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Abstract: We present a method to obtain accurate corneal topography from 

a spectral optical coherence tomography (sOCT) system. The method 

includes calibration of the device, compensation of the fan (or field) 

distortion introduced by the scanning architecture, and image processing 

analysis for volumetric data extraction, segmentation and fitting. We present 

examples of three-dimensional (3-D) surface topography measurements on 

spherical and aspheric lenses, as well as on 10 human corneas in vivo. 

Results of sOCT surface topography (with and without fan-distortion 

correction) were compared with non-contact profilometry (taken as 

reference) on a spherical lens, and with non-contact profilometry and state-

of-the art commercial corneal topography instruments on aspheric lenses 

and on subjects. Corneal elevation maps from all instruments were fitted by 

quadric surfaces (as well as by tenth-order Zernike polynomials) using 

custom routines. We found that the discrepancy in the estimated radius of 

curvature from nominal values in artificial corneas decreased from 4.6% 

(without fan distortion correction) to 1.6% (after fan distortion correction), 

and the difference in the asphericity decreased from 130% to 5%. In human 

corneas, the estimated corneal radius of curvature was not statistically 

significantly different across instruments. However, a Bland-Altman 

analysis showed consistent differences in the estimated asphericity and 

corneal shape between sOCT topographies without fan distortion correction 

and the rest of the measurements. 

© 2011 Optical Society of America 

OCIS codes: (110.4500) Optical coherence tomography; (120.6650) Surface measurements, 

figure; (120.4640) Optical instruments; (120.4800) Optical standards and testing; (110.6880) 

Three-dimensional image acquisition; (330.7327) Visual optics, ophthalmic instrumentation 
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1. Introduction 

Optical coherence tomography (OCT) has become a widespread tool in various fields of 

medicine [1,2] particularly in ophthalmology, where its high resolution and non-invasiveness 

has allowed multiple applications in the retina and anterior segment of the eye [3–9]. 
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However, the amount of quantitative information provided by anterior segment OCT is 

typically limited to axial distances between consecutive layers i.e. corneal thickness [10,11], 

anterior chamber depth [12,13] or anterior chamber angle [14], within the accuracy provided 

by axial resolution and exact knowledge of the refractive index of the tissue. Although the use 

of OCT as a pachymeter [15,16] and for optical biometry [17,18] is widespread, its capability 

to produce surface elevation maps, and therefore to be used as a corneal topographer, has only 

been limitedly exploited. Although several studies address the use of OCT to estimate corneal 

power [19,20], only a few recent papers explore the accuracy and perform validations of 

corneal topography and keratometry from OCT 3-dimensional imaging [8,21–23]. We have 

recently reported accurate surface topography in vitro using time-domain OCT [24], and the 

correction of optical distortion in anterior segment sOCT for quantitative 3-D imaging of the 

internal structures of the eye [25], and have demonstrated a method that takes advantage of the 

optical distortion in isolated crystalline lens sOCT images to reconstruct the 3-D gradient 

index profile of the lens [26,27]. Research efforts, however, do not seem to have been fully 

paralleled in commercial anterior segment OCT systems. For example, the latest release of a 

widespread commercially available anterior segment OCT (Visante Omni, by Carl Zeiss) has 

included a Placido ring topography for quantitative anterior corneal surface topography, rather 

than estimating corneal elevation from the OCT data. 

One of the limitations of the most typical configuration of OCT systems is the presence of 

so-called fan (or field) distortion. The presence of this distortion in OCT was first reported by 

Westphal et al. [28] for non telecentric scanner. In general, the effect is related to the scanning 

architecture of most 3-D OCT systems [24,28–30], so that when imaging perfectly flat 

surfaces they appear curved. This phenomenon can be described as a combination of at least 

two possible effects: a) the architecture of the scanning system, which is primarily affected by 

the spatial separation of the mirrors, and b) design, position and alignment of the collimating 

lens in relation to the mirrors of the scanner. Therefore such images are not well represented 

in a Cartesian system of coordinates (x, y, z), but rather in (xoct, yoct, L), where L is the optical 

path along the ray and (xoct, yoct) are the angles (horizontal and vertical) of the scanner mirrors, 

which can be explicitly associated to the coordinates (origin and directional cosines) of rays 

entering the sample. This representation allows conversion from angular to spatial coordinates 

following relatively simple calibration. 

OCT systems are designed to detect usually faint back-scattered light from tissue. 

However, both backscattered as well as back-reflected (from directional and specular 

reflections) light is detected, particularly for surfaces normal to the optical axis of the 

instrument, such as the corneal apex in anterior corneal imaging. The presence of back-

reflected light results in saturation of the A-scan signals. Upon Fourier Transform, fully 

saturated A-scans appear as completely modulated white lines, whereas partially saturated A-

scans give rise to replications and ghost signals. These effects produce additional distorting 

factors in the detected corneal surfaces from sOCT images, and may result in an artificial 

steepening of the estimated cornea. However, the consequences of these effects on the 

quantification of geometry of the surfaces have been generally miss-regarded. 

