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previous letter arXiv:1505.04804, where this conjecture was first introduced.

Keywords: Gauge-gravity correspondence, Holography and condensed matter physics

(AdS/CMT)

ArXiv ePrint: 1505.07842

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2015)068

mailto:p.bueno@csic.es
mailto:rmyers@perimeterinstitute.ca
http://arxiv.org/abs/1505.07842
http://dx.doi.org/10.1007/JHEP08(2015)068


J
H
E
P
0
8
(
2
0
1
5
)
0
6
8

Contents

1 Introduction 1

2 Corner term in holographic entanglement entropy 5

2.1 Higher curvature gravity 8

2.1.1 Curvature-squared gravity 10

2.1.2 Generalized Lovelock gravity 14

3 Comparison with other charges 16

3.1 Entanglement entropy for a strip 17

3.2 Entanglement entropy for a disk 19

3.3 Thermal entropy 20

3.4 Stress tensor two-point function 24

4 Discussion 27

4.1 Shape of the extremal surface 30

4.2 Comparison with QFT calculations 32

A Conventions and notation 39

B From the corner to the strip 40

C f(R) gravity 42

D Free field results for σ 46

1 Introduction

Entanglement entropy (EE) has emerged as a useful tool in a variety of research areas,

including condensed matter physics [1–4], quantum information [5, 6], quantum field theory

(QFT) [7–13] and quantum gravity [14–23]. In the context of quantum field theory, we

define the EE for a spatial region V as: S = −Tr (ρV log ρV ), where ρV is the reduced

density matrix computed by integrating out the degrees of freedom in the complementary

region V . The focus of the discussion in this paper comes from considering the EE for a

three-dimensional conformal field theory (CFT), which will have an expansion of the form

SEE = c1
A
δ
− a log (H/δ)− 2πc0 +O (δ/H) , (1.1)

where A, H and δ are, respectively, the perimeter of the entangling surface, some macro-

scopic length characteristic of the geometry (e.g., we could choose H = A) and a short-

distance cut-off needed to regulate the calculation. Of course, the first term in this expan-

sion is the celebrated ‘area law’ contribution to the EE [14, 15]. However, the dimensionless
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Figure 1. (Colour online) A corner in the entangling surface with opening angle Ω.

coefficient c1 of this linear divergence depends on the details of the regulator and so cannot

be used to characterize the underlying CFT. In contrast, in the absence of the logarithmic

term (see below), the constant c0 is a universal constant intrinsic to the CFT1 and also the

geometry of the smooth entangling surface (the boundary of the region V ). For example,

when the latter is a circle, c0 plays the role of a ‘central charge’ in the F -theorem [26–30].

Another universal contribution in eq. (1.1) is the one proportional to log(H/δ), which

arises when the entangling surface contains corners [31–34]2,3 — see figure 1. Hence the

dimensionless coefficient a is a function of the opening angle, i.e., a = a(Ω). In our

discussion, we focus on the contribution of a single corner in the entangling surface. If

several corners were present, the coefficient of logarithmic contribution to the EE would

simply involve the sum of independent contributions a(Ωi) where Ωi is the opening angle

of the i’th corner. The form of the function a(Ω) is constrained by various properties of

entanglement entropy [31–33]: for pure states, the fact that SEE(V ) = SEE(V ) requires

that a(Ω) = a(2π − Ω). Further, strong subadditivity and Lorentz invariance impose

a(Ω) ≥ 0 , ∂Ωa(Ω) ≤ 0 and ∂2Ωa(Ω) ≥
|∂Ωa(Ω)|
sinΩ

for Ω ≤ π , (1.2)

i.e., a(Ω) is a positive convex function on the range 0 ≤ Ω ≤ π.

In fact, the functional form of a(Ω) is precisely constrained in particular limits. For

small opening angles, the function has a pole with

lim
Ω→0

a(Ω) ≡ κ

Ω
+ · · · . (1.3)

As we will review in appendix B, this form for small angles can be fixed by using a conformal

mapping to relate the universal corner contribution to the universal contribution for a

narrow strip. Of course, a(Ω) vanishes when the entangling surface becomes smooth, i.e.,

a(π) = 0. Further, we can expect that a(Ω) is smooth in the vicinity of Ω = π and hence

the constraint a(Ω) = a(2π − Ω) (for pure states) requires that to leading order,

a(Ω ∼ π) ≃ σ (π − Ω)2 + · · · . (1.4)

1Of course, in gapped systems with topological order, this finite contribution would correspond to the

topological entanglement entropy [10, 24, 25].
2Our discussion focuses on three-dimensional CFT’s, however, similar logarithmic contributions may

appear in theories which break conformal symmetry [35–39].
3The generalization to higher-dimensional singular surfaces was examined in [40].
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In fact, this constraint requires that a(Ω) can be represented in a Taylor series with only

even powers of (π − Ω) [31]. Hence we may use a(Ω) in the limits Ω → 0 and Ω → π to

define two interesting coefficients, κ and σ, which characterize the underlying CFT.

The corner contribution to the entanglement entropy has been studied in a variety

of systems: free scalar and fermion field theories [7, 31, 32], calculations at a quantum

critical point [41], numerical simulations in interacting lattice models [42–45], interacting

scalar field theories [46] and also holographic calculations with Einstein gravity in the

bulk [33]. The results obtained in the literature suggest that a(Ω) contains interesting

and unambiguous information about the underlying quantum field theory. In particular,

it appears to be an interesting measure of the number of degrees of freedom — see, e.g.,

[31, 32, 46]. By the latter proposition, we would expect that the coefficients, κ and σ,

will themselves characterize the number of degrees of freedom in the underlying CFT.4

Motivated by this idea, we will take the liberty to refer to these coefficients as ‘central

charges,’ in a certain abuse of notation.

In this paper, we will study the universal term arising from the presence of corners

in the entangling surface for three-dimensional holographic conformal field theories. One

of our objectives is to study if the corner charges above have any simple relation to any

other known constants, which provide a similar counting of degrees of freedom and might

be accessed with more conventional probes of the theory, or if κ and σ are really distinct

quantities. As we will discuss below, we can not make a meaningful comparison if the bulk

theory corresponds to Einstein gravity. Hence our approach will be to study the corner

contributions for a family of extended holographic models which include higher curvature

interactions in the bulk gravity theory. Generally, any quantities in the corresponding

dual boundary theories, e.g., the corner term, will now depend on the new (dimensionless)

gravitational couplings for these higher order terms. This additional dependence on the

new couplings allows us to make a nontrivial comparison of κ and σ with various other

constants in the boundary CFT’s. In particular, we will compare with the coefficients

appearing in the universal terms in the EE of a strip and of a disk, in the thermal entropy

density, and in the two-point function of the holographic stress tensor.

In fact, beyond the corner charges, the entire functional form of a(Ω) is characteristic

of the underlying CFT. Hence another interesting question to consider is how this function

changes with the inclusion of higher curvature interactions in the bulk. In this case, we find

that for all of the holographic models studied here, a(Ω) is only modified by an overall factor

but the functional dependence on Ω is not modified by the new gravitational interactions.

However, as discussed in section 4.1, we do not believe that this behaviour is universal and

that the functional form of a(Ω) will be modified with sufficiently general higher curvature

theories in the bulk. One simple consequence of a(Ω) not being changed here is that the

two corner charges are simply related in all of our holographic models, i.e., we will see that

κ/σ = 4Γ(3/4)4. Hence we focus most of our discussions on the small angle charge κ in

the following.

4Refs. [7, 32] discussed σ for this purpose in the context of free field theories.
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A final question, which we consider below, is whether our holographic analysis can

reveal any features of the corner contribution which are universal to all three-dimensional

CFT’s. This question, which we examine in section 4.2, was originally addressed in our

previous letter [47]. Here we compare our holographic results with the corner terms in the

free CFT’s consisting of a conformally coupled massless scalar and of a massless fermion,

as were calculated in [7, 31, 32].

Let us now summarize our key results: the results for the ratios of the corner charge κ

with other various coefficients in the dual boundary theory are given in table 1. The most

interesting ratio is κ/CT , the corner charge over the central charge appearing in two-point

function of the stress tensor (3.44), which is independent of all of the gravitational cou-

plings. Hence this ratio is universal for the broad class of holographic CFT’s studied here.

In fact, as we noted above, the functional form of a(Ω) is not modified by any of

the higher curvature interactions, except for an overall factor. Given the above result,

the entire function a(Ω)/CT is universal for the broad class of holographic CFT’s studied

here. This holographic result suggests that this normalization provides an interesting

way to compare the corner contribution between any general three-dimensional CFT’s.

Comparing our holographic result with the corresponding free field results,5 we see that

the free field curves agree with the holographic result remarkably well — see figure 6. The

free fermion and scalar curves deviate from the holographic result by less than 2.5% and

13%, respectively. Hence we suggest that the holographic expression for a(Ω)/CT , which

is easily evaluated across the full range of Ω = 0 to π, provides a good benchmark with

which to compare the analogous results for general three-dimensional CFT’s.

The maximum discrepancy between the holographic and free field results for a(Ω)/CT

occurs as Ω → 0 but somewhat surprisingly they agree perfectly in the limit Ω → π, as

first stated in [47]. That is, the holographic CFT’s and the two free field theories exhibit

the same ratio
σ

CT

=
π2

24
. (1.5)

This remarkable result leads us to conjecture that this ratio is in fact a universal constant

for general conformal field theories in three dimensions.

The remainder of the paper is organized as follows: in section 2, we first review the

holographic calculation of the entanglement entropy for a corner in the boundary of AdS4

with Einstein gravity in the bulk. Then in section 2.1, we study the effects of adding various

higher curvature interactions to the bulk gravity theory on the universal corner term. In

doing so, we show that the functional form of aE(Ω) is universal to all of the theories

considered here and evaluate the small angle charge κ appearing in each case. In section 3,

we compare this corner charge in the higher curvature theories with similar quantities

appearing in other physical observables, i.e., the coefficients appearing in the universal

contribution in the entanglement entropy of a strip and of a disk, in the thermal entropy

density and in the two-point correlator of the stress tensor. In section 4, we summarize our

results. We also discuss the possibility of modifying the shape of the extremal surface in

the holographic entanglement entropy in more general higher curvature theories of gravity,

5Similar comparisons were made in [32], but without normalizing by the central charge CT .
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and hence modifying the functional form of a(Ω) in the dual boundary theories. We

also comment on the relation between our holographic results and the analogous results

obtained for free field theories. In appendix A, we explain our conventions and notation

in the calculations in section 2. In appendix B, we explain the conformal mapping which

relates the corner charge κ with the coefficient of the universal term in the entanglement

entropy of a strip. In appendix C, we compute the corner contribution for a general f(R)

theory and explain in some detail the linearized equations of motion used to compute the

two-point function of the stress tensor. Finally in appendix D, we present the integrals

used in [7, 31, 32] to evaluate the coefficient σ for the free massless scalar and fermion

theories and show that when evaluated with sufficient precision that they yield the simple

rational values predicted by our conjecture (1.5).

2 Corner term in holographic entanglement entropy

In this section we study the corner contribution to the entanglement entropy for holographic

CFT’s dual to higher curvature theories of gravity. In particular, we will consider bulk

actions which contain general curvature-squared interactions and which are functions of

Lovelock densities [48]. However, we begin by reviewing the calculation of the corner

contribution to holographic entanglement entropy with just Einstein gravity in the bulk,

which was originally performed in [33].

The bulk geometry will be four-dimensional Euclidean anti-de Sitter space in Poincaré

coordinates6

ds2 =
L̃2

z2
(

dz2 + dt2E + dρ2 + ρ2dθ2
)

, (2.1)

which is a solution for Einstein gravity coupled to a negative cosmological constant

I0 =
1

16πG

∫

d4x
√
g

[

6

L2
+R

]

(2.2)

as long as we set L̃ = L. The dual boundary theory then lives in the flat three-dimensional

geometry with metric ds̃2 = dt2E + dρ2 + ρ2dθ2. The region for which we calculate the

entanglement entropy will be defined as V = {tE = 0, ρ > 0, |θ| ≤ Ω/2}, as illustrated in

figure 1. Hence the entangling surface ∂V has a corner with opening angle Ω at the origin.

Note that in the following, at as well as the usual short-distance cut-off δ, we will also

introduce an infrared regulator scale, i.e., ρmax = H, to ensure that the entanglement

entropy does not diverge.

Now, the corresponding holographic entanglement entropy (HEE) is computed using

the Ryu-Takayanagi prescription for the entanglement entropy of conformal field theories

dual to Einstein gravity [18, 19].7 According to this, the entanglement entropy of a certain

region V in our four-dimensional boundary theory is given by

SEE(V ) = ext
m∼V

[A(m)

4G

]

, (2.3)

6See appendix A for conventions.
7This prescription has been recently proven under certain conditions in [49].
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Figure 2. (Colour online) A kink in a constant Euclidean time slice tE = 0 in the boundary of

AdS4.

where m are codimension-2 bulk surfaces which are homologous to V in the boundary (and

in particular ∂m = ∂V ), and A(m) denotes the area of m. Figure 2 illustrates the extremal

bulk surface for the region V defined above.

Now following [33], we parametrize the bulk surfaces m as z = z(ρ, θ) for the present

case of corner region V . Further, the scaling symmetry of AdS, along with the fact that

there is no other scale in the problem, allow us to limit the ansatz for the extremal surface

to z = ρ h(θ), where h(θ) is a function satisfying h → 0 as θ → ±Ω/2. With this ansatz,

the induced metric on the surface becomes

ds2m =
L̃2

ρ2

(

1 +
1

h2

)

dρ2 +
L̃2

h2

(

1 + ḣ2
)

dθ2 +
2L̃2ḣ

ρ h
dρ dθ . (2.4)

where ḣ ≡ dh/dθ. The entanglement entropy functional becomes then

SEE =
1

4G

∫

m
dθ dρ

√
γ =

L̃2

2G

∫ H

δ/h0

dρ

ρ

∫ Ω/2−ǫ

0
dθ

√

1 + h2 + ḣ2

h2
, (2.5)

where γ denotes the determinant of the induced metric (2.4), we have introduced a UV

cut-off at z = δ and h0 ≡ h(0), which will be the maximum value of h(θ). As we already

mentioned above, the ρ integral is also cut-off as some large distance H. Finally, the

angular cut-off ǫ is defined in such that at z = δ, ρ h(Ω/2− ǫ) = δ. Extremizing the above

expression yields the equation of motion for h(θ), which reads

ḧ(h+ h3) + h4 + 3h2 + 2(ḣ2 + 1) = 0 . (2.6)

However, the corresponding ‘Hamiltonian’ is a conserved quantity, since there is no explicit

θ dependence in eq. (2.5). Therefore we find the following first integral

1 + h2

h2
√

1 + h2 + ḣ2
=

√

1 + h20
h20

, (2.7)

where we used ḣ(0) = 0. We can use eq. (2.7) to replace ḣ in terms of h and trade the

integral over θ for one over h. After some algebra, eq. (2.5) becomes

SEE =
L̃2

2G

∫ H

δ/h0

dρ

ρ

∫

√
(ρ/δ)2−1/h2

0

0
dy

√

1 + h20(1 + y2)

2 + h20(1 + y2)
, (2.8)
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Figure 3. (Colour online) (a) Ω/π as a function of h0 and (b) 2G

L̃2
a as a function of Ω/π. In the

second panel, the dashed lines correspond to the approximate expressions derived in eqs. (2.15)

and (2.18) for small opening angles (red) and the smooth limit (orange), respectively.

where we have also substituted y =
√

1/h2 − 1/h20. Near the boundary (y → ∞), the

integrand behaves as
√

1 + h20(1 + y2)

2 + h20(1 + y2)
∼ 1 +O

(

1

y2

)

. (2.9)

Therefore, the y integration diverges in the limit that δ → 0. However, we can isolate this

divergence by adding and subtracting one to the integrand. Hence we recast eq. (2.8) as

SEE =
L̃2

2G

∫ H

δ/h0

dρ

ρ

∫ ∞

0
dy

[
√

1 + h20(1 + y2)

2 + h20(1 + y2)
− 1

]

+
L̃2

2G

∫ H

δ/h0

dρ

ρ

√

ρ2

δ2
− 1

h20
. (2.10)

In the limit that δ → 0, this expression can be further simplified to produce the final result

SEE =
L̃2

2G

H

δ
− a(Ω) log

(

H

δ

)

−
(

πL̃2

4Gh0
+ a(Ω) log(h0)

)

+O
(

δ

H

)

, (2.11)

where the function a(Ω) is given by

aE(Ω) =
L̃2

2G

∫ ∞

0
dy

[

1−
√

1 + h20(1 + y2)

2 + h20(1 + y2)

]

. (2.12)

The result in eq. (2.11) has precisely the expected form given in eq. (1.1), i.e., the first term

in eq. (2.11) is, of course, the area law contribution, whereas the second is the universal

contribution associated with the corner. The last one is the constant term, which does not

have a universal character in the present situation.

In eq. (2.12), we have added a subscript ‘E’ to denote this function as the corner

contribution with Einstein gravity in the bulk. The dependence of aE(Ω) on the opening

angle is implicit on the right-hand side of eq. (2.12) through the dependence of h0 on Ω.

