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Abstract

We derive and analyze the confinement potential of the Cornell type within the framework
of the generalized Soft Wall holographic model that includes a parameter controlling the
intercept of the linear Regge spectrum. In the phenomenology of Regge trajectories, this
parameter is very important for the quantitative description of experimental data. Our
analysis shows that the “linear plus Coulomb” confinement potential obtained in the scalar
channel is quantitatively consistent with the phenomenology and lattice simulations while
the agreement in the vector channel is qualitative only. This result indicates the key role of
the vacuum scalar sector in the formation of the confinement potential. As a by-product the
overall consistency of our holographic description of confinement potential seems to confirm
the glueball nature of the scalar meson f0(1500).

1 Introduction

The quark confinement remains an unresolved key problem of strong interactions despite a
tremendous number of works devoted to this subject. One of the basic observables relevant
to confinement is the heavy-quark potential. In the real life, this potential is saturated at a con-
stant level at large enough (of the order of 1 fm) distances because of the light quark-antiquark
pairs popping up out of the vacuum and thereby completely screening the static sources. But the
approximation of heavy static quarks allows to simplify the problem and to address it both ana-
lytically within various phenomenological models and in lattice simulations directly from QCD.
For this reason, the limit of heavy static quarks is interesting and informative.

The detailed lattice simulations of the form of the heavy-quark potential (see, e.g., the re-
view [1]) revealed a remarkable agreement with the Cornell potential [2],

V (r) = −κ
r

+ σr + const. (1.1)

This result imposes a serious restriction on viable phenomenological approaches to strong inter-
actions: In the non-relativistic limit, they should be able to reproduce the behavior (1.1).

One of such promising approaches that passes the given test is the so-called Soft-Wall (SW)
holographic model [3,4]. This popular bottom-up AdS/QCD approach was originally inspired by
the AdS/CFT correspondence in string theory [5–7] and turned out to be unexpectedly successful
in the description of hadron Regge spectroscopy, hadron form-factors, QCD thermodynamics, and
other phenomenology related to the non-perturbative strong interactions (many contemporary
references are collected in Ref. [8]). The heavy-quark potential was first calculated within the
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SW holographic model by Andreev and Zakharov in Ref. [9] and their result agreed with (1.1).
The analysis in Ref. [9], however, was performed only for one particular case of the SW model:
The vector model with a fixed (simplest) intercept of string like mass spectrum, m2

n = an, where
n = 1, 2, . . . . In view of high citation of this analysis in the literature, it is interesting to extend it
to arbitrary intercept of linear radial Regge spectrum,m2

n = a(n+b), and to the case of scalar SW
model. To the best of our knowledge, such extensions were not considered in the literature. The
purpose of our present work is to fill this gap. Since the intercept b parametrizes important effects
of low-energy strong interactions and is indispensable for making quantitative phenomenological
predictions, the holographic derivation and analysis of heavy-quark potential in the presence of
nontrivial intercept should provide an interesting test for overall phenomenological consistency
of the approach.

The linear confinement potential was also recovered in a closely related AdS/QCD approach
called the light-front holographic QCD [10] and a good numerical agreement was observed, see
Refs. [11, 12] for the corresponding discussions. A similar conclusion will be made in our work:
We will demonstrate that the generalized SW holographic model leads to a good quantitative
description of the shape of the Cornell potential (1.1).

The paper is organized as follows. In Section 2, the general design of generalized SW holo-
graphic model is presented. The derivation of potential energy between static sources from
Holographic Wilson loop within the generalized vector SW model is given in Section 3. The
large and small distance asymptotics of this energy are calculated in Sections 4 and 5, respec-
tively. Some technical details are transferred to the Appendices. In Section 6, we extend the
results to the generalized scalar SW holographic model. The phenomenological predictions are
discussed in Section 7. We conclude in Section 8.

2 Generalized Soft Wall holographic model

The standard SW holographic model is defined by the 5D action [3]

S =

∫
d4x dz

√
g e−cz

2L, (2.1)

where g = |detgMN |, L is a Lagrangian density of some free fields in AdS5 space which, by
assumption, are dual on the AdS5 boundary to some QCD operators. The metric is given by the
Poincaré patch of the AdS5 space,

gMNdx
MdxN =

R2

z2
(ηµνdx

µdxν − dz2), z > 0. (2.2)

Here ηµν = diag(1,−1,−1,−1), R denotes the radius of AdS5 space, and z is the holographic
coordinate which has the standard physical interpretation of the inverse energy scale. The static
dilaton background e−cz2 (with c > 0 in the original model of Ref. [3]) gives rise to Regge behavior
of mass spectrum. The standard SW model is defined in the probe approximation, i.e., the metric
is not backreacted by matter fields and dilaton — such backreaction is assumed to be suppressed
in the large-Nc limit (it should be recalled that, strictly speaking, the holographic approach is
formulated in this limit only). There are many bottom-up holographic models based on Einstein-
dilaton gravity that provide backgrounds consistent with Einstein equations. This line of research
was pioneered in the work [13], the most recent review is presented in [14]. The great advantage
of the probe approximation is its simplicity which allows analytical control at each stage. In
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relation to our task, extracting the confinement potential beyond this approximation would be a
hard technical problem. On the other hand, we will argue that our approach leads (effectively)
to a certain phenomenological model for spin-dependent backreaction to the AdS metric by an
injected particle.

The Lagrangian density of the simplest SW model describing vector mesons is [3]

L = −1

4
FMNF

MN +
1

2
m2

5VMV
M , (2.3)

where FMN = ∂MVN − ∂NVM , M,N = 0, 1, 2, 3, 4. According to the standard prescriptions of
AdS/CFT correspondence [6, 7], the 5D mass m5 is determined by the behavior of p-form fields
near the UV boundary z = 0,

m2
5R

2 = (∆− p)(∆ + p− 4), (2.4)

where ∆ denotes the scaling dimension of 4D operator dual to the corresponding 5D field on the
UV boundary. In the vector case p = 1, thus m2

5R
2 = (∆− 1)(∆− 3). The canonical dimension

of vector current operator in QCD is ∆ = 3 that leads to m5 = 0. This corresponds to massless
5D vector fields which are usually considered in the SW models.

