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Corner-Filleted Flexure Hinges
The paper presents an analytical approach to corner-filleted flexure hinges. Closed-
solutions are derived for the in-plane compliance factors. It is demonstrated tha
corner-filleted flexure hinge spans a domain delimited by the simple beam and the
circular flexure hinge. A comparison that is made with the right circular flexure hin
indicates that the corner-filleted flexures are more bending-compliant and induce l
stresses but are less precise in rotation. The finite element simulation and experim
results confirmed the model predictions.@DOI: 10.1115/1.1372190#
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1 Introduction

The flexure hinge is a mechanical member that substitute
conventional rotational joint in order to produce a limited angu
motion about one axis. Being monolithic with the links it co
nects, the flexure hinge is highly energy-efficient since it has z
friction and backlash.

A monolithic flexure hinge is usually obtained by machinin
one or two cutouts in a blank material. In order to be functiona
effective, a flexure hinge must be compliant in bending about
axis, to favor the intended rotation, but rigid about the cross a
to prohibit or minimize any other motion. A generic flexure hin
configuration is shown in Fig. 1.

Flexures can be fabricated in several configurations, depen
on the cross-section profile. Some of the most common flex
hinges are illustrated in Fig. 2.

The seminal work of Paros and Weisbord@1# constitutes the
landmark into the analytical approach of monolithic flexu
hinges. The design equations, both exact and simplified, are
rived for calculating the compliances~spring rates! of single-axis
and two-axes circular-cutout constant cross-section flexure hin
Specifically, the angular and linear deflections produced on
three axes are expressed in terms of the corresponding ext
loading.

Ragulskis et al.@2# applied the static finite element analysis
filleted flexure hinges in order to calculate their compliances. T
analysis results allowed specifying flexure configurations w
minimum bending stiffness.

In an approach similar to that of Paros and Weisbord@1#, Smith
et al.@3# provided closed- form equations for the mechanical co
pliance of elliptic cross-section flexure hinges. An elliptical fle
ure hinge is ranging between a circular flexure hinge and a sim
beam in term of its compliance. The model accuracy was veri
by finite element analysis and experimental measurements.

Xu and King @4# performed static finite element analysis
corner-filleted and elliptic flexure hinges. A comparison was ma
with right circular flexure hinges which revealed that the corn
filleted flexure is the most accurate in terms of motion, the ellip
flexure has less stress for the same displacement, while the
circular flexure is the stiffest.

There are several papers presenting applications that inco
rate flexure hinges into specific designs. A few are mentione
the following.

Weinstein@5# introduced the single-, two- and three-strip fle
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ure pivot bearings. The beam theory was used to analyze de
issues by means of equations giving the spring rate and sev
dimensionless-parameter diagrams.

Goldfarb and Speich@6# presented the design and analysis of
revolute joint for compliant mechanisms consisting of
longitudinally-split thin cylinder.

Lobontiu @7# analyzed the dynamic response of a two-link pe
dulum with rectangular flexure hinges that are substantially th
ner than the adjoining links. Designs were proposed in terms
the defining geometry that would enable the free extremity follo
a prescribed trajectory.

Her and Chang@8# proposed an analytical scheme that allow
displacement calculations for micro-positioning stages with in
grated flexure hinges. The method was assessed by comparis
finite element results.

Howell and Midha@9# introduced a computer-aided design a
proach to pseudo-rigid-body mechanisms that include compl
flexure pivots. The corresponding analysis consists of a rig
body kinematic module coupled with a finite element-type lar
deflection algorithm dedicated to the short flexure hinges.

Ryu, Gweon, and Moon@10# developed the mathematica
model of a three degree-of- freedom micro-motion stage that
corporates several right circular flexure hinges and levers.
equivalent mass-spring system was further analyzed, and fo
displacement equations were formulated enabling to maximize
amplification of the micro-stage under specified restrictions.

Ryu and Gweon@11# proposed a modeling and quantifyin
scheme of the motion errors induced by machining imperfectio
into a flexure hinge mechanism.