The latter can be determined by evaluating

Ω =

∫ +Ω/2

−Ω/2
dθ =

∫ h0

0
dh

2h2
√

1 + h20√
1 + h2

√

(h20 − h2)(h20 + (1 + h20)h
2)

(2.13)
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and the result is shown in figure 3(a). The coefficient of the corner term is then plotted

in figure 3(b) and we can see that aE(Ω) does indeed satisfy all the various constraints

explained in the introduction, e.g., see eq. (1.2). For small values of the opening angle, i.e.,

Ω → 0, we find

Ω =
2
√
π Γ
(

3
4

)

Γ
(

1
4

) h0 −

[

3Γ
(

3
4

)2 − Γ
(

1
4

)

Γ
(

5
4

)

]

6
√
2π

h30 +O(h50) , (2.14)

aE(Ω) =
L̃2

2πG
Γ

(

3

4

)4 1

Ω
− L̃2

G

π Γ
(

1
4

)

48
√
2Γ
(

3
4

)3 Ω+O(Ω3) , (2.15)

which is shown as the dashed red line in figure 3(b).8 Comparing the latter with eq. (1.3),

we see that in this holographic model, the universal ‘central charge’ associated with the

small angle limit of the corner contribution is

Einstein gravity : κE =
L̃2

2πG
Γ

(

3

4

)4

. (2.16)

Considering the limit of a smooth entangling surface, i.e., Ω → π − ε, we have

ε =
π

h0
+O(h0) , (2.17)

aE(π − ε) =
L̃2

8πG
ε2 +O(ε4) , (2.18)

which is shown as the dashed orange line in figure 3(b). Comparing this result with

eq. (1.4), we see that the universal ‘central charge’ associated with the limit of a nearly

smooth entangling surface in this holographic model is

Einstein gravity : σE =
L̃2

8πG
. (2.19)

Another interesting case to consider is a right-angled corner, i.e., Ω = π/2, for which we find

aE (π/2) ≃ 0.11823
L̃2

G
≃ 0.32944κE ≃ 2.9714σE . (2.20)

This case naturally arises in numerical calculations of entanglement entropy, e.g., [46].

2.1 Higher curvature gravity

Having reviewed the calculation for Einstein gravity in the bulk, we now turn to consid-

ering the effect of higher curvature interactions in the bulk theory. For such cases, the

Ryu-Takayanagi prescription must be generalized, as was first considered in [50–52]. In

particular, the Bekenstein-Hawking formula on the right-hand side of eq. (2.3) must be re-

placed by a new entropy functional which accounts for the new gravitational interactions.

Hence eq. (2.3) is replaced by

SEE(V ) = ext
m∼V

Sgrav(m) , (2.21)

8Notice that eq. (2.15) fits the exact aE(Ω) curve remarkably well for not so small angles.
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where the entropy functional Sgrav depends on the details of the gravitational theory. This is

a familiar idea in the context of black hole entropy where the Wald entropy formula [53–55]

extends A/(4G) with higher curvature corrections. A natural suggestion would be that the

HEE should be calculated by extremizing the Wald entropy evaluated on the bulk surfaces

m, however, it was shown that this approach would be incorrect since it fails to produce the

proper universal contributions to the entanglement entropy [51]. The latter universal terms

are properly reproduced in the special case of Lovelock gravity [51, 52] using an alternative

entropy functional [56] — see below. More generally the appropriate entropy functional is

the Wald entropy plus additional terms involving the extrinsic curvature, which would van-

ish if evaluated on the Killing horizon of a stationary black hole [57–60]. There has been an

effort to extend the derivation [49] of the Ryu-Takayanagi prescription to higher curvature

theories of gravity [59–68] and a general formula was proposed for theories involving in-

teractions with contractions of arbitrary powers of the Riemann tensor (but no derivatives

of the curvature). While this general expression was shown to satisfy several consistency

checks [59], it seems that it must still be further refined for general theories involving cubic

and higher powers of the curvature [63–68]. In any event, the correct entropy functional is

known for general curvature-squared gravity in the bulk and we will use this to determine

the modifications to the corner contribution in HEE for these theories in section 2.1.1.

To go beyond curvature squared gravity, we turn to the generalized Lovelock theories

considered by [48]. In these theories, the Lagrangian is given by an arbitrary functional of

extended ‘topological’ densities, i.e., scalars constructed from the curvature tensor which if

integrated over a manifold of the appropriate dimension would yield the Euler characteris-

tic. Hence Lovelock gravity [69, 70] would be the simplest example in which the Lagrangian

is a linear functional of these topological densities. Another well-known class of theories

which take this form would be f(R) gravity [71] since the Ricci scalar corresponds to

the Euler density for two-dimensional manifolds. In studying these generalized Lovelock

theories, [48] proposed a formula for the gravitational entropy which satisfied a classical

increase theorem for linearized perturbations of Killing horizons.9 We interpret the fact

that their definition applies for at least small deviations away from a Killing horizon, as

evidence that it will yield the correct gravitational entropy in the more general context of

evaluating HEE. Then applying this prescription allows us to evaluate the modifications

to the corner contribution in HEE for a certain class of theories involving cubic and higher

powers of the curvature in section 2.1.2.

Before proceeding with explicit calculations, let us comment that higher curvature

interactions appear generically in string theoretic models, e.g., as α′ corrections in the

low-energy effective action [72]. However, rather than constructing explicit top-down holo-

graphic models, our approach here is to examine simple toy holographic models involving

higher curvature interactions in the bulk gravity theory. Our perspective is that if there

are interesting universal properties which hold for all CFTs, then they should also appear

in the holographic CFTs defined by these toy models as well. This approach has been

9This result was recently extended to general higher curvature theories of gravity and a general connec-

tion was found with the entropy functional in HEE [73, 74].

– 9 –



J
H
E
P
0
8
(
2
0
1
5
)
0
6
8

successfully applied before, e.g., in the discovery of the F-theorem [26, 27]. We also stress

that for the most part we will be working perturbatively in the gravitational couplings

for the higher curvature interactions and only carry our calculations to first order in these

couplings. The results for the curvature-squared theories are an exception, as most of these

expressions are valid for generic values of the couplings.

2.1.1 Curvature-squared gravity

The bulk action of the most general curvature-squared gravity can be written as

I2 =
1

16πG

∫

d4x
√
g

[

6

L2
+R+ λ1L

2R2 + λ2L
2RµνR

µν + λGBL
2X4

]

, (2.22)

where

X4 = RµνρσR
µνρσ − 4RµνR

µν +R2 (2.23)

is the Gauss-Bonnet term, i.e., the Euler density for four-dimensional manifolds. Hence the

last interaction does not effect the gravitational equations of motion since we are working

with four bulk dimensions. However, as we will see, this term still contributes a topological

term to the entropy functional. The AdS4 metric in eq. (2.1) is still a solution of the full

equations of motion for any value of λ1 and λ2 provided L̃ = L.10

The expression for the entanglement entropy in this family of theories is given by

eq. (2.21) where Sgrav takes the form [51, 57–59]

S2 =
A(m)

4G
+
L2

4G

∫

m
d2y

√
γ

[

2λ1R+ λ2

(

Râ
â −

1

2
K âKâ

)

+ 2λGBR
]

, (2.24)

where γij , K
â
ij and R are, respectively, the induced metric, the second fundamental form

and the intrinsic Ricci scalar of the bulk surface m — see appendix A for a complete

description of our conventions.11 Before proceeding with detailed calculations of HEE, let

us make some general observations about the expected results.

First, it is worthwhile to note that the gravitational action (2.22) would also include

various boundary terms, e.g., see [75, 76], and that similar boundary terms should be

expected to appear in the entropy functional (2.24). However, while the addition of such

boundary terms may effect the coefficient in the area law contribution to the entanglement

entropy (1.1) in the boundary theory, one can infer from the local geometric form of these

boundary terms that they will not modify the logarithmic contribution to SEE [51]. Again,

the robustness of the logarithmic term here is a reflection of the fact that it is a universal

contribution whose value is independent of the precise details of the UV regulator. Of

course, since our interest lies in determining the universal corner term a(Ω), we will ignore

any boundary terms that might be added to eq. (2.24).

Next, let us examine the form of the entropy functional in eq. (2.24). The λ1 and

λ2 terms both contain contributions involving the curvature of the background spacetime

10This result is special to four dimensions. With a higher dimensional bulk, one would generally find

L̃2 = L2/f∞ where f∞ is a function of all three of the dimensionless couplings, λ1, λ2 and λGB.
11The last term in eq. (2.24) corresponds to a particular case of the Jacobson-Myers entropy functional

for Lovelock gravities [56].
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geometry. However, since we are evaluating the HEE in empty AdS4, the latter terms are

just constants, e.g., R = −12/L̃2. Hence the entropy functional is not modified by these

terms except for a shift in the overall factor multiplying the area of bulk surface.12

We also note that any surface which extremizes the area, as in eq. (2.3), will satisfy

K â = γijK â
ij = 0. Now looking at eq. (2.24), we see that the λ2 contribution includes a

term that is quadratic in K â. Hence an extremal area surface will also be a saddle point of

this term. That is, if we deform away from the extremal area surface by some deformation

parameterized by a small parameter ε, then we will have K â ∼ O(ε) and K âKâ ∼ O(ε2).

Therefore extremal area surfaces will also extremize the new contribution (or any other con-

tribution) to the HEE functional that is quadratic in the trace of the extrinsic curvature.13

Lastly since we are working with a four-dimensional bulk spacetime, m will be a two-

dimensional manifold and hence
∫

m

√
γR, appearing as λGB contribution in eq. (2.24), will

be proportional to a topological invariant (namely, the Euler characteristic) of m, up to

boundary terms. Therefore just as the corresponding interaction in the bulk action (2.22)

does not modify the gravitational equations of motion, this term in the HEE functional will

not contribute to the equations determining the bulk surface which extremizes eq. (2.24).

Given the above discussion, we conclude that the extremal area surface for any given en-

tangling region in the boundary of pure AdS4 will also extremize the HEE functional (2.24)

for the same calculation of entanglement entropy in the boundary theory dual to curvature-

squared gravity. The only effect of the ‘higher curvature’ corrections in eq. (2.24) will be to

change the final entanglement entropy by an overall factor depending on the new couplings,

λ1, λ2 and λGB. In the problem of interest, this indicates that the corner coefficient a(Ω) will

only be changed by this same overall factor. Hence the expressions for the corner charges in

eqs. (2.16) and (2.19) are also multiplied by an overall factor but the functional dependence

of a(Ω) on the opening angle is precisely the same as compared to Einstein gravity. We note

that the above observations actually have broader applicability and that this result will

apply to a wide class of theories beyond the special case of curvature-squared gravity — we

return to a discussion of this point in section 4. Let us now turn to the detailed calculations

to see how the different contributions in eq. (2.24) affect the universal corner term in HEE.

R2 gravity. If we focus on the simplest case of R2 gravity, i.e., set λ2 = 0 = λGB, the

gravitational entropy functional reduces to

S2 =
A(m)

4G
+
L2λ1
2G

∫

m
d2y

√
γ R =

A(m)

4G
(1− 24λ1) , (2.25)

where we substituted R = −12/L2 to produce the last expression. Therefore, as discussed

above, the corresponding corner coefficient is simply multiplied by an overall factor relative

12This simple shift may not arise when we are evaluating HEE in more general backgrounds, but this is

a general result for backgrounds which are Einstein geometries, i.e., Rµν = −3/L̃2 gµν .
13The full equations arising from extremizing the new functional will be very non-linear in general and so

there may be other saddle points for which K â 6= 0. However, we will also demand that the bulk surfaces

reduce to the corresponding extremal area surfaces in the limit that λi → 0. Therefore, these new non-linear

solutions (if they exist at all) would be discarded since they would not satisfy this condition.
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to the Einstein gravity14

a(Ω) = (1− 24λ1) aE(Ω) (2.26)

and the corresponding small angle charge becomes

κ = (1− 24λ1) κE . (2.27)

RµνR
µν gravity. In the case of RµνR

µν gravity, the HEE functional becomes

S2 =
A(m)

4G
+
L2λ2
4G

∫

m
d2y

√
γ

(

Râ
â −

1

2
K âKâ

)

(2.28)

=
A(m)

4G
(1− 6λ2)−

λ2
8G

∫

m
d2y

√
γ

[

2(1 + ḣ2) + 3h2 + h4 + (h+ h3)ḧ
]2

(

1 + h2 + ḣ2
)3 .

where the expression in the second line was produced by first substituting Râ
â = g⊥µνRµν =

−6/L2 and by evaluatingK âKâ for the bulk surface defined by z = ρ h(θ) — see appendix A

for details. Varying the above expression will produce a nonlinear differential equation for

h(θ) which, because of the last term, involves third and fourth order derivatives, as well

as first and second order derivatives. However, as we explained above, the solution should

still be the same extremal area surface which we found with Einstein gravity. The latter

occurs because the geometric form of the equation determining the extremal area surface is

precisely K â = 0. Indeed comparing with eq. (2.6), we see that the factor in the numerator

of the last term above is precisely the equation determining the profile h(θ) with Einstein

gravity. Because this factor is squared, the profile satisfying eq. (2.6) will also satisfy the

full equation of motion coming from eq. (2.28) and further, in evaluating the HEE, the

last term will not contribute because this factor simply vanishes. Hence the HEE and in

particular, the corner coefficient, is determined by the Bekenstein-Hawking term, as with

Einstein gravity but now multiplied by an additional factor. Therefore the charge defined

by the corner term as in eq. (1.3) becomes simply

κ = (1− 6λ2) κE . (2.29)

Gauss-Bonnet gravity. For pure Gauss-Bonnet gravity, eq. (2.24) reduces to

S2 =
A(m)

4G
+
L2λGB

2G

∫

m
d2y

√
γR . (2.30)

Above, we argued that the second term would not affect the profile of the bulk surface

nor contribute to the universal corner contribution. With the bulk profile z = ρ h(θ), it is

not difficult to show that the combination
√
γR can be written as a total derivative (see

appendix A for details)

√
γR =

d

dθ

[

2

ρ

ḣ

h
√

1 + h2 + ḣ2

]

. (2.31)

14As we describe in appendix C, these results can be straightforwardly extended to the case of a general

f(R) gravity.
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In fact, this is sufficient to conclude that the universal corner contribution will be identical

to that in eq. (2.12), as expected.

However, let us examine the contribution of the Gauss-Bonnet term to the HEE in

more detail. Using eq. (2.31), this contribution can be written now as

∆SGB =
L2λGB

2G

∫

m
d2y

√
γR = −L

2λGB

G

∫ H

δ/h0

dρ

ρ

[

ḣ

h
√

1 + h2 + ḣ2

]θ=Ω/2−ǫ

θ=0

. (2.32)

We can make use of eq. (2.7) to replace ḣ in terms of h. By doing so, and recalling that

h(Ω/2− ǫ) = δ/ρ and h(0) = h0, the above expression reduces to

∆SGB = −L
2λGB

G

H

δ
+O(1) . (2.33)

Hence, including the Einstein gravity, the final result for the HEE in this case becomes

SEE =
L2

2G

H

δ
(1− 2λGB)− aE(Ω) log

(

H

δ

)

+O(1) . (2.34)

Hence the (nonuniversal) coefficient of the area law term has be modified here but the

corner contribution is precisely the same as with just Einstein gravity in the bulk.

It was commented above that the entropy functional (2.24) might be supplemented by

boundary terms but that the logarithmic term in the HEE, i.e., the corner contribution, is

unaffected by such terms [51]. Gauss-Bonnet gravity provides an illustrative example since

there is a natural boundary term to be added to the gravitational entropy functional [51]

S2 =
A(m)

4G
+
L2λGB

2G

∫

m
d2y

√
γR+

L2λGB

G

∫

∂m
dy
√

γ̃K , (2.35)

where ∂m is the one-dimensional boundary of m at the cut-off surface z = δ. Further γ̃ and

K denote the determinant of the induced metric and the trace of the extrinsic curvature,

respectively, on this boundary. It is straightforward to evaluate these quantities and to

produce the result

∆S
′

GB =
L2λGB

G

∫

∂m
dy
√

γ̃K =
L2λGB

G

∫ H

δ/h0

dρ

δ
=
L2λGB

G

H

δ
+O(1) . (2.36)

Adding this contribution to eq. (2.34) leaves

SEE =
L2

2G

H

δ
− aE(Ω) log

(

H

δ

)

+O(1) (2.37)

and we see that with the additional boundary term in eq. (2.35), there is no λGB dependence

in either the area law term or the logarithmic contribution in the entanglement entropy.

The latter reflects the fact that with the additional boundary term, the Gauss-Bonnet

contribution in eq. (2.35) is a purely topological contribution. In any event, as expected,

the universal corner contribution remains unaffected by the addition of this boundary term,

which implicitly represents a modification of the regulator used to define the entanglement

entropy in the dual QFT.
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To summarize our results for curvature-squared gravity (2.22) in the bulk, we found

that the functional form of a(Ω) is not modified. Rather the holographic expression only

differs from that in the Einstein gravity by some overall factor. Hence the charge defined

by the small Ω limit, as in eq. (1.3), becomes

κ = (1− 24λ1 − 6λ2) κE , (2.38)

where the Einstein charge κE is given eq. (2.16).

2.1.2 Generalized Lovelock gravity

Recall that Lovelock gravities [69, 70] are the most general higher curvature gravity theories

with second-order equations of motion. The corresponding action can be written as

ILL =
1

16πG

∫

dd+1x
√
g







d(d− 1)

L2
+R+

⌊ d+1
2 ⌋
∑

p=2

λpL
2p−2L2p(R)






, (2.39)

where λp are dimensionless couplings and L2p correspond to the dimensionally extended

2p-dimensional Euler densities

L2p(R) ≡
1

2p
δ
ν1ν2...ν2p−1ν2p
µ1µ2...µ2p−1µ2p R

µ1µ2
ν1ν2 · · ·Rµ2p−1µ2p−2

ν2p−1ν2p−2
. (2.40)

Here δ
ν1ν2...ν2p−1ν2p
µ1µ2...µ2p−1µ2p denotes a totally antisymmetric product of 2p Kronecker deltas. Hence

when p = (d + 1)/2, L2p is topological and when p > (d + 1)/2, L2p simply vanishes. Of

course, the cosmological constant and Einstein terms in eq. (2.39) could be incorporated

into the sum as L0 and L2, respectively. Recently, there has been renewed interest in these

theories in the context of the AdS/CFT correspondence where these theories provide toy

models of holographic CFT’s in which the central charges differ from one another, e.g.,

see [77] and the references therein. For this class of theories (2.39), HEE is evaluated with

eq. (2.21) using the following entropy functional [51, 52]

SJM =
A(m)

4G
+

1

4G

∫

m
dd−1y

√
γ

⌊ d+1
2 ⌋
∑

p=2

p λp L
2p−2L2p−2(R) , (2.41)

where now L2p−2(R) is constructed with the intrinsic curvature tensor of the induced metric

on m.