Another practical limitation for quantification of in vivo sOCT is imposed by motion 

artifacts [31,32], which are associated to breath, pulsation [33], dynamics of the tear film [34], 

among others, and occur, even when forehead support or bite bars are used. In order to 

minimize the impact of motion artifacts, the common solution is to increase the acquisition 

speed [35]. A widespread solution in anterior segment OCT, also common to other imaging 

modalities such as Scheimpflug corneal topography, is the use of a meridional scanning 

configuration, instead of a denser rectangular scanning [19,20,22,25]. However, this approach 

assumes that the center of rotation is fixed and requires from radial interpolation, generating 

other sources of error. On the other hand, a dense, homogeneous sampling of the corneal 

elevation prevents from interpolation errors of radial or meridional sampling approaches. 
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In summary: (1) We provide a full experimental method for correction of fan distortion, 

which can be universally applied to any anterior segment OCT system. To our knowledge this 

is the first demonstration of the correction of fan distortion in real corneas using a system 

comparable to those used in clinics. (2) The study demonstrates for the first time the effect of 

fan distortion correction on surface asphericity (both on artificial surfaces and in vivo). (3) We 

report, to our knowledge, the first corneal topographic maps corrected from fan distortion in 

patient’s eyes, and a comparison to topographic maps obtained with state-of-the art clinical 

topography systems (Scheimpflug imaging and Placido-based videokeratography) in the same 

patients. (4) We present, to our knowledge, the first OCT topographic maps based on 

rectangular scanning, rather than meridional scanning. (5) Finally, we present image 

processing methods for reducing the effects of signal saturation in the corneal apex, as well as 

motion distortion reduction alternatives. 

Although in this work the method is applied to the reconstruction of the anterior corneal 

surface, the methods also provide the ray equation data, which are necessary for the 

application of optical distortion correction algorithms to the internal surfaces of the eye [25]. 

The method can be generalized to any anterior segment OCT instrument. 

2. Methods 

2.1. Experimental sOCT setup 

The sOCT system used in the measurements has been described in detail in previous 

publications [9]. The setup is based on a fiber-optics Michelson interferometer configuration 

with a superluminescent diode SLD (λ0 = 840 nm, Δλ = 50 nm; Superlum, Ireland) as a light 
source and a spectrometer consisting of a volume diffraction grating and a 12-bit line-scan 

CMOS camera with 4096 pixels (Basler sprint spL4096-140k; Basler AG, Germany) as a 

detector. The horizontal and vertical scanning was produced by galvanometer optical scanners 

(Cambridge Technology Inc., USA), driven by an analog input/output card (National 

Instruments, USA). The distance between the centers of the scanning mirrors is 13.8 mm and 

the focal length of collimating lens is 75 mm. The effective acquisition speed is 25000 A-

Scans/s, which optimized balance between speed and SNR. The axial range of the instrument 

is 7 mm in depth, resulting in a theoretical pixel resolution of 3.4 µm. The axial resolution 

predicted by the bandwidth of the superluminescent diode laser source is 6.9 μm. 

2.2. Image processing, automatic segmentation and surface fitting 

Anterior segment OCT systems are designed for imaging quasi-transparent media, as corneal 

and lens tissues, and therefore, their dynamic range is adapted for the very weak signals 

provided by the diffuse reflection of the ocular surfaces. Images of plastic surfaces, or even 

the cornea, typically show a “white” area corresponding to zones producing a specular or 

directional back-reflection. In sOCT systems saturation results in the images showing a 

repetitive structure along the “white” A-scans, as a result of the Fourier Transform. We 

implemented the following strategy to avoid the saturation, of the whole 3D scan acquisition: 

We reduced the amount of irradiance impinging the surface up to prevent the interference 

fringes (carrier) coded in the autocorrelation spectrum (envelope) from saturating the 

detection system. This procedure can be applied by shortening the exposure time of the 

CMOS camera or by lowering the radiant intensity from the autocorrelation spectrum of the 

reference arm to values below four times the detection range of the camera. This way, the 

maximum of the interference fringes placed at the maximum of the cross-correlation for the 

specular reflection is within the range of the camera. This allows separating the information of 

the specular-directional reflection area from the “white background”, as the artificial echoes 

introduced by the Fourier transform are reduced. 

In a previous work [25] we presented a segmentation algorithm to extract the 3-D data 

from sOCT B-Scans. The current study incorporates important improvements for faster and 
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more sensitive automatic segmentation of the surfaces. The algorithm can be summarized in 

six steps (Fig. 1): (1) Statistical thresholds are calculated based on a derivation of the Otsu’s 

[36] method. The statistical calculations are performed on individual A-Scans rather than on 

the B-Scans, which allows and adaptive treatment of the noise and signal levels of every A-

Scan (see Fig. 1(a) and Media 1 for a typical noisy raw B-scan) (2) Denoising algorithm. 

