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1 Introduction ure pivot bearings. The beam theory was used to analyze design

. . . . issues by means of equations giving the spring rate and several
The flexure hinge is a mechanical member that substitute f%ensionless-parameter diagrams.

conyentional rotationa_ll joint_in order tc_) p_rodu_ce a Iimited angular Goldfarb and Speicf6] presented the design and analysis of a

motion about one axis. Being monolithic with the links it conyeyglute joint for compliant mechanisms consisting of a

nects, the flexure hinge is highly energy-efficient since it has Z€&fghgitudinally-split thin cylinder.

friction and backlash. Lobontiu[7] analyzed the dynamic response of a two-link pen-
A monolithic flexure hinge is usually obtained by machiningiulum with rectangular flexure hinges that are substantially thin-

one or two cutouts in a blank material. In order to be functionallger than the adjoining links. Designs were proposed in terms of

effective, a flexure hinge must be compliant in bending about otige defining geometry that would enable the free extremity follow

axis, to favor the intended rotation, but rigid about the cross axasprescribed trajectory.

to prohibit or minimize any other motion. A generic flexure hinge Her and Chang8] proposed an analytical scheme that allows

configuration is shown in Fig. 1. displacement calculatlons for micro-positioning stages with !nte-
Flexures can be fabricated in several configurations, depend@i@ted flexure hinges. The method was assessed by comparison to

on the cross-section profile. Some of the most common flexi8Ite element results. . .
hinges are illustrated |pn Fig. 2 Howell and Midha[9] introduced a computer-aided design ap-

The seminal work of Paros and Weisbdi] constitutes the proach to pseudo-rigid-body mechanisms that include compliant

landmark i h tical h of lithic 1l flexure pivots. The corresponding analysis consists of a rigid-
andmark Into the analytical approach of monolithic flexure,,y \inematic module coupled with a finite element-type large

hinges. The design equations, both exact and simplified, are gfiection algorithm dedicated to the short flexure hinges.

rived for calculating the compliancéspring ratesof single-axis ~ Ryu, Gweon, and Moor{10] developed the mathematical
and two-axes circular-cutout constant cross-section flexure hinggfodel of a three degree-of- freedom micro-motion stage that in-
Specifically, the angular and linear deflections produced on @abrporates several right circular flexure hinges and levers. An
three axes are expressed in terms of the corresponding extemwlivalent mass-spring system was further analyzed, and force-
loading. displacement equations were formulated enabling to maximize the

Ragulskis et al[2] applied the static finite element analysis taamplification of the micro-stage under specified restrictions.
filleted flexure hinges in order to calculate their compliances. TheRyu and Gweon[11] proposed a modeling and quantifying
analysis results allowed specifying flexure configurations witpcheme of the motion errors induced by machining imperfections
minimum bending stiffness. into a flexure hinge mechanism. _ _ o

In an approach similar to that of Paros and WeisldidSmith Ryu et al.[12] analyz_e_d a er_xure hlnge_mechanlsm_con3|st|ng
et al.[3] provided closed- form equations for the mechanical con?f levers(modeled as rigid bodigsflexure hinges, and piezoelec-
pliance of elliptic cross-section flexure hinges. An elliptical flex-
ure hinge is ranging between a circular flexure hinge and a simple
beam in term of its compliance. The model accuracy was verified
by finite element analysis and experimental measurements.

Xu and King [4] performed static finite element analysis of
corner-filleted and elliptic flexure hinges. A comparison was mac
with right circular flexure hinges which revealed that the corne
filleted flexure is the most accurate in terms of motion, the ellipti
flexure has less stress for the same displacement, while the ri
circular flexure is the stiffest.

There are several papers presenting applications that incor|
rate flexure hinges into specific designs. A few are mentioned
the following.