Recently, Sarkar and Wall proposed a generalization of the Lovelock theories with an

action of the form [48]

ISW =
1

16πG

∫

dd+1x
√
g f(L0,L2,L4, · · · ,L2k) , (2.42)

where f is some general function of the extended Euler densities up to k = ⌊(d+1)/2⌋ — we

will assume that f is a polynomial. Hence these new generalized Lovelock theories might

also be seen as an extension of f(R) gravity [71]. In general, the gravitational equations of

motion will involve fourth order derivatives of the metric in these new theories. However,
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the motivation to considering these theories is to examine the second law of black hole

thermodynamics in higher curvature theories. In fact, [48] found an expression for the

gravitational entropy which satisfies a classical increase theorem for linearized perturbations

of Killing horizons

SSW =
1

4G

∫

dd−1y
√
γ

⌊ d+1
2 ⌋
∑

p=1

p
∂f

∂L2p(R)
L2p−2(Rm) . (2.43)

Certainly, this expression also reduces to that in eq. (2.41) when f is linear and the ac-

tion (2.42) is simply the Lovelock action (2.39). We take these facts, in particular, that

eq. (2.43) applies for (at least small) deviations away from a Killing horizon, as evidence

that it will yield the correct gravitational entropy in the more general context of using

eq. (2.21) to evaluate HEE. Further work in this direction recently appeared in [73, 74].

Hence we will use the generalized Lovelock theories (2.42) as framework to examine the

corner contribution in HEE. Since we are working in a four-dimensional bulk spacetime,

all of the L2p with p = 3, 4, . . . will vanish identically. Therefore, we can only construct

the new gravity action with powers of the Ricci scalar R and the four-dimensional Euler

density X4, given in eq. (2.23). Hence we consider supplementing the standard cosmological

constant and Einstein terms in eq. (2.2) with higher curvature interactions of the form

△Iv,w =
λv,w
16πG

∫

d4x
√
g L2v+4w−2Rv Xw

4 , (2.44)

with integers v, w ≥ 1. Then using eq. (2.43), the corresponding entropy functional becomes

△Sv,w =
λv,w
4G

∫

m
d2y

√
γ L2v+4w−2

[

v Rv−1Xw
4 + 2wRvXw−1

4 R
]

. (2.45)

Now we are evaluating this expression in a pure AdS4 background (2.1) and so it may be

simplified by substituting R = −12/L̃2 and X4 = 24/L̃4 to yield

△Sv,w = (−1)v−1 22v+3w−4 3v+w−1 λv,w
G

∫

m
d2y

√
γ
[

v − wL2R
]

f v+2w−1
∞ . (2.46)

Note the power of f∞ = L2/L̃2 appearing in the integrand above. We have kept this factor

here to indicate that in general after solving the gravitational equations, one finds that the

curvature scale L̃ no longer coincides with the scale L set by the cosmological constant. In

particular, we find

1− f∞ + (−1)v22v+3w−23v+w−1 (2− v − 2w)λv,w f
v+2w
∞ = 0 . (2.47)

However, note that if we are working perturbatively in the coupling, we have

L2 = L̃2f∞ ≃ L̃2
[

1 + (−1)v22v+3w−23v+w−1 (2− v − 2w)λv,w +O(λ2v,w)
]

. (2.48)

With the simplifications produced by working in AdS4, the modifications to the entropy

functional have reduced to a term proportional to the area of the bulk surface and another
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involving an integral of the intrinsic Ricci scalar over m. Hence at this point, we can turn to

our results from the previous subsection where both terms were encountered before. In par-

ticular, neither term modifies the profile of the extremal surface in the bulk and further the

area term only changes the corner contribution by an overall factor while the term involving

R does not contribute to this universal term at all. More precisely, given the precise results

in eq. (2.46), we find that the small angle charge associated with the corner term becomes

κ =
[

1− (−1)v 22v+3w−2 3v+w−1 v λv,w +O(λ2v,w)
]

κE , κE =
L̃2

2πG
Γ

(

3

4

)4

, (2.49)

where the result is expressed to leading order in the perturbative expansion in the coupling.

Note that we have expressed κE in terms of the AdS scale L̃2, which differs here from the

scale L2 in the action by terms of O(λv,w), as shown in eq. (2.48). If we expressed the

above equation in terms of L2 instead, the O(λv,w) coefficient would change. However,

our convention here and throughout the following will be to write all of our perturbative

expressions in terms of L̃2. Of course, all length scales will disappear from the ratios of the

different charges and so once our results are expressed in this way, they will not depend on

this convention. Further, having fixed our approach, the comparison with the calculations

for Einstein gravity is unambiguous in all cases.

To make our analysis more concrete, let us extend the general curvature-squared the-

ory (2.22) with the generalized Lovelock interactions which are third- and fourth-order in

the curvature

I =
1

16πG

∫

d4x
√
g

[

6

L2
+R+ L2

(

λ1R
2 + λ2RµνR

µν + λGBX4

)

(2.50)

+L4
(

λ3,0R
3 + λ1,1RX4

)

+ L6
(

λ4,0R
4 + λ2,1R

2X4 + λ0,2X 2
4

)

]

.

Then the final expression of the corner coefficient and the corresponding charge take the

simple form

a(Ω) = αaE(Ω) and κ = ακE (2.51)

where to leading order in the dimensionless couplings, the overall coefficient is given by

α = 1− 24λ1 − 6λ2 + 432λ3,0 + 24λ1,1 − 6912λ4,0 − 576λ2,1 +O(λ2) . (2.52)

Of course, aE(Ω) and κE are the corresponding quantities evaluated for Einstein gravity,

as given in eqs. (2.12) and (2.16), respectively. The fact that the functional form of a(Ω)

is unchanged results because the higher curvature contributions to the entropy functional

studied here do not modify the profile of the extremal surface in the bulk. We do not

expect that this behaviour is completely universal and it may be modified in theories with

even more general higher curvature interactions. We will come back to this point in the

discussion section.

3 Comparison with other charges

By considering the limit of a small opening angle in eq. (1.3), we identified two ‘central

charges’ which appear in the entanglement entropy of regions where boundary has corners.
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When evaluated for holographic CFT’s dual to Einstein gravity, the result (2.16) is pro-

portional to the ratio L̃2/G ∼ L̃2/ℓ2Planck. The latter ratio is well known to be indicative of

the number of degrees of freedom in the boundary theory. However, for Einstein gravity,

the same ratio is ubiquitous for physical quantities involving a similar count of degrees of

freedom, e.g., the entropy density of a thermal bath. The pervasiveness of L̃2/G arises since

this is the only dimensionless parameter that is intrinsic to the bulk theory with Einstein

gravity. By considering higher curvature theories for the bulk gravity, as in the previous

section, we are introducing more dimensionless couplings and we can begin to distinguish

the various charges in the boundary theory, e.g., see [51, 78, 79]. Our objective here is to use

our holographic results to determine if the corner charge κ should be considered a new and

distinct charge or if it is proportional to charges already appearing in other physical quanti-

ties. In particular, in the following, we compare κ to the analogous charges appearing in: 1)

the entanglement entropy of an infinite strip; 2) the entanglement entropy of a disk; 3) the

entropy density of a thermal bath and 4) the two-point function of the stress tensor. Again,

with Einstein gravity in the bulk, all of these quantities are proportional to L̃2/G. While

the same is true (with our conventions) with the higher curvature theories, the additional

dimensionless couplings also give each a unique signature, as we will see in the following.

3.1 Entanglement entropy for a strip

We begin with the entanglement entropy of an infinite strip. For a general three-

dimensional CFT, the result will take the form [7, 80]

SEE = c1
2H

δ
− κ̃

H

ℓ
+O(δ) (3.1)

where ℓ is the width of the strip and H is a long distance scale introduced to regulate the

length of the strip, i.e., the area of the entangling surface is 2H. The universal coefficient

κ̃ can be isolated with

κ̃ =
ℓ2

H

∂SEE

∂ℓ
. (3.2)

We will find that κ̃ = κ in our HEE calculations below. In fact, this result holds for

general three-dimensional CFT’s and has a simple explanation since there is a conformal

transformation that (essentially) relates the corresponding entanglement geometries — see

appendix B.

Holographic calculations of the entanglement entropy of a strip were first carried out

in [18, 19] with Einstein gravity in the bulk. To start, we write AdS4 metric as

ds2 =
L̃2

z2
(

dz2 + dt2E + dx21 + dx22
)

. (3.3)

Let us parameterize the strip in the boundary as the region B= {tE = 0, x1 ∈ [−ℓ/2, ℓ/2]}.
As noted above, we also introduce an IR regulator by, e.g., making the x2 direction periodic

with period △x2 = H and with H ≫ ℓ. The translational symmetry along x2 allows us to

parametrize the entangling surface m as z = h(x1), so the induced metric on the surface

becomes

ds2m =
L̃2

h2

([

1 + ḣ2
]

dx21 + dx22

)

, (3.4)
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where ḣ = ∂x1
h. Focusing on Einstein gravity [18, 19, 33], we look for surfaces m extrem-

izing the area functional, which in this case is given by

SB =
L̃2

4G
H

∫ ℓ/2

−ℓ/2
dx1

1

h2

√

1 + ḣ2 . (3.5)

Since the integrand does not depend on x1 explicitly, there is conserved first integral which

can be used to write

ḣ = −
√

z4∗ − h4

h2
, (3.6)

where z∗ is the maximal value of z reached by the extremal surface. The latter can be

identified in terms of ℓ through

ℓ = 2

∫ ℓ/2

0
dx1 = 2

∫ z∗

0

h2 dh
√

z4∗ − h4
=

√
2√
π
Γ

(

3

4

)2

z∗ . (3.7)

The final result for the entanglement entropy with Einstein gravity in the bulk is

SB =
L̃2

2G

H

δ
− L̃2

2πG
Γ

(

3

4

)4 H

ℓ
, (3.8)

Hence the corresponding universal coefficient is

κ̃E =
L̃2

2πG
Γ

(

3

4

)4

, (3.9)

which exhibits the expected factor of L̃2/G, and further comparing with eq. (2.16), we see

that κ̃E = κE.

This calculation of HEE is easily extended to the higher curvature theories considered

in section 2.1, taking into account the general remarks made there. We use the prescrip-

tion (2.21) with the generalized entropy functionals for those theories given in eqs. (2.24)

and (2.45). However, as we found before, the terms involving the trace of the extrinsic

curvature do not contribute, those with the intrinsic Ricci scalar only contribute boundary

terms and those involving bulk curvatures only modify the Einstein result by an overall

factor. It is straightforward to verify these expectations with explicit calculations and the

final result is

SB = β
L̃2

2G

H

δ
− α

L̃2

2πG
Γ

(

3

4

)4 H

ℓ
, (3.10)

where α is precisely the same factor given in eq. (2.52). The coefficient β appearing in the

area law term is another function of the couplings λi, which is not needed here but does

not coincide with α in general.15 Hence the final result for the universal coefficient is

κ̃ = α κ̃E , (3.11)

and so we find that κ̃ = κ in all of these examples. As noted above, this is in fact a general

result for three-dimensional CFT’s.

15In fact, the same factor β appears below in the HEE calculation for a disk.
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3.2 Entanglement entropy for a disk

For a general three-dimensional CFT, the entanglement entropy of a disk will take the

form [81, 82]

SEE = c1
2πR

δ
− 2π c0 +O(δ) (3.12)

where R is the radius of the disk. The universal coefficient c0 can be isolated here by

evaluating [83]

c0 =
1

2π

(

R
∂SEE

∂R
− SEE

)

. (3.13)

Of course, in this case, the universal constant c0 plays the an important role as the

central charge in the F -theorem, i.e., it decreases monotonically in renormalization group

flows [26–30].

The HEE for a disk was first calculated for Einstein gravity using eq. (2.3) in [18, 19].

However, this calculation was later extended to general higher curvature theories of gravity

in the bulk [27, 82]. Making use of a conformal transformation in the boundary CFT, the

problem of calculating the entanglement entropy for a disk can be mapped to the question

of evaluating the thermal entropy of the CFT in a particular curved background. The

latter can then be evaluated as the Wald entropy of the corresponding horizon in bulk

spacetime with a general gravitational theory in the bulk. The horizon actually appears as

an ‘observer’ horizon upon transforming the bulk AdS geometry to AdS-Rindler coordinates

and the extremal area surface in the standard calculation coincides with the bifurcation

surface of this horizon, e.g., see [84].

Our calculations of HEE for the disk followed the prescription outlined in section 2.1,

using eq. (2.21) with the entropy functionals in eqs. (2.24) and (2.45). Using the AdS4
metric in eq. (2.1), let us parameterize the disk in the boundary as the region D =

{tE = 0, ρ ≤ R}. We write the profile of the bulk surface m as z = h(ρ) with no dependence

on θ because of the rotational symmetry of the disk. The induced metric on m then becomes

ds2m =
L̃2

h2

([

1 + ḣ2
]

dρ2 + ρ2dθ2
)

, (3.14)

where ḣ = ∂θh. The extremal area surface becomes the hemisphere [18, 19]

ρ2 + z2 = R2 with z ≥ 0 . (3.15)

Now in general, the entropy functional for higher curvature theories can be written as the

Wald entropy plus terms which are at least quadratic in the extrinsic curvature [59, 60].

However, one can readily verify that the extrinsic curvature of the above bulk surface (3.15)

vanishes and hence any extrinsic curvature terms will vanish to first order if we make

variations of this surface. Since the Wald entropy only involves bulk curvatures, this

entropy reduces to the area functional multiplied by an extra overall factor, as in the

previous section. Hence eq. (3.15) still remains the extremal surface when calculating the

HEE of a disk for any general higher curvature theory in the bulk. Hence with eqs. (2.24)

and (2.45) for the theories in section 2.1, evaluating the HEE yields

SD = β
πL̃2

2G

R

δ
− β

πL̃2

2G
, (3.16)
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where16

β = 1−24λ1−6λ2−2λGB+432λ3,0+48λ1,1−6912λ4,0−864λ2,1−96λ0,2+O(λ2) . (3.17)

Hence the universal charge for the corresponding holographic CFT’s becomes

c0 = β c0,E = β
L̃2

4G
, (3.18)

where c0,E denotes the result for Einstein gravity, i.e., c0,E = L̃2/(4G). Note that with

Einstein gravity, the ratio of the universal charges for the corner and the disk is relatively

simple, i.e.,

κE

c0,E
=

2

π
Γ

(

3

4

)4

. (3.19)

However, comparing eqs. (3.11) and (3.18), as well as eqs. (2.52) and (3.17), we see that

there is no simple relation between κ and c0 in the general theories. In particular, we have

κ

c0
=

2

π
Γ

(

3

4

)4
(

1− 2λGB − 24λ1,1 + 288λ2,1 + 96λ0,2 +O(λ2)
)

(3.20)

and so this ratio depends on the precise value of the gravitational couplings in the higher

curvature theories.

3.3 Thermal entropy

Another quantity which might be used to characterize the number of degrees of freedom

in a system is the thermal entropy. For a three-dimensional CFT, the thermal entropy

density takes the form

s = cS T
2 . (3.21)

The coefficient cS is another interesting ‘central charge’ which is readily calculable in a

holographic setting. Of course, the thermal bath in the boundary theory is dual to a planar

AdS4 black hole and we need only calculate the entropy density of the event horizon. For

Einstein gravity, the black hole solution can be written as

ds2 =
L̃2

z2

(

dz2

f(z)
− f(z)dt2 + dx21 + dx22

)

with f(z) ≡ 1− z3

z3H
, (3.22)

where z = zH is the position of the event horizon. The Hawking temperature is given by T =

3/(4πzH) and the horizon entropy is given by the Bekenstein-Hawking formula, which yields

Sthermal =
1

4G

∫

z=zH

√
h d2x =

L̃2

4Gz2H
V2 , (3.23)

16For a general theory with action (2.44), the corresponding expression is

β = 1 + (v + w)(−1)v−122v+3w−23v+w−1λv,w +O(λ2
v,w) .
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where V2 ≡
∫

dx1dx2. Now dividing by the spatial volume V2 yields the entropy density

and substituting the temperature for zH produces an expression of the expected form

given in eq. (3.21). The corresponding central charge is

cS,E =
4π2

9

L̃2

G
. (3.24)

Here again, we see the ubiquitous factor of L̃2/G and hence the ratio with the corner

charge yields a fixed numerical factor, i.e.,

κE

cS,E
=

9

8π3
Γ

(

3

4

)4

. (3.25)

Curvature-squared gravity. Just as with empty AdS4, the black hole metric (3.22) is

also a solution of the general curvature-squared gravity for any value of the parameters λ1,

λ2 and λGB provided L̃2 = L2. Hence the only difference from the above calculations is that

the horizon entropy is now given by the Wald entropy formula [53–55]. Alternatively, we

can use the generalized entropy functional in eq. (2.24) since the two expressions only differ

by terms involving the extrinsic curvature and the latter vanishes on the event horizon of

the AdS4 black hole. We find, in agreement with [85]

s = (1− 24λ1 − 6λ2)
4π2L̃2

9G
T 2 (3.26)

and therefore the corresponding central charge becomes

cS = γ2 cS,E with γ2 = 1− 24λ1 − 6λ2 . (3.27)

Comparing to eq. (2.38), we see that for curvature-squared gravity, the thermal entropy

charge is modified by the same overall factor that appears in the corresponding corner

charge. Hence for this family of holographic theories, the ratio of these two charges remains

unchanged from the numerical factor (3.25) that appears with Einstein gravity.