Morphological operators are used to evaluate and eliminate areas in the B-scan smaller than 

10 pixels. (3) Detection of connected points in a neighborhood, identifying those belonging to 

a cluster >10 pixels in each B-scan (Fig. 1(b) and Media 2) (4) Detection of connected points 

in a neighborhood in 3-D. (5) Identification of the boundaries of volumes, by performing a 3-

D edge algorithm (extension to 3-D of Roberts algorithm in 2-D). This algorithm allows 

detecting the maximum intensity in each boundary region, allowing a multilayer segmentation 

(Fig. 1(c) and Media 3). (6) Multilayer segmentation. The approach, based on boundary region 

identification (and not only maximum intensity), allows to automatically resolve very close 

layers of different reflectivity (Fig. 1(d) and Media 4). 

 

Fig. 1. Single-frame excerpts from video recordings of the processing algorithms: a) Collection 
of original B-Scans, containing the data acquired from an in vivo healthy eye (Media 1). b) 

Result of application of the statistical thresholding algorithm (Media 2). c) Data after denoising 

image processing (Media 3). d) Boundary detection in red (Media 4). 

3-D segmented surfaces corresponding to the layer identified as the anterior corneal 

surface are fitted to Zernike modal expansions (55 terms, tenth order) [37,38]. The method is 

implemented in an iterative procedure which allows further rejection of spurious points in the 

surface (Media 2), by evaluating the local distance of every point with respect to the surface 

fitted to the Zernike modal expansion of 55 terms (tenth order). Points further than three times 

the standard deviation of the distances between the actual surface and the fitted surface are 

eliminated, and a new Zernike fitting is performed. The procedure is repeated until the fitted 

Zernike coefficients change less than 1% from the previous iteration. The final surfaces 

(Zernike fits) are also fitted by different quadrics (sphere or conicoids), using a nonlinear least 

mean square procedure [39–41]. 
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We have developed a procedure that accounts for potential tilts of the surface, with two 

modes of operation: (1) The apex or center of the quadric is defined by the user. This mode is 

useful for comparison purposes across different topographers (where, for instance, the 

specular reflection can be used for reference in longitudinal measurements on patients 

following corneal treatment). In this case, tilt can be corrected using the information provided 

by the tilt Zernike coefficients, Z1
−1

 and Z1
1
. (2) The location of the apex is considered an 

additional variable to those defining the surface shape (radii of curvature, conic constants or 

eccentricity [41]). This mode is useful when the surfaces do not have a particular point that 

acts as a reference (i.e. in surface profilometry). The fitting process and correction of tilt is 

illustrated in Fig. 2, for the first mode, considering the specular reflection as the reference Fig. 

2(a), and after tilt correction and denoising through the Zernike fitting procedure described 

above (Fig. 2(b)). The points in blue represent the surface used for fitting, and the red points, 

the surface fitting to quadrics. 

 

Fig. 2. a) Elevation data (using the specular reflection as a reference) in blue and, the surface 
fitted to conicoid in red (note the tilt of the surface, well accounted by the fit). b) Surface fitting 

after tilt correction, and further denoising using Zernike fitting. Blue points are raw points used 

in the fitting and red points represent the fitted surface 

2.3. Fan distortion measurement and correction: general considerations 

We have previously reported on a method for hardware minimization and software correction 

of the residual fan distortion in a time-domain OCT system [24,42] which was applied to in 

vitro samples. A key step in the fan distortion correction is the estimation of the directional 

cosines at each point in the surface. The method relies on the assumption that the outgoing 

beam from single mode fibers can be described as TEM00 mode, and therefore following 

geometrical optics, the propagation of the beam can be described through their directional 

cosines. 

Figure 3 shows a typical implementation of a sample arm for anterior segment OCT: A 

two mirror-scanner system, showing a certain separation between the mirror centers and the 

collimating lens. Simple ray tracing on this optical layout shows that the output directional 

cosines after the lens are not parallel to the optical axis. As it was demonstrated by Ortiz et al. 

[24], even when the lens is placed at the optimal position from the scanner the directional 

cosines are skew rays, with the geometry affecting not only the axial coordinate but also the 

lateral coordinates, since the optical scanner deflects the light in both, elevation and azimuth 

angles. 

As a result of the separation between the scanning mirrors, an elliptical wavefront is 

formed. Therefore, rays in different orientations travel different distances, and as a 

consequence, the lateral coordinates of the OCT become ellipsoidal (not Eucledian), 

producing path differences between the ray that defines the optical axis of the system and the 

rest of rays. 
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Fig. 3. Illustration of a scanning system plus a collimation-condensing lens in an anterior 

segment OCT system. See text for details. 

In a previous work we made use of a confocal channel in the system to calibrate fan 

distortion [24]. However, that channel is not generally available. Therefore we developed an 

alternative method, which could be easily implemented for calibration any OCT system, and 

we applied it, in particular, to a custom-developed sOCT [9]. The method allows obtaining the 

axial distances that need to be added to each axial coordinate to compensate for the variable 

distances with respect to the optical axis at each location, as well as the transformation that 

must be performed to obtain lateral distances in Euclidean coordinates. 

