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Abstract. This paper proposes a curvature-based corner detector that
detects both fine and coarse features accurately at low computational
cost. First, it extracts contours from a Canny edge map. Second, it com-
putes the absolute value of curvature of each point on a contour at a low
scale and regards local maxima of absolute curvature as initial corner
candidates. Third, it uses an adaptive curvature threshold to remove
round corners from the initial list. Finally, false corners due to quantiza-
tion noise and trivial details are eliminated by evaluating the angles of
corner candidates in a dynamic region of support. The proposed detector
was compared with popular corner detectors on planar curves and gray-
level images, respectively, in a subjective manner as well as with a fea-
ture correspondence test. Results reveal that the proposed detector per-
forms extremely well in both fields. © 2008 Society of Photo-Optical
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1 Introduction

Corners in images represent critical information in describ-
ing object features that are essential for pattern recognition
and identification. There are many applications that rely on
the successful detection of corners, including motion track-
ing, object recognition, and stereo matching.

1–3
As a result,

a number of corner detection methods have been proposed
in the past.

Kitchen and Rosenfeld
4

proposed a corner detection
scheme based on a differential operator that determines the
first and second partial derivatives of an image, from which
corners are identified as local extrema. This method is sen-
sitive to noise, and suffers from missing junctions and poor
localization. Moravec

5
observed that the difference be-

tween adjacent pixels of an edge or a uniform part of the
image is small and at the corner the difference is signifi-
cantly high in all directions. The idea was later used by
Harris

6
to develop the Plessey algorithm. This method pro-

vides good repeatability under rotation and various illumi-
nations, and is often used for stereo matching and image
database retrieval. Unfortunately, it is sensitive to quantiza-
tion noise and suffers from a loss in localization accuracy,
particularly at certain junction types. Smith and Brady

7
pro-

posed a detector named SUSAN using a circular mask for
corner and edge detection. Although SUSAN’s corner lo-
calization and noise robustness are better than those of the
previously mentioned algorithms, it is time-consuming in
obtaining an area �called the USAN� and finding corners in
large windows. Another formulation of USAN was pro-
posed in Ref. 8, in which two oriented cross operators,
called crosses as oriented pair �COP�, were used instead of
circular mask as in Ref. 7.

Other corner detectors are described in Ref. 9–23 . In
summary, most of them are single-scale detectors and work
well if the image has similar-size features, but are ineffec-
tive otherwise. As a result, either the fine or the coarse
features are poorly segmented, which is unacceptable be-
cause natural images normally contain both kinds of fea-
tures.

To alleviate this problem, Rattarangsi and Chin
24

pro-
posed a multiscale algorithm based on curvature scale
space �CSS�, which can detect corners of planar curves.
Although it can detect multiple-size features, the algorithm
is computationally intensive due to parsing features are the
entire scale space. Moreover, it detects false corners on
circles. Some other multiscale approaches do not check all
the scales, e.g., the technique for smoothing a curve adap-
tively based on its roughness in the region, as proposed in
Ref. 25. Given that the CSS technique is suitable for recov-
ering invariant geometric features of a planar curve at mul-
tiple scales,

26
Mokhtarian et al. proposed two CSS corner

detectors
27,28

for gray-level images. These CSS detectors
perform well in corner detection and are robust to noise,
but they have problems too.

To begin with, we quote the definition of curvature, K,
from Ref. 26 as follows:

K�u,�� =
Ẋ�u,��Ÿ�u,�� − Ẍ�u,��Ẏ�u,��

�Ẋ�u,��2 + Ẏ�u,��2�1.5
, �1�

where Ẋ�u ,��=x�u� � ġ�u ,��, Ẍ�u ,��=x�u� � g̈�u ,��,

Ẏ�u ,��=y�u� � ġ�u ,��, Ÿ�u ,��=y�u� � g̈�u ,��, and � is

the convolution operator, while g�u ,�� denotes a Gaussian

of width �, and ġ�u ,��, g̈�u ,�� are the first and second

derivatives of g�u ,��, respectively. The following steps are0091-3286/2008/$25.00 © 2008 SPIE

Optical Engineering 47�5�, 057008 �May 2008�

Optical Engineering May 2008/Vol. 47�5�057008-1



used by the original CSS algorithm
27

to detect corners of an
image:

1. Apply Canny edge detection to the gray-level image,
and obtain a binary edge map.

2. Extract edge contours from the edge map. When the
edge reaches an end point, fill the gap and continue
the extraction if the end point is nearly connected to
another end point, or mark this point as a T-junction
corner if the end point is nearly connected to an edge
contour, but not to another end point.

3. From each contour, compute curvature values at a
high scale, �high. Then consider the local maxima as
initial corners whose absolute curvatures are above
the threshold t and twice as high as one of the neigh-
boring local minima; t in this case is selected manu-
ally.