Weinstein[5] introduced the single-, two- and three-strip flex-

z (input/sensitive axis
) x (longitudinal cross-axis)
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tric actuatorgmodeled as rotational/translational spripngkhe in-
verse kinematic model yields the input voltage — output displace- o g b T
ment relationship. 1

This paper addresses the corner-filleted flexure hinges. Their
in-plane behavior is only analyzed since these rotational connec-  rig. 4 Geometry of a comer-filleted flexure hinge
tors are designed to be incorporated in planar mechanisms. The
closed-form compliance factors are formulated in terms of length
l, thicknesst and fillet radiusr for constant-width, corner-filleted . The flexure hinges are assumed to be long and thus, accord-

flexure hinges. It is demonstrated that a corner-filleted flexugy to strength of materialésee Young[13], for instancg, the
hinge spans a domain bounded by the simple beam 0) and  geflection due to shearing is negligible for such beam-like struc-
the right circular flexure hingér = 1/2). Finite element simula- res.
tions are performed to verify the accuracy c_)f the _model-predlcted. The hinges discussed here are part of plane devices where
compliance factors for several design configurations. The resuisih the input and output are planar; essentially this allows con-
are in good agreement with those produced by the analytical Rrcting the study for only three degrees of freedom: two in-plane
proach within 10 percent relative error margins. T_he exper'men_%nslations and one rotation, normal to the translation plane.
measurements also confirm the analytical predictions with relative, Compared to other effects, the bending and axial tension/
errors less than 6 percent. Compared to the right circular flexurggmpression are prevalent and thus only these factors are consid-
the corner-filleted flexures can be up to 6 times more bendingre( in all subsequent derivation.
compliant. They also induce substantially lower stresses but are gince all deformations of a flexure hinge are small, the small
less precise in keeping the position of the rotation center. All theai"splacement theory is applied for both bending and axial effects.
conclusions are formulated by analyzing several ratio functions, Tpe boundary conditions for a flexure hinge are fixed-free,
that are defined in terms of two non-dimensional variables.  gnd this is a good approximation provided the loading is accu-
rately specified.

* The beam comprises three portions: two are mirrored-
2 Motivation and Assumptions identical and have variable cross-sections at the filleted ends,
Y&hile the middle segment is of constant cross-section.
» The Castigliano’s second theorem is utilized throughout this
aper to formulate the compliances of corner-filleted flexure

The authors are implementing corner-filleted flexure hinges in
piezoelectric-driven amplification mechanisms. A typical configu-
ration is sketched in Fig. 3 that can amplify the input displacemeﬁ
more than 20 times in an optimized design while Fig. 4 shows t nges.

eometry of a generic corner-filleted flexure hinge. :
’ The p)r:lper cgharacterizes the corner-filleted (fglexure hinges ??n Compliance Model
terms of compliance to external loading, precision of rotation and 3.1 Problem Formulation. Figure 5 indicates the loading
stress levels by providing closed-form solutions to these problergd deformations of a beam-like corner-filleted flexure hinge.
as efficient alternatives to the more time-consuming finite elementrhe Castigliano’s first theorem is applied in order to express the

approach. _ _ ~ displacements at the flexure’s free end:
The mathematical model is based on several simplifying as-
sumptions that are summarized in the following: ( 0. — dUe
oMy,
< dUg @)
y =
Load ! ‘9Fy1
—WQ U,
0 Xq=
1 \ ! é’Fxl
M_C
. @)
Hinge #1 Hinge #2 Aj
Output displacement
.
74
& Input force and displacement

\() (9] U] Fy5

Fig. 3 Quarter-model of a 2D amplification mechanism; hinge
#1 is subject to bending  (from input and loading ), tension (from  Fig. 5 Schematic showing deformations at the free end and
input ) and shearing (from loading ) displacement of the theoretical rotation center

Fy1
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where the elastic strain energy is:

Ue—lleMZ/(El)ds+jNZ/(EA)ds )
L L

The equations providing the moment of area, bending morent

Cp=3IEb){4(1—2r)(12—Ir +r?)/(3t%)*
+ 12tV 4r +t)Y — 80r*+ 243t + 8(3+ 27)r?t?
+4(1+2m)rt3+ ]+ 4(2r +t)3(6r2—4rt — t?)
X atan(1+4r/t) YA 2t5% 4r +1)%?] 71

and axial forceN over different intervals are given in the Appen-

dix. Equations(1) and (2) result in:

01 Cll c12 0 le
yit=|Cw Cax O [{Fpu ©)

where the compliances are:

C1=3/bE)[1/2(1,+13)+4(I—2r)t~ 3]
Cio=—3IbE)[1/2(1,+14)+21(1—2r)t"3]
Co=3IbE)[1/2(15+1¢)+4/3(1—2r)(12—Ir +r?)t™ %]
Ca3=U(DBE)[1/2(1,+1g)+ (1 —2r)t71]