The procedure consists of collecting series of 3-D volumes (sOCT images) of a calibrated 

grid at different axial positions within the axial range of the device (7 mm). The grid was 

placed on a linear stage of 50 mm of travel path with micrometer accuracy. A 3-D volume was 

collected, every 0.5 mm. 

The collected volumes were used to generate 2-D axial-integrated images [43] by simple 

addition of the intensity along each A-scan. Figure 4 (a) shows an example of an axially 

integrated image of the grid used in the calibration (taken 1 mm from the best focus). 

 

Fig. 4. (a) Axially integrated images of a grid used in the calibration (200x200 A-Scans, 11.25 

wide system local units). (b) Automatic nodes identification (c) Vectorization of the node 

movement across the axial length 

Each particular ray (and pixel in the image) is described by the local coordinates of the 

OCT xoct and yoct. We used the location of the nodes in the grid (crossing points between 

vertical and horizontal lines) to identify a set of 3-D coordinates in the system local 

coordinates, and relate them to the actual positions of the object in space. The Hough 

transform, in combination with circular and elliptical filters, was used to determine 

automatically the grid. The lines in the grid image were fitted by parabolic curves, and the 

nodes of the grids estimated from their intersections (Fig. 4 (b)). The parabolic fit also allowed 

us to establish the transformation of the system local coordinates into lateral Euclidean units 

for each point in the volume of interest. Also, since the nodes are labeled for each axial 

location of the grid, the axial Euclidean coordinates are also obtained. Figure 4 (c) represents 
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the amount and direction of the shift of the nodes at the boundary positions of the axial range. 

The axial length for the voxel of the collected 3-D images was estimated to be 3.42 ± 0.01 

µm. 

Once the actual 3-D coordinates are estimated, the quantitative estimation of axial fan 

distortion was performed by 3-D sOCT imaging of a flat optical surface (mirror) along the 

axial range of the sOCT system (7 mm). The mirror was placed at the same axial positions 

used in the collection of grid images. Normality of the mirror with respect to the optical axis 

was ensured by a pan/tilt mount (within 8 mrad). 

The corresponding magnitude of the fan distortion is the distance of one point expressed in 

local OCT coordinates with respect to the optical axis. This distance is subtracted (in OCT 

local coordinates) from the raw optical path difference of detected surfaces to obtain their 

actual position. 

2.4. Experiments on artificial lens surfaces (spherical and aspheric) 

Measurements were performed on a spherical lens of known geometry (27.91-mm of radius of 

curvature) and an aspheric PMMA surface. The nominal surface geometry of the spherical 

artificial lens (Edmund optics) was obtained from the Edmund® catalogue. The aspheric 

surface was obtained by ablating a PMMA cornea (of initially 12.7-mm radius of curvature) 

with a refractive surgery excimer laser (Technolas, Baush and Lomb), programmed with a 

standard algorithm to correct 6-D (on corneal tissue) over a 6-mm diameter optical zone 

[44,45]. The ablated surface was measured by non-contact profilometry (Sensofar PLu 2300 

Software version 2300) which allows surface topographies with an axial resolution of 0.15 μm 
(for a 20 × microscope objective). 3-D elevation maps were obtained by evaluating the surface 

in a squared grid of 1157 points over a region of 15 mm for the spherical surface, and of 10 

mm for the aspheric surface. In addition, the aspheric lens was measured using a Placido-

based videokeratography (Humphrey Atlas model 990, Humphrey Instruments, San Leandro, 

CA, USA, for cornea). Finally, sOCT images were obtained of both the spherical and 

aspherical surfaces. Measurements were collected on a 15 × 15 mm zone, using 300 × 300 A-

scans for the spherical lens, and on a 10 x10 mm zone for the aspheric lens, using 200 × 200 

A-Scans, which resulted on a lateral resolution of 0.05 mm. The data were processed with and 

without the fan distortion correction. A total of 5 measurements were collected for each 

sample and device. 

Elevation maps obtained for spherical surfaces (from profilometry, OCT, and OCT after 

fan distortion correction) were fitted by spherical surfaces, on a 6-mm diameter area. 

Elevation maps obtained for aspheric surfaces (from profilometry, corrected OCT and 

Placido-based videokeratography) were fitted by conicoids [39–41], on a 6-mm diameter 

(optical zone of the ablation). Difference maps were obtained subtracting OCT fitted 

topography maps from those obtained from the reference instruments. RMS (root mean 

square) of the difference map was used as a metric of the accuracy of the OCT anterior 

corneal topographic measurement. 

For statistical analysis we applied an analysis of variance (ANOVA; general linear model 

for repeated measurements, with the data collected from different instruments the only factor). 

The evaluated data were the Zernike coefficients describing the surface (as proposed by 

Llorente et al. [46]), as well as radii and asphericities from the surface fitted data. Significant 

levels (ANOVA and pair wise comparison t-tests) were set at p<0.05. The statistical tests were 

performed using SPSS software (SPSS, Inc., Chicago, Illinois). 