4. Track the corners from the highest scale to the lowest
scale to improve the localization error.

5. Compare the T-junction corners with other corners,
and remove one of any two corners that are close to
each other.

There are a number of problems associated with this
algorithm. Firstly, a single scale is used in determining the
number of corners �step 3�, and multiple scales are used
only for localization. Not surprisingly, it misses true cor-
ners when �high is large and detects false corners when �high

is small. If the algorithm is applied to a complex image,
this effect becomes more prominent, and choosing an ap-
propriate �high becomes challenging. Secondly, as local
maxima of the absolute curvature function make up the set
of corner candidates, a corner candidate can be a true cor-
ner, a rounded corner, or noise. Mokhtarian and Suomela in
Ref. 27 asserted that the curvature of a true corner has a
higher value than that of a round corner or noise, but in
practice it is very easy to find a corner due to noise that has
higher curvature value than an obtuse corner. Thirdly, the
performance of the algorithm depends on the selection of
threshold value t, the proper value of which may change
from image to image, or even from one edge contour to
another. Lastly, tracking is performed to improve localiza-
tion by computing curvature at a lower scale and examining
the corner candidates in a small neighborhood of previous
corners. When multiple corner candidates exist in the small
neighborhood, the corners may be mismatched. This situa-
tion is likely to result in a poor localization performance.

The enhanced CSS algorithm
28

dealt with some of these
problems, by using different scales of the CSS for contours
with different lengths, and smoothing the curvature func-
tion for long contours to remove false maxima. However,
the criterion for selecting contour lengths is not explicit.
Such a criterion is obviously important, for it determines
the success of the algorithm. On the other hand, it is rea-
sonable to believe that the meaningful scale value does not
necessarily depend on the contour length. The contour
length is not a major attribute of a curve, since the algo-
rithm for edge contour extraction can alter it. In fact,
different-size features, which need different scales, can ex-
ist on the same contour. Although the enhanced CSS offers
better results than the original CSS, there is much room for
improvement.

Our survey revealed that corner detection involves ex-
tracting corners in gray-level images and also in digital
curves, which can be extended to gray-level images by
edge detection and contour extraction. The former approach
regards a corner as an individual feature, and detects cor-
ners only according to their local properties �curvature, gra-
dient magnitude, etc.�, while the latter approach has the
potential to detect corners according to their global proper-
ties by considering the relationship between neighboring
features in the contours. Another observation is that con-
ventional corner detectors are not able to distinguish round
corners from obtuse corners. Broadly, a round corner is a
point on an arc, which has the highest curvature among the
points on the arc, but the curvature differences between
these points are small. On the other hand, an obtuse corner,
whose absolute curvature may be similar to that of a round
corner, always has a prominent point whose curvature is
significantly larger than the curvature of its neighboring
points. Obtuse corners are much more valuable and useful
for representing the shape of objects than round corners,
but they often are not appropriately distinguished by exist-
ing corner detectors. Furthermore, there is no explicit cri-
terion to distinguish round corner and obtuse corner.

To summarize, the goals of this paper are: �1� to con-
sider corners to be defined by global and local curvature
properties, �2� to distinguish round corners from obtuse cor-
ners, and �3� to parameterize the approach.

This paper proposes a new and improved corner detec-
tion method, of which a preliminary version has been de-
scribed in Ref. 29. It relies on an edge map from which
absolute curvature is computed at a relatively low scale to
retain almost all corners, true or false. All the local maxima
of the absolute curvature function are regarded as corner
candidates. We assume that true corners are completely in-
cluded in this set of corner candidates, together with some
false corners. This assumption is only true when the edge
map is extracted using a low threshold and the scale used is
low enough. In fact, both conditions are easy to achieve.

Since a local maximum may represent a true corner, a
round corner, or simply noise,

27
two criteria are adopted to

remove the latter two from the initial list of corner candi-
dates To do that, we first compare the corner candidates
using an adaptive local threshold �automatically calculated�
instead of a single global threshold to remove the round
corners. Second, the angles of the remaining corner candi-
dates are evaluated to eliminate any false corners due to
quantization noise and trivial details. The evaluation is
based on a dynamic region of support, which varies from
corner to corner according to adjacent corner candidates.
We also introduce an end-point handling method to ensure
that end points are appropriately dealt with.

The proposed detector has been tested and evaluated
over a number of images with multiple-size features and
compared with popular corner detectors on planar curves as
well as on gray-level images. It is found that the proposed
method outperforms the rest and is more consistent from
image to image.

In Sec. 2, our proposed corner detection method is pre-
sented in detail. Section 3 depicts and discusses the experi-
ment results. The conclusions are presented in Sec. 4.
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2 Proposed Method

2.1 Overview

Traditional single-scale algorithms �e.g., Refs. 4 and 7� de-
tect corners by considering their local properties, and either
miss fine features or detect noise as false corners. The phi-
losophy of the proposed method is to utilize global and
local curvature properties, and balance their influence when
extracting corners. With this philosophy and the problems
of traditional corner detectors in mind, a new corner detec-
tor is proposed as follows:

1. Detect edges using the likes of a Canny edge detector
to obtain a binary edge map.

2. Extract contours as in the CSS method.
3. After contour extraction, compute the curvature at a

fixed low scale for each contour to retain the true
corners, and regard the local maxima of absolute cur-
vature as corner candidates.