(4)
Thel, throughlg integrals are:
Il:frdx/A(x)3 (5)
0
Izzfrxdx/A(x)S (6)
0
I—r
|3:f dx/B(x)® (7)
I=r
|4=f xdx/B(x)3 (8)
I5=frx2dx/A(x)3 9)
0
I-r
'GZJ x2dx/B(x)3 (10)
|7:frdx/A(x) (11)
0
I—r
|8=f dx/B(x) (12)
with:
A(X)=t/2+T1 —X(2r —X) (13)
B(x)=t/2+r—J(I—=x)[2r = (I—X)] (14)

+[—40r*+8Ir3(2r—t)+12r3t+4(3+ 2m)rt?
+2(1+2m)rt3+ 74 2]/t 2 (4r +1) 2
+812r(6r2+4rt+t2)(2r+t) "t 2(4r+1)"2
—{2(2r+t)[ —24(1—r)?r2—8r3t+ 14r2t2+ 8rt3+14]
Xatan(1+4r/t) 2tV 4r +£) " YA 2(4r +1) "2}

a7
Cae=L(Eb)[ — w/2+ (1 —2r)/t+2(2r + 1)t~ Y4 4r +1) 12
X atan(1+4r/t)¥3] (18)

3.2 Limits to the Compliance Factors. The fillet radiusr
can only vary betweem,;,=0 (when the flexure is actually a
simple beamandr ,,,,=1/2 (when the corner-filleted flexure be-
comes a right circular flexuye

In both cases, expressions are available for the compliance fac-
tors from the engineering theory of beams and the work of Paros
and Weisbord[1] that treated the problem of circular flexure
hinges.

It is demonstrated in the following that the compliance expres-
sions of a generic corner-filleted flexure match their aforemen-
tioned limits.

(a) Non-filleted flexure (= O; engineering beam theory)

Takingr = 0 in Eq.(15) gives:

C1;,=121/(Ebt®) (19)

Equation(19) is identical to the beam theory formula that ex-
presses the end rotation produced by an end bending moment for
a fixed-free beam.

Takingr = 0 in Eq. (16) produces:

C,,=—6I%(Ebtd) (20)

which is identical to the solution given by the beam theory that
relates the end deflection to the end bending moment for a fixed-
free beam.

Takingr = 0 in Eq. (17) yields:

C,,=4I3(Ebt®) (21)

which coincides with the simple beam formula that assesses the
end deflection determined by an end force for a fixed-free beam.
Takingr = 0 in Eq.(18) gives:

Cas=I/(Ebt) (22)

which is the same as given by theory for a simple fixed-free bar in
extension.

(b) Right circular flexure (r=1/2; compliances given in Paros
and Weisbord [1])

Equations(4) through (14) produce the closed-form compliance Using the notations that were introduced by Paros and Weis-

factors:
C11=12(Ebt){l —2r + 2r[t(4r +1)(6r2+4rt +t2)
+6r(2r +1)2tY(4r +t)Y2atan 1+ 4r/t)*?
X(2r+t) " L(4r+t)" 3 (15)
Cio=—6I/[Eb(2r+1t)(4r+1)2][1(2r +1)(4r +1)?
—Ar2(16r2+ 13rt +3t2) + 12r2(2r + )tY4 4r +1)12

Xatan(1+4r/t)Y?] (16)
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bord[1], namely:

B=t/(2r) (23)
and

y=h/(2r) (24)
where:

h=2r+t (25)

and substituting them into E@15) yields:

Transactions of the ASME

Downloaded 21 Mar 2008 to 129.59.75.233. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



C11=3[2Ebr?p(B+2){1/(B+1)
+(3+2B+ B[ B(B+1)(B+2)]+6(B+1)
X B B+2)"atan(1+2/8)Y3 (26)

which is identical to what Eq(1) of Paros and Weisbor{il]
produces by taking:

y=B+1 (27)
Similarly, Eq.(16) transforms into:
C1=rCyy (28)

which is identical to Eq(3) of Paros and Weisborfil] in the
particular case of right circular flexures.
Equation(17) can be reformulated as:

Coo=3[2EbB*(1+B)(2+B)°{B(2+B)

X[3+68+(11+47)B%+8(1+m) B3

+(24+5m) B+ 7% —2(1+B)*

X BY2(2+ B)YA(—3+4p+2B%)atan1+2/3)Y  (29)
and this is identical to Eq9) of Paros and Weisbord ] for right
circular flexures.