Generalized Lovelock gravity. The black hole metric in eq. (3.22) is no longer a

solution of the equations of motion for general theories of the form (2.44). Hence in order

to explore how the thermal entropy gets modified here, we must first correct the black hole

solution to linear order in the coupling λv,w. We parametrize the modified solution as

ds2 =
L̃2

z2

(

dz2

f(z) [1 + λv,wf2(z)]
− f(z) [1 + λv,wf1(z)] dt

2 + dx21 + dx22

)

, (3.28)

where f1(z) and f2(z) are two nonsingular functions to be determined. This ansatz was

chosen so that the position of the horizon remains at z = zH. In order to obtain f1(z)

and f2(z), we substitute the above metric into the Einstein action (2.2) modified by the

addition of a higher curvature interaction as in eq. (2.44) and expand to second order in

the coupling λv,w.
17 From the second order action, we determine the linearized equations

17Since we are working perturbatively in λv,w, it is sufficient to consider each higher curvature inter-

action (2.44) separately. Of course, the first order variations by f1(z) and f2(z) vanish identically here

because to leading order, the metric solves the Einstein equations of motion.
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of motion for f1(z) and f2(z) and then solve them with the boundary conditions that both

functions decay as z → 0 and remain nonsingular at z = zH. Below we describe the solution

and the results for the thermal entropy for each of the generalized Lovelock interactions

up to quartic order in the curvatures, shown in eq. (2.50).

In general, the Hawking temperature of the solution will be given by

T =
3

4πzH

(

1 +
f1(zH) + f2(zH)

2
λv,w +O(λ2v,w)

)

, (3.29)

as one can easily check.

a) R3 and R4 gravity. For these two particular theories, as well as any theory with

only Rv interactions (i.e., w = 0), the original AdS4 black hole solution (3.22) does not get

corrected at any order in the couplings λv,0, i.e., f1(z) = f2(z) = 0. The uncorrected black

hole solves the equations of motion of these theories provided the curvature scale satisfies

eq. (2.47), which was also required for the pure AdS4 metric (2.1) to be a solution in the

new theory. Note that for v = 3 and 4, we find the constraints 1 − f∞ + 144λ3,0f
3
∞ = 0

and 1− f∞ − 3456λ4,0f
4
∞ = 0, respectively.

The horizon entropy is computed using the expression in eq. (2.43). However, since the

Ricci scalar of the Schwarzschild-AdS4 background equals that of the pure AdS4 solution,

the corrected thermal entropy for these theories differs from the Einstein gravity result by

just a overall constant factor which is precisely the same as the λ3,0 and λ4,0 contributions

to α in eq. (2.52). That is, we find

s = γa cS,E T
2 with γa = 1 + 432λ3,0 − 6912λ4,0 +O(λ2) . (3.30)

b) RX4 gravity. For this theory, the AdS curvature is given by 1− f∞ + 24λ1,1f
3
∞ = 0

— recall that f∞ ≡ L2/L̃2. The planar black hole (3.22) no longer solves the equations of

motion and so we proceed as described above to find the corrected solution to first order

in the coupling. The two functions f1 and f2 are

f1(z) = −18z3(z3 + z3H)

z6H
, (3.31)

f2(z) =
6z3(11z3 − 3z3H)

z6H
.

With the new metric, the Hawking temperature becomes

T1,1 =
3

4πzH

(

1 + 6λ1,1 +O(λ21,1)
)

. (3.32)

Using eq. (2.45), the thermal entropy then becomes

s = γb cS,E T
2 with γb = 1 + 24λ1,1 +O(λ21,1) . (3.33)

We note that γb again agrees with the analogous factor appearing in the corner coeffi-

cient (2.49) for v = 1 = w.
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We stress that, as opposed to the theories with w = 0, the on-shell Gauss-Bonnet

term X4 is no longer the same in the black hole background as in the pure AdS4 solution

(hence eq. (2.45) no longer reduces down to eq. (2.46)). Computing the horizon entropy as

a function of the horizon position yields

s = (1 + 36λ1,1 +O(λ21,1))
L̃2

4πGz2H
. (3.34)

It is only when we express the entropy density as a function of the physical tempera-

ture (3.32) that we cover the factor γb in eq. (3.33). Actually, it is possible to show that

different parametrizations of the corrected solution give rise to different expressions for

s(zH) and T (zH), which nevertheless conspire to produce the same physical result when

the entropy density is written in terms of the temperature.

c) R2
X4 gravity. In this case, the curvature scale is determined by 1−f∞−576λ2,1f

4
∞ =

0, and the functions parameterizing the corrected black hole (3.28) are

f1(z) =
432z3(z3 + z3H)

z6H
, (3.35)

f2(z) =
−144z3(11z3 − 3z3H)

z6H
.

Further, the Hawking temperature becomes

T =
3

4πzH

(

1− 144λ2,1 +O(λ22,1)
)

, (3.36)

while the entropy density is given by

s = γc cS,E T
2 with γc = 1− 576λ2,1 +O(λ22,1) . (3.37)

Here again, γc agrees with the analogous factor appearing in the corner coefficient (2.49)

for v = 2 and w = 1.

d) X
2

4
gravity. The last nontrivial interaction at fourth order in curvature corresponds

to the square of the Gauss-Bonnet density, X 2
4 . To begin, let us note that interactions of

the form X w
4 with w ≥ 2 are not topological and do modify the gravitational equations of

motion in four dimensions. It is only the linear term, i.e., w = 1 (and v = 0), which leaves

the equations of motion unchanged.

Now in this case, we have 1− f∞ − 96λ2,1f
4
∞ = 0 and

f1(z) =
8z3(11z6 + z3z3H + z6H)

z9H
, (3.38)

f2(z) =
8z3(67z6 − 83z3z3H + z6H)

z9H
.

The Hawking temperature is given by

T =
3

4πzH

(

1− 8λ0,2 +O(λ20,2)
)

, (3.39)
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and the thermal entropy density becomes

s = γd cS,E T
2 , with γd = 1 + 16λ0,2 +O(λ20,2) . (3.40)

Here, the factor γd receives a correction which is first order in λ0,2 while the corresponding

factor in the corner coefficient does not, e.g., see eq. (2.52). Hence, we have found the first

example for which the agreement is broken between the charges defined by the thermal

entropy density and by the corner contribution of the entanglement entropy.

Gathering together all of the first order contributions from the new interactions ap-

pearing in the fourth-order action (2.50), we have that the thermal entropy density in the

dual boundary theory takes the expected form (3.21) where the corresponding charge takes

the form

cS = γ cS,E (3.41)

where the Einstein result cS,E is given in eq. (3.24) and

γ = 1− 24λ1 − 6λ2 + 432λ3,0 + 24λ1,1 − 6912λ4,0 − 576λ2,1 + 16λ0,2 +O(λ2) . (3.42)

Comparing with eqs. (2.51) and (2.52) for the corner contribution of the entanglement

entropy in the same theories, we see

κ

cS
=

9

8π3
Γ

(

3

4

)4
(

1− 16λ0,2 +O(λ2)
)

. (3.43)

That is, the ratio κ/cS is independent of most of the additional dimensionless couplings

in eq. (2.50) and it would still be given by the same numerical factor found for Einstein

gravity in eq. (3.25) for the class of theories with λ0,2 = 0.

3.4 Stress tensor two-point function

Let us now turn to the two-point function for the stress tensor, which is particularly inter-

esting since it defines a central charge for CFT’s in any spacetime dimension. Evaluated

in the vacuum, the functional form of this two-point correlator is completely fixed by

conformal symmetry and energy conservation, and for a d-dimensional CFT, it takes the

form [86, 87]18

〈Tab(x)Tcd(0) 〉 =
CT

x2d
Iab,cd(x) , (3.44)

where

Iab,cd(x) ≡
1

2
(Iac(x) Idb(x) + Iad(x) Icb(x))−

1

d
δab δcd (3.45)

and

Iab(x) ≡ δab − 2
xa xb
x2

. (3.46)

Below we will focus on d = 3 but as remarked above, the above expressions provide a

definition of CT for CFT’s in any spacetime dimension. In particular, eq. (3.44) is the

18Note that in this section unhatted indices from the beginning of the Latin alphabet run over the

d-dimensional boundary of AdSd+1.
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standard definition of the central charge c in two-dimensional CFT’s, i.e., CT = c, while

for four dimensions, CT = 40 c/π4 where c is the coefficient of the Weyl-squared term in

the trace anomaly.

Of course, in a holographic framework, the stress tensor is dual to the normalizable

mode of the metric [88, 89] and so evaluating eq. (3.44) requires determining the two-point

boundary correlator of the gravitons in the AdS vacuum. This is a standard calculation in

the context of Einstein gravity [79, 90] and one finds for three boundary dimensions

CT,E =
3

π3
L̃2

G
. (3.47)

Once again, we see the ubiquitous factor of L̃2/G and comparing with the corner coeffi-

cient (2.16), we have

κE

CT,E

=
π2

6
Γ

(

3

4

)4

. (3.48)

In order to investigate how the two-point function (or equivalently the graviton propa-

gator) is modified by the introduction of higher curvature terms in the bulk, let us first recall

that generically these new interactions will result in the appearance of higher-order deriva-

tives in the gravitiational equations of motion. Hence the metric will contain additional

propagating degrees of freedom beyond the usual massless spin-two graviton. Therefore

in a holographic context, the metric will also couple both to the stress tensor and some

new tensor operator, which is generically nonunitary.19 We can understand the latter, i.e.,

that generically the new operator generates negative norm states in the boundary CFT,

with the following analogy from [27]: consider a massless scalar field in flat space whose

equation of motion has been corrected with a fourth-order term,

(

�+
λ

M2
�

2

)

φ = 0 , (3.49)

whereM2 is some high energy scale and λ, the dimensionless coupling of the higher deriva-

tive interaction in the action. Then, the propagator for this field will read

1

q2 − λ q4/M2
=

1

q2
− 1

q2 −M2/λ
. (3.50)

Here the q2 = 0 pole will correspond to the usual massless mode, whereas that at q2 =M2/λ

is related to a new massive degree of freedom. Regardless of the sign of λ, the sign of the

second term in the propagator above will be negative and so the extra mode is a ghost.

Of course, if we are working perturbatively in λ, these new degrees of freedom appear at

very high energy scales. Hence if we should restrict our attention to energies much less

than M/λ1/2, the new scalar ghost will not go on-shell. In the holographic context, the

additional ghost modes create negative norm states in the bulk theory and so they must

19Of course, this is a typical feature of holographic theories with higher curvature interactions in the bulk,

but it can be evaded in special cases. For example, f(R) gravity can be re-expressed as Einstein gravity

coupled to a scalar field [71]. Hence in this case, the additional CFT operator will be a scalar, which can

be unitary in the appropriate circumstances.
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be dual to new nonunitary operators in the boundary theory. Further, let us note that the

curvature scale plays the role of the mass above, i.e., L2 ∼ 1/M2, and so we can expect

that the conformal dimension of these operators to be set by the inverse of the gravitational

couplings, i.e., ∆2 ∼ 1/λ. Hence if we consider the CFT on the background R× Sd−1, the

new operator would again be associated with high energy states.

The above example also highlights that in a perturbative framework, the extra degrees

of freedom are highly suppressed in the vicinity of the physical pole. Hence our strategy in

studying the graviton propagator will be to organize the linearized gravitational equations

of motion which make this suppression manifest and allow us to easily identify the proper

kinetic term of the physical modes. In general, writing out the linearized equations of

motion for the graviton would be a very complex task but it can simplified here in two

ways, as discussed in [91]. First, we are interested in the holographic version of eq. (3.44)

which is evaluated in the vacuum and so we need only study the metric fluctuations in

the AdS4 background. That is, we consider a perturbed metric: gµν = ḡµν + hµν , where

ḡµν is the AdS4 metric (and hµν ≪ 1 for all µ, ν = 0, 1, 2, 3). In particular then, the

background curvature tensor takes the form R̄µν
σρ = −1/L̃2 (δµσ δ

ν
ρ − δµρ δ

ν
σ), which

greatly simplifies the form of the linearized equations of motion. That is, they can be

expressed entirely in terms of covariant derivatives acting on hµν . In order to further

simplify the resulting expressions, which are still rather involved in general, we can use

diffeomorphism invariance to choose a convenient gauge. In the following, we restrict

ourselves to a transverse traceless gauge,20 i.e., ∇̄µhµν = 0 and ḡµνhµν = 0.

With these choices, the linearized Einstein equations become

GL
µν = −1

2

[

�̄+
2

L̃2

]

hµν = 8πGTµν , (3.51)

where GL
µν denotes the linearized Einstein tensor. We have included the stress tensor Tµν

for some additional matter fields to the right-hand side because in the following, it will

be important to establish the normalization of Newton’s constant, or alternatively of the

graviton kinetic term. The linearized equation which results from our complete fourth-order

gravity (2.50) turns out to read21

− α

2

[

�̄+
2

L̃2

]

hµν −
λ2L

2

2

[

�̄+
2

L̃2

]2

hµν = 8πGTµν , (3.52)

where α is precisely the constant given by eq. (2.52). Interestingly, none of the higher-order

terms considered, except for the RµνR
µν interaction, produce fourth-order derivatives con-

tributions to the linearized equation for the physical graviton hµν in the AdS4 background

in this gauge, which is a rather striking phenomenom.22 It would be certainly interesting

20Let us comment that in the perturbative framework discussed here, the physical degrees of freedom

still correspond to a massless spin-two graviton and so this gauge can still be applied here. Note that the

traceless condition eliminates the possibility of identifying new scalar degrees of freedom, e.g., as appear

in f(R) gravity — see footnote 19. However, these modes are regarded as unphysical with our current

perturbative perspective.
21This result agrees with that found in [85] for four-dimensional curvature-squared gravities.
22In appendix C, we perform the detailed calculation in a general gauge for f(R) gravity, in which the

same structure is found, and show how the fourth-order terms go away in this gauge.
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to classify the families of higher-order gravities for which this behaviour is encountered at

each order in curvature. We will not pursue such a goal here.

The left-hand side of eq. (3.52) is organized in a way which makes obvious the sup-

pression of the second term in the vicinity of the physical pole, i.e., for (�̄+2/L̃2)hµν ≃ 0.

However, the higher curvature terms still make their presence felt through the appearance

of α which modifies the coefficient of the leading Einstein-like term. As commented above,

one can interpret this new coefficient as modifying the normalization of Newton’s constant,

i.e., Geff = G/α or as having modified the normalization of the graviton kinetic term. In

any event, the net effect is to modify the previous holographic calculation of the two-point

correlator for Einstein gravity by an overall factor of α. Hence in the higher curvature

theory (2.50), we reproduce the desired expression in eq. (3.44) where the central charge

is now given by

CT = αCT,E = α
3

π3
L̃2

G
, (3.53)

where again, α is precisely the same constant given by eq. (2.52). Of course, we could also

write this expression as CT = 3L̃2/(π2Geff), i.e., the general result has the same form as

that for the Einstein theory except that G is replaced by Geff. Therefore, the correction to

the central charge appearing in the two-point correlator of the stress tensor (3.44) matches

that appearing in the universal corner term. Hence all of the higher curvature theories

considered here yield the same ratio as in the Einstein theory

a(Ω)

CT

=
aE(Ω)

CT,E

(3.54)

and in particular, the ratio of charges (3.48) is unchanged, i.e.,

κ

CT

=
π2

6
Γ

(

3

4

)4

≃ 3.7092 . (3.55)

One might hope that these are universal results extending beyond holography. However,

in the discussion section below, we will test this idea by comparing to free field theories.

Unfortunately, we find that neither of the above ratios is quite universal but the comparison

does show that dividing by CT is an interesting way to normalize the corner contribution

when comparing different three-dimensional CFT’s.

4 Discussion

In this paper, we have studied the universal term arising from the presence of corners in the

entangling surface for three-dimensional holographic conformal field theories. In general,

this coefficient of the logarithmic term in eq. (1.1) is a function of the opening angle at

the corner a(Ω). As we will discuss below, the precise form of this function depends

on the details of the underlying CFT, however, as explained in the introduction, this

function is constrained to behave as a(Ω) ≃ κ/Ω in the limit of small opening angles and

as a(Ω) ≃ σ (Ω− π)2 in the limit of a nearly smooth entangling surface. Hence, eqs. (1.3)

and (1.4) define two coefficients, κ and σ, which can be used to characterize different
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CFT’s. Motivated by the idea that the corner contribution provides a useful measure of

the number of degrees of freedom in the underlying theory, we referred to these constants

as ‘central charges.’ In our holographic calculations, we found that the overall form of a(Ω)

did not change and so the two charges were simply related in all of holographic models, i.e.,

κ/σ = 4Γ(3/4)4. Hence we focus on the small angle charge κ in the following discussion.

In particular, one goal was to see if this corner charge had a simple relation to any other

known ‘charges,’ which provide a similar counting of degrees of freedom and might be

accessed with more conventional probes of the theory, or if κ is really a distinct quantity.

Our approach was to study κ for an extended holographic model involving higher

curvature interactions in the bulk gravity theory, as described in section 2. In particular,

we evaluated the corner term for an entangling surface with a sharp corner on the boundary

of AdS4, using holographic entanglement entropy (2.21). The final result,

κ = ακE , with α = 1−24λ1−6λ2+432λ3,0+24λ1,1−6912λ4,0−576λ2,1+O(λ2) , (4.1)

and

κE =
L̃2

2πG
Γ

(

3

4

)4

, (4.2)

gives κ for the broad class of gravitational theories described by the action (2.50). Our

general result is proportional to L̃2/G (i.e., the AdS scale squared over Newton’s constant)

but it is also a function of the eight dimensionless couplings appearing in the action (2.50).

Next, in section 3, we evaluated several charges appearing in different physical quantities

within the same holographic framework. In particular, we studied the analogous charges

appearing in the universal terms in the EE of a strip and of a disk, in the thermal entropy

density, and in the two-point function of the holographic stress tensor. All of these measures

of degrees of freedom, as well as κ, are simply proportional to L̃2/G with Einstein gravity

in the bulk and so they can not be distinguished from one another in the corresponding

holographic CFT’s. However, each of these charges also acquires a distinct dependence

on the additional gravitational couplings with higher curvature gravity in the bulk. Our

calculations were perturbative in the λi and hence the results are only linear in these

couplings. However, this still allowed us to distinguish the various different charges in the

boundary CFT. Hence, this extended holographic model provides an interesting framework

to investigate our goal stated above, namely, to determine if the corner charge can be

considered distinct or if it has a simple relation to another known central charge.