The 4D mass spectrum of the model can be found, as usual, from the equation of motion
accepting the 4D plane-wave ansatz Vµ(x, z) = eipxv(z)εµ with the on-shell, p2 = m2, and
transversality, pµεµ = 0, conditions. Here, v(z) is a profile function for physical 4D modes. In
addition, the condition Vz = 0 is implied for the physical components of 5D fields [10]. For
massless vector fields, this is equivalent to the standard choice of axial gauge due to emerging
gauge invariance [3]. The equation of motion ensuing from the action (2.3) for m5 = 0 is

∂z

(
e−cz

2

z
∂zvn

)
= −m

2
n

z
e−cz

2
vn, (2.5)

The particle-like excitations correspond to normalizable solutions of Sturm-Liouville equation (2.5),
which are enumerated by the index n. It is convenient to make the substitution

vn = z1/2ecz
2/2ψn, (2.6)

that transforms the Eq. (2.5) into a form of one-dimensional Schrödinger equation

− ∂2zψn + V (z)ψn = m2
nψn, (2.7)

with the potential

V (z) = c2z2 +
3

4z2
. (2.8)

The mass spectrum of the model is given by the eigenvalues of Eq. (2.7),

m2
n = 4|c|n, n = 1, 2, . . . . (2.9)

There exists another formulation of SW model proposed independently and almost simulta-
neously in Ref. [4], in which the dilaton background is absent but the AdS5 metric is modified,

gMN = diag
{
R2

z2
h, . . . ,

R2

z2
h

}
, h = e−2cz

2
. (2.10)

3



The resulting equation of motion and spectrum are the same. Other formulations of SW holo-
graphic model are also possible. They are analyzed in detail in the recent work [8].

The generalized SW holographic model describes the linear spectrum with arbitrary intercept
regulated by a parameter b. In the vector case, the generalization of spectrum (2.9) is

m2
n = 4|c|(n+ b), n = 1, 2, . . . . (2.11)

As was shown in [15] and further developed in [8], the spectrum (2.11) arises in the following
generalization of the action of vector SW model,

S =

∫
d4xdz

√
ge−cz

2
U2(b, 0, |cz2|)L, (2.12)

where U is the Tricomi hypergeometric function that modifies the dilaton background. It should
be remarked that any other modification of quadratic dilaton background, either manually or
by considering a backreacted geometry, will lead to a distortion of the exact Regge behavior,
m2
n ∼ n, for any n [8] (and can even lead to a finite number of excitations [16]).
The generalized SW model can be also reformulated in the form of the modified metric (2.10).

Generically, if a 5D holographic model describing spin-J mesons contains a z-dependent back-
ground B(z) in its action,

S =

∫
d4xdz

√
g B(z)L, (2.13)

this action can be rewritten in the form

S =

∫
d4xdz

√
g̃ L̃, (2.14)

with the modified metric [8]
g̃MN = B(3/2−J)−1

gMN . (2.15)

Substituting the background B(z) in the action (2.12) for spin J = 1, we obtain the following
generalization for the function h in the modified metric (2.10),

h = e−2cz
2
U4(b, 0, |cz2|). (2.16)

This modification will be the starting point for our further analysis of Cornell potential within
the generalized SW holographic model.

A question may appear how should we interpret the result (2.15) which would imply that
there could be different 5D metrics for fields of different spin? On the one hand, this is a formal
consequence of rewriting of the action (2.13) in the form of the action (2.14). The first action is for
fields which describe particles of arbitrary integer spin moving in the AdS space with universal
z-dependent dilaton background. The second action describes particles moving in a modified
AdS space without background but the modification of AdS metric becomes spin-dependent.
The modification of metric is such that the harmonic oscillatory part of the potential (2.8) in
the equation of motion remains universal for any spin and this provides the universal slope for
Regge trajectories (which is an important manifestation of confinement). On the other hand,
the second formulation of generalized SW model becomes primary for analysis of confinement
properties, thus there should be some physics behind such a mathematical reformulation. We
may give the following qualitative physical meaning to the second description. In a space with
confining geometry, particle moves around the minimum of its effective gravitational potential
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energy [10]. But part of this effective gravitational potential can arise dynamically due to the
backreaction of the particle mass (that depends on the particle spin) to the geometry of the
environment. The relation (2.15) can be then interpreted as a phenomenological model for this
backreaction.

Concluding the reminder we would make the following remark. The linear Regge like spec-
trum is usually interpreted as a manifestation of confinement. Within the Light-Front holographic
QCD [10], the holographic coordinate z has the physical meaning of the measure of the distance
between a quark and an antiquark. Then z is proportional to r in the Cornell potential (1.1).
In this case, the holographic potential (2.8) can be interpreted, up to an additive constant, as
the square of the real potential energy (1.1) between static quarks. The form of Cornell po-
tential (1.1) is then hinted in (2.8). On the heuristic level, if the energy E in the Schrödinger
equation is replaced by the energy squared E2 (as is suggested by the Lorentz invariance in the
static limit), then the oscillator potential leads to the behavior E2 ∼ r2 at large distance r, i.e.,
to the linearly rising potential energy E ∼ r. In a sense, it is this situation that is encoded in
the SW holographic model. For the case of Light-Front holographic QCD, this point is discussed
in detail in Ref. [12].

3 Holographic Wilson loop

�
�

�

�

- �

�

�

Figure 1: A Wilson loop.

The analytic and lattice calculations of the potential be-
tween static sources are usually based on the analysis of
a Wilson loop. The holographic variant of this analysis
was developed by Maldacena in Ref. [17]. Within the
holographic framework, one considers a Wilson loop L
placed in the 4D boundary of the 5D space with the
time coordinate ranging from 0 to T and the remaining
3D spatial coordinates y from −r/2 to r/2, see Figure 1.
The expectation value of the loop in the limit of T →∞
is as usual

〈W (C)〉 ∼ e−TE(r), (3.1)

where E(r) is the energy of the quark-antiquark pair. Alternatively, this expectation value can
be obtained via

〈W (C)〉 ∼ e−S , (3.2)

where S represents the area of a string world-sheet which produces the loop L. Combining these
two equations one can compute the energy (the static potential) of configuration as

E =
S

T
. (3.3)

The natural choice for the world-sheet area is the Nambu-Goto action

S =
1

2πα′

∫
d2ξ
√

det gMN∂αXM∂βXN , (3.4)

where α′ is the inverse string tension, XM are the string coordinates functions which provide a
mapping from the (ξ1, ξ2) parameter space of the world-sheet into the spacetime, and gMN is the
modified Euclidean AdS metric

gMN = diag
{
R2

z2
h, . . . ,

R2

z2
h

}
. (3.5)
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The background function h(z) specifies a holographic model, the general requirement is that
the metric must be asymptotically AdS at z → 0. After choosing ξ1 = t and ξ2 = y as the
parametrization of the world-sheet and integration over t from 0 to T , the action can be rewritten
as

S =
TR2

2πα′

r/2∫
−r/2

dy
h

z2

√
1 + z′2, (3.6)

where z′ = dz/dy. From the first integral of this action, which corresponds to the action’s
translational invariance, one can then obtain an integral expression for the distance r, the end
result is

r = 2

√
λ

c

1∫
0

dv
h0
h

v2√
1− v4 h

2
0
h2

, (3.7)

where we introduced a new notation,

z0 ≡ z|y=0 , h0 ≡ h|z=z0 , v ≡ z

z0
, λ ≡ cz20 . (3.8)

The expression for the energy is obtained from the equation (3.3) and the action (3.6) by
replacing the integration over y with the integration over v by using (3.7) (note that r is equal
to the integral over dy from −r/2 to r/2). The end result is

E =
R2

πα′

√
c

λ

1∫
0

dv

v2
h√

1− v4 h
2
0
h2

. (3.9)