2.5. Experiments on human corneas in vivo 

A total of 10 eyes from five human subjects participated in the experiment. The ages ranged 

from 24 to 38 years. The subjects were considered normal in a clinical ophthalmological 

examination. Refractions ranged between 0 to −4.75 D sphere and 0 to 1 D of cylinder. All 

protocols had been approved by Institutional Review Boards, and the subjects signed informed 
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consents after the nature of the study had been explained, in accordance to the tenets of the 

declaration of Helsinki. 

The subjects were aligned to the sOCT system by using the specular reflection of the 

cornea as a reference. Measurements were collected on a 10 × 12 mm zone, using 50 B-Scans 

composed by a collection of 360. In order to enhance the signal to noise ratio, 3 A-Scans in a 

B-Scan, were averaged, resulting in a final sampling of 50 × 120, which provides a spatial 

sampling interval of 0.1 mm for the horizontal direction and of 0.2 mm for the vertical 

direction. The corneal power exposure was 800 µW. Three-dimensional sOCT corneal images 

were collected in less than 0.8 seconds. This acquisition time was deemed as an appropriate 

compromise between resolution and presence of motion artifacts on control experiments on 20 

subjects in which consecutive corneal images were obtained with decreasing acquisition times 

(0.5-2.0 sec). Five repeated images were collected per subject. 

In addition to the sOCT measurements, corneal topographies were obtained from 

commercial Scheimpflug topography (Pentacam, Oculus Optikgeräte GmbH, Wetzlar, 

Germany) and Placido-based videokeratography (instrument of section 2.4). These 

instruments were used for comparison with state-of-the art clinical standards, not as gold-

standard references. The 50-scan acquisition protocol was used in the Pentacam instrument. 

Each Pentacam measurement was collected in about 2 seconds, while the subject fixated 

foveally the built-in red fixation spot, and the corneal reflex of the fixation spot used as a 

reference. Each Placido-based videokeratography measurement was collected in about 300 

ms. Alignment was achieved by centering the image of the reflected rings on the cornea with 

the corneal reflex. Five repeated sets of data were obtained per subject with each instrument. 

Elevation data from all three instruments were fitted by Zernike polynomial expansions 

(up to the tenth order) using the algorithms described in Section 2.2, in order to remove noise. 

Quadrics (sphere and conicoid) were subsequently fitted to the elevation maps described by 

Zernikes. Radii of curvature (R) and asphericity (Q) were used to describe the surfaces. A 

variance analysis (ANOVA) was used to estimate the statistical significance of measurements 

from each instrument. A Bland-Altman test [47] was applied to evaluate the agreement across 

methods (OCT, Scheimpflug and Placido-based videokeratography), taking the Placido-based 

videokeratography as the reference. The SPSS software was used for statistical data analysis. 

There are several ways in which the shape of corneal surfaces can be represented and 

quantified [39,48,49]. We selected the so-called “height representation” where the measured 

elevation is represented as the difference of corneal elevation data from the reference sphere 

(best fitted sphere estimated using nonlinear least squares algorithm) [50]. The corneal 

elevation maps are displayed in a square grid of 100 × 100 points (6-mm diameter), where 

warm colors depict points that are higher than the reference surface while cool colors 

designate lower points. 

3. Results 

3.1. Fan distortion 

Figure 5 (a) shows the raw elevation map of flat optical surface obtained by the sOCT system 

(i.e. without fan distortion correction), by using a mesh of 300 x 300 A-Scans rastering a 

square zone of 19 system local coordinates width. The distortion of this surface is a direct 

measurement of the amount of residual fan distortion. As we had previously predicted [24], 

the residual fan distortion is constant and does not depend on the axial position of the sample. 

The measured peak-to-valley difference (fan distortion) in our sOCT is 96 μm in the 
horizontal direction and 24 μm in the vertical direction. This asymmetry is well predicted by 
simulations [24]. Figure 5 (b) shows the result of applying the algorithm for fan distortion 

correction to the sOCT images collected of a flat mirror placed on a holder mount. 
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Fig. 5. a) Map of residual fan distortion obtained from a flat optical surface with the sOCT 

system of the study. The surface is presented after segmentation of the image captured by the 
OCT and it is represented in system local coordinates (slc), except for the axial axis what it has 

been transformed into Euclidean coordinates for comparison purposes. b) Map of residual fan 

distortion after fan distortion correction. 

3.2. Topographic measurements on artificial lens surface (spherical and aspheric) 

Surface topographies from sOCT on a spherical lens and an ablated artificial cornea were 

compared to 3-D profilometric data, which were taken as a reference. Table 1 shows radii of 

curvature: nominal, and fits to profilometric and OCT data (average and standard deviation of 

repeated measurements). The radius of curvature from sOCT without fan distortion correction 

differs from profilometric data 3.9%, while after the fan distortion correction the difference 

decreases to 0.9%. The result of the variance analysis was that only statistically significant 

differences were found for the noncorrected sOCT measurement. 

