measured along different axes, in a material’s 
physical or mechanical properties.
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 Abstract 

 Keratoconus (KCN) is an ectatic disorder with progressive 

corneal thinning and a clinical picture of corneal protrusion, 

progressive irregular astigmatism, corneal fibrosis and visual 

deterioration. Other ectatic corneal disorders include: post-

LASIK ectasia (PLE) and pellucid marginal degeneration 

(PMD). Corneal crosslinking (CXL) is a procedure whereby ri-

boflavin sensitization with ultraviolet A radiation induces 

stromal crosslinks. This alters corneal biomechanics, causing 

an increase in corneal stiffness. In recent years, CXL has been 

an established treatment for the arrest of KCN, PLE and PMD 

progression. CXL has also been shown to be effective in the 

treatment of corneal infections, chemical burns, bullous 

keratopathy and other forms of corneal edema. This is a cur-

rent review of CXL – its biomechanical principles, the evolu-

tion of CXL protocols in the past, present and future, indica-

tions for treatment, treatment efficacy and safety. 

 © 2014 S. Karger AG, Basel 

 Corneal Biomechanical Properties 

 Biomechanical Principles 
 Several biomechanical terms help characterize the 

function of biologic materials. Elasticity is the ability of a 
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  Biomechanical Properties of the Normal Cornea 
 In the terminology of mechanical science, the cornea 

is a complex anisotropic composite with nonlinear elastic 
and viscoelastic properties  [1] . Understanding corneal 
macro- and microstructure allows for an understanding 
of its biomechanical properties. The cornea comprises 5 
layers. The corneal stroma makes up 90% of corneal 
thickness and is the main contributor to the cornea’s 
strength and transparency. This layer is composed of 
250–400 stacked lamellae  [2] . In the anterior one third of 
the stroma, the lamellae are more narrowly interwoven 
than in the posterior two thirds  [3] . The lamellae are com-
posed of type I/V collagen fibrils oriented in specific di-
rections (depending on their location and depth). This 
structure, combined with the cornea’s dome-like shape, 
converts the load created by the intraocular pressure 
(IOP) into a tangential tensile force carried by the stromal 
lamellae. While in the anterior third of the cornea colla-
gen fibrils are more isotropic, in the central-posterior two 
thirds, collagen fibrils are arranged orthogonally to each 
other. The cornea’s anisotropic tensile properties, includ-
ing its resistance to the pull of the extraocular muscles, are 
also explained by this tridirectional fibrillar orientation 
 [4, 5] . Proteoglycans within the stroma surround the 35-
nm monodisperse collagen fibrils, thus creating uniform 
spacing of the collagen fibrils. The cornea’s transverse 
material properties are determined primarily by the 36–
48 m M  of fixed charge density associated with the pres-
ence of these organizing proteoglycans  [6, 7] . In the an-
teroposterior direction there is a relatively low structural 
resistance – contributing to the swelling properties of the 
cornea. The stroma is composed of 80% water, giving it 
viscoelastic properties  [8, 9] . The viscoelastic property of 
the cornea is thought to be a major contributor to cor-
neal hysteresis (CH; the cornea’s ability to absorb energy) 
 [10]  and the corneal resistance factor (CRF; an indicator 
of its ability to resist external forces)  [11] . Maintenance of 
a shape as maximally spherical as possible is essential for 
the cornea’s refractive role. Therefore, it must distribute 
applied loads with great precision  [12] . The biomechani-
cal properties of the human cornea change with age. The 
cornea demonstrates considerable stiffening with age that 
could be attributed to age-related nonenzymatic cross-
linking, affecting the stromal collagen fibrils  [13, 14] .

  Biomechanical Properties in Keratoconus 
 Keratoconus (KCN) is an ectatic disorder with pro-

gressive corneal thinning and a clinical picture of corneal 
protrusion, progressive irregular astigmatism, corneal fi-
brosis and visual deterioration  [15] . The preferred or-

thogonal fibril orientation of the normal cornea appears 
to be altered in KCN, possibly contributing to the me-
chanical instability  [16] . It has been suggested that only 
the anterior 200 μm of the cornea are affected in KCN 
 [17] . KCN may involve a disturbance of the balance be-
tween proteolytic breakdown and repair  [18] . Both the 
concentration and the activity of the crosslinking enzyme 
lysyl oxidase have been shown to be significantly reduced 
in KCN corneas  [19] . Mechanically, the KCN cornea 
shows a substantial reduction in stiffness  [20] . A model-
based analysis of a KCN cornea has shown that the shape 
distortion in KCN is affected by three factors: (1) local-
ized thinning; (2) reduction in the tissue’s meridian elas-
tic modulus, and (3) reduction in the shear modulus per-
pendicular to the corneal surface  [21] . The point of max-
imal stress on the KCN cornea was shown to be at the 
center of the corneal bulge – more specifically in areas of 
maximal thinning. The cornea’s biomechanical proper-
ties can be measured in vivo using the Reichert Ocular 
Response Analyzer (ORA; Reichert, Inc., Buffalo, N.Y., 
USA). The device measures the corneal force/displace-
ment relationship using an air jet to apply pressure to the 
cornea. During the first phase of measurement, the air jet 
causes the cornea to flatten and assume a concave shape. 
Shortly after, the air pressure decreases, causing the cor-
nea to return to its basic formation. The measurement is 
performed during a very short time period (approx. 20 
ms) to avoid the influence of momentary IOP (and other 
ocular parameter) changes. The changes in corneal shape 
throughout the measurement period are recorded using 
an electro-optical sensor which monitors the central 
3 mm of the cornea. This enables in vivo measurement of 
CH and the CRF  [10] . In KCN corneas, CH and the CRF 
have been shown to be significantly decreased when com-
pared with non-KCN corneas  [11, 22–24] .

  Biomechanical Properties in Other Keratoectatic 
Disorders 
 In addition to KCN, corneal ectasia is a feature of sev-

eral other disorders, including: post-LASIK ectasia (PLE) 
and pellucid marginal degeneration (PMD).

  Ectasia following LASIK is rare, with an incidence of 
approximately 0.66%  [25] . It may be apparent immedi-
ately following LASIK surgery or years after, generally oc-
curring within 2 years of surgery  [26, 27] . Clinically, it is 
manifested as two distinct entities: the first is a central 
forward bowing with minimal irregular astigmatism, and 
the second is a KCN-like ectasia with paracentral thin-
ning and resultant significant irregular astigmatism. His-
topathologic analysis of eyes with PLE has shown features 
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similar to KCN. Changes included: forward protrusion of 
both anterior and posterior corneal surfaces, epithelial 
detachment, Bowman’s membrane breakage and folding 
and irregular lamellae  [28, 29] . Forward movement of the 
posterior corneal lamella appears to occur routinely fol-
lowing LASIK in a nonprogressive manner  [30, 31] . Pos-
terior corneal bulging following LASIK was suggested to 
be caused by IOP  [31] . Other studies did not find such an 
effect of IOP  [32] . Guirao  [33]  described a model used to 
examine the influence of myopic LASIK on corneal elastic 
properties. Based on this model, it was proposed that cor-
neal thinning caused by ablation produces an elastic de-
formation of the posterior corneal surface. The degree of 
deformation was found to be dependent on intrinsic cor-
neal parameters (curvature, Young’s modulus and thick-
ness) and extrinsic parameters (IOP and ablation profile).