4. Compute a threshold adaptively according to the
mean curvature within a region of support. Round
corners are removed by comparing the curvature of
corner candidates with the adaptive threshold.

5. Based on a dynamically recalculated region of sup-
port, evaluate the angles of the remaining corner can-
didates to eliminate any false corners.

6. Finally, consider the end points of open contours, and
mark them as corners unless they are very close to
another corner. Open and closed contours are defined
by Eq. �3�.

2.2 Initial List of Corner Candidates

Let us first define the j’th extracted contour as

A j = �P1
j ,P2

j , . . . ,PN
j � , �2�

where Pi
j = �xi

j ,yi
j� are pixels on the contour, N is the number

of pixels on the contour, and xi
j, yi

j are the coordinates of the
i’th pixel on the j’th contour. We further define the contour
as closed if the distance between its end points is small
enough, and otherwise open:

A j is �closed if �P1
j PN

j � � T ,

open if �P1
j PN

j � � T ,
�3�

where the threshold T is used to determine whether two end
points are close enough. A typical value of T is 2 or 3
pixels.

For a closed contour, circular convolution can be applied
directly to smooth the contour. For an open contour, how-
ever, a certain number of points should be symmetrically
compensated at both ends of the contour when it is
smoothed. The contour convolved with the Gaussian
smoothing kernel g is denoted by

Asmooth
j = A j

� g , �4�

where g is a digital Gaussian function with width controlled
by �. A value �=3 has been used in all the experiments
presented in this paper. After that, the curvature value of
each pixel of the contour is computed using

Ki
j =

�xi
j�2yi

j − �2xi
j�yi

j

���xi
j�2 + ��yi

j�2�1.5
for i = 1,2, . . . ,N , �5�

where �xi
j = �xi+1

j −xi−1
j � /2, �yi

j = �yi+1
j −yi−1

j � /2, �2xi
j

= ��xi+1
j −�xi−1

j � /2, and �2yi
j = ��yi+1

j −�yi−1
j � /2. From Eq.

�5�, all the local maxima of the curvature function are in-
cluded in the initial list of corner candidates.

2.3 Corner Evaluation

2.3.1 Round-corner removal

As defined in Sec. 1, although the curvature of a round
corner is the largest among its neighbors, the actual differ-
ence may not be significant, as depicted in Fig. 1�a� and
1�c� On the other hand, the curvature of an obtuse corner
�Fig. 1�b�� may have similar or even lower absolute maxi-
mum than a round corner. Its magnitude is often signifi-
cantly larger than its neighbors’, and its neighbors’ overall,
or global, curvature characteristics usually vary more
abruptly, as depicted in Fig. 1�d�. In order to utilize this
global curvature characteristic of the neighbors to eliminate
round corners yet not the obtuse corners, we define the term
region of support �ROS�.

In this section, the ROS of a corner is defined by the
segment of the contour bounded by the corner’s two nearest
curvature minima. The ROS of each corner is used to cal-
culate a local threshold adaptively, where u is the position
of the corner candidate on the contour, L1+L2 is the size of
the ROS centered at u, and R is a coefficient:

T�u� = R � K̄ = R �
1

L1 + L2 + 1
	

i=u−L2

u+L1

�K�i�� , �6�

where K̄ is the mean curvature of the ROS. If the curvature
of the corner candidate is larger than T�u�, then it is de-

clared a true corner; otherwise it is eliminated from the list.
The reason why this can eliminate round corners is that for
an obtuse corner, the curvature drops faster over L1+L2

then does that of a round corner over a similar ROS. As a
result, the mean curvature of an obtuse corner is smaller
than that of a round corner. A round corner tends to have

Fig. 1 Examples of round corner and obtuse corner: �a� round cor-
ner, �b� obtuse corner, �c� curvature plot of round corner in �a�, �d�
curvature plot of obtuse corner in �b�.
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absolute curvature smaller than T�u�, while an obtuse cor-

ner tends to have absolute curvature larger than T�u�, even

if their absolute curvatures are similar. Obviously, the truth
of this depends on how R is selected.

In theory, by controlling R appropriately we should be
able to differentiate round corners from obtuse corners and
eliminate various kinds of round corners as well. However,
round corners are ill defined by nature, and there is no
explicit criterion to distinguish them. For instance, every
point on a circle has the same curvature, and a circle has no
obvious corner. However, for an ellipse, it could be argued
that the vertices may be considered as true corners. There-
fore, whether a round corner should be regarded as a true
corner is determined by how round or sharp it is. So, it is
worthwhile investigating the relationship between the na-
tion of round corner and the coefficient R.