Ryu et al.@12# analyzed a flexure hinge mechanism consisti
of levers~modeled as rigid bodies!, flexure hinges, and piezoelec

or
Fig. 1 Geometry and reference axes of a generic constant-
width flexure hinge
© 2001 by ASME Transactions of the ASME
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tric actuators~modeled as rotational/translational springs!. The in-
verse kinematic model yields the input voltage – output displa
ment relationship.

This paper addresses the corner-filleted flexure hinges. T
in-plane behavior is only analyzed since these rotational conn
tors are designed to be incorporated in planar mechanisms.
closed-form compliance factors are formulated in terms of len
l, thicknesst and fillet radiusr for constant-width, corner-filleted
flexure hinges. It is demonstrated that a corner-filleted flex
hinge spans a domain bounded by the simple beam~r 5 0! and
the right circular flexure hinge~r 5 l/2!. Finite element simula-
tions are performed to verify the accuracy of the model-predic
compliance factors for several design configurations. The res
are in good agreement with those produced by the analytical
proach within 10 percent relative error margins. The experimen
measurements also confirm the analytical predictions with rela
errors less than 6 percent. Compared to the right circular flexu
the corner-filleted flexures can be up to 6 times more bendi
compliant. They also induce substantially lower stresses but
less precise in keeping the position of the rotation center. All th
conclusions are formulated by analyzing several ratio functio
that are defined in terms of two non-dimensional variables.

2 Motivation and Assumptions
The authors are implementing corner-filleted flexure hinges i

piezoelectric-driven amplification mechanisms. A typical config
ration is sketched in Fig. 3 that can amplify the input displacem
more than 20 times in an optimized design while Fig. 4 shows
geometry of a generic corner-filleted flexure hinge.

The paper characterizes the corner-filleted flexure hinges
terms of compliance to external loading, precision of rotation a
stress levels by providing closed-form solutions to these proble
as efficient alternatives to the more time-consuming finite elem
approach.

The mathematical model is based on several simplifying
sumptions that are summarized in the following:

Fig. 2 Representative flexure hinges with main geometric pa-
rameters

Fig. 3 Quarter-model of a 2D amplification mechanism; hinge
#1 is subject to bending „from input and loading …, tension „from
input … and shearing „from loading …
Journal of Mechanical Design
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• The flexure hinges are assumed to be long and thus, acc
ing to strength of materials~see Young@13#, for instance!, the
deflection due to shearing is negligible for such beam-like str
tures.

• The hinges discussed here are part of plane devices w
both the input and output are planar; essentially this allows c
ducting the study for only three degrees of freedom: two in-pla
translations and one rotation, normal to the translation plane.

• Compared to other effects, the bending and axial tens
compression are prevalent and thus only these factors are co
ered in all subsequent derivation.

• Since all deformations of a flexure hinge are small, the sm
displacement theory is applied for both bending and axial effe

• The boundary conditions for a flexure hinge are fixed-fre
and this is a good approximation provided the loading is ac
rately specified.

• The beam comprises three portions: two are mirror
identical and have variable cross-sections at the filleted e
while the middle segment is of constant cross-section.

• The Castigliano’s second theorem is utilized throughout t
paper to formulate the compliances of corner-filleted flexu
hinges.

3 Compliance Model

3.1 Problem Formulation. Figure 5 indicates the loading
and deformations of a beam-like corner-filleted flexure hinge.

The Castigliano’s first theorem is applied in order to express
displacements at the flexure’s free end:

5
u15

]Ue

]Mz1

y15
]Ue

]Fy1

x15
]Ue

]Fx1

(1)

Fig. 4 Geometry of a corner-filleted flexure hinge

Fig. 5 Schematic showing deformations at the free end and
displacement of the theoretical rotation center
SEPTEMBER 2001, Vol. 123 Õ 347
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where the elastic strain energy is:

Ue51/2F E
L
M2/~EI !ds1E

L
N2/~EA!dsG (2)