Of course, we do not have a top-down construction where the action (2.50) emerges as

the low energy effective action for, e.g., some string theory compactification. Rather our

perspective is that such extended holographic models provide an interesting framework to

test general properties of CFT’s, i.e., if there are certain properties common to all CFT’s

then they should be satisfied by the holographic CFT’s defined by these models. This

approach has found success in a number of interesting contexts, such as the discovery of

the F-theorem [26, 27]. Below, we also look to test a simple conjecture, motivated by our

holographic results, with calculations for free massless quantum field theories.

Another caveat in our analysis is that for the generalized Lovelock theories (2.42),

the appropriate gravitational entropy functional to use in evaluating the HEE (2.21) is
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Constant Ratio

Strip HEE κ/κ̃ = 1

Disk HEE κ/c0 =
2
π Γ
(

3
4

)4 (
1− 2λGB − 24λ1,1 + 288λ2,1 + 96λ0,2 +O(λ2)

)

Thermal entropy κ/cS = 9
8π3 Γ

(

3
4

)4 (
1− 16λ0,2 +O(λ2)

)

〈Tab(x)Tcd(0)〉 κ/CT = π2

6 Γ
(

3
4

)4

Table 1. Ratios comparing the corner charge κ with similar physical coefficients.

given by eq. (2.43). Recall that present evidence [63–68] suggests that the general formula

for the entropy functional proposed in [59] must be further refined for higher curvature

theories involving cubic and higher powers of the curvature. However, we argued that

the use of eq. (2.43) is well motivated by the somewhat complementary analysis of [48]

examining the second law of black hole thermodynamics in these higher curvature theories

— see also [73, 74]. However, it would be useful to verify this more directly when a fuller

understanding of HEE in higher curvature theories emerges.

A summary of the ratios corresponding to the different charges computed in this paper

with respect to κ can be found in table 1.

We have seen that our holographic calculations yield κ = κ̃, where the latter is the

coefficient of the universal term in the EE of a strip, as defined in eq. (3.2). However,

this is a universal result that is expected to hold for any CFT on the basis of a conformal

mapping which relates the two entanglement entropy calculations — see appendix B. Hence

this result can be considered a check of our holographic calculations.

On the other hand, the charge c0 corresponding to the universal constant in the EE

of a disk is a distinct charge. Of course, the latter is the central charge which decreases

monotonically in RG flows, according to the F -theorem [26–30]. The independence of κ

and c0 is illustrated by eq. (3.20), which shows that the ratio κ/c0 depends on λGB, λ1,1, λ2,1
and λ0,2. Hence these two charges depend on the details of the corresponding boundary

theories in different ways. Alternatively, the ratio is independent of the remaining four

gravitational couplings, λ1, λ2, λ3,0 and λ4,0. Hence there are also broad classes of theories

with the same ratio κ/c0 but it is not a universal feature common to all CFT’s.

The thermal entropy density for the holographic theories was calculated as the entropy

density of the corresponding AdS4 planar black hole. In this case, eq. (3.43) shows that

κ/cS is not universal but only depends on λ0,2, the coupling for the (X4)
2 interaction in

eq. (2.50). However, the fact that this particular example produces a mismatch suggests

that this ratio will also depend on other new couplings for more general higher curvature

theories. In fact, our findings seem to suggest that the generalized Lovelock theories with

w = 0 or 1 and arbitrary v will respect the agreement between the charges, whereas those

with w ≥ 2 will not. We have explicitly verified that this is the case for v = 1 and w = 2.23

23That is, κ/cS depends on λ1,2 but κ/CT still takes the standard Einstein value (3.48).
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Eq. (3.55) shows that the ratio κ/CT is the same for all of the holographic theories

which we studied, where CT is the central charge appearing in the two-point function (3.44)

of the stress tensor. Hence eq. (3.55) matches the result (3.48) for Einstein gravity with

κ/CT = π2Γ
(

3
4

)4
/6, at least to first order in the gravitational couplings. It is natural to con-

jecture that this ratio is a universal quantity for all CFT’s, even beyond holography. Some

further suggestive results can be found in [40], which studied singular entangling surfaces

in holographic models in higher dimensions. In particular, the holographic model examined

there had Gauss-Bonnet gravity in the bulk and it was found that for an entangling surface

with a conical singularity, CT controls the coefficient for the universal contribution in the

limit of a small opening angle. We will test this simple conjecture below with massless free

field theories finding that this ratio is not quite the same in those simple field theories. How-

ever, this comparison does support the idea that CT provides an interesting normalization

of the corner contribution when comparing different CFT’s in three dimensions.

To close let us observe that a consequence of our results is that CT and cS are found

to disagree in general for holographic CFT’s. Supporting evidence of this disagreement

for general holographic theories can be found in [27], where it was shown that these two

charges are not the same for quasi-topological gravity [78, 91].

4.1 Shape of the extremal surface

In our holographic investigation of the corner contribution, we found that none of the higher

curvature interactions which we studied led to any modification in the functional form of

a(Ω). Rather it remained exactly the same as in Einstein gravity, i.e., a(Ω) = αaE(Ω)

where the constant α is given in eq. (2.52). This result is related to the fact that all of the

corresponding entropy functionals were extremized by extremal area surfaces in the AdS4

background, just as in Einstein gravity. Further our discussion in section 2.1.1 suggests

that this result is not simply a consequence of working to first order in a perturbative

treatment of the gravitational couplings. Hence one may wonder whether this is a general

feature of HEE in the AdS4 vacuum for any higher curvature theory of gravity in the bulk.

However, we argue that the latter is, in fact, not a universal result.

First we observe that the curvature tensor takes the simple form

Rµνρσ = − 1

L̃2
(gµρ gνσ − gµσ gνρ) (4.3)

in the AdS4 background. Hence as in the examples in section 2.1, the terms in the entropy

functional constructed with background curvatures will reduce to an integral of some con-

stant over the bulk surface m, i.e., they multiply the Bekenstein-Hawking contribution by

some constant factor. Similarly, any terms involving a mixture of background curvatures

and extrinsic curvatures will reduce to an integral of some scalar constructed purely from

extrinsic curvatures (and possibly derivatives of the extrinsic curvatures). Therefore, we

should consider whether in general such extrinsic curvature terms can lead to modifications

in the shape of m — and functional corrections to a(Ω), as a consequence. Of course, the

intuitive answer, which we confirm below, is that a sufficiently complicated contraction of

extrinsic curvatures will have a nontrivial effect on the shape of m.
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Following the discussion in section 2.1.1, we first observe that any term which contains

two or more factors of the trace of the extrinsic curvature, e.g., K âK âijK b̂
ijK

b̂, will always

leave the extremal area surface unchanged. The reason is simply that K â = 0 is the

equation of motion determining the profile on an extremal area surface. Hence, the variation

of a term with two or more factors of K â will produce terms which still contain this factor

and so will vanish on any extremal area surface. On the other hand, one might guess

that if the term K â
ijK

âij appears in the entropy functional that it will modify the shape

of the bulk surface, but we argue that in fact it also leaves the extremal area surface

unchanged. This term is actually produced by a curvature squared interaction of the form

RµνρσR
µνρσ [57, 58]. However, this term can be easily rewritten as a linear combination of

R2, RµνR
µν and X4 interactions, i.e., see eq. (2.23). For a pure AdS4 background, we have

argued in section 2.1.1 that extremal area surfaces always extremize the entropy functionals

corresponding to each of these three interactions, so the same must be true with K â
ijK

âij .

However, we find that terms of the form
(

K â
ijK

âij
)n

with n ≥ 2 are not extremized by the

extremal area surface and so we expect contributions of this kind (if they appear in the

HEE formula) will modify the functional form of aE(Ω). Similarly, cyclic contractions of

extrinsic curvatures, e.g., K â
k1k2

K âk2k3 . . . K d̂kn−1knK d̂ k1
kn

, would also modify the profile of

the bulk surface so they would also change the functional form of the corner function.

Hence it is relatively simple to find terms which, if they appear in the gravitational

entropy functional, would modify the profile of the bulk surface in the calculation of HEE.

Hence the general expression for the universal corner term for arbitrary high curvature

theories might be expected to take the form

Scorner = −a(Ω) log
(

H

δ

)

, where a(Ω) = αaE(Ω) + r(Ω) , (4.4)

where r(Ω) would be a new function of the opening angle which would depend on some

gravitational couplings. If we consider the higher curvature terms as small corrections to

Einstein gravity, as for the perturbative calculations in this paper, it should be clear that

r(Ω) would be highly suppressed with respect to the aE(Ω) contribution, since it would

only start appearing with interactions that are cubic or higher-order in the curvature. On

the other hand, as explained in appendix B, even if such functions correct the functional

form of aE(Ω) for certain higher-order gravities, the small angle behavior of a(Ω) is still

constrained to take the form

lim
Ω→0

a(Ω) = lim
Ω→0

(αaE(Ω) + r(Ω)) =
κ

Ω
+ · · · . (4.5)

Further, as explained in the introduction, we will have

lim
Ω→π

a(Ω) = lim
Ω→π

(αaE(Ω) + r(Ω)) = σ (π − Ω)2 + · · · , (4.6)

in the limit of a nearly smooth entangling curve. That is, eqs. (1.3) and (1.4) will still define

the universal corner charges, κ and σ, for any holographic theory irrespective of the details

of the entropy functional. However, let us note that for Einstein gravity and for all of the
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holographic theories studied here, these charges are simply related by κE/σE = 4Γ(3/4)4.

In general high curvature theories where the corner term is modified as in eq. (4.4), there

will be no reason to expect that this simple relation still holds for these two charges.

Of course, we are not at present able to provide an explicit example of a higher cur-

vature interaction which contributes such an ‘interesting’ extrinsic curvature term to the

graviational entropy functional. However, in this regard, we are simply restricted by the

current limitations in understanding how to construct the entropy functional given a par-

ticular interaction in the bulk action [63–68]. Still we do see no reason why these more

complicated extrinsic curvature terms can not be produced by sufficiently complicated

higher curvature interactions.

4.2 Comparison with QFT calculations

The holographic calculations performed here are expected to produce a(Ω) for certain

strongly coupled three-dimensional CFT’s dual to our bulk gravity theories. On the other

hand, similar field theory results are also available for a wide range values of Ω in the

case of a free massless scalar and a free massless fermion [7, 31, 32].24 Further, it was

argued [31, 92] that the holographic result for the corner contribution aE(Ω) with Einstein

gravity qualitatively agrees with these free field results. Given how dissimilar the underlying

field theories are in this comparison, even a qualitative agreement may seem somewhat

surprising. However, recall that the behaviour of a(Ω) is fixed on general grounds both for

small angles and for Ω ≃ π, i.e., see eqs. (1.3) and (1.4), respectively. Further, given the

universal form of aE(Ω) at least for the broad range of holographic theories considered in

this paper, we find it interesting here to make a quantitative comparison of a(Ω) for the

holographic and free field theories. In order to make such a comparison, we must start

by normalizing a(Ω) for the various theories. A convenient choice is to consider a(Ω)/κ

which will then approach 1/Ω for small angles for any field theory. For all of the holographic

theories which we studied, we will have aE(Ω)/κE since the common factor of α in eq. (2.51)

cancels in the ratio. Of course, aE(Ω) is determined numerically by evaluating the integrals

in eqs. (2.12) and (2.13), while κE is given by eq. (2.16). The corresponding charges for

the free field theories were determined in [7, 31, 32] as

κscalar ≃ 0.0397 and κfermion ≃ 0.0722 . (4.7)

Now the free field results shown in figures 4 and 5 represent Taylor expansions of a(Ω)

around Ω = π to fourteenth order, which were obtained in [7, 32]. These expansions give

a reliable enough approximation for values of the opening angle which are not too small.

In particular, the figures also show the lattice results obtained for a(Ω) at Ω = π/4, π/2

and 3π/4 in [31] using the numerical method developed in [93].

In figures 4 and 5 we see, first of all, how the Taylor expansions for the free theories

are in good agreement with the corresponding lattice results. Hence the red and blue lines

in these figures can be reasonably trusted at least for angles larger than π/4. As we see in

24Most other results in the literature, e.g., see [42–46], are given only for a particular value of the opening

angle, i.e., for Ω = π/2 which is easily studied on a square lattice.
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Figure 4. (Colour online) We show a(Ω)/κ for AdS/CFT (orange), a free scalar (blue), a free

fermion (red) and the lattice points (squares) obtained numerically for three values of Ω [31]. We

also include the black dashed curve giving the 1/Ω behavior which all of the functions will approach

for small angles.

figure 5, the holographic function aE(Ω)/κE turns out to agree with the corresponding free

fermion result within a 2% over this whole range where the results are reliable. Similarly,

the function for the free scalar deviates from the holographic result by no more than 11%

in this range. In the small angle region, the three corner contributions normalized by κ

in figure 4 will all approach 1/Ω (shown as the black dashed line). Of course, we only

see the latter behaviour is realized for the holographic result, for which we have the exact

function over the whole range of Ω. The exact curves for the free scalar (fermion) would

lie somewhere in between the black and the blue (red) curves in the intermediate region

and so these curves will tend to lie slightly above those obtained with the Taylor series

expansion around Ω = π. Hence the exact results for the free fields would be in even better

agreement with the holographic curve than we have estimated above. Figure 5 is also useful

to determine a better estimate of where the Taylor expansions stop being reliable. Focusing

on the lattice results in this figure, one might expect that the ratios (a/κ)free/(a/κ)holo for

both the scalar and the fermion will decrease monotonically for increasing Ω over the full

range from Ω = 0 to π. This would indicate that the expansions are starting to fail in

the vicinity where their slopes become zero, i.e., around Ω/π ∼ 0.35 for the fermion and

Ω/π ∼ 0.27 in the case of the scalar.

As we have seen, the ratio κ/CT equals the Einstein gravity result (3.48) for all the

higher curvature theories considered here — at least, for perturbative calculations to linear
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Figure 5. (Colour online) We show (a(Ω)/κ)free/(a(Ω)/κ)holo both for the free scalar (blue), the

free fermion (red) and the corresponding lattice results (squares). We also show the interpolated

curves obtained using the 14 coefficients of the Taylor expansions around Ω = π as well as the

coefficients κ in the small opening angle expansions (dashed blue and red). The black dashed line

would correspond to the value for which the ratios are equal. Both theories will in fact approach the

black square at the end of this line, i.e., at Ω = 0, a behaviour that is captured by the interpolated

functions.

order in the additional gravitational couplings. However, we might ask if this result applies

quite generally for any three-dimensional CFT. Given that for the free field theories, we

have at our disposal the values of κ in eq. (4.7), it is interesting to compare these corner

charges to the corresponding values of CT , which can be found in [87]:

CT, scalar =
3

32π2
, CT, fermion =

3

16π2
. (4.8)

Hence the ratios become:

κ

CT

∣

∣

∣

holo
≃ 3.7092 ,

κ

CT

∣

∣

∣

scalar
≃ 4.17945 ,

κ

CT

∣

∣

∣

fermion
≃ 3.8005 . (4.9)

All of these ratios are rather close to each other but we do not have precise agreement.

In particular, the fermion result differs from the holographic one by approximately 2.5%

whereas the scalar ratio is off by approximately 13%. Of course, an open question which

remains is whether this ratio is a universal quantity for all holographic theories, however,

we can only begin to address this question when a better understanding is established for

holographic entanglement entropy in general higher curvature theories.

In fact, it was not only the ratio κ/CT but rather the entire function a(Ω)/CT which was

universal for all our higher curvature theories. Hence, even though we found that the univer-

sality of κ/CT did not extend beyond holographic CFT’s, we may ask more broadly if there
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Figure 6. (Colour online) We show (a(Ω)/CT )free/(a(Ω)/CT )holo both for the free scalar (blue), the

free fermion (red) and the lattice points (squares). We also include the interpolated curves obtained

using the 14 coefficients of the Taylor expansions around Ω = π as well as the coefficients κ in the

small opening angle expansions (dashed blue and red). The black dashed line would correspond to

the value for which the ratios equal 1. The dots in blue and red at Ω = 0 correspond to the small

angle values of the ratios, namely (κ/CT )free/(κ/CT )holo.

are any features of the corner contribution which are universal for general three-dimensional

CFT’s. Hence in figure 6, we plot (a(Ω)/CT )free/(a(Ω)/CT )holo for the free scalar (blue) and

the free fermion (red). The figure also includes the corresponding lattice points25 as well as

the points at Ω/π = 0, which correspond to (κ/CT )free/(κ/CT )holo. As can be expected from

figures 4 and 5, we see that in general the corner contribution evolves slightly differently for

the three cases as Ω runs from 0 to π. The ratios plotted in figure 6 are essentially the same

in figure 5 except that we have changed the normalization by considering a(Ω)/CT rather

than a(Ω)/κ. Hence again, the both ratios in the new figure seem to be monotionically

decreasing starting from (κ/CT )free/(κ/CT )holo at Ω = 0 — see eq. (4.9). The remarkable

feature in figure 6 is that both curves seem to reach precisely 1 at Ω = π. That is, it appears

that the ratio σ/CT is equal for the two field theories and for our holographic theories!

Recall that we argued the behavior of a(Ω) was constrained for general CFT’s near

Ω = π and eq. (1.4) defined the charge σ with a(Ω) ≃ σ (π − Ω)2 + · · · . In particular, we

25Although, the Taylor expansions and the lattice points seem to differ here, they are actually in good

agreement and it is just that the vertical scale has been expanded here. In particular, the disagreement is

less than approximately 2.5% in all cases.
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found in eq. (2.18) that for Einstein gravity

σE =
L̃2

8πG
, (4.10)

and so given the universal form of a(Ω) for all our holographic theories in eq. (2.51), we

have

σ = ασE , (4.11)

with α given again by eq. (2.52). Further in all of our holographic theories, we also have a

fixed ratio:
σ

CT

=
σE

CT,E

=
π2

24
≃ 0.411234 . (4.12)

We can easily compare this result with the ratio σ/CT for the free conformal scalar and

the massless fermion, since σ is simply the first nonvanishing coefficient in the Taylor

expansions presented in [7, 31, 32], and the corresponding values are

σscalar ≃ 0.0039063 , and σfermion ≃ 0.0078125 . (4.13)

Hence using the values of CT given in eq. (4.8), the desired ratios become

σ

CT

∣

∣

∣

scalar
≃ 0.411235 , and

σ

CT

∣

∣

∣

fermion
≃ 0.411234 . (4.14)

Hence as expected from figure 6, the free field ratios show a striking agreement with

the holographic result, i.e., they agree with a precision of better than 0.0003%! We

might keep in mind that while the free field values for CT in eq. (4.8) are exact, the

corresponding values of σ in eq. (4.13) are only the approximate results of a numerical

computation [7, 31, 32]. Hence the precision of the agreement between eqs. (4.12)

and (4.14) is as good as could be expected.