Suppose an ellipse is given by f�x�= �b2− �bx /a�2�1/2,

with x� �−a ,a� and b�a. The vertex �0,b� of the ellipse

will be a curvature maximum and therefore a likely true
corner. The absolute curvature of every ellipse point can be
calculated as

K�x� = 
 f��x�

�1 + f��x�2�3/2
 =
ba4

��bx�2 − �ax�2 + a4�3/2 ,

and we have Kmax=K�0�=b /a2, Kmin=K�a�=a /b2. Because

the area under the curvature function is given by

� K�x� dx =� ba4

��bx�2 − �ax�2 + a4�3/2 dx

=
bx

��b2 − a2�x2 + a4�1/2 ,

we have the mean curvature given by K̄=�−a
a ��x� dx /2a

= �1− �−1�� /2a=1 /a=Kmax ·a /b, and the adaptive threshold

is given by T=R� K̄=R ·Kmax ·a /b From this equation, it
can be deduced that

Kmax��T if b/a � R ,

�T if b/a � R .
�7�

In other words, for the vertex of an ellipse, if the ratio of its
major axis to its minor axis is lower than R, it is to be
regarded as a round corner. Given this relationship, we are
able to use R to define the round corners to be eliminated,
and filter them out from the initial list of corner candidates.

2.3.2 False-corner removal

Generally speaking, a well-defined corner should have a
relatively sharp angle. As argued in Ref. 11, if we knew the
angle of each corner on a contour, it would be easier to
differentiate true corners from false corners. The key to the
success of this approach is to correctly define the angle of a
corner In particular, the angle of a corner can be an am-
biguous quantity that varies according to its definition and
the extent over which the angle is defined. For instance,
Fig. 2 depicts five points labeled on a curve, all of which
represent local curvature maxima and can be regarded as
corners. Taking point 3 as an example, if the angle of a
corner is defined as an acute angle, point 3 will fall within

this definition. Moreover, if we consider point 3 within the
range of points 2 and 4, then it will be classified as a true
corner too. However, if we consider point 3 within the
range of points 1 and 5, then points 2, 3, and 4 may all be
classified as false corners, the reason being that points 1
and 5 form almost a straight line, which indirectly implies
points 2, 3, and 4 are the result of some local variations on
the curve. When the global curvature characteristic of a
contour is not known a priori, it can be challenging to
decide on the range over which a potential corner candidate
should be considered. This motivates us to propose a
method for determining an appropriate range when evalu-
ating potential corner candidates based on our previously
defined ROS.

In Sec. 2.3.1, we defined the ROS as the segment of the
contour bounded by the corner’s two nearest curvature
minima. In this section, we extend this definition to include
the two neighboring corners of the corner in question. Us-
ing the same illustration in Fig. 2, if all five points labeled
are corner candidates after round-corner removal, then
point 3 will have a new ROS spanning from points 2 to 4
and will be classified as corner, because its angle is acute.
On the other hand, points 2 and 4 might potentially be
removed after round-corner removal, and as a result, the
new ROS for point 3 would span from point 1 to 5. In this
case, point 3 would likely be classified as a false corner,
because its angle would be obtuse. Furthermore, some cor-
ners do not have two neighboring corners, such as the cor-
ner nearest to an end point of an open contour �points 1 and
5�. End points of an open contour are used as additional
corners to define the ROS.

After determining the ROS of corner candidates, the
angle of a corner candidate can be defined as that between
the lines joining the corner point concerned and the two
centers of mass on both sides of the ROS,

29
where the

center of mass is defined as the mean position of all the
pixels on one arm of the ROS. This definition enables the
removal of point 3 on a straight line as depicted in Fig. 2.
However, it fails when dealing with local variations along
an arc, as depicted in Fig. 3, which is illustrated in the
following. After round-corner removal, points C as de-
picted in Fig. 3 would most likely be considered as poten-
tial true corners. The ROS of point C is then defined over
points E and F according to our definition, where points E
and F could be corner candidates or end points. Based on
the definition of angle in Ref. 29 �Fig. 3�a��, �C may not
be obtuse enough to be considered for removal. It does not
help if the arc extends longer �larger ROS�, for �C would
then become sharper.

To alleviate this problem, we redefine the angle of a
corner using tangents instead. For any point in the arc, the
tangent directions on its two sides form an angle at that
point. Similarly, a straight line can be regarded as an arc
with infinite radius of curvature, so the tangent direction of

Fig. 2 Illustration of an ambiguous case.
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any point on the line is the same as the line direction. In
this respect, straight lines and arcs can be treated in exactly
the same way. To calculate the tangent, a circle is best-fitted
to the pixels on each arm of the ROS of the corner candi-
date, as shown in Fig. 3�b�. The traditional way is to mini-
mize the mean squared Euclidean distance from the circle
to the pixel points. Unfortunately, there is no closed-form
solution for that.

30
All known algorithms involve either ap-

proximation or costly iteration.
31

Because optimal fitting is
unnecessary in this case, a simple three-point method is
employed to determine the circle. This three-point method
is detailed below, with reference to Fig. 3�b�.