The details of these derivations can be found, e.g., in Ref. [18].
This integral in (3.9) is evidently divergent at v = 0 due to the v2 in the denominator of the

integrand. To solve this problem we introduce a regularization by imposing a cutoff ε→ 0

E =
R2

πα′

√
c

λ

1∫
0

dv

v2

 h(λ, v)√
1− v4 h

2
0
h2

−D

+
R2

πα′

√
c

λ
D

1∫
ε/z0

dv

v2
, (3.10)

where the regularization constant is defined as

D ≡ h|v=0 . (3.11)

The second integral can be easily computed (here, we temporarily switch notation back to 1/z0 =√
c/λ)

R2

πα′
D

z0

1∫
ε/z0

dv

v2
= − R

2

πα′
D

z0

1

v

∣∣∣∣1
ε/z0

=
R2

πα′
D

z0

(z0
ε
− 1
)

=
R2D

πα′ε
− R2

πα′
D

z0
. (3.12)

Then we introduce the regularized energy

ER =
R2D

πα′ε
+ E, (3.13)
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with the corresponding redefinition of the energy itself as

E =
R2

πα′

√
c

λ

 1∫
0

dv

v2

 h√
1− v4 h

2
0
h2

−D

−D
 . (3.14)

Consider now the case of generalized vector SW holographic model. According to the discus-
sions in Section 2, the background function is given by the expression (2.16). The background
used by Andreev and Zakharov in Ref. [9] had the opposite sign in the exponent to enforce a
confining geometry. We will use the result (2.16) to generalize the Andreev-Zakharov deformed
AdS metric, i.e., we will investigate the confinement properties of SW model with the following
generalized background function (c > 0),

h = e2cz
2
U4(b, 0, cz2) = e2λv

2
U4(b, 0, λv2). (3.15)

Substituting (3.15) into the integrals for the distance (3.7) and the energy (3.14) we get

r = 2

√
λ

c

1∫
0

dv
U4(b, 0, λ)

U4(b, 0, λv2)

v2e2λ(1−v
2)√

1− v4e4λ(1−v2) U8(b,0,λ)
U8(b,0,λv2)

, (3.16)

E =
R2

πα′

√
c

λ

 1∫
0

dv

v2

 e2λv
2
U4(b, 0, λv2)√

1− v4e4λ(1−v2) U8(b,0,λ)
U8(b,0,λv2)

−D

−D
 , (3.17)

where the regularization constant is D = U4(b, 0, 0).
The last two expressions determine the energy as a function of the distance in the parametric

form. Our next goal is to obtain small and large distance behavior of the energy. In order to derive
the corresponding E(r) asymptotics we have to map them into corresponding λ asymptotics of
r and E. We will first focus on the large distance asymptotics.

4 Large distance potential

Since the potential E(r) is defined in a parametric form, one has to establish a correspondence
between large distances and the range of values of the parameter λ via the analysis of the
integrals (3.16) and (3.17). Note that these integrals must be real-valued, and as such the
expression under the square root must be greater than zero within the integration range, v ∈ [0, 1],

1− v4e4λ(1−v2) U8(b, 0, λ)

U8(b, 0, λv2)
> 0. (4.1)

This can be satisfied if the minimum value of the expression (4.1) is strictly positive (on the
same interval), thus, we have to analyze the roots of the derivative of expression (4.1),

1− 2λv2 − 4λv2
U ′(b, 0, λv2)

U(b, 0, λv2)
= 0, U(b, 0, λv2) 6= 0, (4.2)

where U ′(b, 0, x) = ∂xU(b, 0, x). Denoting

x ≡ λv2, (4.3)
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the numerical calculations show that the integrals are real-valued if

λ < x. (4.4)

The same conditions can be also derived from the so-called Sonnenschein conditions [19] which
state that the g00 element of the metric must satisfy

∂zg00|z=z0 = 0, g00|z=z0 6= 0, (4.5)

in order for the background to be dual to a confining theory in the sense of the area law behavior
of a Wilson loop.

The integral (3.16) is the growing function of λ, hence, the large distances correspond to
large values of the parameter λ. We get from above that technically the limit λ → x should
be examined in the derivation of the large distance asymptotics. Our procedure includes the
following steps. First, we note that the main contribution to the integrals comes from the upper
integration bound, v = 1, since the integrals diverge in the upper limit. Hence, we should expand
the integrands around that point or, rather, the expression under the square root, since other
factors under the integral either do not diverge or are constant functions of v. This leads to the
expressions,

r =
v→1

2

√
λ

c

1∫
0

dv√
A(b, λ)(1− v) +B(b, λ)(v − 1)2

, (4.6)

E =
v→1

R2

πα′

√
c

λ
e2λU4(b, 0, λ)

1∫
0

dv√
A(b, λ)(1− v) +B(b, λ)(v − 1)2

, (4.7)

where, most notably, the remaining integrals are exactly the same due to identical expressions
under the square root. Here the functions A(b, λ) and B(b, λ) are

A(b, λ) = −s′v(b, λ; 1) = 4

[
1− 2λ− 4λ

U ′(b, 0, λ)

U(b, 0, λ)

]
, (4.8)

B(b, λ) =
s′′vv(b, λ; 1)

2
=

− 2

[
16λ2 − 18λ+ 3 + 72λ2

U ′(b, 0, λ)2

U(b, 0, λ)2
+ 4λ

(16λ− 9)U ′(b, 0, λ)− 2λU ′′(b, 0, λ)

U(b, 0, λ)

]
, (4.9)

where

s(b, λ; v) ≡ 1− v4e4λ(1−v2) U8(b, 0, λ)

U8(b, 0, λv2)
. (4.10)

In the second step, we express the integral in (4.6) via r and substitute it into (4.7). Finally, we
take the limit of λ→ x in the found expression and obtain the asymptotics under consideration,

E =
r→∞

R2

α′
σ∞r, (4.11)

σ∞ =
e2xU4(b, 0, x)

2πx
c. (4.12)
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As is clear from our discussions above, here x = x(b) represents a non-trivial function of b defined
by the Eq. (4.2). In the case of the standard SW model, b = 0, one has x(0) = 1/2 and the
asymptotics (4.12) reduces to the corresponding result of Andreev and Zakharov’s analysis in
Ref. [9],

σ∞(0) =
e

π
c ≈ 0.87c, (4.13)

the relevant details are discussed in the Appendix B. It is known, however, that the simple case
of b = 0 in (2.11) does not reproduce correctly neither the radial spectrum of light vector mesons
nor the pion form-factor. The phenomenology clearly suggests a value of intercept near (see the
detailed discussions on this point in Ref. [8])

b = −1

2
. (4.14)

The parameter c can be fixed from the mean slope of Regge like spectra of light mesons found
in the compilation [20] (see also the review [21]): a ≈ 1.14GeV2. In our further estimates, we
will round this value down to a = 4c = 1.1GeV2. Note in passing that the intercept (4.14) in
the generalized SW vector spectrum (2.11) leads to the prediction

m2
ρ = 2c = a/2, (4.15)

that correctly reproduces the ρ-meson mass. This is an important phenomenological argument in
favor of the physical choice (4.14). It is interesting to note that the relation (4.15) is automatically
satisfied in the light-front holographic QCD [10] with the same value of slope a = 1.1GeV2 [22].
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Figure 2: Comparison between the large distance asymptotics of the potential and the numerical
evaluation of the exact integration formulae (such as (3.16)). “AZ” stands for [9] with adjustments
described in the Appendix B, “Generalized” — this work. The parameters are set to: b = −0.5,
the dilaton parameter to 4c = 1.1GeV2, and the normalization constant to R2/α′ = 1.
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There are several other, unrelated to the holographic QCD, theoretical arguments in favor of the
physical choice (4.14), they are discussed in Ref. [8].