The equations providing the moment of area, bending momenM
and axial forceN over different intervals are given in the Appen
dix. Equations~1! and ~2! result in:

H u1

y1

x1

J 5FC11 C12 0

C12 C22 0

0 0 C33

G H Mz1

Fy1

Fx1

J (3)

where the compliances are:

5
C1153/~bE!@1/2~ I 11I 3!14~ l 22r !t23#

C12523/~bE!@1/2~ I 21I 4!12l ~ l 22r !t23#

C2253/~bE!@1/2~ I 51I 6!14/3~ l 22r !~ l 22 lr 1r 2!t23#

C3351/~bE!@1/2~ I 71I 8!1~ l 22r !t21#
(4)

The I 1 throughI 8 integrals are:

I 15E
0

r

dx/A~x!3 (5)

I 25E
0

r

xdx/A~x!3 (6)

I 35E
r

l 2r

dx/B~x!3 (7)

I 45E
r

l 2r

xdx/B~x!3 (8)

I 55E
0

r

x2dx/A~x!3 (9)

I 65E
r

l 2r

x2dx/B~x!3 (10)

I 75E
0

r

dx/A~x! (11)

I 85E
r

l 2r

dx/B~x! (12)

with:

A~x!5t/21r 2Ax~2r 2x! (13)

B~x!5t/21r 2A~ l 2x!@2r 2~ l 2x!# (14)

Equations~4! through ~14! produce the closed-form complianc
factors:

C11512/~Ebt3!$ l 22r 12r @ t~4r 1t !~6r 214rt 1t2!

16r ~2r 1t !2t1/2~4r 1t !1/2a tan~114r /t !1/2

3~2r 1t !21~4r 1t !23% (15)

C12526l /@Ebt3~2r 1t !~4r 1t !2#@ l ~2r 1t !~4r 1t !2

24r 2~16r 2113rt 13t2!112r 2~2r 1t !t1/2~4r 1t !1/2

3a tan~114r /t !1/2# (16)
348 Õ Vol. 123, SEPTEMBER 2001
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C2253/~Eb!$4~ l 22r !~ l 22 lr 1r 2!/~3t3!21

11/2$$t1/2~4r 1t !1/2@280r 4124r 3t18~312p!r 2t2

14~112p!rt 31pt4#14~2r 1t !3~6r 224rt 2t2!

3a tan~114r /t !1/2%/@2t5/2~4r 1t !5/2#21

1@240r 418lr 2~2r 2t !112r 3t14~312p!r 2t2

12~112p!rt 31pt4/2#/t22~4r 1t !22

18l 2r ~6r 214rt 1t2!~2r 1t !21t22~4r 1t !22

2$2~2r 1t !@224~ l 2r !2r 228r 3t114r 2t218rt 31t4#

3a tan~114r /t !1/2#t21/2~4r 1t !21/2t22~4r 1t !22%%

(17)

C3351/~Eb!@2p/21~ l 22r !/t12~2r 1t !t21/2~4r 1t !21/2

3atan~114r /t !1/2# (18)

3.2 Limits to the Compliance Factors. The fillet radiusr
can only vary betweenr min50 ~when the flexure is actually a
simple beam! and r max5 l /2 ~when the corner-filleted flexure be
comes a right circular flexure!.

In both cases, expressions are available for the compliance
tors from the engineering theory of beams and the work of Pa
and Weisbord@1# that treated the problem of circular flexur
hinges.

It is demonstrated in the following that the compliance expr
sions of a generic corner-filleted flexure match their aforem
tioned limits.

(a) Non-filleted flexure (r5 0; engineering beam theory)
Taking r 5 0 in Eq. ~15! gives:

C11512l /~Ebt3! (19)

Equation ~19! is identical to the beam theory formula that e
presses the end rotation produced by an end bending momen
a fixed-free beam.

Taking r 5 0 in Eq. ~16! produces:

C12526l 2~Ebt3! (20)

which is identical to the solution given by the beam theory th
relates the end deflection to the end bending moment for a fix
free beam.