First, on one arm of an ROS �from C to E, say�, three
points �C, the mid point M, and E� are selected. If these
three points are collinear, the tangent direction of this ROS
arm is defined from C to E else the center of a supposi-
tional circle C0 is deduced as follows, which has the same
distance �radius of curvature of this ROS� to the three
points. Let C= �x1 ,y1�, M = �x2 ,y2�, E= �x3 ,y3�, and C0

= �x0 ,y0�; we have

x0 =
�x1

2 + y1
2��y2 − y3� + �x2

2 + y2
2��y3 − y1� + �x3

2 + y3
2��y1 − y2�

2 · ��x1�y2 − y3� + x2�y3 − y1� + x3�y1 − y2��
,

y0 =
�x1

2 + y1
2��x2 − x3� + �x2

2 + y2
2��x3 − x1� + �x3

2 + y3
2��x1 − x2�

2 · ��y1�x2 − x3� + y2�x3 − x1� + y3�x1 − x2��
.

�8�

Second, a line is drawn from C to C0, and � is used to
represent the direction from C to C0, which could be cal-
culated by a four-quadrant inverse-tangent function. Simi-
larly, we use � to denote the direction from C to M. Then
we can have the tangent of C at this side of ROS as fol-
lows:

	1 = � + sign�sin�� − ��� ·



2
, �9�

where sign is a signum function. Third, the tangent of the
ROS from C to F is determined similarly, and is denoted by
	2. Fourth, the two tangent lines form the angle of the
corner:

�C = ��	1 − 	2� if �	1 − 	2� � 
 ,

2
 − �	1 − 	2� otherwise.
�10�

Finally, the corner checking criterion is given as follows:

Ci is true corner if � Ci � �obtuse,

�11�
Ci is false corner if � Ci � �obtuse.

The parameter �obtuse designates the maximum obtuse angle
that a corner can have and still be considered as a true
corner.

False corners are marked and removed after all corner
candidates have been checked. Because the set of corner
candidates will change after this step, further iterations are
performed until there are no further possible changes of the
corner list. The number of iterations is typically two or
three. Using this criterion, isolated corner candidates due to
quantization noise and trivial details can be eliminated, but
the dominant corners are retained.

2.3.3 Advantage of considering global properties

Traditional single-scale methods detect corners only ac-
cording to their local properties. They are ineffective for
objects with multiple-size features. We find that the global
property of curvature can be used to determine a more ap-
propriate ROS for accurate detection. For example, the
round corner in Fig. 1�a� and the contour vertex in Fig. 4�a�
have similar local curvature. Taking a global view, the
former is more an arc than a corner, while the latter can be
regarded as a true corner. The absolute curvature values of
the maxima of these two contours are also similar, but the
latter has a larger region of support, and therefore a lower
mean curvature. So the contour vertex in Fig. 4�a� has the
tendency to be detected as a true corner by using the pro-
posed method. Furthermore, by using the angle definition
over a dynamic ROS as described in Sec. 2.3.2, the latter
will be evaluated as a sharper angle and more likely be
regarded as true corner than the former.

Another example is depicted in Fig. 4�c�: an image con-
tains two contours having three maxima each, as shown.
Among these corner candidates, C1 and C4 have similar
local properties. From a global view, C1 is a dominant
point, because it represents the shape of the contour. On the
contrary, C4 is more of a trivial detail in the whole contour,
since it is unimportant in representing the shape of the con-
tour. By checking the angle in the self-determined ROS, the
longer the contour is, the less likely it will be regarded as a
true corner.

Fig. 3 Angle definitions of a corner: �a� center-of-mass definition, �b� tangent definition.
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2.4 End-Point Consideration

In general, a closed contour does not have end points. The
end points of an open contour, on the other hand, are pecu-
liar points. In the original CSS algorithm,

27
if an end point

is nearly connected to an edge contour, it is regarded as a T
junction and marked as a true corner. Extending this idea,
we argue that even if an end point of an open contour is not
close to any edge contours, it should be considered as a true
corner.

32
Therefore, in the proposed method, at the final

stage, the end points of open contours are checked, and are
marked as true corners unless they are very close to another
true corner, in which case one of them will be eliminated.
In the implementation depicted in the following section, a
5�5 neighborhood was used to define closeness.

3 Experiment and Parameter Analysis

In this section, detection results in each stage of the pro-
posed method are presented first, and then its performance
is compared with popular detectors on planar curves as well
as on gray-level images. A feature correspondence test
gives an objective evaluation of the proposed method by
comparing it with other popular detectors. The final subsec-
tion discusses the computational time requirements.

3.1 Results at Different Stages

To illustrate how the proposed method works, an image
with a large number of acute, obtuse, and round corners is
used for the test. Figure 5 depicts the processed images at
various stages. Figure 5�a� depicts the Canny edge map.
Figure 5�b� depicts the initial corner candidates. After ap-
plying round-corner removal based on an adaptive thresh-
old, corner candidates with curvature similar to their neigh-
borhood are eliminated, and the result is shown in Fig. 5�c�.
The round corners in the arcs at the right-hand center of the
image have all been eliminated, such as corner candidate 1.