Table 1. Nominal and fitting parameters to surface elevation maps measured with 

different instruments (spherical surface) 

Spherical surface Nominal Profilometry 

OCT (without Fan 

distortion correction) 

OCT (with Fan 

distortion correction) 

Radius [mm] 27.91 27.78 ± 0.27 26.69 ± 0.11 28.03 ± 0.08 

Figure 6 shows difference maps between sOCT and profilometric topography before (Fig. 

6(a)) and after fan distortion correction (Fig. 6(b)) on spherical surfaces. The RMS error of the 

difference maps for the spherical surface decreases from 2.3 µm without fan distortion 

correction to 0.8 µm with fan distortion correction, for an area of 6-mm diameter. Figure 6 (c) 

shows relevant Zernike terms of the Zernike fit to the sOCT measurements (before and after 

correction of fan distortion), in comparison to profilometric measurements. Non-corrected 

sOCT surfaces show significant amount of astigmatism (Z22) that decreases dramatically with 
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fan distortion correction (from 1.25 to −0.08 µm). Differences for this coefficient between 

non-corrected sOCT data and profilometry were statistically significant. 

 

Fig. 6. a) Difference map (sOCT elevation map – profilometric elevation map), without fan 

distortion correction. b) Difference map (sOCT elevation map – profilometric elevation map), 

with fan distortion correction, for a spherical surface. c) Second and fourth order astigmatism 
Zernike terms from a Zernike polynomial fit to the surfaces for sOCT topographies without fan 

distortion correction (red) and with fan distortion correction (green). Data in μm are averages 
across 5 repeated measurements for each instrument, and 6-mm diameter zones. 

The geometrical aspects (radius and asphericity) of the conicoid fitting to the aspheric 

PMMA surface are summarized in Table 2 for the three instruments: Non-contact profilometer 

(taken as gold standard), Placido-based videokeratography, and sOCT without and with fan 

distortion correction. Even though Scheimpflug measurements were collected it was not 

possible use them, since the Pentacam software was not capable to produce reliable 

segmentation of the PMMA surface. Radii of curvature differed from profilometry by 0.8% 

for the Placido-based videokeratography, 4.6% for the sOCT without fan distortion correction 

(being statistically significantly different), and 1.6% for sOCT with fan distortion correction. 

Asphericities differed substantially across methods, as well the repeatability of the asphericity 

estimates from repeated measurements. Asphericities differed from profilometry by 65% for 

the Placido-disk topographer, 130% for the sOCT without fan distortion correction, and 5% 

for sOCT with fan distortion correction. 

Table 2. Fitting parameters to surface elevation maps measured with different 

instruments (aspheric surface) 

Aspheric surface Profilometer 
Placido-based 
videokerato. 

sOCT (without Fan 
distortion correction) 

sOCT (with Fan 
distortion correction) 

Radius (mm) 8.53 ± 0.11 8.46 ± 0.01 8.92 ± 0.01 8.67 ± 0.00 

Asphericity −0.20 ± 0.25 −0.07 ± 0.08 0.47 ± 0.05 −0.21 ± 0.02 
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Figure 7 represents difference elevation maps (with respect to the non-contact 

profilometric maps) of the sOCT topography after fan distortion correction (Fig. 7(a)) and of 

the Placido-based videokeratography (Fig. 7(b)). The RMS error of the difference maps, for a 

6-mm diameter area, was 2.6 µm for sOCT with correction and 5.6 µm for the Placido-based 

videokeratography. The differences with the profilometric topography (analyzed in terms of 

the Zernike coefficients) were not significant for neither instrument, although the differences 

for the sOCT tended to be smaller. 

 

Fig. 7. a) Difference map (OCT elevation map with fan distortion correction – profilometric 

elevation map). b) Difference map (Placido-based videokeratgoraphy elevation map – 
profilometric elevation map), for an aspheric surface. Data are for a 6-mm area (optical zone of 

the ablation). 

3.3. Topographic measurements on human corneas in vivo 

Corneal topographies were obtained on 10 eyes from 5 subjects from sOCT and commercial 

instruments. Tables 3 and 4 show radii and asphericities from conicoid fits to all corneas in a 

6-mm diameter zone. Data are averages (and standard deviations) of 5 repeated measurements 

on each eye. Radii of curvature (Table 3) from sOCT without fan distortion measurements 

were systematically lower than those from sOCT measurements with fan distortion correction 

(2% on average). Discrepancies of the latter with respect to radii of curvature from 

Scheimpflug topography were between 1 and 2%, and from Placido-based videokeratography 

<1%. A variance analysis showed significant differences between the Placido-based 

videokeratography and Scheimpflug in S#1-OD, S#1-OS, S#2-OD and S#3_OD. Non-

corrected sOCT data showed statistical differences compared to the other methods for S#4-

OD. Corrected sOCT was statistically significantly different from other methods for S#1-OS.  