  PMD is a rare ectatic disorder which typically affects 
the inferior or superior peripheral cornea in a crescentic 
fashion. Histopathologically, the degeneration appears in 
a region close to the limbus. This region shows a replace-
ment of Bowman’s layer with a collagenous pannus. The 
anterior stroma contains degenerated collagen fibrils 
with very large proteoglycans. The lamellae are fused and 
keratocytes appear like fibroblasts  [34] . This suggests that 
PMD could be related to a disorder in the synthesis of col-
lagen fibrils. We were unable to find a report of PMD 
biomechanics in the literature.

  Chemistry of Crosslinking 

 Crosslinking in Polymers 
 Crosslinking is the creation of bonds that connect one 

polymer chain to another. The bonds can be covalent or 
ionic. A polymer is defined as a chain of monomeric ma-
terial – either a synthetic polymer or a biologic molecule 
(such as a protein). Crosslinking of polymers changes 
their physical properties. For example, crosslinking a 
rubber molecule will cause a decrease in its flexibility and 
an increase in its rigidity and melting temperature  [35] . 
Crosslinking is used in bioengineering to strengthen ma-
terials, as well as in dentistry to harden filling materials 
 [36, 37] .

  Early Applications of Crosslinking 
 In 1992, Hettlich et al.  [38]  investigated possible ways 

to perform lens refilling following phacoemulsification. 
They developed a method which included the injection of 
a monomer into the lens capsule, followed by intracapsu-
lar polymerization of the material by exposure to light 

(400–500 nm). The substance did not seem to cause sig-
nificant damage to surrounding tissues  [38] . This method 
is an early example for the use of light energy to induce 
intraocular structural changes.

  Riboflavin, also known as vitamin B 2 , is an easily ab-
sorbed, colored micronutrient with a key role in main-
taining health in humans and animals. Following expo-
sure to ultraviolet (UV)A radiation, riboflavin molecules 
absorb energy and reach an excited state. In its excited 
state, riboflavin can either produce radicals or singlet ox-
ygen molecules, depending on the availability of oxygen 
 [39, 40] . These highly active molecules can induce cova-
lent bonds, thus crosslinking collagen fibers (or other 
corneal molecules such as proteoglycans and nucleic ac-
ids)  [41] .

  Riboflavin was initially described as an active compo-
nent (together with fibrinogen) in a light-activated cor-
neal tissue glue, excited using blue-green (488–514 nm) 
argon laser light  [42, 43] .

  Evolution of Riboflavin: UVA Corneal Collagen 

Crosslinking 

 First Steps 
 In the 1970s, Siegel et al.  [44, 45]  discussed crosslink-

ing reactions whereby lysyl oxidase catalyzed the forma-
tion of crosslinking aldehydes in collagen and elastin. In 
1997, Spoerl et al.  [46]  used a similar principle to attempt 
an induction of corneal crosslinking (CXL), aiming to in-
crease corneal stiffness. They had several porcine eye test 
groups treated with UV light alone/0.5% riboflavin alone/
riboflavin with UV light or blue light or sunlight/glutar-
aldehyde and Karnovsky’s solution. Examination of the 
stress-strain properties in each of the groups showed that 
riboflavin and UV light as well as glutaraldehyde or Kar-
novsky’s solution led to increased corneal stiffness  [46] . 
This technique was later studied in vivo by Wollensak et 
al.  [47]  on 22 progressing KCN patients. Following cen-
tral removal of the epithelium, photosensitizing ribofla-
vin drops were applied and the eyes exposed to UVA (370 
nm, 3 mW/cm 2 ) at a 1-cm distance for 30 min. Clinical 
follow-up showed that KCN stopped progressing in all 
eyes, and in 70% of the eyes a regression in keratometric 
and refractive values had been observed  [47] .

  Duration of the Treatment Steps: The Dresden 
Protocol 
 The standard treatment protocol, commonly referred 

to as the ‘Dresden protocol’ (owing to the fact it was first 
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described by Wollensak et al.  [47]  from the Technical 
University of Dresden), includes the following steps:
  – Anesthetizing the eye with a topical anesthetic 
 – Removal of the central 7–9 mm of the epithelium 
 – Application of a 0.1% riboflavin 5-phosphate and 20% 

dextran solution to the deepithelized surface every 
5 min for 30 min 

 – Exposure to UVA (370 nm, 3 mW/cm 2 ) radiation for 
a duration of 30 min with continued application of the 
above solution every 5 min 

 – Application of topical antibiotics and a soft bandage 
contact lens with good oxygen permeability 

 Accelerated CXL 
 An irradiance of 3 mW/cm 2  with a treatment zone of 

9 mm for a duration of 30 min results in a total energy of 
3.4 J or 5.4 J/cm 2 . If one wants to make an effort to short-
en the duration of the procedure, it is possible to use a 
higher-intensity light for a shorter period of time; an ir-
radiance of 10 mW/cm 2  for a duration of 9 min was 
shown to have similar rigidity results in porcine corneas 
 [48] . A large ex vivo study of porcine eyes examined the 
response to irradiances between 3 and 90 mW/cm 2  with 
illumination times between 30 and 1 min, respectively. It 
was shown that irradiation levels up to 45 mW/cm 2  pro-
duced significantly stiffer corneas when compared with 
nonirradiated controls. But levels of 50 mW/cm 2  and 
above (with their respective time periods) did not show 
significantly greater stiffness  [49] . An ex vivo study com-
pared ultrafast CXL (30 s of UVA exposure) using a cus-
tom CXL agent (by PriaVision Inc., Menlo Park, Calif., 
USA) with a standard 30-min riboflavin CXL in porcine 
eyes. Both groups showed similar stiffness changes (mea-
sured using surface wave elastometry)  [50] . In human 
eyes, an ex vivo study compared CXL with standard 
(3 mW/cm 2  for 30 min) versus the accelerated (9 mW/
cm 2  for 10 min) protocol. Corneal stiffness results were 
not different between the groups  [51] . An evaluation of 
endothelial cell changes following accelerated CXL (18 
mW/cm 2  for 5 min) in 36 KCN patients showed signifi-
cant differences in endothelial cell density and morphol-
ogy parameters. Those parameters returned to preopera-
tive values at 3–6 months after CXL. This showed that 
while endothelial cells do recover safely following the ac-
celerated procedure, there is clear evidence of endothelial 
effects following accelerated CXL  [52] . A comparative 
clinical study included 21 patients with KCN, treated with 
accelerated CXL (7 mW/cm 2  for 15 min) in one eye and 
with standard CXL (3 mW/cm 2  for 30 min) in the fellow 
eye. A mean follow-up of 46 months showed no progres-

sion of KCN in any of the groups with similar improve-
ment in visual acuity and keratometric parameters and no 
evidence of endothelial damage  [53] . A series of 23 pa-
tients undergoing more rapid CXL (9 mW/cm 2  for 10 
min) showed favorable outcomes with no evidence of en-
dothelial cell density changes during a 6-month follow-
up  [54] . Currently, there is no uniform protocol for ac-
celerated CXL and no large clinical trials investigating 
this method.

  CXL Instruments 
 The initial in vivo CXL study by Wollensak et al.  [47]  

in 2003 used 370-nm UV diodes (Roithner Lasertechnik, 
Vienna, Austria) with a potentiometer regulating the 
voltage. Three 1.3-volt accumulators were used as a pow-
er generator. Before each treatment, the desired irradi-
ance of 3 mW/cm 2  was controlled with a UVA meter (La-
serMate-Q; LASER 2000, Wessling, Germany) at a 1-cm 
distance and, if necessary, regulated with the potentiom-
eter  [47] .