Taking r 5 0 in Eq. ~17! yields:

C2254l 3~Ebt3! (21)

which coincides with the simple beam formula that assesses
end deflection determined by an end force for a fixed-free be

Taking r 5 0 in Eq. ~18! gives:

C335 l /~Ebt! (22)

which is the same as given by theory for a simple fixed-free ba
extension.

(b) Right circular flexure (r5 l/2; compliances given in Paros
and Weisbord [1])

Using the notations that were introduced by Paros and W
bord @1#, namely:

b5t/~2r ! (23)

and

g5h/~2r ! (24)

where:

h52r 1t (25)

and substituting them into Eq.~15! yields:
Transactions of the ASME
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C1153/@2Ebr2b~b12!#$1/~b11!

1~312b1b2!/@b~b11!~b12!#16~b11!

3b23/2~b12!23/2a tan~112/b!1/2% (26)

which is identical to what Eq.~1! of Paros and Weisbord@1#
produces by taking:

g5b11 (27)

Similarly, Eq. ~16! transforms into:

C125rC11 (28)

which is identical to Eq.~3! of Paros and Weisbord@1# in the
particular case of right circular flexures.

Equation~17! can be reformulated as:

C2253/@2Ebb3~11b!~21b!3#$b~21b!

3@316b1~1114p!b218~11p!b3

1~215p!b41pb5#22~11b!4

3b1/2~21b!1/2~2314b12b2!a tan~112/b!1/2% (29)

and this is identical to Eq.~9! of Paros and Weisbord@1# for right
circular flexures.

Equation~18! gives:

C3351/~Eb!@2p/212~11b!b21/2~b12!21/2a tan~112/b!1/2#
(30)

which coincides to what Eq.~25! of Paros and Weisbord@1# yields
for right circular flexures.

3.3 Corner-Filleted Versus Right Circular Flexure Hinges
in Terms of Compliance. A comparison is performed betwee
corner-filleted and right circular flexures in terms of their comp
ances. The following non-dimensional variables are introduce

H d5t/ l

«5r / l
(31)

The non-dimensional variables defined in Eq.~31! are now used
to compare the corner- filleted flexure hinges to their correspo
ing equal-length, right circular flexure hinges in terms of comp
ances. The~* ! superscript indicates a right circular flexure hing
and the~* ! compliances are obtained by takingl 5 2r.

Fig. 6 Plot of non-dimensional compliance ratios: „a… f 11

ÄC11 ÕC11* ; „b… f 22ÄC22 ÕC22* ; „c… f 33ÄC33 ÕC33*
Journal of Mechanical Design
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Specifically, three functions are defined in the following. T
first function is:

f 11~d,«!5C11/C11* (32)

whereC11 andC11* , are simply obtained from Eq.~15! by using
the notations given in Eq.~31!. It also can be seen that:

C12/C12* 5 f 11~d,«! (33)

whereC12 andC12* , are given by Eqs.~16! and ~31!.
The next function is:

f 22~d,«!5C22/C22* (34)

whereC22 andC22* , are simply obtained from Eq.~17! by using
the notations given in Eq.~31!. The last function is:

f 33~d,«!5C33/C33* (35)

with C33 andC33* , yielded by Eqs.~18! and ~31!.
Figures 6~a!, 6~b! and 6~c! are three-dimensional plots of th

functions defined above.
The corner-filleted flexure hinge can be 5 to 6 times mo

bending-sensitive compared to its right circular counterpart, w
the fillet radius is sufficiently small, as illustrated in Figs. 6~a! and
6~b!. At the same time though, a corner-filleted flexure hinge
more axially-sensitive at small fillet radii than its correspondi
right circular flexure~up to 1.5 times, as indicated in Fig. 6~c!!.

4 Precision of Rotation

4.1 Problem Formulation. Ideally, the center of the flex-
ure, which can also be considered as the ‘center of rotati
~point 5 in Fig. 5!, should not translate at all under the loading, b
this is actually impossible since the whole flexure deforms un
the combined action of bending and tension.