However, at the top image boundary, many false corners
are still present. By checking the angle of corner candi-
dates, these false corners �due to noise and local variations�
can also be eliminated, and the result is shown in Fig. 5�d�.
By treating end points of open contours as true corners, we
obtain the final detection result as shown in Fig. 5�e�. In
Fig. 5�f�, corner candidate 1 is an example of a round cor-
ner; it appeared only in the initial corner stage, and was
eliminated at the round-corner removal stage. Another ex-
ample is corner candidate 2: As a trivial feature in the
middle of a long straight line, it was eliminated at the false-
corner removal stage through angle checking, and it was
recovered at the end-point stage as a corner at a T junction.
This is why it is included in Fig. 5�c� and 5�e�, but not in
Fig. 5�d�.

3.2 Test Results on Planar Curves

To evaluate the performance of the proposed method on
planar curves, we have chosen some published test shapes
of different sizes and features from Chetverikov and
Szabo

10
and selected the two best-performing detectors,

BT87 and IPAN99, from their comparative work on the
following corner detectors: RJ73,

11
RW75,

12
FD77,

13

BT87,
14

and IPAN99.
10

We then compared them with
ACORD

25
and our proposed method; the test results are

shown in Fig. 6. It should be noted that in Fig. 6�a�–6�c�,
parameter values are tuned to get the best result of each
shape. On the other hand, in Fig. 6�d�, the same parameter
values are used for the proposed method to process the
whole set of input shapes. Among all these detectors, BT87
tends to miss some of the obvious true corners, as can be
seen in the rightmost shape in the second row of Fig. 6�a�,
and is not able to suppress some of the round corners, as
depicted in shape second from the right in the first row of
Fig. 6�a�. On the other hand, IPAN99 can suppress round

Fig. 4 Feature of different sizes: �a� extended version of round corner; �b� curvature plot of �a�; �c�
corners with similar local properties but different global properties.
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corners effectively in simple shapes. However, in order to
keep obtuse corners, it has to adjust parameters, causing it
to detect local variations �false corners� as corners. This can
be seen in the shape second from the left in the second row
of Fig. 6�b�. The ACORD method in this case suffers from
multiple detections around a corner point, which can be

seen in the shape second from the right in the first row of
Fig. 6�c�. The proposed method has the best corner detec-
tion performance visually, in that it detects almost all the
dominant features, including the fine features of the plane’s
engines �rightmost shape in the second row of Fig. 6�d��
and suppresses noise and round corners. Although it has

Fig. 5 Corner detection of the “Lab” image by the proposed method: �a� detected edge contours, �b�
initial corner candidates, �c� round corners removed, �d� other false corners removed, �e� end-point
consideration, �f� magnified image of �b�.

Fig. 6 Detection results on planar curves: �a� BT87, �b� IPAN99, �c� ACORD, �d� proposed method
with R=1.5, �obtuse=162.
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detected a false corner in the leftmost shape in the first row
of Fig. 6�d�, this incorrect detection can be removed by
adjusting R and �obtuse appropriately. In summary, the pro-
posed detector works quite well on different-size features
using the same R and �obtuse.

3.3 Test Results on Gray-Level Images

In this subsection we have chosen Mokhtarian et al.
27,28,33

comparison as our evaluation basis and extended it further.
To perform an objective evaluation, a reference solution for

each test image is needed. In our research the reference
solutions were manually generated, and corners were iden-
tified in an appropriately magnified version of the image.
Since it is often difficult to decide whether or not a point
should be classified as a corner, only the very obvious cor-
ners are included in the reference solutions. Figure 7�a� and
8�a� depict the reference corner solutions of the “Blocks”
and “House” images, respectively.

The method of evaluation adopted in this research is
described as follows: Let CREF, CDET denote the set of cor-

Fig. 7 Detection results on the “Blocks” image: �a� reference solution, �b� Plessey, �c� Kitchen-
Rosenfeld, �d� SUSAN, �e� original CSS, �f� enhanced CSS, �g� COP, �h� proposed method.

Fig. 8 Detection results on the “House” image: �a� reference solution, �b� Plessey, �c� Kitchen-
Rosenfeld, �d� SUSAN, �e� original CSS, �f� enhanced CSS, �g� COP, �h� proposed method.
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ners from the reference solution and the set of corners
found by a particular detector, respectively. Let di,j be the
distance difference between the i’th corner in the reference
list �Ci� and the j’th corner �C j� in the detected list. If di,j

between Ci and C j is minimum for ∀i , j, and if di,j �Dmax,
then C j is labeled as a correct detection of Ci, and is also
termed a true corner; otherwise, Ci is labeled as a missed
corner. Here Dmax is defined to be the maximum admissible
distance difference between Ci and C j. In other words, the
localization error can be up to Dmax, which is set to 4 pixels
in the following evaluation. The corners labeled as missed
in CREF are considered as true corners not detected, and the
remaining corners in CDET are considered as false corners.
The localization error is calculated as the mean of all the
distances di,j for those correctly detected corners.