  Several CXL instruments are in use today for standard 
collagen CXL. The XLink TM  (Optos, Dunfermline, UK) 
has an intensity range of 0.5–5 mW/cm 2  and is used in 
standard 30-min CXL procedures. The CBM Vega XLink 
Crosslinking System (Carleton Optical, Chesham, UK), 
designed for standard 30-min CXL, was used effectively 
in several clinical studies  [55, 56] . The LightLink CXL TM  
(LightMed, San Clemente, Calif., USA) has a wide range 
of irradiance between 0.5 and 30 mW/cm 2 , allowing a 
choice of various treatment protocols from 3 to 30 min 
length. Several CXL instruments for accelerated CXL 
have been introduced. The UV-X TM  2000 Crosslinking 
System (IROC Innocross, Zurich, Switzerland) has a 
maximal intensity of 12 mW/cm 2  and can be used for a 
10-min accelerated CXL procedure. The KXL TM  System 
(Avedro, Waltham, Mass., USA) is able to produce a light 
intensity of 30 mW/cm 2 , enabling ultrafast accelerated 
CXL with less than 3 min of UVA exposure. It appeared 
to be effective in a small group of KCN patients when 
combined with an LASEK procedure  [57] , and also for 
treatment of infectious keratitis in cats  [58] .

  Epithelium On/Off 
 The standard CXL protocol includes large deepitheli-

zation of the cornea (epi-off CXL). This is due to the fact 
that riboflavin is a macromolecule with inadequate cor-
neal penetration ability  [59, 60] . Deepithelization could 
serve as a potential source of postoperative infections, a 
complication previously reported  [61–65] . In addition, 
the period of epithelial healing is associated with intense 
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postoperative pain  [66]  and a delay in the return to daily 
activities. Performing a transepithelial CXL (epi-on CXL) 
could theoretically reduce these complications.

  Animal studies have shown that epi-on CXL does pro-
duce increased corneal stiffness  [67, 68] . When compared 
with epi-off CXL, epi-on CXL resulted in only one fifth to 
one third of the increase in corneal stiffness  [67, 69] . It 
was also shown that the treatment depth in epi-on CXL is 
greatly reduced when compared with epi-off CXL  [69] . 
Following epi-off CXL in rabbit corneas, measurement of 
maximal stress was 35.9% higher and Young’s modulus 
15.4% higher when compared with a similar epi-on CXL 
rabbit group  [68] . These results raised the question 
whether the reduced effect of epi-on CXL is enough to 
maintain clinical stability. Human in vivo comparison of 
the two methods demonstrated an inferior effect of epi-
on CXL. There were no significant stromal changes (such 
as a decrease in anterior keratocyte density, evident stro-
mal edema and keratocyte activation) following epi-on 
CXL. All these changes were significantly evident follow-
ing epi-off CXL  [70] . A study performed on 20 eyes com-
pared epi-off CXL with CXL performed using partial ep-
ithelial removal in a grid-like pattern. Evaluation of treat-
ment depth using OCT showed that areas of an intact 
epithelium appeared to block penetration of riboflavin 
into the anterior corneal stroma  [71] . Several small pro-
spective studies evaluated the clinical value of epi-on 
CXL. Their results were variable. One prospective 20-pa-
tient series showed statistically significant improvement 
in uncorrected and corrected visual acuity and topogra-
phy-derived keratometry, cone apex power and higher-
order aberrations with no apparent progression of KCN 
 [72] . A recently published 2-year prospective study of 26 
eyes undergoing epi-on CXL showed that after relative 
improvement during the first 6 months after CXL, visual 
acuity parameters returned to baseline at 1 year. At 2 
years after CXL, keratometric and pachymetric indices 
worsened compared with the pre-CXL values  [73] .

  Several adjunctive methods were studied in an effort 
to increase riboflavin penetration through an intact epi-
thelium. The use of benzalkonium chloride (BAC) and 
ethylenediaminetetraacetic acid (EDTA) as a means of 
weakening epithelial tight junctions has been evaluated. 
The use of BAC in rabbit eyes was shown to increase the 
riboflavin absorption coefficient through an intact epi-
thelium. Nevertheless, the absorption coefficient achieved 
was only 37% that of epi-off absorption  [74] . Slightly dif-
ferent results were shown in a very similar study, where 
the addition of BAC increased the riboflavin absorption 
coefficient in epi-on CXL to a level similar to a standard 

epi-off CXL. Moreover, a biomechanical analysis of treat-
ed corneas showed no significant differences in resultant 
corneal stiffness in the two groups  [75] . A prospective 
clinical study on 51 eyes, using epi-on CXL with the ad-
dition of BAC and EDTA, showed a limited but favorable 
effect of BAC/EDTA-assisted epi-on CXL on keratoconic 
eyes. The treatment effect was compared with the non-
treated contralateral eyes for a duration of 12 months. 
While favorable, the treatment effect in this study ap-
peared to be less pronounced than described in the litera-
ture after epi-off CXL  [76] . Similar results were shown 
over a period of 18 months for 53 eyes undergoing BAC-
assisted epi-on CXL  [77] .

  Riboflavin is a water-soluble, negatively charged mol-
ecule with a molecular weight of 376.40 g/mol, which 
makes it a good candidate for iontophoresis. Iontophore-
sis appears to enhance transepithelial riboflavin penetra-
tion  [78] . Epi-on CXL using iontophoresis showed good 
clinical results in terms of reduced astigmatism and kera-
tometric values with improved best-corrected visual acu-
ity (BCVA) in a prospective series of 22 eyes  [79] . Other 
methods, investigated in rabbit corneas, include: phono-
phoresis (ultrasound-assisted drug penetration) and a 
biocompatible riboflavin-based nanoemulsion system. 
Both have shown potential in increasing transepithelial 
penetration of riboflavin  [80, 81] . Lastly, the use of a hy-
poosmolar riboflavin solution (with 0.44% NaCl) was 
also investigated and appears to contribute to the trans-
epithelial absorption of riboflavin  [74] .

  Epi-on CXL is especially appealing for use in the pedi-
atric population. Pediatric patients are more sensitive to 
the possible effects of epithelial debridement such as post-
operative pain, temporary visual deterioration and in-
creased risk of infection and haze. As in the adult popula-
tion, there are no large-scale prospective trials evaluating 
epi-on CXL in children. Results of existing studies are 
conflicting. A recently published 1-year follow-up of 22 
eyes of children treated with epi-on CXL showed signifi-
cant improvement in visual acuity parameters and kera-
tometric values  [82] . A retrospective comparison of epi-
on with epi-off CXL in 39 pediatric KCN patients (23 epi-
off, 16 epi-on) showed no significant differences between 
the groups in any of the clinical parameters evaluated (vi-
sual acuity and topographic parameters). The epi-on CXL 
group showed reduced postoperative pain and no post-
operative corneal edema  [83] . Different results were 
shown in a prospective 18-month follow-up of 13 eyes of 
children, where epi-on CXL did not appear to halt KCN 
progression despite a significant improvement in correct-
ed distance visual acuity (CDVA)  [84] .
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  Other CXL Methods in Corneal Collagen 
 Riboflavin and UVA is the universally accepted meth-

od today for CXL. However, photochemical CXL with 
other agents is under research. In one study, chemical de-
rivatives of the photosynthetic pigments (chlorophylls 
and bacteriochlorophylls) introduced into rabbit corneas 
in vivo and ex vivo were excited using near-infrared illu-
mination. The result was stiffening of the treated corneas. 
It is proposed that photoexcitation caused these materials 
to generate O 2  –  and  ∙  OH radicals, which promoted pro-
tein crosslinking and the resultant stiffening  [85] . Recent-
ly, the use of Rose Bengal dye excited by green light has 
shown to significantly increase rabbit corneal stiffness, 
using a rapid treatment protocol (12 min in total) with no 
apparent toxicity to keratocytes. It was suggested as a po-
tential future option for CXL of corneas thinner than 400 
μm  [86] . The use of femtosecond laser to excite riboflavin 
molecules has shown a stiffening effect similar to UVA 
excitation when used in vitro to crosslink collagen hydro-
gels  [87] .