Having fixed the parameters we are ready to analyze the impact of non-zero intercept pa-
rameter b (which encodes the value of mass gap and likely the effects of the dynamical chiral
symmetry breaking [8]) on the large distance asymptotics of the potential in question. The
Figure 2 demonstrates the difference between the large distance asymptotics of the potential in
the model of [9], corresponding to b = 0, and the more physical case corresponding to (4.14).
The adjustments needed to take into account the difference in the dilaton background definition
in our work and in [9] are described in the Appendix B. In the Figure 2, we also compare the
asymptotics with full numerical evaluation of the corresponding original integrals, such as (3.16).

-��� -��� ��� ���
�

���

���

���

���

���

���


�→∞

|���|� ���

Figure 3: The gap limit at r →∞.

As follows from the plots 2, we obtained a gap be-
tween the exact numerical and asymptotic solutions in
Andreev–Zakharov’s model [9]. It is seen also that this
gap disappears in the physical case of b = −0.5. In the
general case, the given gap turns out to be b–dependent.
We display this dependence in Figure 3. We could not
trace analytically the appearance of this discrepancy as
a function of b.

In summary, the Figure 2 shows that the incorpora-
tion of negative intercept parameter leads to a smaller
slope (usually associated with the hadron string tension)
of linearly rising confinement potential.

5 Small distance potential

Consider now the asymptotics of the energy E(r) at small distances r. Since the distance r is
the growing function of λ by virtue of exponents, the small distances correspond to small values
of the parameter λ. From (3.7) we can deduce the small λ asymptotics of r by first expanding
the integrand at λ→ 0

r =
λ→0

2

√
λ

c

1∫
0

dv

[
v2√

1− v4
+ 2λ

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)
v2(1− v2)
(1− v4)3/2

+O(λ2)

]
. (5.1)

Each term in the integral can be integrated separately using the integral representation of the
Euler beta-function, as was done, for example, in Ref. [9]. However, instead we would like to
take a moment to point out a small subtlety with this integration and perform it more carefully.

First, we should note that the well-known integral representation of the beta-function,

B(a, b) ≡
1∫

0

dt ta−1(1− t)b−1,

is only valid if both arguments, a and b, are greater than zero, which makes this representation
inapplicable in our case, since, as we will show shortly, the arguments can indeed take negative
value. Instead, we propose to use the integral representation of the reduced beta-function,

Bx(a, b) ≡
x∫

0

dt ta−1(1− t)b−1, (5.2)
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which, in addition, can be defined for negative values of the second argument b as long as x < 1.
We perform the actual integration with the use of the shorthand formula

1∫
0

dv va(1− v4)b =
1

4
lim
x→1

Bx

(
a+ 1

4
, b+ 1

)
, (5.3)

which yields

r =
λ→0

1

2

√
λ

c
lim
x→1

[
Bx

(
3

4
,
1

2

)
+ λ

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)(
Bx

(
3

4
,−1

2

)
−Bx

(
5

4
,−1

2

))]
. (5.4)

In order to take the limit we make use of the expansion of the reduced beta-function

Bx(a, b) =
x→1

B(a, b)− (1− x)b

b
+O

(
(x− 1)b+1

)
, (5.5)

where the beta-function B(a, b) represents the standard combination of the gamma-functions,

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (5.6)

It is seen immediately that the first term in (5.4) reduces to the normal beta-function and, more
importantly, the divergences from the second and the third terms cancel each other out. Note
that while in this particular case it does not make difference, this subtle detail would have been
missed if we had used the normal beta-function instead of the reduced one from the beginning.

In the final step, using the standard properties of the beta- and gamma-functions and intro-
ducing a new parameter

ρ ≡
Γ
(
1
4

)2
(2π)3/2

, (5.7)

we obtain the small-λ expansion of the distance

r =
λ→0

1

ρ

√
λ

c

[
1 + λ

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)(
πρ2 − 1

)]
. (5.8)

The small-λ asymptotics of the integral for the energy (3.14) can be analyzed in a similar
manner. The final result is

E =
λ→0

R2

2πα′ρ
U4(b, 0, 0)

√
c

λ

[
−1 + λ

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)(
3πρ2 − 1

)]
. (5.9)

The explicit formulae for the intermediate steps of this computation can be found in the Ap-
pendix A.

In order to obtain the small distance potential we combine the last two expressions by ex-
pressing λ in terms of r. First, we extract from (5.8)√

c

λ
=

1

ρr

[
1 + λ

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)(
πρ2 − 1

)]
, (5.10)
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which we substitute back into the asymptotics (5.9) for the energy

E =
λ→0

R2

2πα′ρ

U4(b, 0, 0)

ρr

[
1 + λ

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)(
πρ2 − 1

)]
×

×
[
−1 + λ

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)(
3πρ2 − 1

)]
. (5.11)

Next, we perform the multiplication of the square brackets while retaining only the terms up to
quadratic in λ,

E =
λ→0

R2

2πα′ρ

U4(b, 0, 0)

ρr

[
−1 + λ

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)(
−πρ2 + 1 + 3πρ2 − 1

)]
=

=
R2

2πα′ρ

U4(b, 0, 0)

ρr

[
−1 + 2πρ2λ

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)]
.

(5.12)

Finally, we express from (5.10) in the leading order

λ = cρ2r2, (5.13)

substitute this into (5.12), perform some simplifactions, and we get

E =
r→0

R2

α′
U4(b, 0, 0)

[
− 1

2πρ2
1

r
+

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)
cρ2r

]
. (5.14)

This result can be simplified even further by using the properties of the Tricomi function. First,
we note that

U(b, k, 0) =
Γ(1− k)

Γ(b− k + 1)
, if k < 1, (5.15)

which means that
U4(b, 0, 0) =

1

Γ(1 + b)4
. (5.16)

Secondly, using various known series expansions of the Tricomi function we can write

1 + 2
U ′(b, 0, 0)

U(b, 0, 0)
= 1 + 2bψ(b+ 1) + 4bγ + 2b log ε, (5.17)

where ε → 0. Here ψ is the digamma function and γ is Euler’s constant. The last diverging
constant appears from the expansion of U ′(b, 0, ε) at small ε. Combining these expressions we
obtain

E =
r→0

R2

α′

[
−κ0
r

+ σ0r
]
, (5.18)

κ0 ≡
1

Γ(1 + b)4
1

2πρ2
, σ0 ≡

1 + 2bψ(b+ 1) + 4bγ

Γ(1 + b)4
cρ2. (5.19)

Note that in the relation (5.18) we subtracted the logarithmic divergence in the expansion (5.17)
arising from the limit of λ → 0 in our notation. The expression (5.18) represents, thus, the
renormalized energy.