 
Table 3. Radii of curvature (from a conicoid fitting) of anterior corneal elevation maps 

measured with different instruments (10 eyes from 5 subjects) 

Conicoid 
radius (mm) 

Placido-based 
videokerato. Scheimpflug 

sOCT (without Fan 
distortion) 

sOCT (with Fan 
distortion correction) 

S#1 
OD 8.16 ± 0.01 8.12 ± 0.02 8.23 ± 0.11 8.14 ± 0.02 

OS 8.18 ± 0.01 8.10 ± 0.02 8.10 ± 0.07 8.14 ± 0.01 

S#2 
OD 7.51 ± 0.04 7.45 ± 0.01 7.54 ± 0.03 7.53 ± 0.04 

OS 7.45 ± 0.03 7.45 ± 0.03 7.45 ± 0.01 7.46 ± 0.02 

S#3 
OD 7.59 ± 0.02 7.54 ± 0.01 7.54 ± 0.06 7.60 ± 0.02 

OS 7.53 ± 0.01 7.52 ± 0.03 7.47 ± 0.06 7.52 ± 0.01 

S#4 
OD 8.02 ± 0.11 7.90 ± 0.00 8.19 ± 0.04 8.09 ± 0.03 

OS 7.88 ± 0.09 7.83 ± 0.00 7.94 ± 0.03 7.89 ± 0.02 

S#5 
OD 7.50 ± 0.02 7.49 ± 0.02 7.54 ± 0.04 7.56 ± 0.06 

OS 7.52 ± 0.05 7.50 ± 0.03 7.51 ± 0.04 7.48 ± 0.05 
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The Bland-Altmann plot for radii of curvature did not show any significant difference 

across instruments, providing a range of [-0.13, 0.05] for the comparison between Placido-

based videokeratography and Scheimpflug, [-0.16, 0.16] for the sOCT without fan distortion 

correction, and [-0.09, 0.10] for the sOCT with fan distortion correction. 

Asphericities (Table 4) from sOCT without fan distortion differed dramatically in 

comparison with the rest of the instruments (even changing signs), in consistency with the 

findings on the artificial aspheric surfaces. Only two eyes S#4-OS and S#5-OS show 

statistically significant differences between Scheimpflug and Placido-based 

videokeratography. When the sOCT without fan distortion correction was compared to the 

Placido-based videokeratography three eyes showed significant statistical differences (S#2-

OD, S#2-OS and S#4-OS). In the case of the sOCT with fan distortion correction the only eye 

showing significant statistical difference was S#4-OS. The Bland-Altmann plot for asphericity 

showed relatively narrow limits of agreement comparing Placido-based videokeratography 

with Scheimpflug and sOCT with fan distortion correction ([-0.17, 0.21; Scheimpflug], [-0.19, 

0.18; sOCT with fan distortion correction]). In the case of sOCT without fan distortion 

correction the limits of agreement in comparison with Placido-disk were higher [-0.21, 0.37]. 

Table 4. Asphericities (from a conicoid fitting) of anterior corneal elevation maps 

measured with different instruments (10 eyes from 5 subjects) 

Asphericity 
Placido-based 
videokerato. Scheimpflug 

sOCT (without Fan 
distortion) 

sOCT (with Fan 
distortion correction) 

S#1 
OD −0.12 ± 0.07 −0.02 ± 0.09 −0.22 ± 0.16 −0.13 ± 0.02 

OS 0.06 ± 0.11 −0.04 ± 0.15 −0.01 ± 0.12 −0.12 ± 0.09 

S#2 
OD −0.13 ± 0.04 −0.19 ± 0.04 −0.04 ± 0.04 −0.07 ± 0.02 

OS −0.18 ± 0.08 −0.10 ± 0.09 0.07 ± 0.01 −0.18 ± 0.01 

S#3 
OD 0.01 ± 0.08 −0.02 ± 0.01 −0.01 ± 0.08 −0.07 ± 0.02 

OS −0.02 ± 0.07 −0.01 ± 0.07 0.01 ± 0.09 −0.03 ± 0.03 

S#4 
OD −0.25 ± 0.11 −0.32 ± 0.00 −0.15 ± 0.05 −0.24 ± 0.03 

OS −0.39 ± 0.00 −0.30 ± 0.02 0.07 ± 0.04 −0.34 ± 0.01 

S#5 
OD −0.04 ± 0.09 0.01 ± 0.04 −0.04 ± 0.04 0.01 ± 0.04 

OS −0.11 ± 0.04 0.02 ± 0.08 −0.06 ± 0.05 −0.12 ± 0.03 

Figure 8 shows topographic height maps from 4 eyes, obtained from Placido-based 

videokeratography, Scheimpflug and sOCT (without and with fan distortion correction). 

Difference maps are not shown, as none of the instruments is considered as a “gold standard”. 

All maps are presented on the same scale for each eye, and are averages of 5 repeated 

measurements. All data are represented over a 6-mm diameter zone, centered at the specular 

reflection for foveal fixation. The topographic maps were obtained by fitting the raw elevation 

maps to a tenth-degree Zernike expansion, relative to the best fitting sphere. The numbers 

below each map represent the average and standard deviation of the radius of curvature of best 

fitting sphere in mm. 