  Other methods of purely chemical CXL were also in-
vestigated. These have potential advantages over Ribofla-
vin-UVX, such as avoidance of radiation toxicity and a 
more simple delivery method of the active agent. The 
most widely used corneal crosslinkers are probably tissue 
fixatives such as formaldehyde, glutaraldehyde and Kar-
novsky’s solution (discussed above). These agents cause 
tissue stiffening through CXL, thus fixating it for patho-
logic analysis. Unfortunately, these agents are toxic in 
vivo and are not used clinically  [88] . Genipin is an active 
molecule derived from the plant  Gardenia jasminoides . It 
was shown to produce a CXL effect similar to standard 
CXL in porcine eyes, with minimal endothelial toxicity 
and no need for irradiance  [89] . In recent years, the use 
of β-nitroalcohols has been suggested as a promising CXL 
method. These agents function as both formaldehyde and 
nitrite donors under physiologic conditions, thus en-
abling CXL of collagenous tissue  [90, 91] . Due to their 
widespread industrial use, their safety profile has been 
studied and was found to be favorable  [92] .

  Results 

 Keratoconus 
 Histology and Morphology 
 In 2006, Seiler and Hafezi  [93]  described the formation 

of a stromal demarcation line following CXL at a depth of 
approximately 300 μm, representing the interface be-
tween treated and untreated cornea. They speculated the 

demarcation line is a result of refractive and reflective dif-
ferences between treated and untreated stroma  [93] . 
Shortly after the application of a riboflavin plus dextran 
25% solution, corneal thickness decreases  [94] . This de-
crease in thickness may be the cause of the collagen fibril 
disorganization observed following CXL  [95] . Histologic 
evaluation of rabbit corneas following CXL showed a pat-
tern of extensive keratocyte loss throughout the entire 
stroma with accompanying endothelial loss – these were 
apparent in the central irradiated zone. The anterior stro-
ma showed a pattern of lacunar edema in the space where 
apoptosed keratocytes used to be. The areas adjacent to 
the treated zone had diffuse edema. This difference in 
edema pattern between the treated zone and the areas ad-
jacent to it can serve as an explanation for the formation 
of the above-described demarcation line. By week 6 after 
the operation, the cellular structure appears to normalize 
 [96] . Others reported the keratocyte loss to be more pro-
longed – up to 30 months postoperatively  [97] . In vivo 
studies using confocal microscopy showed similar find-
ings following CXL, with keratocyte loss and stromal ede-
ma. In addition, a superficial nerve layer loss was ob-
served  [98] . Stromal edema persists for 4–6 weeks and 
then gradually resolves, with keratocyte repopulation and 
stromal collagen compaction. This transient edema 
causes the known decrease in visual acuity during the first 
postoperative months  [99] . While central stromal kerato-
cyte loss in the treated area persists at 36 months postop-
eratively, nerve regeneration starts at 1 month and con-
tinues past 36 months. A small percentage of patients 
demonstrate endothelial damage with gradual healing 
completed at 1 year postoperatively  [98] . Collagen fiber 
diameter increases following CXL, with a reorganization 
of collagen fibrils in a parallel, lamellar structure similar 
to a non-KCN cornea (and opposed to a KCN cornea). 
This is accompanied by an increase in interfibrillar spac-
ing, which also gives the cornea after CXL a structure 
more similar to a non-KCN cornea  [100] . The increase in 
collagen fiber diameter is more pronounced in the ante-
rior stroma, where a maximal treatment effect is achieved 
 [101] . Macroscopically, the cornea shows significant flat-
tening following CXL, with a reduction in K values  [102] .

  Biomechanics 
 CXL stiffens the cornea. Increased corneal rigidity has 

been documented both in animal  [46, 103, 104]  and hu-
man ex vivo  [105, 106]  studies, showing an increase of 
328.9% in rigidity and by a factor of 4.5 in Young’s mod-
ulus on human corneas. Interestingly, in porcine corneas, 
rigidity and Young’s modulus increased by only 71.9% 
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and a factor of 1.8, respectively  [105] . This difference was 
attributed to the significantly greater thickness of porcine 
corneas and their reduced absorption of UVA  [105] .

  As discussed above, the ORA instrument allows for 
noncontact in vivo evaluation of corneal biomechanic pa-
rameters. One single-center, prospective, randomized, 
controlled clinical trial evaluated 69 eyes after CXL in 
vivo (46 KCN and 23 PLE). CH and CRF were measured 
using the ORA and analyzed in a treatment, sham control 
and fellow eye control group during 12 months. Despite 
an increase in CRF at 1 month, there were no statistically 
significant changes in CH and CRF measurements 1 year 
after CXL  [107] . Similar results were found in two other 
prospective in vivo studies of similar size, performed us-
ing the ORA  [23, 108] . Several explanations were pro-
posed for the lack of change in biomechanic parameters 
in vivo versus the obvious changes observed in vitro. One 
is the fact that different measuring systems were used (e.g. 
ORA vs. strip extensometry). Another is related to the fact 
that KCN cornea is extremely irregular and thus may ex-
hibit great variability in resistance to deformation by the 
ORA depending on small location changes, and therefore 
averaging ORA measurements may not provide an as-
sessment that is accurate enough  [108] . Corneas follow-
ing CXL also show an increased resistance to enzymatic 
digestion  [109]  and to swelling  [110] .

  Clinical Results 
 As previously stated, in 2003 Wollensak et al.  [47]  were 

the first to describe the clinical effect of CXL on 22 KCN 
eyes during a 2- to 4-year follow-up period. All eyes ex-
perienced a halt in KCN progression. Visual acuity im-
proved in 15 of the 22 eyes, and flattening of the maxi-
mum keratometry value (K max ) by 2 diopters was seen in 
16 of the 22 eyes  [47] . Since then, numerous studies have 
evaluated the clinical effect of CXL in the treatment of 
KCN. The only randomized, controlled clinical trial to 
date randomized 66 eyes of 49 progressive KCN patients 
into CXL treatment and control groups. The 1-year re-
sults showed that K max  had been significantly reduced at 
all follow-up periods, with an average decrease of 1.45 
diopters at 12 months. A trend toward improvement in 
BCVA was also observed. Analysis of the control group 
showed a continuous deterioration in K max  and BCVA 
 [111] .

  Other small prospective trials showed a significant im-
provement in visual acuity and keratometric parameters. 
Some also showed an improvement in refractive and to-
pographic parameters. Their results are shown in  table 1 .