These observations, originally made in [47], led us to conjecture there that the ratio

σ/CT is in fact a universal constant for all three-dimensional CFT’s, i.e.,

σ

CT

=
π2

24
(4.15)

for general conformal field theories in three dimensions. This conjecture can be used to

predict the exact values of σscalar and σfermion,

σscalar =
1

256
, and σfermion =

1

128
. (4.16)

Of course, these values match the results shown in eq. (4.7) within the accuracy limits

set by the calculations in [7, 31, 32]. However, we can improve these results by going

back to the original free field computations and evaluating the required integrals with an

improved accuracy. The required calculations are described in appendix D and we find

that the agreement between our prediction for σscalar and σfermion, given by eq. (4.16),

and the previous calculations for the free field results can be extended to an accuracy

of one part in 1012. We emphasize the required integrals (D.2) and (D.3) are extremely
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complicated and they are not even similar. Yet they seem to conspire to produce the

simple rational numbers (4.16) predicted by holography. As discussed in [47], we feel this

is striking evidence in favour of our new conjecture above!

While we have found that eq. (4.15) applies both for the holographic theories and for

free CFT’s, it would of course be interesting to extend these calculations to other three-

dimensional CFT’s. For example, one might consider the N = 2 critical Wess-Zumino

model.26 For this theory, CT has been computed exactly using localization in [94], finding

CT,N=2WZ =

∫ ∞

0

dx

π4

[(

1

x2
− cosh(2x/3)

sinh2(x)

)

+
3(sinh(2x)− 2x) sinh(2x/3)

2 sinh4(x)

]

, (4.17)

which yields

CT,N=2WZ ≃ 0.02761450054158 . (4.18)

This same numerical value was also recently reproduced using the conformal bootstrap [95,

96].27 Our conjecture (4.15) would predict the corresponding value of σ as

σN=2WZ ≃ 0.011356008 . (4.19)

Computing this quantity (or the analogous ones in other CFT’s for which CT is known,

such as the O(N) models) would provide a strong test for this conjecture [47].

Let us also observe that the higher order coefficients in the Taylor expansions around

θ = π [7, 31, 32] for the free scalar and the free fermion do not seem to exhibit any similar

universal behaviour. In particular, these coefficients do not seem to be related in any simple

way between the two theories, in contrast to the simple relation σfermion = 2σscalar above.

We might mention that it was already observed in [7, 31, 32] that their numerical results

for these coefficients only seemed to differ by a factor of two, but no explanation was given.

According to the conjecture (4.16), the reason comes simply from the well-known result

that CT, fermion = 2CT, scalar [87].

More generally, the comparison shown in figure 6 illustrates that CT provides a useful

normalization of the corner contribution when comparing results for different CFT’s in three

dimensions. In [47], we also considered the Wilson-Fisher fixed points of the O(N) models

with N = 1, 2, 3. In this case, numerical results a(Ω = π/2) were available from state of the

art numerical simulations of lattice Hamiltonians with the corresponding quantum critical

points [43, 46, 97], while conformal bootstrap methods were recently used to determine CT

with great accuracy for these theories [98]. The agreement with the holographic value for

a(Ω = π/2)/CT was better than 12% in all three cases [47].

Beyond pointing out a useful normalization by which the corner term for different

CFT’s can be compared, the holographic expression for a(Ω)/CT seems to provide a good

benchmark with which to compare the analogous results for general three-dimensional

CFT’s. As discussed above, we found a surprising agreement between the holographic

results and those for both free and strongly interacting CFT’s. Of course, it would be

26We thank Nikolay Bobev for useful comments on this theory.
27Note that in the conventions of [96], CT differs from ours by a factor 16π2 in d = 3, e.g., CT, scalar = 3/2

in the conventions of [96]. Our conventions are, however, the same as in [94].
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interesting to extend these comparisons to other three-dimensional CFT’s. For example,

one might consider the N = 2 critical Wess-Zumino model discussed above.

A further suggestive observation is the holographic result provides the smallest values

of a(Ω)/CT , e.g., in figure 6. Hence it would be natural to investigate if the holographic

result is a universal lower bound for any three-dimensional CFT. This conjecture would be

similar to the celebrated KSS conjecture that η/s = 1/(4π) represents an absolute lower

bound for any relativistic quantum field theory [99]. Of course, this bound was found by

investigating holographic CFT’s dual to Einstein gravity, but the appearance of higher

curvature interactions in the bulk could produce violations of the conjectured bound [100–

102]. In contrast, our holographic analysis here shows that a(Ω)/CT remains unaffected by

a broad class of higher curvature terms. This provides a good motivation for further study

of the issues surrounding the shape of the extremal surface appearing in the holographic

calculation of a(Ω). Certainly, if the corresponding bulk surface is no longer the same as in

Einstein gravity, this would modify the functional form of a(Ω) and hence the lower bound

might be violated for some values of the bulk couplings.

We note that the conjectured universality of σ/CT is a rather striking result since σ

characterizes the EE, which can generally be regarded as a nonlocal quantity, while CT is

defined by a local correlation function (3.44). However, we expect [103] that the universal

ratio in eq. (4.15) can be derived using the techniques developed in [104, 105], which

examine changes in the EE induced by small perturbations of the geometry and couplings.

In this situation, it is clear that these small variations of the EE are indeed controlled

by local correlators. To conclude, let us add that holographic calculations suggest that

similar universal behaviour also arises in higher dimensions [106]. In particular, we can

use the holographic results for the quadratic correction to the universal term arising from

deformations of spherical entangling surfaces obtained in [107, 108].
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A Conventions and notation

Here we outline our conventions and notation for the calculations in sections 2 and 3.

Greek indices run over the entire AdS4 background, whereas Latin letters from the second

half of the alphabet i, j, . . . represent directions along the extremal surface m. Here m is a

(co)dimension-two bulk surface with a pair of independent orthonormal vectors orthogonal

to it nµâ (â = 1̂, 2̂), where the hatted indices from the beginning of the Latin alphabet

denote tangent indices in the transverse space, so that δâb̂ = nµân
ν
b̂
gµν . Tangent vectors to

m are defined in the usual way as tµi ≡ ∂xµ/∂yi, being xµ and yi coordinates in the full

AdS4 background and along the surface, respectively. The corresponding induced metric on

the surface is thus given by γij ≡ tµi t
ν
j gµν (and its determinant det γij ≡ γ). The extrinsic

curvatures associated to the two normal vectors nµâ are given by K â
ij ≡ tµi t

ν
j∇µn

â
ν , where ∇µ

is the covariant derivative compatible with gµν . Also, we use K
â to denote the trace of each

extrinsic curvature defined through K â ≡ γijK â
ij . Finally, with (K â)2, we mean the sum

of the squares of the two extrinsic curvatures: (K â)2 ≡ K âK b̂ δâb̂. The transverse metric

can be defined as g⊥µν ≡ nµân
ν
b̂
δâb̂, and allows us to project bulk tensors in the transverse

directions, e.g., Râ
â ≡ g⊥µνRµν .

In the calculations of the corner contribution in section 2, we write Euclidean AdS4 in

Poincaré coordinates as

ds2 =
L̃2

z2
(

dz2 + dt2E + dρ2 + ρ2dθ2
)

. (A.1)

The induced metric on surfaces m parametrized as tE = 0, z = ρ h(θ), such as those

suitable for the entangling surface with a corner, reads

ds2m =
L̃2

ρ2

(

1 +
1

h2

)

dρ2 +
L̃2

h2

(

1 + ḣ2
)

dθ2 +
2L̃2ḣ

ρ h
dρ dθ , (A.2)

where ḣ(θ) ≡ ∂θh. From the above, one finds

√
γ =

L̃2

ρh2

√

1 + h2 + ḣ2 . (A.3)

The resulting orthonormal vectors orthogonal to the surface read

n1̂ =
z

L̃
∂t , (A.4)

n2̂ =
z

L̃
√

1 + h2 + ḣ2

(

∂z − h ∂ρ −
ḣ

ρ
∂θ

)

. (A.5)

For our pure AdS4 background, we find the following expression for the projection of the

Ricci tensor appearing in eq. (2.24)

Râ
â = g⊥µνRµν = −6/L̃2 . (A.6)
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The extrinsic curvature associated to n1̂ vanishes, whereas that corresponding to n2̂ turns

out to be

K 2̂
ij =









− L̃(h2+1)

ρ2h2
√

h2+ḣ2+1
− L̃ḣ

ρh
√

h2+ḣ2+1

− L̃ḣ

ρh
√

h2+ḣ2+1
− L̃(h2+ḧh+ḣ2+1)

h2
√

h(θ)2+ḣ2+1









. (A.7)

From this we can easily obtain the contraction appearing in eq. (2.24)

(

K â
)2

=

[

2 + 3h2 + h4 + 2ḣ2 + h(1 + h2)ḧ
]2

L̃2
(

1 + h2 + ḣ2
)3 . (A.8)

Finally, the intrinsic Ricci scalar evaluated with the metric γij on the bulk surface reads

R =
2(−(1 + 2h2)ḣ2 − ḣ4 + (h+ h3)ḧ)

L̃2(1 + h2 + ḣ2)2
. (A.9)

From the above expression and eq. (A.3), it is straightforward to verify that the product√
γR is a total derivative. Indeed, we find

√
γR =

2(−(1 + 2h2)ḣ2 − ḣ4 + (h+ h3)ḧ)

ρh2(1 + h2 + ḣ2)3/2
=

d

dθ

[

2

ρ

ḣ

h
√

1 + h2 + ḣ2

]

. (A.10)

B From the corner to the strip

As we used in the main text, the small angle limit of a(Ω) defines a universal charge κ,

which can be used to distinguish different CFT’s. The form of eq. (1.3) is fixed for general

theories due to the existence of a conformal map relating the corner geometry to a strip.

This mapping is discussed in detail in appendix A of [40] and we only review the salient

points here. As a consequence of this mapping, the expressions for the universal terms in

the entanglement entropy match for both geometries, at least in the limit of small Ω or a

narrow strip width. However, as we will see below, this mapping does not fix the form of

a(Ω) over the entire range of the opening angle.

Let us now describe the conformal mapping: let the CFT be defined in the background

geometry which is simply R
3, with the coordinates used in section 2,

ds2 = dt2E + dρ2 + ρ2dθ2 . (B.1)

If we make the coordinate transformation, tE = r cos ξ and ρ = r sin ξ, the line element

above becomes

ds2 = dr2 + r2
(

dξ2 + sin2ξ dθ2
)

. (B.2)

Next we make the coordinate change r = LeY/L and remove the overall factor e2Y/L with

a Weyl transformation, to find the geometry

ds2 = dY 2 + L2
(

dξ2 + sin2ξ dθ2
)

, (B.3)
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with Y ∈ (−∞,+∞). Of course, this conformal transformation is the usual exponential

map which takes R3 to R× S2.

The corner region for which we calculated the entanglement entropy in section 2 was

defined in the original coordinates (B.1) as V = {tE = 0, ρ > 0, |θ| ≤ Ω/2} and so in terms

of the polar coordinates (B.2), this region becomes V = {r > 0, ξ = π/2, |θ| ≤ Ω/2}. Fi-

nally in the cylindrical background (B.3), the corner region is mapped to an infinite strip:

V = {Y ∈ (−∞,+∞) , ξ = π/2, |θ| ≤ Ω/2}. In this geometry, the density matrix would be

represented by a path integral of the CFT over the cylinder with open boundary conditions

imposed along the strip, i.e., on surfaces just above and below ξ = π/2, along the entire

length of Y and in the range |θ| ≤ Ω/2. Hence the entire entanglement entropy (1.1),

including both the universal and nonuniversal contributions, for the corner geometry in

R
3 is readily related to that for the strip in the cylinder geometry R × S2, as discussed

in [40]. However, we would like instead to relate the entanglement entropy of the corner

region to that of a strip in flat space R
3, as was discussed in section 3.1. This is where

the limit of small opening angle becomes important. When Ω ≪ 1, the separation between

both sides of the strip is much smaller than the size of the sphere and the local radius of

curvature, i.e., ℓ ≡ LΩ ≪ L. Hence the latter scale is negligible and to leading order the

entanglement entropy resembles that for a strip in flat space, i.e.,

SEE = c1
2(Y+ − Y−)

δ
− κ̃

Y+ − Y−
ℓ

+O(δ/L, ℓ/L) (B.4)

where Y+ and Y− are regulator scales introduced to cut-off the length of the strip in

the positive and negative Y directions [40] — compare to eq. (3.1). Given the preceding

transformations, we see that the universal contribution (proportional to κ̃) is mapped to

Suniv = − κ̃

Ω
log

(

ρmax

ρmin

)

= − κ̃

Ω
log

(

H

δ

)

, (B.5)

where we have made the natural substitutions: ρmax = H and ρmin = δ. We emphasize

that this expression only applies for Ω ≪ 1 and hence we have recovered eq. (1.3) for the

corner contribution with κ = κ̃.

Let us add that the coordinate transformation in the bulk geometry implementing

the conformal mapping between the two boundary metrics (B.1) and (B.3) can be found

as follows: the AdS4 geometry can be described as a hyperbola embedded in the five-

dimensional Minkowski space

ds2 = −dU2 + dV 2 + dR2 +R2 dΩ2
2 . (B.6)

AdS4 is defined now as the subspace

− U2 + V 2 +R2 = −L2 . (B.7)

This constraint can be solved writing R = rL/z, U + V = L2/z, U − V = z + r2/z,

and the induced metric on the hyperbola reduces to the Poincaré coordinates on AdS4,

given in eq. (2.1). On the other hand, the constraint (B.7) is also satisfied by U =

– 41 –



J
H
E
P
0
8
(
2
0
1
5
)
0
6
8

√
R2 + L2 cosh(Y/L), V =

√
R2 + L2 sinh(Y/L), in which case the induced metric be-

comes

ds2 =
dR2

1 + R2

L2

+

(

1 +
R2

L2

)

dY 2 +R2
(

dξ2 + sin2ξ dθ2
)

, (B.8)

which is the AdS4 geometry in global coordinates. Stripping off a scale factor of R2/L2

at large radius, the resulting boundary metric matches that in eq. (B.3). These bulk

coordinates can be used to compute the HEE for the kink in essentially the same way as

the calculation of section 2.

C f(R) gravity

We parmeterize our general f(R) gravity action [71] as

If(R) =
1

16πG

∫

d4x
√
g

[

6

L2
+R+ λ̂ f(R)

]

, (C.1)

where we have made the cosmological constant and the Einstein term explict. We have

also introduced a dimensionless coupling λ̂ as a useful device to indicate the combined

strength of the higher curvature contributions in the following. The function f(R) can be

a general function of the Ricci scalar, which has a Taylor series expansion beginning at

order R2 or higher. Our perspective is that f(R) is parameterized by various dimensionless

couplings and the necessary dimensions are provided by the cosmological constant scale L.

For example, we would incorporate the three Ricci scalar terms in the action (2.50) as

λ̂ f(R) = L2 λ1R
2 + L4 λ3,0R

3 + L6 λ4,0R
4 . (C.2)

In this simple class of theories, the gravitational entropy functional is simply given by the

Wald entropy [48, 109], i.e.,

Sf(R) =
1

4G

∫

m
d2y

√
γ
[

1 + λ̂f ′(R)
]

, (C.3)

where f ′(R) = ∂f(R)/∂R. For our pure AdS4 background, f ′(R) will be just a constant,

with R = −12/L̃2 ≡ R̄ where

1

L2
=

1

L̃2

[

1− λ̂ f ′
(

−12/L̃2
)]

− λ̂

6
f
(

−12/L̃2
)

. (C.4)

Hence determining the HEE will amount to finding the extremal area surface and evaluating

eq. (2.3) with an additional overall coefficient of

α̂ = 1 + λ̂ f ′(R̄) . (C.5)

Hence with a corner in the boundary entangling surface, the expression for the HEE will

be a trivial generalization of eq. (2.11) with

Sf(R) = α̂

[

L̃2

2G

H

δ
− aE(Ω) log

(

H

δ

)

+O(1)

]

. (C.6)
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However, we emphasize that the same overall factor (C.5) will appear in front of the

entanglement entropy for any entangling surface and, in particular, for the circle. Further,

it can be shown that the planar black hole solution (3.22) to the (four-dimensional) Einstein

equations will also be a solution of the f(R) Lagrangian. Hence the thermal entropy, which

is computed by evaluating the horizon entropy using the same Wald formula (C.6), will

produce the Einstein gravity result (3.23), again up to an overall factor given precisely by

α̂. Hence for this class of theories, the ratios κ/c0 and κ/cS will match those in Einstein

gravity, as given in eqs. (3.19) and (3.25), respectively. Note that these results apply even

when the strength of the gravitational couplings is large, i.e., the fact that these ratios do

not change is not restricted to linear order in perturbative calculations.