Using this evaluation method, the detection results of the
proposed method are compared with those six other corner
detectors �Plessey,

6
Kitchen-Rosenfeld,

4
SUSAN,

7
original

CSS,
27

enhanced CSS,
28

and COP
8�. The results are sum-

marized in Tables 1 and 2 and in Figs. 7 and 8. From Table
1, the number of true corners is 59 in the “Blocks” refer-
ence solution. The proposed method detected 55 true cor-
ners �representing 93%�, while it has the least number of

false corners �only 2�, although the localization error is
only the second best, behind the enhanced CSS method.
The two CSS methods performed quite well too, with the
original CSS performing ever so slightly better than the
enhanced CSS on true corners, but with a lot more false
corners �15 versus 9�. On the other hand, the original CSS
has almost twice as much localization error as the enhanced
CSS, which has the largest error in this group of detectors.
The other corner detectors performed substantially poorer
in that their percentage of success for true corners ranges
from 68% to 86%, with many more false corners detected.
Similar results are shown in Table 2. Due to the complexity
of the “House” image, all the corner detectors had a lower
success rate in detecting true corners �the best is 82% for
the proposed method, followed by the original CSS at
78%�. The false-corner detection rate has also gone up for
all the detectors, except for COP. The fact remains that the
proposed method has only 5 false corners, while the next
best is the enhanced CSS with 12 false corners. The local-
ization error of the proposed method is just under 1 pixel
on average, while the rest are substantially higher. In sum-
mary, the proposed method remains the most successful in
detecting true corners, with the least number of false cor-
ners and amount of localization error. Both sets of results
highlight the importance of considering the local and global
curvature properties of corners and achieving a balance be-
tween the two in detection.

3.4 Objective Measure Based on Feature
Correspondence

The results in Secs. 3.2 and 3.3 are subjective in that they
illustrate the similarity between a detector’s and a human’s
view of what a corner is. In this section, we consider a
more objective measure by applying the proposed algo-
rithm to a feature correspondence system and comparing

the feature matching rate with those of SUSAN,
7

GFtT,
34

and SIFT.
35

As depicted in Fig. 9, with two different frames in a real
traffic scene as input, our testing system extracts corners of
a target vehicle in the near frame, and then finds their cor-
respondence in the far frame. Correspondences are sought
by hierarchical block-based matching algorithms
�HBMAs�, scaling the target vehicle in the far frame to the
same size as the one in the near frame, and inversely scal-
ing after matching to fit its original position in the far
frame. It should be noted that since the SIFT algorithm
includes feature matching as well as feature extraction, the
preceding feature correspondence procedure is not neces-
sary for it. The difficulty of the correspondence problem is
that shadows or reflections on vehicle surfaces could
change the vehicle’s appearance significantly, especially in
regions of highly reflective material, such as the wind-
screen and windows of a vehicle. These features may be
detected and classified as features of a vehicle, since sub-
stantial edges or junctions may appear in the captured im-
age even in homogeneous region. However, since light
sources may be continually changing and vehicles are also
moving, a vehicle’s appearance may be quite different be-
tween two consecutive images. Those features due to shad-
ows or reflections are not stable enough to provide accurate
matching.

Table 1 Evaluation results for the “Blocks” image.

Detector
True

corners
Missed
corners

False
corners

Localization
error

Plessey 39 20 19 1.6045

Kitchen-Rosenfeld 48 11 14 1.5180

SUSAN 44 15 19 1.5453

Original CSS 55 4 15 1.8502

Enhanced CSS 54 5 9 0.9755

COP 51 8 26 1.6918

Proposed 55 4 2 1.4010

Table 2 Evaluation results for the “House” image.

Detector
True

corners
Missed
corners

False
corners

Localization
error

Plessey 53 28 50 1.5773

Kitchen-Rosenfeld 59 22 36 1.6561

SUSAN 60 21 29 1.8428

Original CSS 63 18 18 1.5285

Enhanced CSS 49 32 12 1.3251

COP 52 29 18 1.8980

Proposed 66 15 5 0.9901
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In this experiment, the correspondence results of differ-
ent detectors are checked manually and labeled as match or
mismatch; obvious localization errors are also labeled as
mismatch. Then the matching rate is calculated, which is
defined as the ratio of matched features to detected features,
and is used to evaluate the performance of the four feature
extraction algorithms in this system. Parameters of the
SUSAN and GFtT were tuned to include features that rep-
resent the main structure of vehicle and exclude features in
homogeneous regions, which tend to mismatch. The bright-
ness threshold of SUSAN was set as 45; the quality level
and minimum distance of GFtT were set as 0.2 and 5 re-
spectively. The SIFT function has many parameters; the
default values were chosen to emulate Lowe’s original
implementation. The parameters of the proposed corner de-
tector were set as the defaults, that is, R=1.5 and �obtuse

=162 deg. Usually, the proposed corner detector is applied

to the Canny edge map. In this experiment, it was also
applied to the boundaries of a segmentation result

36
to en-

hance the matching performance.
The experiment was performed on 16 vehicles in differ-

ent traffic scenes. Typical feature correspondence examples
are presented in Fig. 10, and correspondence results are
summarized in Table 3.