  Long-Term Studies 
 The Siena Eye Cross Study, a phase II nonrandomized 

open trial, examined the effect of CXL on progressive 
KCN. The results for 44 study eyes completing a mini-
mum follow-up of 48 months were analyzed. All eyes 
treated showed KCN stability; 65% of the fellow eyes 
showed a mean progression of 1.5 diopters in corneal 
power during the first 24 months of follow-up, and re-
quired CXL. In the treated eyes, the improvement in ker-
atometric values, visual acuity and coma aberrations was 
maintained following 48 months of follow-up  [123] . Two 
other prospective studies evaluated the longer-term effect 
of CXL. One was a 5-year study including 40 eyes  [124]  
and the other a 3-year study including 55 eyes  [125] . Both 
studies found CXL results to be completely stable through 
the follow-up period with no apparent safety issues.

  Retrospective Studies 
 Two very large retrospective reports were aimed at an-

alyzing the long-term effect of CXL. One included 241 
eyes followed up for up to 6 years  [126]  and the other in-
cluded 400 eyes followed up for up to 4 years  [127] . It is 
important to note that the majority of patients in each of 
these trials had not reached a 2-year follow-up period. 
Only 9.15 and 1.75%, respectively, of the patients reached 
a 4-year follow-up period in each of the studies. There-
fore, their ability to evaluate long-term effects is unclear. 
Despite the low number of long-term follow-ups, the re-
sults indicate long-term stabilization and improvement 
after collagen CXL  [126] .

  Results of Combined Photorefractive Surgery and 
CXL 
 The addition of photorefractive surgery to the CXL 

procedure in patients with KCN can improve visual and 
refractive outcomes in addition to the prevention of KCN 
progression. A study comparing the use of same-day CXL 
and photorefractive keratectomy (PRK) with the use of 
sequential CXL and PRK performed 6 months later was 
conducted on 325 KCN eyes (127 eyes underwent the 
same-day procedure and 192 eyes underwent the sequen-
tial procedure). A follow-up period of 36 months (range: 
24–68 months) showed that the same-day procedure was 
significantly more efficient in improving visual acuity, 
keratometric parameters, spherical equivalent and cor-
neal haze scores  [128] . Several smaller prospective series 
(ranging from 12 to 31 eyes each) showed combined PRK 
and CXL to be effective both in improving visual acuity 
and refractive error and in regressing KCN parameters 
 [129–132] . One comparative contralateral eye series in-
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 Table 1.  Prospective studies of CXL for KCN

Study Eyes, n Outcome measures Duration Results

Viswanathan and
Males [112], 2013

76 Kmax, BSCVA, 
astigmatism, SE, CCT

6 – 48 months Kmax improved by 0.96 ± 2.33 D (p = 0.005);
logMAR BSCVA improved by 0.05 ± 0.13 (p = 0.04);
other measures not changed significantly

Hersh et al. [113], 
2011

71 UDVA, CDVA, Kmax 1 year LogMAR UDVA improved from 0.84 ± 0.34 to 0.77 ± 0.37 (p = 0.04);
logMAR CDVA improved from 0.35 ± 0.24 to 0.23 ± 0.21 (p < 0.001);
Kmax improved by 1.7 ± 3.9 D

Lamy et al. [114],
2013

68 CS, BSCVA, 
Kmax

2 years Log CS improved +0.16 (p < 0.001);
logMAR improved –0.16 (p < 0.001);
Kmax improved –0.61 D

Agrawal [115],
2009

37 BCVA, 
astigmatism, 
Kmax, HOA

1 year BCVA improved ≥1 line in 54%;
BCVA unchanged in 28% (p = 0.006);
astigmatism improved 1.20 D in 47% of eyes (p = 0.005);
astigmatism unchanged in 42%;
Kmax improved 2.47 D in 54% (p = 0.004);
Kmax unchanged in 38%;
HOA not changed significantly but for coma aberrations

Coskunseven
et al. [116], 2009

38 SE, astigmatism, UCVA, 
BSCVA, Kmax, CCT, EC

5 – 12 months SE improved 1.03 ± 2.22 D (p < 0.01);
astigmatism improved 1.04 ± 1.44 D (p < 0.01);
UCVA improved 0.06 ± 0.05 (p < 0.01);
BSCVA improved 0.10 ± 0.14 (p < 0.01);
Kmax improved 1.57 ± 1.14 D;
no difference in CCT (p = 0.06) or EC (p = 0.07)

Guber et al. [117],
2013

33 CDVA, stray light, SE, 
CCT, Kmax, Kmin

1 year CDVA improved –0.042 (p = 0.021);
stray light value unchanged (p = 0.215);
SE improved by 1.95 D (p < 0.001);
CCT unchanged (p = 0.175);
Kmax and Kmin: minimal change

Vinciguerra
et al. [118], 2009

28 UCVA, BCSVA, 
SE, Kmax, Kmin, HOA, 
CCT, EC

2 years UCVA improved (p = 0.048);
BSCVA improved (p < 0.001);
SE improved (p = 0.03);
Kmax and Kmin improved (p < 0.03);
HOA decreased (p ≤ 0.046);
CCT decreased (p = 0.045);
EC unchanged (p = 0.13)

Arbelaez et al.
[119], 2009

20 UCVA, BCVA, 
Kaverage, Kapex, sphere, 
astigmatism 

1 year UCVA improved 4.15 lines (p = 0.001);
BCVA improved 1.65 lines (p = 0.0004);
Kaverage improved 1.36 D (p = 0.0004);
Kapex improved 1.4 D (p = 0.001);
sphere improved 1.26 D (p = 0.033);
astigmatism improved 1.25 D (p = 0.0003)

El-Raggal [120],
2009

15 UCVA, BSCVA, 
refraction, Kmean, CCT

6 months UCVA improved (p < 0.05);
BSCVA improved (p > 0.05);
refraction improved (p < 0.05);
Kmean improved (p < 0.05);
CCT unchanged

Goldich et al.
[121], 2012

14 BCVA, UCVA, Kmax, 
cylinder, EC, CCT, 
biomechanics (ORA)

2 years BCVA improved (p = 0.002);
UCVA stable (p = 0.475);
Kmax improved (p = 0.001);
mean cylinder improved (p = 0.001);
no change in EC, CCT and ORA measurements

Henriquez et al.
[122], 2011

10 UCVA, BCVA, Kmax, 
Kmin, SE, EC

1 year UCVA improved (p < 0.001);
Kmax improved 2.66 D (p = 0.04);
Kmin improved 1.61 D (p = 0.03);
SE improved 2.25 D (p = 0.01);
no change in EC

BSCVA = Best spectacle-corrected visual acuity; SE = spherical equivalent; CCT = central corneal thickness; logMAR = logarithm of the minimal angle 
of resolution; VA = visual acuity; UDVA = uncorrected distance visual acuity; CS = contrast sensitivity; HOA = high-order aberrations; UCVA = uncor-
rected visual acuity; EC = endothelial cell count.
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cluding 17 patients with progressive KCN compared 
treatment with combined PRK and CXL with CXL alone. 
For each patient in the study, the eye with the greatest 
KCN progression was chosen to receive combined treat-
ment, while the fellow eye received CXL alone. While, in 
both groups, keratometric parameters improved signifi-
cantly, the improvement in visual acuity, refractive error 
and coma aberrations was more prominent in the com-
bined PRK plus CXL group, showing statistical signifi-
cance in all parameters  [133] . It should be stated here that 
since the eyes in the combined PRK plus CXL group had 
greater KCN progression, the baseline characteristics 
were different between the groups and, therefore, the sig-
nificant advantage shown for the PRK plus CXL group 
was also a result of those differences.