In order to see what happens with the two-point function (3.44) of the stress tensor,

we can follow the steps of section (3.4) in order to find the linearized equations of motion

for the massless spin-two graviton in the AdS4 background. A remarkable fact about our

previous linearized equations (3.52) was that none of the theories considered except that

with an RµνR
µν interaction produced terms involving higher-order derivatives acting on

hµν after we imposed the transverse traceless gauge. That is, in general, these theories do

produce fourth-order derivatives of hµν in the linearized equations, but nevertheless these

contributions all vanish in the AdS4 background, with the exception of the λ2 term, after

we set ∇̄µhµν = 0 = h ≡ ḡµνhµν . As an illustrative exercise, we explicitly demonstrate

how this works in the case of f(R) gravity, where the same behavior is encountered. The

full linearized equations arising from eq. (C.1) read

RL
µν −

1

2
ḡµνR

L +

[

6

L̃2
− 3

L2

]

hµν + λ̂ Eµν = 0 , (C.7)

where

Eµν ≡ f ′(R̄)RL
µν −

1

2
f(R̄)hµν +f

′′(R̄)

[

ḡµν�̄− ∇̄µ∇̄ν −
3

L̃2
ḡµν

]

RL− 1

2
f ′(R̄)ḡµνR

L , (C.8)

and where the linearized Ricci tensor and Ricci scalar can be written as

RL
µν = − 4

L̃2
hµν +

1

L̃2
ḡµνh+

1

2

(

∇̄µ∇̄σhν
σ + ∇̄ν∇̄σhµ

σ − �̄hµν − ∇̄µ∇̄νh
)

,

RL ≡ ḡµνRL
µν − hµνR̄µν = ∇̄µ∇̄νhµν − �̄h+

3

L̃2
h . (C.9)

As we can see, these equations involve fourth-order derivatives of the perturbation and

its trace. However, in the transverse traceless gauge, it is straightforward to see that

RL vanishes and hence the fourth-order terms, which all appear in Eµν , also vanish. The

equations (C.7) are then notably simpler and after some massaging,28 they yield the result:

− α̂

2

[

�̄+
2

L̃2

]

hµν = α̂ GL
µν = 0 , (C.10)

where GL
µν is again the linearized Einstein tensor in this gauge, as in eq. (3.51), and α̂ is

defined in eq. (C.5). Hence with this exercise, we see all the fourth-order terms explicitly

28In particular, one needs to use eq. (C.4) in order to obtain eq. (C.10).
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disappear from the linearized equations. Further, we can see the same overall constant (C.5)

will appear here in CT , as appeared in the corner contribution above. Therefore the ratio

κ/CT is again unchanged from the Einstein value (3.48) in the holographic CFT’s dual to

f(R) gravity.

When we impose the transverse traceless gauge, we are implicitly eliminating any

new degrees of freedom and focusing entirely on the physical spin-two graviton. However,

we know that f(R) gravity introduces an additional scalar degree of freedom [71] — in

particular, the trace of the metric perturbation becomes a propagating massive scalar

field. Hence it is interesting exercise to relax the transverse traceless condition to see the

extra scalar emerge. In order to find its equation, we can take the trace of the full linearized

equations (C.7) without any gauge fixing. The result is

−
[

α̂+
12λ̂

L̃2
f ′′(R̄)

]

[

∇̄µ∇̄νhµν +
3h

L̃2

]

(C.11)

+�̄h

[

α̂+
21λ̂

L̃2
f ′′(R̄)

]

+ 3λ̂ f ′′(R̄)
[

�̄∇̄µ∇̄νhµν − �̄
2h
]

= 0 .

At this point, it is convenient to choose the gauge condition,

∇̄µhµν = ∇̄νh , (C.12)

because this choice actually eliminates the fourth-order derivatives in the previous equation.

The remaining second-order equation then simplifies to

3λ̂ f ′′(R̄) �̄h−
[

α̂+
12λ̂

L̃2
f ′′(R̄)

]

h = 0 , (C.13)

which corresponds to the equation of motion for a massive scalar field, as long as f ′′(R̄) 6= 0.

That is, the trace h has become a dynamical degree of freedom in this case. On the other

hand, if f ′′(R̄) = 0 (e.g., as in Einstein gravity), the above equation is not dynamical and

would simply impose the tracelessness condition h = 0. Hence the spin-two graviton would

be the only propagating degree of freedome in this case.

We should also consider the traceless part of the metric perturbation, i.e.,

ĥµν = hµν −
1

4
ḡµν h . (C.14)

with the gauge condition (C.12). Combining this choice of gauge with eqs. (C.7) and (C.13),

we find

− α̂

2

[

�̄+
2

L̃2

]

ĥµν = −1

2

[

α̂− 6λ̂

L̃2
f ′′(R̄)

]

[

∇̄µ∇̄νh− 1

4
ḡµν�̄h

]

. (C.15)

which is almost the expected equation for the massless spin-2 field ĥµν , i.e., eq. (C.10),

except that it includes a source term that is linear in the trace h. We can nevertheless

define a new traceless tensor satisfying an equation with the same form as eq. (C.10). This
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is given by29

tµν ≡ ĥµν −
[

3λ̂f ′′(R̄)

α̂

]

[

∇̄µ∇̄νh− 1

4
ḡµν�̄h

]

. (C.16)

Indeed, using (C.14) and (C.15), it can be shown that this tensor satisfies

− α̂

2

[

�̄+
2

L̃2

]

tµν = 0 . (C.17)

Hence tµν represents the physical massless spin-2 graviton coupling to the holographic

stress tensor. Note that the redefinition in eq. (C.16) is trivial whenever f ′′(R̄) = 0 (as

in Einstein gravity), so in that case, the traceless perturbation ĥµν already corresponds to

the massless spin-two mode.

It is interesting to consider the scalar degree of freedom more explicitly. Hence let

us consider the case of R2 gravity, for which we write λ̂ f(R) = λ1L
2R2. Hence we

have λ̂ f ′(R̄) = 2λ1L
2R̄ = −24λ1L

2/L̃2 and λ̂ f ′′(R̄) = 2λ1L
2. Further, as noted in

section 2.1.1, the solution of eq. (C.4) is simply L̃ = L. Combining these expressions in

eq. (C.13) then yields

[

λ1 �̄− 1

6L2

]

h = 0 , (C.18)

and hence h obeys the standard equation of motion for a free scalar with mass:

m2 = 1/(6λ1L
2). Using the standard holographic dictionary [88, 89, 110], h is dual to a

scalar operator in the three-dimensional boundary CFT with

∆ =
3

2
+

√

9

4
+

1

6λ1
. (C.19)

Hence if λ1 is small and positive, h corresponds to a highly irrelevant operator with

∆ ≃ 1/
√
6λ1 and with positive norm. If λ1 is small and negative, ∆ becomes imaginary

indicating that the standard AdS/CFT dictionary is breaking down. In this limit, h

is a ghost-like scalar with a tachyonic mass which exceeds the Breitenloner-Freedman

bound [111, 112]. Hence the bulk theory would be inherently unstable if we tried to

interpret the corresponding R2 gravity as a complete theory rather than as an effective

low energy theory. Further, for R2 gravity, eqs. (C.15) and (C.16) reduce to

1

2

[

∇̄µ∇̄νh− 1

4
ḡµν�̄h

]

[1− 36λ1]−
1− 24λ1

2

[

�̄+
2

L̃2

]

ĥµν = 0 , (C.20)

and

tµν ≡ ĥµν −
[

6λ1
1− 24λ1

] [

∇̄µ∇̄νh− 1

4
ḡµν�̄h

]

, (C.21)

which is in agreement with the results obtained in [85, 113].

29The procedure followed here for identifying the physical spin-two field closely follows [85], where the

analysis was done for curvature-squared gravities.
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D Free field results for σ

In [7, 31, 32], the first fourteen coefficients in Taylor expansion of a(Ω) around Ω = π were

computed for a free scalar and a free Dirac fermion using quantum field theory techniques.

Of course, in eq. (1.4), we identified the first coefficient in this expansion as the charge σ,

i.e., a(Ω) = σ (Ω− π)2 +O
(

(Ω− π)4
)

. In the discussion section, we saw that the ratio of

σ with the central charge CT in the two-point function of the stress tensor (3.44) appears

to satisfy a universal relation of the form

σ

CT

=
π2

24
. (D.1)

This analytic result was obtained using holographic techniques in the previous sections,

and holds for all the higher-order gravity theories which were considered in this paper.

In addition, the same ratio was obtained for the free scalar and the free fermion with an

accuracy better than 0.0003% using the results for σ in [7] and for CT in [87]. The values for

CT,scalar and CT,fermion are exact — see eq. (4.8). However, the values of σscalar and σfermion

can only be computed numerically. In particular, they can be obtained by evaluation of

the following (monstruous) integrals30

σscalar = −2π

∫ +∞

1/2
dm

∫ +∞

0
db µH a(1− a)m sech2(πb) , (D.2)

σfermion = −4π

∫ +∞

1/2
dm

∫ +∞

0
db

[

µH a(1− a)− F

4π

]

m cosech2(πb) , (D.3)

where

H ≡ − c

2h
X1T − 1

2c
X2T +

1

16πa(a− 1)
,

h ≡ 2
(

a(a− 1) +m2
)

sin2(πa)

m2
(

cos(2πa) + cos
(

π
√
1− 4m2

)) ,

c ≡
22a−1πa(1− a) sec

(

π
2

(

2a+
√
1− 4m2

))

Γ
(

3
2 − a+ 1

2

√
1− 4m2

)

mΓ(2− a)2 Γ
(

a− 1
2 + 1

2

√
1− 4m2

) ,

X1 ≡ −
Γ(−a)

[

π sinh
(πµ

2

)

+ i cosh
(πµ

2

)

(

ψ(0)
(

a+ iµ
2 + 1

2

)

− ψ(0)
(

a− iµ
2 + 1

2

))]

22a+1µΓ(a+ 1)Γ
(

−a− iµ
2 + 1

2

)

Γ
(

−a+ iµ
2 + 1

2

)

(cos(2πa) + cosh(πµ))
,

X2 ≡ “X1” with a replaced by (1− a), (D.4)

T ≡
√

h(a2 − a+ (h+ 1)m2) ,

F ≡ −F1

F2
, (D.5)

F1 ≡ a2
(

8πc2
(

m2 + 1
)

X1T + 8πh
(

m2 + 1
)

X2T − ch
)

− 16πa3T
(

c2X1 + hX2

)

+a
(

−8πc2m2X1T − 8πhm2X2T + ch
)

+ 8πa4T
(

c2X1 + hX2

)

− ch(h+ 1)m2 ,

30We wish to thank Horacio Casini for providing these integrals, which are the ones originally used in [7].

– 46 –



J
H
E
P
0
8
(
2
0
1
5
)
0
6
8

F2 ≡ 8c h
(

a2 − a+m2
)2

(2a− 1)µ
,

µ ≡
√

4m2 − 1 ,

a ≡











i b+ 1
2 for the scalar ,

i b for the fermion ,

and ψ(0) denotes the usual digamma function i.e., ψ(0)(z) = d
dz log Γ(z). Notice that

eqs. (D.2) and (D.3) look very different and without further insight, there is no reason

to believe that these integrals should produce simple fractions or that the results should

agree up to a factor 2.

We can compute these integrals (D.2) and (D.3) numerically with arbitrary precision

(although, of course, the computation time increases considerably as we increase the pre-

cision). Our results indicate that both eqs. (D.2) and (D.3) exactly produce the results

predicted assuming that σ/CT is given by the universal constant in eq. (D.1), i.e.,

σscalar =
1

256
= 0.00390625 , σfermion =

1

128
= 0.0078125 . (D.6)

We have verified this result to a precision of approximately one part in 1012. In particular,

we find

σscalar = 0.00390625000000(5) , σfermion = 0.00781250000000(7) , (D.7)

where the numbers in brackets are out of the range of accuracy of our computation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.I. Latorre, E. Rico and G. Vidal, Ground state entanglement in quantum spin chains,

Quant. Inf. Comput. 4 (2004) 48 [quant-ph/0304098] [INSPIRE].

[2] M.B. Plenio, J. Eisert, J. Dreissig and M. Cramer, Entropy, entanglement and area:

analytical results for harmonic lattice systems, Phys. Rev. Lett. 94 (2005) 060503

[quant-ph/0405142] [INSPIRE].

[3] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev.

Mod. Phys. 80 (2008) 517 [quant-ph/0703044] [INSPIRE].

[4] T. Grover, Entanglement monotonicity and the stability of gauge theories in three spacetime

dimensions, Phys. Rev. Lett. 112 (2014) 151601 [arXiv:1211.1392] [INSPIRE].

[5] M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information,

Cambridge Univ. Press., Cambridge U.K. (2000).

[6] M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area laws in quantum systems:

mutual information and correlations, Phys. Rev. Lett. 100 (2008) 070502

[arXiv:0704.3906].

– 47 –

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/quant-ph/0304098
http://inspirehep.net/search?p=find+EPRINT+quant-ph/0304098
http://dx.doi.org/10.1103/PhysRevLett.94.060503
http://arxiv.org/abs/quant-ph/0405142
http://inspirehep.net/search?p=find+EPRINT+quant-ph/0405142
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://arxiv.org/abs/quant-ph/0703044
http://inspirehep.net/search?p=find+EPRINT+quant-ph/0703044
http://dx.doi.org/10.1103/PhysRevLett.112.151601
http://arxiv.org/abs/1211.1392
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1392
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://arxiv.org/abs/0704.3906


J
H
E
P
0
8
(
2
0
1
5
)
0
6
8

[7] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42

(2009) 504007 [arXiv:0905.2562] [INSPIRE].

[8] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat.

Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[9] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl.

Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

[10] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006)

110404 [hep-th/0510092] [INSPIRE].

[11] H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B

600 (2004) 142 [hep-th/0405111] [INSPIRE].

[12] N. Shiba and T. Takayanagi, Volume law for the entanglement entropy in non-local QFTs,

JHEP 02 (2014) 033 [arXiv:1311.1643] [INSPIRE].

[13] H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields,

Phys. Rev. D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].

[14] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048]

[INSPIRE].

[15] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black

holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

[16] C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55

[hep-th/9401072] [INSPIRE].

[17] E. Bianchi and R.C. Myers, On the architecture of spacetime geometry, Class. Quant. Grav.

31 (2014) 214002 [arXiv:1212.5183] [INSPIRE].

[18] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[19] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

[20] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61

(2013) 781 [arXiv:1306.0533] [INSPIRE].

[21] T. Nishioka and T. Takayanagi, AdS bubbles, entropy and closed string tachyons, JHEP 01

(2007) 090 [hep-th/0611035] [INSPIRE].

[22] A. Lewkowycz, Holographic entanglement entropy and confinement, JHEP 05 (2012) 032

[arXiv:1204.0588] [INSPIRE].

[23] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939

[INSPIRE].

[24] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys.

Rev. Lett. 96 (2006) 110405 [cond-mat/0510613].

[25] A. Hamma, R. Ionicioiu and P. Zanardi, Ground state entanglement and geometric entropy

in the Kitaev model, Phys. Lett. A 337 (2005) 22 [quant-ph/0406202].

[26] R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010)

046006 [arXiv:1006.1263] [INSPIRE].

– 48 –

http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://arxiv.org/abs/0905.2562
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2562
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://arxiv.org/abs/hep-th/0405152
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405152
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://arxiv.org/abs/0709.2140
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2140
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://arxiv.org/abs/hep-th/0510092
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510092
http://dx.doi.org/10.1016/j.physletb.2004.08.072
http://dx.doi.org/10.1016/j.physletb.2004.08.072
http://arxiv.org/abs/hep-th/0405111
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405111
http://dx.doi.org/10.1007/JHEP02(2014)033
http://arxiv.org/abs/1311.1643
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1643
http://dx.doi.org/10.1103/PhysRevD.89.085012
http://arxiv.org/abs/1312.1183
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1183
http://dx.doi.org/10.1103/PhysRevLett.71.666
http://arxiv.org/abs/hep-th/9303048
http://inspirehep.net/search?p=find+EPRINT+hep-th/9303048
http://dx.doi.org/10.1103/PhysRevD.34.373
http://inspirehep.net/search?p=find+J+Phys.Rev.,D34,373
http://dx.doi.org/10.1016/0370-2693(94)91007-3
http://arxiv.org/abs/hep-th/9401072
http://inspirehep.net/search?p=find+EPRINT+hep-th/9401072
http://dx.doi.org/10.1088/0264-9381/31/21/214002
http://dx.doi.org/10.1088/0264-9381/31/21/214002
http://arxiv.org/abs/1212.5183
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5183
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605073
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1002/prop.201300020
http://arxiv.org/abs/1306.0533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0533
http://dx.doi.org/10.1088/1126-6708/2007/01/090
http://dx.doi.org/10.1088/1126-6708/2007/01/090
http://arxiv.org/abs/hep-th/0611035
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611035
http://dx.doi.org/10.1007/JHEP05(2012)032
http://arxiv.org/abs/1204.0588
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0588
http://arxiv.org/abs/0907.2939
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2939
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://arxiv.org/abs/cond-mat/0510613
http://dx.doi.org/10.1016/j.physleta.2005.01.060
http://arxiv.org/abs/quant-ph/0406202
http://dx.doi.org/10.1103/PhysRevD.82.046006
http://dx.doi.org/10.1103/PhysRevD.82.046006
http://arxiv.org/abs/1006.1263
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1263


J
H
E
P
0
8
(
2
0
1
5
)
0
6
8

[27] R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011)

125 [arXiv:1011.5819] [INSPIRE].

[28] D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field

theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

[29] I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP 10

(2011) 038 [arXiv:1105.4598] [INSPIRE].

[30] H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys.

Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].

[31] H. Casini and M. Huerta, Universal terms for the entanglement entropy in 2 + 1

dimensions, Nucl. Phys. B 764 (2007) 183 [hep-th/0606256] [INSPIRE].

[32] H. Casini, M. Huerta and L. Leitao, Entanglement entropy for a Dirac fermion in three

dimensions: vertex contribution, Nucl. Phys. B 814 (2009) 594 [arXiv:0811.1968]

[INSPIRE].

[33] T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy,

JHEP 02 (2007) 042 [hep-th/0608213] [INSPIRE].

[34] E. Fradkin and J.E. Moore, Entanglement entropy of 2D conformal quantum critical points:

hearing the shape of a quantum drum, Phys. Rev. Lett. 97 (2006) 050404

[cond-mat/0605683] [INSPIRE].