Let us now compare the small distance potential (5.18) with the one obtained in [9]. As
in the previous section, for the latter we use the adjusted formulae which are presented in the
Appendix B. The comparison is given in the Figure 4. As a benchmark we also demonstrate
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Figure 4: Comparison between the small distance asymptotics of the potential and the numerical
evaluation of the exact integration formulae (such as (3.16)). “AZ” stands for [9] with adjustments
described in the Appendix B, “Generalized” — this work. The parameters are set to: b = −0.5,
the dilaton parameter to 4c = 1.1GeV2, and the normalization constant to R2/α′ = 1.

the results of the numerical evaluation of the corresponding exact formulae for r(λ) and E(λ).
One can note that the gap between asymptotics and numerical results that we observed for large
distances for the model of [9] disappears at small distances. Additionally, the small distance
potential asymptotics in the current model reproduce the “exact” solutions quite well.

In summary, the Figure 4 demonstrates that the Coulomb part of the potential comes into
play at smaller distances if the intercept parameter b is negative. For instance, if we set the
normalization constant to R2/α′ = 1 as in the Figure 4 then in the Andreev–Zakharov’s model,
defined at b = 0, the Coulomb part becomes substantial at a distance less than 0.1 fm while
in the considered phenomenologically preferable case of b = −0.5, this distance drops to about
0.03 fm.

6 The scalar case

Let us now apply the analysis above to the scalar case. In this case, the analogue of the generalized
SW action (2.12) reads [8]

Ssc =

∫
d4xdz

√
ge−cz

2
U2(b,−1, |cz2|)Lsc. (6.1)

The mass spectrum of the SW model (6.1) with c > 0 is [8, 23]

m2
n = 4c(n+ ∆/2 + b), n = 0, 1, 2, . . . , (6.2)

where ∆ is the canonical dimension of QCD scalar operator dual to the corresponding 5D scalar
field in the Lagrangian density Lsc.
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As in the vector case, for our purposes one should rewrite the dilaton background as certain
modification of AdS5 metric using (2.15) and continue the modified metric to the Euclidean space.
The background function h(z) of the metric in (3.15) is then replaced by (see also discussions
in [18])

h = e2cz
2/3U4/3(b,−1, cz2) = e2λv

2/3U4/3(b,−1, λv2). (6.3)

This changes the expressions for r(λ) and E(λ) to the following ones,

r = 2

√
λ

c

1∫
0

dv
U4/3(b,−1, λ)

U4/3(b,−1, λv2)

v2e2λ(1−v
2)/3√

1− v4e4λ(1−v2)/3 U8/3(b,−1,λ)
U8/3(b,−1,λv2)

, (6.4)

E =
R2

πα′

√
c

λ


1∫

0

dv

v2

 e2λv
2/3U4/3(b,−1, λv2)√

1− v4e4λ(1−v2)/3 U8/3(b,−1,λ)
U8/3(b,−1,λv2)

−D

−D
 , (6.5)

with the regularization constant D ≡ U4/3(b,−1, 0).
The derivation of the asymptotics in question is essentially the same. For the large distance

asymptotics we get

E =
r→∞

R2

α′
σ∞r, (6.6)

σ∞ =
e2x/3U4/3(b,−1, x)

2πx
c, (6.7)

where x (see (4.3)) is now the solution to the equation

1− 2

3
x− 4

3
x
U ′(b,−1, x)

U(b,−1, x)
= 0, (6.8)

which is the scalar counterpart of Eq. (4.2). In the case of the standard SW model, b = 0, we
get x(0) = 3/2. Comparing (6.7) with (4.12) at b = 0 we have σ(sc)

∞ /σ
(vec)
∞ = 1/3. The emerging

factor of 1/3 stems from the appearance of the additional factor of 1/3 in the exponent of scalar
background function (6.3) in comparison with (3.15). The given factor provides the equal slope
of scalar and vector radial Regge trajectories in the SW model.

The details of the derivation of the small distance asymptotics are given in the Appendix A,
the result is

E =
r→0

R2

α′
U4/3(b,−1, 0)

[
− 1

2πρ2
1

r
+

(
1 + 2

U ′(b,−1, 0)

U(b,−1, 0)

)
cρ2

3
r

]
. (6.9)

It can be simplified using the analogous to (5.17) expansion,

1 + 2
U ′(b,−1, 0)

U(b,−1, 0)
= 1− 2b, (6.10)

where in contrast to the vector case the logarithmic term has the form of ε log ε that goes to 0
as ε→ 0. Finally, we obtain

E =
r→0

R2

α′

[
−κ0
r

+ σ0r
]
, (6.11)
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κ0 =
1

Γ(2 + b)4/3
1

2πρ2
, σ0 =

1− 2b

Γ(2 + b)4/3
cρ2

3
. (6.12)

It is interesting to note that in the scalar case, the logarithmic divergence from the derivative
of the Tricomi in (6.10) is absent, i.e., the asymptotics (6.9) does not need the renormalization
caused by the subtraction of that divergence.

7 Discussions

For a phenomenological analysis of our results we should first provide a very brief review of the
relevant phenomenology of the Cornell potential (1.1). Let us write this potential once more for
a further convenience,

V (r) = −κ
r

+ σr + C. (7.1)

In typical potential models for heavy quarkonia (for a review see, e.g., [1]), the constant C is
roughly C ≈ −0.3 GeV. The potential (7.1) was first proposed in Ref. [2] for a non-relativistic
description of the charmonia spectrum. The linear confinement potential at large distances was
inferred from lattice gauge theory and also inspired by the dual string model [24–27]. The spin
averaged charmonia spectrum (plus ground states of bottomonia) results in parameter values [1]

Charmonia: κ ≈ 0.25, σ ≈ 0.21GeV2. (7.2)

The perturbative QCD predicts the value of Coulomb coefficients for quarkonia,

κ =
4

3
αs(r), (7.3)

where αs(r) is the QCD running coupling which depends on renormalization scheme. The renor-
malization scheme to be used with the potential is the so-called V-scheme which is determined
by perturbative high order QCD corrections to the static potential (see, e.g., Refs. [28, 29] for
relevant discussions). In the case of Cornell potential, however, the scale for αs(r) is not well-
defined and the coefficient κ of the Coulomb-like part is related with an average value 〈αs〉 over
the scale range where that part of the potential is dominant. The mean value of the coupling
〈αs〉 depends on the size of the hadrons considered. The value of 〈αs〉 extracted in Ref. [2]
from hadronic decays of excited charmonia is 〈αs(ψ)〉 = 0.19 ± 0.03. This value is consistent
with (7.2) and (7.3): 4

30.19 ≈ 0.25. After inclusion of excited bottomonia, that probe the poten-
tial at smaller distances, the estimates (7.2) were shifted to the following approximate values [1],

Charmonia + Bottomonia: κ ≈ 0.51, σ ≈ 0.18GeV2. (7.4)

In the region 0.2 fm < r < 1 fm, which is effectively probed by spin-averaged quarkonia splittings,
the parametrizations (7.2) and (7.4), however, differ only marginally: The higher value of the
Coulomb coefficient is compensated for by a smaller slope σ [1].