  Results of Combined Intracorneal Ring Segments 
and CXL 
 While CXL has been shown to halt KCN progression, 

its effect on visual rehabilitation may be insufficient. In-
tracorneal ring segments (ICRS) produce rapid and sub-
stantial improvement in visual parameters but do not halt 
KCN progression  [134] . Therefore, combining the two 
procedures can theoretically produce better results. A ret-
rospective comparative analysis performed on 66 eyes 
showed that 1 year postoperatively, the 34 eyes treated 
with ICRS had better visual and keratometric results than 
the 32 eyes treated with a combination of CXL and ICRS 
 [135] . A similar prospective study conducted over a 
2-year follow-up period (39 eyes) showed no difference 
between patients treated with ICRS alone and patients 
treated with CXL followed by ICRS implantation 3 
months later. Both groups showed similar results in terms 
of refractive, topographic, pachymetric, tonometric and 
corneal biomechanical parameters  [136] .

  CXL in the Pediatric Population 
 Diagnosis of KCN at a younger age constitutes a poor 

prognosis regarding progression of the disease and the 
future need for a corneal transplant  [137] . The prospec-
tive, nonrandomized, phase II open trial – the Siena CXL 
Pediatrics trial – included 152 patients aged 18 years or 
younger (10–18 years) suffering from progressing KCN 
 [138] . A 3-year follow-up after epi-off CXL showed sig-
nificant improvement in both visual acuity and kerato-
metric values and a reduction in coma aberrations. Simi-
larly, positive results were demonstrated in two smaller 
prospective pediatric trials  [139, 140] .

  Other Results 
 The use of CXL for the treatment of KCN has been 

shown to significantly improve quality of life even 3 years 
following the procedure. This was shown using vision-
specific quality-of-life questionnaires. CXL specifically 
improved the ‘mental health’, ‘driving’ and ‘dependency’ 
subscores in the vision-specific quality-of-life question-
naire  [141] .

  Other Keratoectatic Disorders 
 Ectasia following Photorefractive Surgery 
 Progressive corneal ectasia is a well-known possible 

complication of photorefractive surgery  [25, 142] . Mor-
phological changes following CXL in corneas with PLE 
were found to be identical to changes in KCN corneas fol-
lowing CXL  [143] . Several small, prospective clinical 
studies have evaluated CXL for PLE and found that vi-
sual acuity and keratometric measures either significant-
ly stabilized or improved. All those studies had only 1 year 
of follow-up  [144–147] . A retrospective study evaluated 
26 eyes with PLE (23 eyes) and with ectasia after PRK (3 
eyes) during a 2-year follow-up period. There was sig-
nificant improvement in CDVA, K max  and several topo-
graphic indices of corneal regularity (such as index of sur-
face variance, index of vertical asymmetry, KCN index 
and central KCN index)  [148] .

  In 2011, Kanellopoulos and Binder  [149]  reported 
their data on a combination treatment using simultane-
ous CXL and PRK in patients with PLE. The goal was to 
use PRK to improve visual outcomes by normalizing the 
corneal surface, reducing irregular astigmatism and po-
tentially reducing the refractive error – in addition to the 
corneal stabilization effect of corneal CXL. Twenty-seven 
of 32 eyes had an improvement in uncorrected distance 
visual acuity and CDVA to 20/45 or better at the end of 
follow-up; 4 eyes showed some topographic improve-
ment but no improvement in CDVA; 2 of the 32 eyes had 
corneal ectasia progression after the intervention and 1 of 
the treated eyes subsequently required a penetrating ker-
atoplasty  [149] . This treatment protocol is commonly re-
ferred to as the ‘Athens protocol’.

  Pellucid Marginal Degeneration 
 Being a rare condition, PMD has been evaluated much 

less than KCN, especially with regard to CXL treatment. 
A major difference between PMD and KCN is the loca-
tion of maximal corneal thinning and steepening. In 
PMD, corneal thinning is more peripheral than in KCN 
 [150] . A study examining the peripheral effect of CXL, 
using OCT evaluation of the stromal demarcation line, 
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showed that the depth of the CXL effect 3 mm away from 
the center of the cornea decreases to 65% of the central 
depth. Therefore, it was concluded that the intended 
depth of CXL using current light sources is achieved only 
within the central area of the cornea, and in order to pro-
vide CXL to the peripheral cornea, the ultraviolet beam 
either should have an improved intensity profile or may 
have to be decentered  [151] . Two prospective studies 
evaluated the effect of CXL on the peripheral cornea. One 
was a randomized, controlled clinical trial examining the 
1-year effect of CXL in 99 eyes with KCN and PLE. This 
trial showed a decreased flattening effect following CXL 
in peripheral cones when compared with flattening re-
sults for central cones  [152] . The other study was a pro-
spective 2-year series evaluating 68 KCN eyes. This study 
found a significant difference in visual acuity parameters 
between centrally and paracentrally located apices in fa-
vor of the central apices  [114] .

  One series of 13 eyes with PMD following CXL proce-
dures showed stable keratometric results and good visual 
acuity in all eyes except one  [153] . A few case reports de-
scribing CXL for PMD have been published. All showed 
improvement and/or stabilization of visual acuity and 
keratometric parameters  [154–156] . A study examining 
the effect of combined PRK and CXL on corneal ectasia 
included 6 eyes with PMD and 6 eyes with KCN. Results 
were only given for the entire cohort as a whole, and 
therefore they are less significant for evaluation of PMD. 
Nevertheless, the group as a whole showed a significant 
improvement in visual acuity, keratometry and astigma-
tism parameters  [132] .

  Other Indications for Riboflavin-UVX Collagen CXL 

 Corneal Infections and Chemical Burns 
 Evidence of the antimicrobial activity of riboflavin and 

UVA was initially described by Tsugita et al.  [157]  in 
1965. They demonstrated its ability to damage viral DNA 
in a virus infecting tobacco plants. The combination of 
riboflavin with UVA or the use of UVA by itself has the 
ability to damage nucleic acids and thus is directly anti-
microbial  [158] . In addition, CXL has been shown to in-
crease the cornea’s resistance to enzymatic digestion 
 [109] . Thus, CXL treatment of corneas with infective ker-
atitis can improve their ability to resist proteolytic en-
zymes secreted by infective microorganisms. The proteo-
lytic enzymatic activity is the cause of clinical corneal 
melting during and following corneal infections. In vitro 
studies have demonstrated a good bactericidal effect of 

combined riboflavin and UVA on several bacterial spe-
cies which are known pathogens in bacterial keratitis 
 [159, 160] . The effects on fungal and acanthamoebic ac-
tivity in vitro were less favorable, showing no significant 
effect on viability  [161, 162] . A different in vitro study 
showed that acanthamoebic growth was inhibited by 
UVA without any added effect following the addition of 
riboflavin  [163] . An animal study showed a partial re-
sponse of  Fusarium  keratitis to CXL  [164] , while a similar 
protocol for  Acanthamoeba  showed no response and pos-
sible worsening following CXL  [165] .