Equation(18) gives:
Cae=1(Eb)[ — 7/2+2(1+ B) B~ Y4 B+2) Yatan1+2/8)Y?
(30)
which coincides to what Eq25) of Paros and Weisbold ] yields
for right circular flexures.

3.3 Corner-Filleted Versus Right Circular Flexure Hinges

Specifically, three functions are defined in the following. The
first function is:
f11(8,6)=Cy,/CT; (32)

whereC,, andC3,, are simply obtained from Eq15) by using
the notations given in Eq31). It also can be seen that:

C1,/Cl=T11(8,¢) (33)
whereC,, andC?,, are given by Eqs(16) and (31).
The next function is:
f2x 8,6)=Cpa/C3, (34)

whereC,, and C3,, are simply obtained from Eq17) by using
the notations given in Eq31). The last function is:

fas( 518):(333/(:33 (35)
with C3 andC3;, yielded by Eqs(18) and (31).

Figures 6a), 6(b) and Gc) are three-dimensional plots of the
functions defined above.

The corner-filleted flexure hinge can be 5 to 6 times more
bending-sensitive compared to its right circular counterpart, when
the fillet radius is sufficiently small, as illustrated in Figéagand
6(b). At the same time though, a corner-filleted flexure hinge is
more axially-sensitive at small fillet radii than its corresponding
right circular flexure(up to 1.5 times, as indicated in Fig(c).

4 Precision of Rotation

in Terms of Compliance. A comparison is performed between 4.1 Problem Formulation. lIdeally, the center of the flex-
corner-filleted and right circular flexures in terms of their compliure, which can also be considered as the ‘center of rotation,’
ances. The following non-dimensional variables are introduced{point 5 in Fig. 3, should not translate at all under the loading, but

5=t/l

e=r/l (31)

The non-dimensional variables defined in E2{l) are now used
to compare the corner- filleted flexure hinges to their correspo
ing equal-length, right circular flexure hinges in terms of compl
ances. The*) superscript indicates a right circular flexure hinge

and the(*) compliances are obtained by takihg= 2r.

©

Fig. 6 Plot of non-dimensional compliance ratios:
= CMICL; (b) f22= szlczz ) (C) f33= C33/C§3

@ fyu

Journal of Mechanical Design

this is actually impossible since the whole flexure deforms under
the combined action of bending and tension.

In order to quantify the offset of the center of rotation, the
horizontal and vertical displacements andy;s are calculated by
superimposing two ‘dummy’ loads,s andF s to the actual loads
Fl, Fyp andM, (see Fig. $ The Castigliano’s first theorem is
'subsequently applied in the form:

sU,
Y5~ 5F s

5U,
-5

(36)
Xs

whereU, is given in Eq.(2). The bending momeri¥l and axial
force N are provided in the Appendix.

The displacement of the center of rotation can be alternatively
expressed in matrix form as:

0 0 0 0 M,
ys¢=[Ci Cp O Fy1 (37)
Xg 0 0 Ci) (Fy

with:
C1,=(3/2bE)[(1—-2r)%t 3+1,~1/2l 5]
Cho=—3IbE){(3t3 (1 —r)2(1—4r)+13/4]
C4s=1/2C53

38)

The integrald 5, 1, andlg are defined in Eq97), (8), (10) while
Casis given in Eq.(18).
The closed-form solutions fd€;, andC;, are:
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axial loading when shearing, as previously stated, is neglected.
The filleted area can be looked at as a stress concentrator. As a
result, the maximum stress on the upper fiber can be expressed as:

O max=6Kp(M 71+ Fyql ) (bt2) + K, Fyq /(b1) (43)

assuming that botM ,; andF, have similar bending effects. The
stress concentration factokg (in bending andk, (in axial load-

ing) can be found in textbooks like those of Youfi$] or Peter-
son[14]. Equation(43) is useful when the external loads acting on
the flexure are known in advance. Often times, though, the load-
ing is at least partially unknown, but the displacement field is
specified and, as a consequence, & needs to be modified
accordingly. Equationi3) is first expressed as:

M z1 K11 K12 0 01

Fig. 7 Plot of non-dimensional compliance ratio  f5,=C5,/ C5; Fyip=| Kz Kz O Y1 (44)
Fy1 0 0 Kaallxg

where the stiffness terms are:
K13=C5,/(C11Coo— Ciz)
K== C12/(C11Co0— C%z)

C1o=3[2bt3(2r +t)(4r +1)S2EJ{(4r +1)Yq1%(2r +t)(4r +1)?
+8r3(2r +1)(8r+5t)—8Ir?(16r2+13rt + 3t?)]