In order to quantify the offset of the center of rotation, th
horizontal and vertical displacementsx5 andy5 are calculated by
superimposing two ‘dummy’ loadsFx5 andFy5 to the actual loads
Fx1, Fy1 andMz1 ~see Fig. 5!. The Castigliano’s first theorem is
subsequently applied in the form:

H y55
dUe

dFy5

x55
dUe

dFx5

(36)

whereUe is given in Eq.~2!. The bending momentM and axial
force N are provided in the Appendix.

The displacement of the center of rotation can be alternativ
expressed in matrix form as:

H 0

y5

x5

J 5F 0 0 0

C128 C228 0

0 0 C338
G H Mz1

Fy1

Fx1

J (37)

with:

5
C128 5~3/2bE!@~ l 22r !2t231I 42 l /2I 3#

C228 523/~bE!$~3t3!21@~ l 2r !2~ l 24r !1 l 3/4#

11/2~ I 62 l /2I 4!%

C338 51/2C33

(38)

The integralsI 3, I 4 and I 6 are defined in Eqs.~7!, ~8!, ~10! while
C33 is given in Eq.~18!.

The closed-form solutions forC128 andC228 are:
SEPTEMBER 2001, Vol. 123 Õ 349
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C128 53/@2bt3~2r 1t !~4r 1t !5/2E#$~4r 1t !1/2@ l 2~2r 1t !~4r 1t !2

18r 3~2r 1t !~8r 15t !28lr 2~16r 2113rt 13t2!#

124~ l 22r !r 2~ t !1/2~2r 1t !2a tan~114r /t !1/2% (39)

C228 51/@4bt3~2r 1t !~4r 1t !5/2E#$~4r 1t !1/2$25l 3~2r 1t !~4r

1t !2272lr 3~2r 1t !~8r 15t !148l 2r 2~16r 2113rt 13t2!

1~2r 1t !@256r 51368r 4t256r 3t3224~312p!r 2t3

212~112p!rt 423pt5!#%112~ t !1/2~2r 1t !2@212l 2r 2

136lr 32~2r 1t !2~6r 224rt 2t2!#a tan~114r /t !1/2}

(40)

4.2 Corner-Filleted Versus Right Circular Flexure Hinges
in Terms of Precision of Rotation. The corner-filleted flexure
hinges are now compared to the corresponding equal-length
circular flexure hinges in terms of their precision of rotation
described by Eqs.~39! and~40!. The non-dimensional variablesd
and « introduced in Eq.~31! are used to define the following
functions:

f 128 ~d,«!5C128 /C12* 8 (41)

f 228 ~d,«!5C228 /C22* 8 (42)

The expressions ofC12* 8 andC22* 8 are simply obtained from Eqs
~39! and ~40! by taking l 5 2r. Figure 7, for instance, shows th
three-dimensional plot of thef 228 function defined above.

As a consequence of being more compliant than the right
cular flexure hinges, the corner-filleted flexures are also less
cise in keeping the center of rotation with minimum offset. T
shift of the rotation center caused by bending effects only can
10 to 15 times larger in a corner-filleted flexure than the s
experienced by a similar right circular flexure hinge for the sa
amount of loading. For small/micro-scale applications where t
links connected by a flexure must replicate pure rotation as c
as possible, this aspect might pose serious limitations. In med
macro-scale applications though, this relative disadvantage is
paramount since the gains of large motion capability at low
stress levels are strong factors in favor of the corner-filleted fl
ure. It is also worth noting that Fig. 7 depicts the relations
between the two flexure types in a relative fashion. In reality,
absolute values of the rotation center’s shift are very small,
they do not seriously endanger the precision of the relative r
tion between two adjoining links.