  In 2008, Iseli et al.  [166]  published the first clinical se-
ries describing the resolution of corneal ulcers compli-
cated by melting in 5 patients failing to respond to anti-
biotic therapy. A prospective study evaluated the adjunct 
use of CXL for infectious keratitis in 40 eyes (24 bacterial, 
7 fungal, 2 acanthamoebic and 7 with no positive cul-
tures). Recording of the infiltrate area showed good re-
sponse to treatment in cases of bacterial origin, but in 
fungal and acanthamoebic cases, a poor response was 
seen. Infiltrate depth and size were found to be important 
factors in treatment success. Deep infections may avoid 
the effect of CXL, which is performed through no more 
than 400 μm of the anterior cornea  [167] . In a different 
series of 16 patients with infective keratitis, the use of CXL 
as first-line treatment was evaluated. No antibiotics were 
given prior to CXL. In all eyes, the epithelium healed 
completely. Only 2 eyes required antibiotic treatment and 
1 eye required an amniotic membrane transplant  [168] . 
Smaller studies evaluated the use of CXL in cases of severe 
infectious keratitis that was refractory to antibiotics. In 
these studies (altogether 21 eyes in 3 studies), the major-
ity of patients showed complete healing and scarring of 
the ulcer; the condition of 2 patients deteriorated: one 
required enucleation and the other a tectonic keratoplas-
ty  [169–171] . Fungal keratitis was evaluated clinically in 
an 8-patient series, where eyes with culture-proven fungal 
keratitis not responding to topical therapy were treated 
with CXL. All eyes showed complete healing of the ulcer 
following treatment  [172] .

  Corneal melting caused by chemical burns may also 
respond to CXL. A study on rabbit corneas following al-
kali burn showed that 6 out of 10 control group corneas 
had melting after injury, with 2 corneas perforating, while 
in the CXL-treated group there was only 1 corneal melt-
ing (of 10 treated corneas) without any corneal perfora-
tion. A histological analysis also showed significantly less 
trauma in the CXL-treated group than in the control 
group  [173] .
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  Bullous Keratopathy and Other Causes of Corneal 
Edema 
 Failure of the endothelial pumping mechanism causes 

fluid accumulation in the extracellular space between the 
stromal lamellae  [174] . CXL has been shown to increase 
the cornea’s resistance to swelling  [110, 175]  and there-
fore was evaluated as a treatment for pseudophakic bul-
lous keratopathy (PBK) and other causes of corneal ede-
ma. Edematous corneas treated with CXL demonstrated 
increased collagen fibril organization in the anterior stro-
ma when compared with nontreated controls. This effect 
was less evident in corneas with advanced edema and/or 
fibrosis. The effect appeared to regress 3 months follow-
ing CXL  [176] .

  In 2008, Krueger et al.  [177]  described the results of an 
ex vivo study on 10 human eye bank corneas. Corneas 
treated with femtosecond laser-assisted pocket CXL 
showed improved clarity and a statistically significant im-
provement in corneal thickness. Nontreated controls 
showed no significant changes. This study also included 
a clinical case report where the use of CXL for PBK led to 
corneal thinning and a substantial improvement in visual 
acuity  [177] . A combined clinicopathological study in-
cluded 24 PBK patients treated with CXL. There was sig-
nificant improvement in visual acuity, corneal thickness, 
pain score and corneal haze following CXL at 1 month 
postoperatively. However, all parameters had worsened 
by the 3-month postoperative examination  [178] .

  Combined CXL and Photorefractive Surgery 
 The formation of ectasia following photorefractive 

surgery is currently one of its more serious postoperative 
complications  [25, 142] . In an effort to prevent postop-
erative ectasia and to increase corneal stabilization fol-
lowing photorefractive surgery, a method of performing 
simultaneous photorefractive surgery and CXL has been 
investigated. Factors increasing the risk of postrefractive 
ectasia include high myopic correction, thin corneas and 
a small residual bed thickness  [179, 180] . A study examin-
ing the effect of combined LASIK and CXL in patients 
with high myopia ( ≥ 6 diopters) included 44 eyes. During 
a mean follow-up period of 3.5 years (range: 1–4.5 years), 
none of the eyes developed ectasia despite their increased 
risk  [181] . A comparative contralateral study included 34 
hyperopic patients having combined LASIK and CXL in 
one eye and LASIK only in the fellow eye. Eyes undergo-
ing combined LASIK and CXL demonstrated less regres-
sion of spherical equivalent during a 23-month mean fol-
low-up period (statistically significant)  [182] . The esti-
mated incidence of PLE is up to 0.66%  [25] . Therefore, 

studies on a much larger scale are required to properly 
evaluate whether the addition of CXL reduces the risk of 
postoperative ectasia. There are no studies evaluating the 
addition of CXL to PRK for the prophylaxis of ectasia fol-
lowing PRK.

  Corneal Wound Strengthening 
 An ex vivo study on cadaveric human eyes showed that 

the addition of CXL to an ex vivo model of either pene-
trating or anterior lamellar keratoplasty led to an increase 
in adhesion strength of the donor-recipient corneal inter-
face, evaluated using burst IOP and tissue separation 
force measurements  [183] .

  Safety 

 Several safety issues following CXL have been ad-
dressed over the years.

  Corneal Infection 
 Epithelial scraping performed routinely during CXL 

exposes the cornea to possible infections. Other factors 
theoretically increasing the risk of corneal infection are 
the use of a bandage soft contact lens and topical cortico-
steroids in the immediate postoperative period. There are 
no large-scale studies evaluating the rates of infection fol-
lowing CXL. There are, however, case reports in the lit-
erature of bacterial, polymicrobial, acanthamoebic and 
even herpetic keratitis following CXL procedures  [61–65, 
184] . The cases of herpetic keratitis described were in pa-
tients with no previously known herpetic infections  [65, 
184] . For this reason, topical antibiotics are routinely 
used following the procedure  [47] .

  Corneal Sensitivity and Tear Function 
 Following CXL, corneal sensitivity has been shown to 

significantly decrease and gradually recover during the 
first 6 postoperative months  [185, 186] . No effect on tear 
secretion or tear film stability was observed  [186] .

  Effect on Limbal Epithelial Cells 
 The integrity of limbal epithelial cells (LEC) is crucial 

for maintenance of a normal corneal epithelial structure. 
In vitro exposure of LEC to UVA levels similar to the lev-
els used during CXL promoted expression of genes in-
volved with apoptosis. The addition of riboflavin reduced 
the damage caused but did not prevent it completely 
 [187] . The combination of riboflavin and UVA was also 
shown to inhibit the growth and expansion of LEC  [188, 
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189] . Enucleated human eyes undergoing a CXL proce-
dure with half of the limbus protected by a metal shield 
showed a significant drop in viable LEC count and a lack 
of LEC growth in the area not protected by the metal 
shield  [190] . Different results were shown for rabbit cor-
neas, where exposure to CXL did not appear to cause any 
significant histological limbal changes  [191] . There are no 
in vivo studies evaluating the effect of CXL on LEC. 
Therefore, the use of limbal protection during CXL 
should be considered. This is especially true for treatment 
of PMD, since the irradiated area in CXL for PMD may 
be decentered and thus positioned closer to the limbus 
 [151] .

  Stromal Haze and Sterile Infiltrates 
 The formation of significant stromal haze following 

CXL is a potential complication that can affect visual acu-
ity. A prospective series of 50 eyes, treated with CXL ei-
ther for KCN or PLE, examined the degree of stromal 
haze both quantitatively and qualitatively throughout a 
1-year follow-up period. Stromal haze peaked 1 month 
after CXL, plateaued 3 months after CXL and decreased 
up to the 1-year follow-up point. At this point, stromal 
haze values returned to baseline in the PLE group but not 
in the KCN group  [192] . A retrospective analysis of 163 
eyes having undergone CXL showed the development of 
significant stromal haze in 14 of them (8.6%), which per-
sisted through the 1-year follow-up period. While the 149 
eyes (91.4%) that did not develop corneal haze showed 
significant improvement in visual acuity, the 14 eyes with 
corneal haze showed a significant deterioration in visual 
acuity. Preoperative corneal thickness was significantly 
reduced, and preoperative mean keratometry significant-
ly increased, in the group of eyes developing haze when 
compared with those that did not. This may indicate that 
keratometry and corneal thickness may be factors predic-
tive of the formation of stromal haze  [193] .