+24(1—20)r2(t) Y2 2r +t)2a tan( 1+ 4r/t) 39 (45)
A rm 2r+) atan ry 2} (39) K22:C11/(011C22_C§2)
Ch,=1[4bt3(2r +1t)(4r +1)52E){(4r + )V — 5I3(2r +t)(4r Kgs=1/Cag

+1)2—72r3(2r +1)(8r + 5t)+ 482r2(16r2+ 13rt + 3t?) SubstitutingM 1, Fy; andFy; from the matrix Eq(44) into Eq.

(43) results in:
O max= 6Ky /(D[ (K 11+ 1K 15) 1+ (K 1+ 1K 5) y4 ]
+k,/(bt)Kaaxy (46)

Equation(46) allows evaluating the maximum stress in terms of
(40)  the specified displacement values at the tip of the flexure. Both
4.2 Corner-Filleted Versus Right Circular Flexure Hinges Ed- (43) and Eq.(46) could be utilized in actually designing or

in Terms of Precision of Rotation. The corner-filleted flexure ONly checking an already-designed corner-filleted flexure. Design-
hinges are now compared to the corresponding equal-length rigd @ flexure by means of E¢46) would imply multi-dimensional
circular flexure hinges in terms of their precision of rotation a&on-linear optimization and this is beyond the scope of the present
described by Eq439) and(40). The non-dimensional variables WOrk.
and ¢ introduced in Eq.(31) are used to define the following

+(2r +1t)[ 2565+ 368 4t — 56r 33— 24(3+ 2m)r?t®
—12(1+2m)rt* =3t P+ 12(1) YA 2r + )2 — 122r2
+36lr3—(2r +t)2(6r2—4rt—t?)]atan1+4r/t)Y3

5.2 Corner-Filleted Versus Right Circular Flexure Hinges

functions: in Terms of Stress. The stress concentration factors for both
f1,(8,6)=C,/Ct, (41) corner-filleted and circular flexure hinges are of the same order of
magnitude, and generally less than 3 as indicated by Peterson
f(8,8)=Cp/C3; (42) [14].

. *r . . . The difference in stress levels, if any, between the two flexures
The expressions &7, andC3, are simply obtained from EGS. j then produced by the stiffness difference, as suggested in Eq.
(39) and(40) by takingl = 2r. Figure 7, for instance, shows the(46).
three-dimensional plot of the), function defined above. A comparison is carried out between the stiffness factors.

As a consequence of being more compliant than the right cisgain, the non-dimensional variables of E§1) are utilized.
cular flexure hinges, the corner-filleted flexures are also less preThe following function is introduced:

cise in keeping the center of rotation with minimum offset. The
shift of the rotation center caused by bending effects only can be
10 to 15 times larger in a corner-filleted flexure than the shift
experienced by a similar right circular flexure hinge for the same
amount of loading. For small/micro-scale applications where two
links connected by a flexure must replicate pure rotation as close
as possible, this aspect might pose serious limitations. In medium/
macro-scale applications though, this relative disadvantage is not
paramount since the gains of large motion capability at lower
stress levels are strong factors in favor of the corner-filleted flex-
ure. It is also worth noting that Fig. 7 depicts the relationship
between the two flexure types in a relative fashion. In reality, the
absolute values of the rotation center’s shift are very small, and
they do not seriously endanger the precision of the relative rota-
tion between two adjoining links.

5 Stress Limitations

5.1 Problem Formulation. The normal stresses on the
cross-section of the flexure hinge are the result of bending anéig. 8 Plot of non-dimensional stiffness ratio frii=Ki/ Ky
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B Fig. 10 Schematics of the experiment:  (a) setup for evaluation
EEEEE of Cyp; (b) setup for evaluation of C,,
REEEREN: SeeEE
BT { | R | P T | Table 2 Experimental and analytical compliance data
Sample # 1 Sample # 2
Fig. 9 Finite element model for a corner-filleted flexure hinge /[mx 107 25.40 19.05
¢t[mx 107 2.27 1.44
r[mx107] 3.17 3.17
A1 Experimental 1913 3834
frua(8,) =KIy/Kyy (47) | G INx107 Analytical 1798 3611
. . . i c N'x10? Experimental 28925 42995
where the superscript denotes the right circular flexure hikge. | 22 [mNX10"1 =41 tical 28600 41641

is simply obtained by taking = 2r in Eq. (45). Figure 8 shows
the three-dimensional plot of this function.