SUSAN detected the most features in this experiment.
But some of these features lie on the straight part of a
boundary �e.g., points 12, 13, 66 in Fig. 10�a��, and some
others lie on the vehicle windows or windscreen �e.g.,
points 10, 19 in Fig. 10�a��; these represent most of the
mismatched features due to SUSAN. GFtT exhibited very
promising performance in this experiment: As shown in
Fig. 10�b�, only a few features have localization error �e.g.,
points 30 and 32 in Fig. 10�b��. SIFT seems unsuitable for
this kind of data, for it detected the least features, and

Fig. 9 Diagram of feature correspondence system.
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Fig. 10 Feature corresponding results: �a� SUSAN, �b� GFtT, �c� SIFT, �d� proposed method on seg-
mentation boundaries.
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missed some significant corners of the vehicle, as well as
producing some erratic mismatches, �e.g., points 16, 17, 19
in Fig. 10�c��. The proposed corner detector could suppress
noise and trivial details on planar curves, and therefore
achieved reasonable correspondence performance. How-
ever, when it was applied to the Canny edge map, it also
detected some unstable features in windows or wind-
screens, which led to some mismatches. When we applied
the proposed corner detector to the segmentation boundary,
as depicted in Fig. 10�d�, it detected all the key corners of a
vehicle without any ambiguous features. Of course, the
well-segmented input contributes a lot to this excellent cor-
respondence result. We believe utilizing a sophisticated
segmentation algorithm to suppress trivial information is
advantageous to curve-based corner detectors.

To sum up, in terms of matching rate, the proposed de-
tector on the segmentation boundary �98.14%� has the best
performance, and the proposed detector using Canny
�92.28%� is worse than GFtT �94.87%�. They all perform
better than SUSAN �87.29%� and SIFT �83.75%� in this
evaluation.

3.5 Processing Speed

The proposed detector has been implemented in Matlab.
The source code can be obtained from

http://www.mathworks.com/matlabcentral/fileexchange/
loadFile.do?objectId�7652&objectType�File

The proposed detection algorithm was executed 100
times on a 1.8-GHz PC with 256 Mbyte of memory, and
mean execution times were measured. The processing
speed of the subcomponents of the proposed algorithm is
depicted in Table 4. The processing time for the planar
curves shown in Fig. 6, excluding edge detection and con-
tour extraction, varied from 0.015 to 0.046 s. According to
Table 4, the “Block” image and “House” image required
similar time, while the “Lab” image required more time,
which is reasonable in view of their difference in sizes. In
the three subcomponents of the algorithm, corner detection
consumes much less time than edge detection and contour
extraction, since the proposed corner detection algorithm is
only performed on one scale instead of parsing features
across the entire scale space like multiscale algorithms.
This enables the proposed method to be deployed in real-
time applications.

4 Conclusions

The main contribution of this paper is the consideration of
both global and local curvature of corners in the detection,
in which the use of adaptive threshold and dynamic ROS to
identify corners helps to take both properties into account.
As a result, different parameters can be automatically de-
termined for different images, different curves, and differ-
ent kinds of corner candidates.

To summarize, the advantages of the proposed method
are that it: �1� increases the number of true corners detected
and reduces the number of false corners detected for the
images tested; �2� produces relatively low localization er-
rors; �3� supports two controllable parameters �R and
�obtuse� to achieve consistent detection performance from
image to image; and �4� identifies corners not only accord-
ing to their local curvature but also according to their glo-
bal curvature, detects dominant feature of different sizes,
and ignores trivial details. The proposed corner detector
could potentially be utilized in many applications, e.g., mo-
tion estimation, object tracking, stereo matching, camera
calibration, and 3-D reconstruction. So far, its implementa-
tions realized by the author include a camera calibration
system using road lane markings,

37,38
a visual vehicle speed

estimation system.
39

and a vehicle 3-D wire-frame recon-
struction system.

40
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Table 3 Evaluation on corresponding results.

Detector
Detected
features

Matched
features

Mismatched
features

Matching
rate �%�

SUSAN 2408 2102 306 87.29

GFtT 1227 1164 63 94.87

SIFT 603 505 98 83.75

Proposed: 1178 1087 91 92.28

On Canny

On segmentation boundary 913 896 16 98.14

Table 4 Time requirements.

Time �s�

Task Blocks
�256�256�

House
�256�256�

Lab
�512�512�

Edge detection 0.681 0.658 2.616

Contour extraction 0.580 0.564 2.960

Corner detection 0.088 0.114 0.358
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