The value of slope σ in (7.4) turns out to be remarkably insensitive to a chosen distance. The
same value is typically used for the description of the light meson spectrum within the potential
models1. Even more surprising is the quantitative agreement of the mean slope of Regge spectra

1With certain model modifications like a smearing procedure in the coordinate space to take into account
relativistic effects and the use of an ad hoc model for the running coupling that freezes out at low energies, the
paper [30] is a classical work in this field.
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of light mesons, a ≈ 1.14GeV2 [20], with the slope predicted by semiclassical quantization of
hadron string with linearly rising potential energy (7.1), a = 2πσ, where σ is the string tension
(see, e.g., the discussions in Ref. [21]), if the value from (7.4) is used for σ.

After this brief reminder, we are ready to analyze the relevant phenomenological predictions
of our generalized SW holographic model. First of all, it should be noted that the coupling of
the Coulomb-like part of the potential obtained within the holographic approach is not running
at large energy-momenta because this approach represents a classical framework. On the other
hand, it can run at the low energy-momenta due to semiclassical effects that are part of the
definition of the coupling [11]. Therefore, the constant coupling should be understood as the
value averaged over energy-momentum of the actually running coupling. With this in mind,
comparing directly our results to that of the Cornell potential is self-consistent.

Let us consider the predictions which do not depend on the general normalization constant
R2/α′. We can temporary set R2/α′ = 1, then our definitions of parameters κ and σ coincide
with the definitions in the Cornell potential (7.1). The first prediction is the ratio σ∞/κ0. In
the vector case, we obtain from (4.12) and (5.19)

σ∞
κ0

=
Γ
(
1
4

)4
Γ(1 + b)4e2xU(b, 0, x)4c

(2π)3x
. (7.5)

Andreev and Zakharov got the estimate σ∞/κ0 ≈ 0.85GeV2 [9] and found it “disappointing” that
this prediction disagreed significantly with the corresponding phenomenological ratio from (7.4),

Charmonia + Bottomonia:
σ

κ
≈ 0.35GeV2. (7.6)

We should note, however, that in the fit (7.2) this ratio is equal to 0.84 in nice agreement
with the Andreev–Zakharov prediction. Taking into account the aforementioned remark on a
phenomenological proximity of the parametrizations (7.2) and (7.4), the obtained estimate looks
reasonable2.

The general behavior of ratio σ∞/κ0 as a function of intercept parameter b in the vector and
scalar case is displayed in the Figure 5. It is seen that the physical value of intercept in the
vector case, b ≈ −0.5, leads to an unrealistically large ratio, while the scalar case with b ≈ 0 is
perfectly compatible with the phenomenological output (7.6).

The next important ratio is σ∞/σ0 which does not depend on the Regge slope a = 4c. The
lattice data suggest that the linearly rising part in the Cornell potential (7.1) is almost universal
at large and small distances, hence, a reasonable prediction for σ∞/σ0 should lie near 1 [9]. The
prediction of Andreev–Zakharov model is σ∞/σ0 ≈ 1.24 [9] that corresponds to b = 0 in our
model. The general behavior of ratio σ∞/σ0 as a function of b is displayed in the Figure 5. In
the same Figure, we show the corresponding behavior in the scalar SW model. It is seen that
the physical value of intercept in the vector case, b ≈ −0.5, leads to an unrealistically large ratio,
while the scalar case gives a stable prediction near 1 for b . 0.

Our further predictions will depend on the choice of normalization constant R2/α′. First let
us assume that this constant is b–independent. Without loss of generality, we may again set
R2/α′ = 1. The slope σ is a function of b. Since the intercept b encodes important physics of
non-perturbative strong interactions, it is interesting to check the behavior of σ(b) at large and
small distances since this reflects the dependence on b of string tension and of the slope of the

2We should mention, however, that the value of Regge slope was set in [9] equal to a = 4c = 0.9GeV2. With
our value of 4c = 1.1GeV2, the relation (7.5) for b = 0 would give σ∞/κ0 ≈ 1.04GeV2, see also the Figure 5.
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Figure 5: The ratios σ∞/κ0 (left) and σ∞/σ0 (right) in the vector and scalar cases. The Regge
slope is set to 4c = 1.1GeV2.
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Figure 6: The ratios σ∞/c (left) and σ0/c (right) in the vector and scalar cases.

Regge spectrum. In the Figure 6, we show the dependence on b of c–independent ratios σ∞/c
and σ0/c in the vector and scalar SW models. One can conclude from the presented plots that
the behavior of σ∞(b) and σ0(b) is qualitatively similar in the scalar case and is very different in
the vector one.

Now let us relax the assumption above. The dependence of the normalization constant
R2/α′ on b can help to amend the following theoretical discrepancy. As was mentioned above,
the semiclassical quantization of hadron string of the Nambu-Goto type with tension σ and
linearly growing with distance energy as in (7.1), leads to the slope of the angular and radial
Regge mass spectrum a = 2πσ. On the other hand, the same slope in the SW holographic model
is a = 4c, see, e.g., the SW spectrum (2.9) or (6.2). The physical values of σ and c remarkably
agree with each other. But this agreement can be destroyed by the dependence σ(b) as long as
the parameter c in the SW model does not depend on b. And here the normalization constant
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R2/α′ can restore the consistency: The actual σ in (7.1) is our R2

α′ σ∞, hence, we may impose the
consistency condition,

R2

α′
2πσ∞(b) = 4c, (7.7)

that should fix the normalization constant R2/α′. For instance, in the vector SW model at b = 0,
we get from (4.13) and (7.7) the normalization R2/α′ = 2/e ≈ 0.74. The given normalization
constant is not very distinct from R2/α′ = 1 used in our work.

When the normalization (7.7) is imposed, the string tension σ in the confinement poten-
tial (7.1) does not depend on the intercept parameter b while the Coulomb parameter κ and
constant C are functions of b. Their b-dependence can be calculated numerically, we display the
result in the Figure 7. These plots show that the physical value of intercept in the vector case,
b ≈ −0.5, leads to an unrealistically small value of κ and to positive C, while the scalar case with
b ≈ 0 reproduces numerically the value of κ in the phenomenological fit (7.4) and qualitatively
gives the correct sign of constant C.