  Few small patient series described the formation of 
sterile stromal infiltrates following CXL. In one series, 7 
eyes developed peripheral sterile ring infiltrates, resolving 
completely following the instillation of topical steroids 
 [194] . Another case series described the late formation of 
deep paracentral stromal infiltrates, persisting at 6 and 12 
months following CXL. These did not cause a reduction 
in visual acuity due to their noncentral location  [195] . 
Sterile infiltrates were also described as part of an inflam-
matory response after CXL – including keratitis, anterior 
chamber cells and keratic precipitates – appearing in 4 
patients. These responded rapidly to topical and periocu-
lar steroids, with stromal opacity persisting in some of the 

eyes  [196] . These infiltrates differ significantly from the 
previously described stromal haze, and probably do not 
represent the same pathologic process  [194] .

  Endothelial Toxicity and Thin Corneas 
 The standard irradiance of 3 mW/cm 2  combined with 

the application of riboflavin 0.1% results in a significant 
and relatively sharp drop in UVA light of up to 95% and 
a resultant irradiance of the corneal endothelium (in a 
500-μm-thick cornea) of only 0.15 mW/cm 2  (= 0.27 
J/cm 2 )  [197] . Thus, it can be concluded that the endothe-
lial cytotoxic threshold is far from being reached in eyes 
with sufficient corneal thickness. Wollensak et al.  [198]  
published two studies in 2003, investigating the thresh-
old dose and depth for endothelial toxicity in animal 
eyes. In rabbit corneas with a thickness of less than 400 
μm, the endothelial UVA dose crossed the cytotoxic 
threshold level of 0.65 J/cm 2  (0.36 mW/cm 2 ) following 
the standard surface CXL UVA dose of 5.4 J/cm 2  (3 mW/
cm 2 )  [198] . In vitro analysis of porcine endothelial cells 
exposed to UVA and riboflavin showed similar results 
 [199] . It was concluded that pachymetry should be rou-
tinely performed before CXL, and in corneas thinner 
than 400 μm, irradiation should not be performed, be-
cause of the cytotoxic risk to the endothelium  [198, 199] . 
However, additional thinning of corneas thicker than 
400 μm can take place during the CXL procedure itself, 
causing them to become less than 400 μm thick during 
the course of the procedure. A reduction in thickness of 
75–87 μm during different stages of the CXL procedure 
has been demonstrated  [200, 201] . This transient thin-
ning can be related either to evaporation through the 
deepithelized surface or to the oncotic effect of 20% dex-
tran used to form an isoosmolar riboflavin solution. This 
intraoperative thinning can theoretically increase the 
risk of endothelial damage even in corneas with appar-
ently sufficient preoperative thickness. A retrospective 
analysis of 350 patients having undergone CXL found 
postoperative corneal edema in 10 of them (2.9%). In 5 
of the 10 patients, the corneal edema resolved, but in the 
remaining 5 patients edema change plateaued at 3 months 
after CXL and persisted. The patients were offered pen-
etrating keratoplasty, with 2 of them undergoing this 
procedure. While it was not possible to conduct specular 
microscopy on those eyes, the mechanism suggested for 
persisting corneal edema was one of significant endothe-
lial damage  [202] .

  Several clinical studies examined the effect of CXL in 
thin corneas (<400 μm). A clinical evaluation of 14 eyes 
with minimal corneal thickness <400 μm undergoing 
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CXL using the Dresden protocol showed that 1 year fol-
lowing the procedure a significant endothelial decrease 
in cell density was present. While the procedure ap-
peared effective, it resulted in significant endothelial 
damage  [203] . The use of epi-on CXL in thin KCN cor-
neas appeared to cause no endothelial changes postop-
eratively, but showed only moderate efficacy  [204] . The 
use of hypoosmolar riboflavin solutions during CXL of 
thin corneas can increase intraoperative corneal thick-
ness to safer levels. This has been evaluated clinically, 
showing an increase in intraoperative corneal thickness 
from 337 μm preoperatively to 452 μm intraoperatively. 
KCN showed stabilization following the procedure. 
However, endothelial cell integrity was not evaluated in 
this study  [205] . A similar study of hypoosmolar ribofla-
vin in CXL of thin corneas showed no apparent endothe-
lial changes following the procedure  [206] . The efficacy 
of hypoosmolar CXL seems to be reduced when com-
pared with standard CXL  [207] . A second problem with 
the use of hypoosmolar riboflavin is its short-term effect 
on corneal swelling, which was shown to last no more 
than 10–30 min  [208] .

  Corneal Drug Penetrance and IOP Measurements 
 Corneal permeability has been shown to decrease in 

rabbit eyes following CXL both ex vivo as a reduction in 
mean permeability coefficient and in vivo as a reduction 
in pupillary response following instillation of pilocarpine 
drops  [209] . A reduction in aqueous concentrations of 
ofloxacin and voriconazole following topical instillation 
was seen in CXL-treated eyes when compared with nonir-
radiated controls. This was shown in an ex vivo porcine 
model  [210] .

  IOP measurements following CXL show overestima-
tion, demonstrated using several tonometers including 
applanation tonometry (Goldmann), indentation/appla-
nation tonometry (Tono-Pen; Reichert Technologies, 
Depew, N.Y., USA) and noncontact dynamic tonometry 
(ORA). This is attributed to the change in corneal biome-
chanics, leading to increased corneal rigidity. The differ-
ence in IOP measured following CXL ranged from 1.2 to 
3.1 mm Hg, depending on the tonometer used  [211, 212] .

  Changes in Corneal Thickness 
 Corneal thickness shows a significant reduction dur-

ing and shortly after CXL. In one study, corneal thickness 
decreased by a mean of 87 μm during the first 60 min 
 [201] . Corneal thinning gradually resolves over the first 6 
months following CXL and by 1 year returns to baseline 
values  [213, 214] .

  Postoperative Pain 
 The epithelial debridement performed routinely in 

CXL is associated with postoperative pain. A prospective 
study including 178 KCN eyes undergoing CXL evaluated 
pain during the first 5 postoperative days. Pain was eval-
uated using documentation of the need for analgesia 
and patients’ subjective evaluation on the Wong-Baker 
 FACES Pain Rating Scale. It was concluded that pain fol-
lowing CXL can be intense, especially in the first 3 days, 
even with an aggressive pain control regimen. All pain 
evaluation parameters decreased rapidly with each day 
following CXL. Pain was significantly correlated with the 
patient’s age  [66] .

  Conclusion 

 More than a decade after being introduced, collagen 
CXL is still changing. Indications are evolving, and differ-
ent protocols are being developed and tested. Collagen 
CXL has changed the clinical approach to keratoectatic 
disorders dramatically. To the defensive approach – aim-
ing to maximally improve current vision by different mo-
dalities (eye glasses, contact lenses and, finally, sur-
gery) – the ophthalmologist adds an offensive approach, 
changing the course of the disease and preventing further 
loss of vision and functionality.

  It is now understood that this modality is safe and ef-
fective. Future studies will lead to a better understanding 
of the risks and benefits. With this new experience, even-
tually the present relative disorder will probably be dis-
tilled down to a few treatment variants or protocols, ap-
propriate for an exact list of rigid indications.
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