5 Stress Limitations

5.1 Problem Formulation. The normal stresses on th
cross-section of the flexure hinge are the result of bending

Fig. 7 Plot of non-dimensional compliance ratio f 228 ÄC228 ÕC22* 8
350 Õ Vol. 123, SEPTEMBER 2001
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axial loading when shearing, as previously stated, is neglec
The filleted area can be looked at as a stress concentrator.
result, the maximum stress on the upper fiber can be expresse

smax56kb~Mz11Fy1l !/~bt2!1kaFx1 /~bt! (43)

assuming that bothMz1 andFy1 have similar bending effects. Th
stress concentration factorskb ~in bending! andka ~in axial load-
ing! can be found in textbooks like those of Young@13# or Peter-
son@14#. Equation~43! is useful when the external loads acting o
the flexure are known in advance. Often times, though, the lo
ing is at least partially unknown, but the displacement field
specified and, as a consequence, Eq.~43! needs to be modified
accordingly. Equation~3! is first expressed as:

H Mz1

Fy1

Fx1

J 5F K11 K12 0

K12 K22 0

0 0 K33

G H u1

y1

x1

J (44)

where the stiffness terms are:

5
K115C22/~C11C222C12

2 !

K1252C12/~C11C222C12
2 !

K225C11/~C11C222C12
2 !

K3351/C33

(45)

SubstitutingMz1, Fy1 andFx1 from the matrix Eq.~44! into Eq.
~43! results in:

smax56kb /~bt2!@~K111 lK 12!u11~K121 lK 22!y1#

1ka /~bt!K33x1 (46)

Equation~46! allows evaluating the maximum stress in terms
the specified displacement values at the tip of the flexure. B
Eq. ~43! and Eq.~46! could be utilized in actually designing o
only checking an already-designed corner-filleted flexure. Des
ing a flexure by means of Eq.~46! would imply multi-dimensional
non-linear optimization and this is beyond the scope of the pre
work.

5.2 Corner-Filleted Versus Right Circular Flexure Hinges
in Terms of Stress. The stress concentration factors for bo
corner-filleted and circular flexure hinges are of the same orde
magnitude, and generally less than 3 as indicated by Pete
@14#.

The difference in stress levels, if any, between the two flexu
is then produced by the stiffness difference, as suggested in
~46!.

A comparison is carried out between the stiffness facto
Again, the non-dimensional variables of Eq.~31! are utilized.

The following function is introduced:

Fig. 8 Plot of non-dimensional stiffness ratio f k11ÄK 11* ÕK 11
Transactions of the ASME
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f k11~d,«!5K11* /K11 (47)

where the superscript denotes the right circular flexure hinge.K11*
is simply obtained by takingl 5 2r in Eq. ~45!. Figure 8 shows
the three-dimensional plot of this function.

Similar results were obtained for the other stiffness ratios t
have been accordingly defined and therefore no other plots
included here.

Figure 8 indicates that the stiffness of a right circular flexu
hinge can be 20 times higher than the one of a correspond
corner-filleted flexure hinge with small fillet radii, and this d
rectly translates to the stress levels, as Eq.~46! indicates.

6 Finite Element Results
The finite element model shown in Fig. 9 was utilized to veri

the compliance equations for several corner-filleted flexure
signs. The ANSYS finite element software was used to run
finite element static-load simulations. Two dimensional, 6 degr
of-freedom per node, Shell 63 elements were utilized. It was c
sidered that the flexures are made of 5310-3 @m# thick titanium
alloy with a Young’s modulus of 1131010 @Pa# and a Poisson’s
ratio of 0.33. Vertical forcesFy , horizontal forcesFx , and mo-
mentsMz were sequentially applied at point 1~Figure 9 wherel 5
0.01 @m#!, and the corresponding vertical displacements, horiz
tal displacements, and rotations were read. This allowed calc
tion of C11, C12, C22 andC33 by means of Eq.~3!.

Table 1 comprises the analytical and finite element results
gether with the design parameters of several flexure hinges.

The analytical and numerical data were in good agreement
Table 1 shows it. The relative errors between analytical and fin
element results were less than 10 percent.