It is interesting to compare our models normalized by the condition (7.7) with the results
of lattice simulations in SU(3) gauge theory. In the Figure 8, we provide such a comparison
for three typical cases: The vector SW model with b = 0 (the simplest standard variant), with
b = −0.5 (the phenomenologically preferable variant (4.14)), and the scalar SW model with b = 0
(the most consistent variant according to our analysis).

In summary, the totality of observations made above shows that the holographic confinement
potential quantitatively compatible with the phenomenology arises in the scalar version of the
SW holographic model, in which the physical value of intercept parameter b in the Regge-like
spectrum (6.2) seems to be close to zero.

The latter observation could be converted into a prediction for the mass ms of ground scalar
state. If the quark physical degrees of freedom are quenched, only the gluon ones are operative.
The minimal dimension of scalar operator constructed from the gluon fields is ∆ = 4 (the scale-
invariant operator βG2

µν). Then the spectrum (6.2) with b ≈ 0 combined with the relation (4.15)
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Figure 7: The behavior of the parameters κ (left) and C (right) in the potential (7.1) as functions
of the intercept b when the normalization (7.7) is imposed. The Regge slope is set to 4c =
1.1GeV2 (equivalently, σ∞ = 0.18GeV2).
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leads to the following prediction for the mass of the lightest scalar glueball,

ms ≈ 2mρ. (7.8)

This prediction is close to the mass of the scalar meson f0(1500) which is indeed a candidate for
the lightest scalar glueball [31].

8 Conclusions

The Soft Wall AdS/QCD approach provides a natural framework for the appearance of the Cor-
nell type confinement potential at short and long distances. We performed a detailed analytical
study of arising confinement potentials within the generalized version of Soft Wall holographic
model in the vector and scalar cases, where the term “generalized” means the incorporation of
arbitrary intercept into the radial Regge spectrum. The intercept parameter is indispensable for
a quantitative phenomenological description of the experimental spectrum of light meson reso-
nances. Our numerical analysis and comparison with the phenomenological Cornell potentials
showed that quantitatively correct confinement potential arises in a consistent way within the
scalar Soft Wall holographic model, while the standard vector version of the model results in a
qualitative agreement only. This conclusion agrees with the recent analysis of Ref. [32] where it
was argued that quantitatively correct prediction of the deconfinement temperature within the
framework of the same model emerges in the scalar case. And as in Ref. [32], the found numerical
parameters seem to be consistent with the interpretation of the scalar state f0(1500) [31] as the
lightest glueball.
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Figure 8: The behavior of potential energy with distance for three examples of SW holographic
model discussed in the text. The lattice data for the Wilson action SU(3) potential are taken
from the review [1]. More precisely, we made use of the Cornell potential (7.1) that almost
perfectly interpolates these data, the parameters of this potential are the following [1]: σ =
0.18GeV2, κ = 0.295 for the quenched approximation and κ ≈ 0.36 in the un-quenched case (sea
quarks effects are taken into account), in both cases the constant C is fixed by the condition
E(0.5 fm) = 0.
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We have no clear understanding on why the scalar version of considered generalized SW holo-
graphic model is quantitatively more consistent with the phenomenology of quark confinement
than the vector one. But we see here the manifestation of a general tendency for the domi-
nance of the vacuum scalar sector in the non-perturbative dynamics of strong interactions. This
dominance is ubiquitous: The universality of hadron-hadron scattering at ultrahigh energies is
believed to be associated with the exchange of scalar pomerons, and not vector gluons, as one
might naively expect; in the opposite limit of very low energies, the predominant part of at-
traction potential between nucleons is due to the exchange of scalar σ-meson [31] (a correlated
two-pion exchange), and not pseudoscalar π-mesons, as one could naively expect; at intermediate
energies, the number of observed scalar isoscalar resonances [31] is much greater than it should
follow from the quark model...

In summary, we believe that our results provide a new demonstration of the key role of the
vacuum scalar sector in the description of confinement physics in strong interactions.
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Appendices

A Details of the small distance asymptotics calculation

In this Appendix, we present technical details concerning the derivation of the small distance
asymptotics.

First we consider the small-λ asymptotics of the energy integral (3.14) for the vector case.
The expansion of its integrand at λ → 0, where we also substitute the regularization constant
D = U4(b, 0, 0), reads

E =
λ→0

R2

πα′

√
c

λ

 1∫
0

dv

v2
(
E0 + λE1 +O(λ2)

)
− U4(b, 0, 0)

 . (A.1)

Here we introduced the expansion coefficients

E0 ≡ U4(b, 0, 0)

(
1√

1− v4
− 1

)
, (A.2)

E1 ≡ 2U4(b, 0, 0)

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)
v2(1− 2v4 + v2)

(1− v4)3/2
. (A.3)

On the next step, the E0 and E1 terms are integrated using the integral representation of the
reduced beta-function (5.3). Note, however, that technically E0 contains two integrals and both
of them are divergent. Below we show a trick which we use to demonstrate that these divergences
cancel each other out. We start by rewriting the integrals as

1∫
0

dv

v2

(
1√

1− v4
− 1

)
= lim

x→1
y→0

x∫
y

dv

v2

(
1√

1− v4
− 1

)
= . . . (A.4)
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After that we change the integration variable to u ≡ v4 and split the first integral into two

· · · = 1

4
lim
x→1
y→0

 x4∫
0

du
u−5/4√
1− u

−
y4∫
0

du
u−5/4√
1− u

−
x4∫
y4

du

u5/4

 = . . . (A.5)

We can now safely perform the integration (for the first two integrals we use the integral repre-
sentation (5.3) of the reduced beta-function) and we get

· · · = 1

4
lim
x→1
y→0

[
Bx4

(
−1

4
,
1

2

)
−By4

(
−1

4
,
1

2

)
+

4

x
− 4

y

]
= . . . (A.6)

Using the expansions of the reduced beta-function (5.5) and

By(a, b) =
y→0

ya

a
+O(ya+1), (A.7)

we obtain

· · · = 1

4
lim
x→1
y→0

[
B

(
−1

4
,
1

2

)
− 2
√

1− x4 +O
(

(1− x4)3/2
)

+
4

y
+O

(
y3
)

+
4

x
− 4

y

]
= . . . , (A.8)

from which we immediately see that the divergences indeed cancel each other out and the final
result of the integration of E0 is

1∫
0

dv

v2
E0 = U4(b, 0, 0)

[
1

4
B

(
−1

4
,
1

2

)
+ 1

]
. (A.9)

The integral for E1 can be represented as three separate integrals,

1∫
0

dv

v2
E1 = 2U4(b, 0, 0)

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

) 1∫
0

dv
1− 2v4 + v2

(1− v4)3/2
, (A.10)

each of which results in the beta-function. The end result for E1 is

1∫
0

dv

v2
E1 =

U4(b, 0, 0)

2

(
1 + 2

U ′(b, 0, 0)

U(b, 0, 0)

)[
B

(
1

4
,−1

2

)
+B

(
3

4
,−1

2

)
− 2B

(
5

4
,−1

2

)]
.