4. Discussion 

We have presented a method for correcting the distortion of OCT systems, due to the 

architecture of the sample arm. The calibration has been combined with new algorithms for 

denoising, segmentation and surface fitting, which have allowed automatic estimation of the 

surface topography. The presence of fan distortion and its correction in a non-telecentric 

scanning system was first reported by Westphal et al. [28]. In a previous study we presented 

theoretical predictions and measurements, as well as a method for correction of fan distortion 

in a time-domain OCT system provided with a confocal channel [28]. In this study, we have 

demonstrated that the sOCT corrected for fan distortion produces accurate topographic 

estimates of artificial surfaces, as compared to non-contact profilometric data. Correcting fan 

distortion has proved particularly critical for accurate estimates of asphericity. In fact, sOCT 

with fan distortion correction produced the closest estimates of asphericity with respect to the  
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Fig. 8. Corneal elevation maps obtained in 4 eyes obtained from different instruments (relative 

to the best fitting sphere). R = radii of curvature of the best fitting sphere (from fits to sphere 
quadrics). 

gold standard (non-contact profilometry) values than other commercial topographers (such as 

Placido-based videokeratography). A proper measurement of corneal asphericity is critical in 

clinical applications of corneal topography (refractive surgery, contactology, etc.). 

Even though there are small statistically significant differences in terms of quadric 

parameters for the sOCT without correction, it is in terms of the topographic maps where 

differences are most notorious. The presence of astigmatism in the data prior to fan distortion 

correction is clearly observed in the measurements of artificial surfaces, where (unlike in real 

eyes) no other astigmatism arising from alignment or shape should be present. 

Placido-based videokeratography, and to a less extent Scheimpflug imaging, are widely 

used clinically to measure the geometry of corneal surfaces. The high level of accuracy and 

precision of Placido-based videokeratography in measuring spherical and aspheric samples 

has been demonstrated in several studies [51,52]. We have recently reported on the accuracy 

of the Pentacam anterior and posterior corneal topography on artificial (plastic and hybrid 

porcine/plastic) eyes. Although the radii of curvature of the surfaces were retrieved within 

98.3% accuracy [53] we did not attempt to explore the accuracy of the asphericity estimates. 

The repeatability of clinical instruments has also been studied. In general, Placido-based 

videokeratography showed higher repeatability due to its high-speed acquisition; however the 

posterior corneal surface or the geometry of the corneal apex cannot be measured [54]. 

Although some studies reported high repeatability in anterior corneal parameters in normal 

corneas measured with Pentacam [55–57], a recent study reported relatively high variability in 
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the corneal elevation data obtained with this instrument [58]. The relative long acquisition 

times and the rotating slit scanning scheme may result in motion artifacts and changes in the 

center of slit rotation. 

The relatively sparse information in certain dimensions (radially in Placido-based 

videokeratography, where the information in the 1-mm central region is lost, and the cornea is 

sampled radially, and meridionally in Scheimpflug, where the information is sampled only on 

25-50 meridians) poses some limitations to these techniques. For example, the meridional 

pattern is not well suited in patients with irregularities with higher azimuthal frequencies [57]. 

In contrast, OCT allowed a more sensitive analysis of the geometrical shape of the corneal 

surface due to its larger axial and lateral resolution. In order to minimize the impact of motion 

artifacts, we decreased the acquisition times without compromising sampling density (>25000 

A-Scans were used). The homogenous sampling pattern in the current study differs from that 

chosen in recent reports of OCT-based topography, where the information is collected in a 

series of meridians [19,20,22]. While this strategy is time-efficient and non-problematic in 

symmetric surfaces, it potentially encompasses similar limitations than those identified for 

Scheimpflug imaging (reduced sensitivity in the detection of asymmetries, dependence on the 

center of rotation, etc.). Optimizing both sampling density and sampling pattern will 

potentially contribute to more accurate corneal elevation reconstructions. 

In summary, correction of fan distortion is important for accurate surface/corneal 

topography with OCT systems. Spectral OCT has the potential for becoming a system for 

state-of-the-art topography, and overcome the limitations of current standard topographic 

system. It is essential however to provide the systems with appropriate calibration tools, as 

well as automatic procedures for accurate detection and evaluation of the surfaces. Although 

the technique has been demonstrated on a laboratory-based OCT system, it can be easily 

extrapolated to other OCT systems. 

5. Conclusions 

We have presented a full experimental method for correction of fan distortion, which can be 

universally applied to any anterior segment OCT system. This method that allows achieving 

accurate corneal topographies from spectral anterior segment OCT. The method for correction 

has been combined with robust automatic image processing techniques. The sOCT topography 

after fan distortion correction has proved extremely accurate (compared to non-contact 

profilometry) on artificial lenses (less than 1% discrepancy for both radius of curvature and 

asphericity), and provided the most accurate estimate of surface asphericity. The statistical 

comparison of these corrected topographies with topographies from state-of-the art clinical 

topography systems represents a valuable contribution toward the development “All-OCT-

based” topographic systems. Fan distortion correction (along with fast acquisition and 

powerful segmentation strategies) is essential to obtain reliable corneal elevation maps from 

sOCT in patients. 
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