7 Experimental Results

Two 5310-3 @m# thick aluminum corner- filleted flexure hinge
specimens were fabricated and tested in bending. Two diffe

Fig. 9 Finite element model for a corner-filleted flexure hinge
Table 1 Analytical and finite
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experimental setups were arranged in order to determine the c
pliance factorsC12 andC22. In one test, a couple was applied t
the flexure by means of two equal and opposite forcesFx , as
sketched in Fig. 10~a!. The couple consisted of two equal weigh
that were applied symmetrically with respect to the flexure lon
tudinal axis. An eddy current displacement sensor was used
measure the deflection at point 1. Knowing the loads and th
spacingd, provided the value of the momentMz1. It was thus
possible to evaluate the compliance factorC12 for each load step,
as indicated in Eq.~3!. A similar procedure was utilized to evalu
ate the compliance factorC22 by measuring the deflection at poin
1 under several weights also applied at 1, as shown in Fig. 10~b!.
The experimental data is summarized in Table 2.

The specimens were loaded with seven different loads in e
experimental setup and the corresponding compliances were
culated as average values. The results for a given specimen
test were consistent within a 4 percent error margin. The exper
mental data confirmed the theoretical model predictions with re
tive errors less than 6 percent.

8 Conclusions
The paper presents an analytic approach to corner-filleted fl

ure hinges that are utilized in monolithic mechanisms to produ
limited rotation. The closed-form solutions of the compliance fa
tors for corner-filleted flexure hinges are derived. It is demo
strated that a corner-filleted flexure hinge spans a field wh
limits are the simple beam~for a fillet radius ofr 5 0! and the
right circular flexure hinge~for a fillet radius of r 5 l/2!. The
finite element results are in good agreement with those yielded
the analytical approach with relative errors less than 10 perc

Fig. 10 Schematics of the experiment: „a… setup for evaluation
of C12; „b… setup for evaluation of C22

Table 2 Experimental and analytical compliance data
element compliance data
SEPTEMBER 2001, Vol. 123 Õ 351
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Experimental measurements were also performed that confir
the analytical predictions with errors less than 6 percent. T
corner-filleted flexures are shown to be more compliant in be
ing compared to the right circular flexures. They also induce s
stantially lower stresses but are less precise in keeping the p
tion of the rotation center. All these conclusions are formula
after studying several compliance ratio functions that are defi
in terms of two non-dimensional variables.

Nomenclature

A 5 flexure cross-sectional area, intermediate functio
B 5 intermediate function
C 5 compliance
E 5 Young’s modulus
F 5 force
I 5 Flexure cross-sectional moment of area, integra

K 5 stiffness
M 5 bending moment
N 5 normal force
U 5 elastic strain energy
b 5 flexure width
f 5 function
h 5 geometric variable
k 5 stress concentration factor
l 5 flexure length
r 5 fillet radius
t 5 flexure thickness

x, y, z 5 reference axes
d, «, b, g 5 non-dimensional parameters

u 5 rotation angle
s 5 normal stress

Subscripts

a 5 axial
b 5 bending
e 5 elastic

min, max 5 minimum, maximum
x, y, z 5 reference axes

Superscripts

* 5 right circular flexure hinge

9 Appendix

9.1 Moments of Area. The moment of areaI varies since
the cross-sectional thicknesst is different on the three intervals
~1-2!, ~2-3! and~3-4! of Fig. 4. The thickness is expressed, resp
tively, as:
352 Õ Vol. 123, SEPTEMBER 2001
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H t~x!5t12@r 2x1/2~2r 2x!1/2#, xP@0,r #

t~x!5t, xP@r ,l 2r #

t~x!5t12@r 2~ l 2x!1/2~2r 2 l 1x!1/2, xP@ l 2r ,l #

(48)

9.2 Bending Moment and Axial Force for Compliance
Factors. Referring to Fig. 5, the bending moment and ax
force of Eqs.~2! are:

H M5Mz12xFy1

N5Fx1
(49)

9.3 Bending Moment and Axial Force for Precision of Ro-
tation. Referring to Fig. 5, the bending moment and axial for
of Eqs.~2! are:

H M5Mz12xFy11~x2 l /2!Fy5

N5Fx11Fx5
(50)
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