(A.11)
We can now substitute (A.9) and (A.11) back into (A.1) (note that the out-of-integral U4(b, 0, 0)
terms cancel each other out) and use the properties of the gamma-functions as well as the
definition (5.7) of ρ. This leads to the final form (5.9) for the small-λ asymptotics of energy.

The calculations in the scalar case are similar — we have to adjust only the coefficients in front
of the integrals, which give rise to the beta-functions. The small λ expansion of the integral (6.4)
for the distance is equal to

r =
λ→0

2

√
λ

c

1∫
0

dv

[
v2√

1− v4
+

2

3
λ

(
1 + 2

U ′(b,−1, 0)

U(b,−1, 0)

)
v2(1− v2)
(1− v4)3/2

+O(λ2)

]
. (A.12)
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For the energy integral (6.5) we use the same form of the expansion,

E =
λ→0

R2

πα′

√
c

λ

 1∫
0

dv

v2
(
E0 + λE1 +O(λ2)

)
− U4/3(b,−1, 0)

 , (A.13)

with redefined expansion coefficients

E0 ≡ U4/3(b,−1, 0)

(
1√

1− v4
− 1

)
, (A.14)

E1 ≡
2

3
U4/3(b,−1, 0)

(
1 + 2

U ′(b,−1, 0)

U(b,−1, 0)

)
v2(1− 2v4 + v2)

(1− v4)3/2
. (A.15)

Then the remaining integrals can be computed just as they were for the vector case and this
results in (6.9).

For completeness, we present those properties of gamma-functions which were used in the
calculations above,

Γ

(
1

2

)
=
√
π, Γ

(
3

4

)
Γ

(
1

4

)
= π
√

2, Γ(z + 1) = zΓ(z), Γ

(
−1

2

)
= −2

√
π. (A.16)

B Adjustments to earlier results

In this Appendix, we review the adjustments to the results from [9] that are required in order to
make a meaningful comparison. The starting point is the integral representation of the potential
in terms of the parametric functions r(λ) and E(λ) (counterparts to our (3.16) and (3.17)),

r = 2

√
λ

c

1∫
0

dv
v2eλ(1−v

2)/2√
1− v4eλ(1−v2)

,

E =
R2

πα′

√
c

λ

 1∫
0

dv

v2

(
eλv

2/2√
1− v4eλ(1−v2)

− 1

)
− 1

 .
The pertinent difference between [9] and the current work is the difference in the definitions of
the exponential background in the AdS5 metric: ecz2/2 vs. e2cz2 , correspondingly. This implies
that in order to use the above two formulae we have to substitute c → 4c and, consequently,
λ → 4λ due to its definition, λ ≡ cz20 . The integrals for the distance and energy change to the
following ones,

r = 2

√
λ

c

1∫
0

dv
v2e2λ(1−v

2)√
1− v4e4λ(1−v2)

, (B.1)

E =
R2

πα′

√
c

λ

 1∫
0

dv

v2

(
e2λv

2√
1− v4e4λ(1−v2)

− 1

)
− 1

 . (B.2)
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One can easily see that the last two formulae arise from (3.16) and (3.17) in the limit of b→ 0.
Thus, we can simply set b = 0 in (5.18) and obtain

E =
r→0

R2

α′

[
− 1

2πρ2
1

r
+ cρ2r

]
. (B.3)

This result can be also verified by repeating the calculations of the Section 5 and Appendix A.
The situation with the large distance asymptotics is a little bit more complicated. First, due

to the substitution λ → 4λ, the limit of λ → 2, which is mapped to the limit of large distances
in [9], changes to λ→ 1/2. The second issue stems from the fact that the parameter λ contributes
to the overall coefficient of the potential. This is also the case in our work: for example, the
e2xU4(b, 0, x) factor in (4.11) is due to λ-containing coefficients. To clarify the second problem
it makes sense to reiterate the derivation procedure for the large distance potential once again
(this is also described in Ref. [18]).

The main idea goes as follows: since the integrals for non-zero λ diverge in the upper limit,
the main contribution to their value comes from the integrands at v = 1. Thus, we get

r = 2

√
λ

c

1∫
0

dv√
(1− v)A(λ) + (v − 1)2B(λ)

, (B.4)

E =
R2

πα′

√
c

λ
e2λ

1∫
0

dv√
(1− v)A(λ) + (v − 1)2B(λ)

. (B.5)

The new expression under the square root is the result of the series expansions and since the
original expressions under the square root were the same for r and E, the expansions above
are also the same. Here A(λ) and B(λ) are some functions, the precise form of which is not
important for this discussion. Next, we express the integral from (B.4), substitute it into (B.5)
and arrive at

E =
r→∞

R2

2πα′
c

λ
e2λr. (B.6)

Finally, we substitute λ = 1/2 and obtain the large distance potential,

E =
r→∞

R2

πα′
ecr. (B.7)

As an aside we would like to point out that in our reproduction of the results of Ref. [9] we
observed that the second function is actually equal to B(λ) = 9λ − 2λ2 − 6 which differs from
the corresponding expression in [9]. This difference, however, does not affect the results because
the relevant integral is simply canceled in the final formula.
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Dynamics from Superconformal Algebra, Phys. Lett. B 759 (2016), 171-177, [1604.06746]

[23] S. S. Afonin, Towards reconciling the holographic and lattice descriptions of radially excited
hadrons, Eur. Phys. J. C 80 (2020), 723, [2008.05610]

[24] Y. Nambu, Strings, Monopoles and Gauge Fields, Phys. Rev. D 10 (1974), 4262

[25] L. Susskind, Dual symmetric theory of hadrons. 1, Nuovo Cim. A 69 (1970), 457

[26] G. Frye, C. W. Lee and L. Susskind, Dual-symmetric theory of hadrons. 2. baryons, Nuovo
Cim. A 69 (1970), 497

[27] D. B. Fairlie and H. B. Nielsen, An analog model for ksv theory, Nucl. Phys. B 20 (1970),
637

[28] A. Deur, S. J. Brodsky and G. F. de Teramond, The QCD Running Coupling, Nucl. Phys.
90 (2016), 1, [1604.08082]

[29] A. L. Kataev and V. S. Molokoedov, Fourth-order QCD renormalization group quantities in
the V scheme and the relation of the β function to the Gell-Mann–Low function in QED,
Phys. Rev. D 92 (2015) no.5, 054008, [1507.03547]

[30] S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys.
Rev. D 32 (1985), 189-231

[31] P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020 (2020) no.8,
083C01

[32] S. S. Afonin and A. D. Katanaeva, Glueballs and deconfinement temperature in AdS/QCD,
Phys. Rev. D 98 (2018), 114027, [1809.07730]

25

http://arxiv.org/abs/hep-ph/0701089

	1 Introduction
	2 Generalized Soft Wall holographic model
	3 Holographic Wilson loop
	4 Large distance potential
	5 Small distance potential
	6 The scalar case
	7 Discussions
	8 Conclusions
	A Details of the small distance asymptotics calculation
	B Adjustments to earlier results