[35] L.-Y. Hung, R.C. Myers and M. Smolkin, Some calculable contributions to holographic

entanglement entropy, JHEP 08 (2011) 039 [arXiv:1105.6055] [INSPIRE].

[36] L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of

gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

[37] N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement

entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].

[38] X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for

theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].

[39] P. Bueno and P.F. Ramirez, Higher-curvature corrections to holographic entanglement

entropy in geometries with hyperscaling violation, JHEP 12 (2014) 078 [arXiv:1408.6380]

[INSPIRE].

[40] R.C. Myers and A. Singh, Entanglement entropy for singular surfaces, JHEP 09 (2012) 013

[arXiv:1206.5225] [INSPIRE].

[41] E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical

points, Annals Phys. 310 (2004) 493 [cond-mat/0311466] [INSPIRE].

[42] A.B. Kallin, M.B. Hastings, R.G. Melko and R.R.P. Singh, Anomalies in the entanglement

properties of the square-lattice heisenberg model, Phys. Rev. B 84 (2011) 165134

[arXiv:1107.2840].

[43] A.B. Kallin, K. Hyatt, R.R.P. Singh and R.G. Melko, Entanglement at a two-dimensional

quantum critical point: a numerical linked-cluster expansion study, Phys. Rev. Lett. 110

(2013) 135702 [arXiv:1212.5269].

[44] R.R.P. Singh, R.G. Melko and J. Oitmaa, Thermodynamic singularities in the entanglement

entropy at a two-dimensional quantum critical point, Phys. Rev. B 86 (2012) 075106

[arXiv:1204.1340].

– 49 –

http://dx.doi.org/10.1007/JHEP01(2011)125
http://dx.doi.org/10.1007/JHEP01(2011)125
http://arxiv.org/abs/1011.5819
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5819
http://dx.doi.org/10.1007/JHEP06(2011)102
http://arxiv.org/abs/1103.1181
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.1181
http://dx.doi.org/10.1007/JHEP10(2011)038
http://dx.doi.org/10.1007/JHEP10(2011)038
http://arxiv.org/abs/1105.4598
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4598
http://dx.doi.org/10.1103/PhysRevD.85.125016
http://dx.doi.org/10.1103/PhysRevD.85.125016
http://arxiv.org/abs/1202.5650
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5650
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.012
http://arxiv.org/abs/hep-th/0606256
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606256
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.003
http://arxiv.org/abs/0811.1968
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1968
http://dx.doi.org/10.1088/1126-6708/2007/02/042
http://arxiv.org/abs/hep-th/0608213
http://inspirehep.net/search?p=find+EPRINT+hep-th/0608213
http://dx.doi.org/10.1103/PhysRevLett.97.050404
http://arxiv.org/abs/cond-mat/0605683
http://inspirehep.net/search?p=find+EPRINT+cond-mat/0605683
http://dx.doi.org/10.1007/JHEP08(2011)039
http://arxiv.org/abs/1105.6055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.6055
http://dx.doi.org/10.1103/PhysRevB.85.035121
http://arxiv.org/abs/1112.0573
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0573
http://dx.doi.org/10.1007/JHEP01(2012)125
http://arxiv.org/abs/1111.1023
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1023
http://dx.doi.org/10.1007/JHEP06(2012)041
http://arxiv.org/abs/1201.1905
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1905
http://dx.doi.org/10.1007/JHEP12(2014)078
http://arxiv.org/abs/1408.6380
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6380
http://dx.doi.org/10.1007/JHEP09(2012)013
http://arxiv.org/abs/1206.5225
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5225
http://dx.doi.org/10.1016/j.aop.2004.01.004
http://arxiv.org/abs/cond-mat/0311466
http://inspirehep.net/search?p=find+EPRINT+cond-mat/0311466
http://dx.doi.org/10.1103/PhysRevB.84.165134
http://arxiv.org/abs/1107.2840
http://dx.doi.org/10.1103/PhysRevLett.110.135702
http://dx.doi.org/10.1103/PhysRevLett.110.135702
http://arxiv.org/abs/1212.5269
http://dx.doi.org/10.1103/PhysRevB.86.075106
http://arxiv.org/abs/1204.1340


J
H
E
P
0
8
(
2
0
1
5
)
0
6
8

[45] S. Inglis and R.G. Melko, Entanglement at a two-dimensional quantum critical point: a

T = 0 projector quantum Monte Carlo study, New J. Phys. 15 (2013) 073048

[arXiv:1305.1069].

[46] A.B. Kallin, E.M. Stoudenmire, P. Fendley, R.R.P. Singh and R.G. Melko, Corner

contribution to the entanglement entropy of an O(3) quantum critical point in 2 + 1

dimensions, J. Stat. Mech. 1406 (2014) P06009 [arXiv:1401.3504] [INSPIRE].

[47] P. Bueno, R.C. Myers and W. Witczak-Krempa, Universality of corner entanglement in

conformal field theories, Phys. Rev. Lett. 115 (2015) 021602 [arXiv:1505.04804] [INSPIRE].

[48] S. Sarkar and A.C. Wall, Generalized second law at linear order for actions that are

functions of Lovelock densities, Phys. Rev. D 88 (2013) 044017 [arXiv:1306.1623]

[INSPIRE].

[49] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[50] D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006)

018 [hep-th/0606184] [INSPIRE].

[51] L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher

curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

[52] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock

gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

[53] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427

[gr-qc/9307038] [INSPIRE].

[54] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587

[gr-qc/9312023] [INSPIRE].

[55] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

[56] T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys.

Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].

[57] D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional geometry of squashed

cones, Phys. Rev. D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].

[58] R.C. Myers, R. Pourhasan and M. Smolkin, On spacetime entanglement, JHEP 06 (2013)

013 [arXiv:1304.2030] [INSPIRE].

[59] X. Dong, Holographic entanglement entropy for general higher derivative gravity, JHEP 01

(2014) 044 [arXiv:1310.5713] [INSPIRE].

[60] J. Camps, Generalized entropy and higher derivative gravity, JHEP 03 (2014) 070

[arXiv:1310.6659] [INSPIRE].

[61] A. Bhattacharyya, A. Kaviraj and A. Sinha, Entanglement entropy in higher derivative

holography, JHEP 08 (2013) 012 [arXiv:1305.6694] [INSPIRE].

[62] A. Bhattacharyya, M. Sharma and A. Sinha, On generalized gravitational entropy, squashed

cones and holography, JHEP 01 (2014) 021 [arXiv:1308.5748] [INSPIRE].

[63] A. Bhattacharyya and M. Sharma, On entanglement entropy functionals in higher

derivative gravity theories, JHEP 10 (2014) 130 [arXiv:1405.3511] [INSPIRE].

– 50 –

http://dx.doi.org/10.1088/1367-2630/15/7/073048
http://arxiv.org/abs/1305.1069
http://dx.doi.org/10.1088/1742-5468/2014/06/P06009
http://arxiv.org/abs/1401.3504
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.3504
http://dx.doi.org/10.1103/PhysRevLett.115.021602
http://arxiv.org/abs/1505.04804
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04804
http://dx.doi.org/10.1103/PhysRevD.88.044017
http://arxiv.org/abs/1306.1623
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1623
http://dx.doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
http://dx.doi.org/10.1088/1126-6708/2006/09/018
http://dx.doi.org/10.1088/1126-6708/2006/09/018
http://arxiv.org/abs/hep-th/0606184
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606184
http://dx.doi.org/10.1007/JHEP04(2011)025
http://arxiv.org/abs/1101.5813
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5813
http://dx.doi.org/10.1007/JHEP07(2011)109
http://arxiv.org/abs/1101.5781
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5781
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://arxiv.org/abs/gr-qc/9307038
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9307038
http://dx.doi.org/10.1103/PhysRevD.49.6587
http://arxiv.org/abs/gr-qc/9312023
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9312023
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arxiv.org/abs/gr-qc/9403028
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9403028
http://dx.doi.org/10.1103/PhysRevLett.70.3684
http://dx.doi.org/10.1103/PhysRevLett.70.3684
http://arxiv.org/abs/hep-th/9305016
http://inspirehep.net/search?p=find+EPRINT+hep-th/9305016
http://dx.doi.org/10.1103/PhysRevD.88.044054
http://arxiv.org/abs/1306.4000
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4000
http://dx.doi.org/10.1007/JHEP06(2013)013
http://dx.doi.org/10.1007/JHEP06(2013)013
http://arxiv.org/abs/1304.2030
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.2030
http://dx.doi.org/10.1007/JHEP01(2014)044
http://dx.doi.org/10.1007/JHEP01(2014)044
http://arxiv.org/abs/1310.5713
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.5713
http://dx.doi.org/10.1007/JHEP03(2014)070
http://arxiv.org/abs/1310.6659
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6659
http://dx.doi.org/10.1007/JHEP08(2013)012
http://arxiv.org/abs/1305.6694
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6694
http://dx.doi.org/10.1007/JHEP01(2014)021
http://arxiv.org/abs/1308.5748
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.5748
http://dx.doi.org/10.1007/JHEP10(2014)130
http://arxiv.org/abs/1405.3511
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3511


J
H
E
P
0
8
(
2
0
1
5
)
0
6
8

[64] R.-X. Miao and W.-Z. Guo, Holographic entanglement entropy for the most general higher

derivative gravity, arXiv:1411.5579 [INSPIRE].

[65] A.F. Astaneh, A. Patrushev and S.N. Solodukhin, Entropy discrepancy and total derivatives

in trace anomaly, arXiv:1412.0452 [INSPIRE].

[66] R.-X. Miao, Universal terms of entanglement entropy for 6d CFTs, arXiv:1503.05538

[INSPIRE].

[67] Y. Huang and R.-X. Miao, A note on the resolution of the entropy discrepancy,

arXiv:1504.02301 [INSPIRE].

[68] M. Smolkin, private communication.

[69] D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498

[INSPIRE].

[70] D. Lovelock, Divergence-free tensorial concomitants, Aequationes mathematicae 4 (1970)

127.

[71] T.P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev. Mod. Phys. 82 (2010) 451

[arXiv:0805.1726] [INSPIRE].

[72] D.J. Gross and J.H. Sloan, The quartic effective action for the heterotic string, Nucl. Phys.

B 291 (1987) 41 [INSPIRE].

[73] S. Bhattacharjee, S. Sarkar and A. Wall, The holographic entropy increases in quadratic

curvature gravity, arXiv:1504.04706 [INSPIRE].

[74] A.C. Wall, A second law for higher curvature gravity, arXiv:1504.08040 [INSPIRE].

[75] R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36

(1987) 392 [INSPIRE].

[76] R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the

AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

[77] X.O. Camanho, J.D. Edelstein and J.M. Sánchez De Santos, Lovelock theory and the

AdS/CFT correspondence, Gen. Rel. Grav. 46 (2014) 1637 [arXiv:1309.6483] [INSPIRE].

[78] R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity,

JHEP 08 (2010) 035 [arXiv:1004.2055] [INSPIRE].

[79] A. Buchel, J. Escobedo, R.C. Myers, M.F. Paulos, A. Sinha and M. Smolkin, Holographic

GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].

[80] R.C. Myers and A. Singh, Comments on holographic entanglement entropy and RG flows,

JHEP 04 (2012) 122 [arXiv:1202.2068] [INSPIRE].

[81] H. Casini, M. Huerta, R.C. Myers and A. Yale, Mutual information and the F-theorem, in

preparation.

[82] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement

entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

[83] H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of

freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].

[84] T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from

entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

– 51 –

http://arxiv.org/abs/1411.5579
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5579
http://arxiv.org/abs/1412.0452
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.0452
http://arxiv.org/abs/1503.05538
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.05538
http://arxiv.org/abs/1504.02301
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.02301
http://dx.doi.org/10.1063/1.1665613
http://inspirehep.net/search?p=find+J+J.Math.Phys.,12,498
http://dx.doi.org/10.1007/BF01817753
http://dx.doi.org/10.1007/BF01817753
http://dx.doi.org/10.1103/RevModPhys.82.451
http://arxiv.org/abs/0805.1726
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.1726
http://dx.doi.org/10.1016/0550-3213(87)90465-2
http://dx.doi.org/10.1016/0550-3213(87)90465-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B291,41
http://arxiv.org/abs/1504.04706
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.04706
http://arxiv.org/abs/1504.08040
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.08040
http://dx.doi.org/10.1103/PhysRevD.36.392
http://dx.doi.org/10.1103/PhysRevD.36.392
http://inspirehep.net/search?p=find+J+Phys.Rev.,D36,392
http://dx.doi.org/10.1103/PhysRevD.60.104001
http://arxiv.org/abs/hep-th/9903238
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903238
http://dx.doi.org/10.1007/s10714-013-1637-3
http://arxiv.org/abs/1309.6483
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6483
http://dx.doi.org/10.1007/JHEP08(2010)035
http://arxiv.org/abs/1004.2055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2055
http://dx.doi.org/10.1007/JHEP03(2010)111
http://arxiv.org/abs/0911.4257
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4257
http://dx.doi.org/10.1007/JHEP04(2012)122
http://arxiv.org/abs/1202.2068
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2068
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arxiv.org/abs/1102.0440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
http://dx.doi.org/10.1007/JHEP04(2013)162
http://arxiv.org/abs/1202.2070
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2070
http://dx.doi.org/10.1007/JHEP03(2014)051
http://arxiv.org/abs/1312.7856
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7856


J
H
E
P
0
8
(
2
0
1
5
)
0
6
8

[85] J. Smolic and M. Taylor, Higher derivative effects for 4d AdS gravity, JHEP 06 (2013) 096

[arXiv:1301.5205] [INSPIRE].

[86] J. Erdmenger and H. Osborn, Conserved currents and the energy momentum tensor in

conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431

[hep-th/9605009] [INSPIRE].

[87] H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for

general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

[88] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[89] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[90] H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4

conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].

[91] R.C. Myers and B. Robinson, Black holes in quasi-topological gravity, JHEP 08 (2010) 067

[arXiv:1003.5357] [INSPIRE].

[92] T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J.

Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

[93] I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A

36 (2003) L205 [cond-mat/0212631].

[94] T. Nishioka and K. Yonekura, On RG flow of τRR for supersymmetric field theories in

three-dimensions, JHEP 05 (2013) 165 [arXiv:1303.1522] [INSPIRE].

[95] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the three-dimensional

supersymmetric Ising model, Phys. Rev. Lett. 115 (2015) 051601 [arXiv:1502.04124]

[INSPIRE].

[96] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four

supercharges, arXiv:1503.02081 [INSPIRE].

[97] E.M. Stoudenmire, P. Gustainis, R. Johal, S. Wessel and R.G. Melko, Corner contribution

to the entanglement entropy of strongly interacting O(2) quantum critical systems in 2 + 1

dimensions, Phys. Rev. B 90 (2014) 235106 [INSPIRE].

[98] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP

06 (2014) 091 [arXiv:1307.6856] [INSPIRE].

[99] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field

theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231]

[INSPIRE].

[100] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in

higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

[101] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and

causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

[102] A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084

[arXiv:0812.2521] [INSPIRE].

[103] L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, in preparation.

– 52 –

http://dx.doi.org/10.1007/JHEP06(2013)096
http://arxiv.org/abs/1301.5205
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.5205
http://dx.doi.org/10.1016/S0550-3213(96)00545-7
http://arxiv.org/abs/hep-th/9605009
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605009
http://dx.doi.org/10.1006/aphy.1994.1045
http://arxiv.org/abs/hep-th/9307010
http://inspirehep.net/search?p=find+EPRINT+hep-th/9307010
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://dx.doi.org/10.1016/S0550-3213(98)00443-X
http://arxiv.org/abs/hep-th/9804083
http://inspirehep.net/search?p=find+EPRINT+hep-th/9804083
http://dx.doi.org/10.1007/JHEP08(2010)067
http://arxiv.org/abs/1003.5357
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5357
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://arxiv.org/abs/0905.0932
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0932
http://dx.doi.org/10.1088/0305-4470/36/14/101
http://dx.doi.org/10.1088/0305-4470/36/14/101
http://arxiv.org/abs/cond-mat/0212631
http://dx.doi.org/10.1007/JHEP05(2013)165
http://arxiv.org/abs/1303.1522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1522
http://dx.doi.org/10.1103/PhysRevLett.115.051601
http://arxiv.org/abs/1502.04124
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.04124
http://arxiv.org/abs/1503.02081
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.02081
http://dx.doi.org/10.1103/PhysRevB.90.235106
http://inspirehep.net/search?p=find+J+Phys.Rev.,B90,235106
http://dx.doi.org/10.1007/JHEP06(2014)091
http://dx.doi.org/10.1007/JHEP06(2014)091
http://arxiv.org/abs/1307.6856
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6856
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://arxiv.org/abs/hep-th/0405231
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405231
http://dx.doi.org/10.1103/PhysRevD.77.126006
http://arxiv.org/abs/0712.0805
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0805
http://dx.doi.org/10.1103/PhysRevLett.100.191601
http://arxiv.org/abs/0802.3318
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3318
http://dx.doi.org/10.1088/1126-6708/2009/03/084
http://arxiv.org/abs/0812.2521
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.2521


J
H
E
P
0
8
(
2
0
1
5
)
0
6
8

[104] V. Rosenhaus and M. Smolkin, Entanglement entropy: a perturbative calculation, JHEP 12

(2014) 179 [arXiv:1403.3733] [INSPIRE].

[105] V. Rosenhaus and M. Smolkin, Entanglement entropy for relevant and geometric

perturbations, JHEP 02 (2015) 015 [arXiv:1410.6530] [INSPIRE].

[106] P. Bueno and R.C. Myers, Universal entanglement for higher dimensional cones,

arXiv:1508.00587 [INSPIRE].

[107] M. Mezei, Entanglement entropy across a deformed sphere, Phys. Rev. D 91 (2015) 045038

[arXiv:1411.7011] [INSPIRE].

[108] A. Allais and M. Mezei, Some results on the shape dependence of entanglement and Rényi
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