Similar results were obtained for the other stiffness ratios that
have been accordingly defined and therefore no other plots
included here.

Figure 8 indicates that the stiffness of a right circular flexur
hinge can be 20 times higher than the one of a correspondi
corner-filleted flexure hinge with small fillet radii, and this di-
rectly translates to the stress levels, as @6) indicates.

erimental setups were arranged in order to determine the com-
pliance factor€C,, andC,,. In one test, a couple was applied to
@e flexure by means of two equal and opposite foregs as
tched in Fig. 1@). The couple consisted of two equal weights

that were applied symmetrically with respect to the flexure longi-
tudinal axis. An eddy current displacement sensor was used to
measure the deflection at point 1. Knowing the loads and their
. spacingd, provided the value of the momeM,,. It was thus
6 Finite Element Results possible to evaluate the compliance fadip for each load step,

The finite element model shown in Fig. 9 was utilized to verifias indicated in E¢(3). A similar procedure was utilized to evalu-
the compliance equations for several corner-filleted flexure date the compliance fact@®,, by measuring the deflection at point
signs. The ANSYS finite element software was used to run dllunder several weights also applied at 1, as shown in Figp)10
finite element static-load simulations. Two dimensional, 6 degre€he experimental data is summarized in Table 2.
of-freedom per node, Shell 63 elements were utilized. It was con-The specimens were loaded with seven different loads in each
sidered that the flexures are made of 80 [m] thick titanium experimental setup and the corresponding compliances were cal-
alloy with a Young’s modulus of 1410' [P4] and a Poisson’s culated as average values. The results for a given specimen and
ratio of 0.33. Vertical force$,, horizontal forces=,, and mo- test were consistent withia 4 percent error margin. The experi-
mentsM, were sequentially applied at poin{Bigure 9 wheréd = mental data confirmed the theoretical model predictions with rela-
0.01[m)]), and the corresponding vertical displacements, horizotive errors less than 6 percent.
tal displacements, and rotations were read. This allowed calcula-
tion of Cy;, Cy,, Cyy andCy3 by means of Eq(3). 8 Conclusions

Table 1 comprises the analytical and finite element results to-

gether with the design parameters of several flexure hinges. The paper presents an analytic approach to corner-filleted flex-

The analytical and numerical data were in good agreement, Y& hinges that are utilized in monolithic mechanisms to produce

Table 1 shows it. The relative errors between analytical and finiighited rotation. '_I'he closed-form_solutions of th_e compl_iance fac-
element results were less than 10 percent. tors for corner-filleted flexure hinges are derived. It is demon-

strated that a corner-filleted flexure hinge spans a field whose

. limits are the simple beartfor a fillet radius ofr = 0) and the

7 Experimental Results right circular flexure hinggfor a fillet radius ofr = 1/2). The
Two 5% 103 [m] thick aluminum corner- filleted flexure hinge finite element results are in good agreement with those yielded by

specimens were fabricated and tested in bending. Two differgahe analytical approach with relative errors less than 10 percent.

Table 1 Analytical and finite element compliance data

C [N'm'x10%] | CL[IN'x10°] | Cp[mN'x10°] | Cs[mN'x10""]
[mxll 0] [mxi 0] [mx’i 0] Analytic FEM Analytic FEM Analytic FEM Analytic FEM
1.6 0.5 0.25 248.995 | 271.342 | 199.196 | 201.160 | 202.715 | 204.491 [ 554.110 | 595.837
1.6 0.5 0.30 239.228 | 250.167 | 191.382 | 199.036 [ 192.118 | 204.286 [ 543.945 | 585.891
1.6 0.6 0.25 145.836 | 152.226 | 116.669 | 112.509 | 119.321 [ 128.373 | 464.690 | 508.079
1.6 0.6 0.30 140.590 | 143.568 | 112.472 { 119.192 | 113.593 [ 123.237 | 457.718 | 506.694
1.8 0.5 0.25 283.904 | 291.081 | 255.514 | 231.926 [ 293.847 | 298.374 | 626.837 | 667.336
1.8 0.5 0.30 274.137 | 260.476 | 246.723 | 253.395 [ 280.195 | 298.504 [ 616.672 | 660.111
1.8 0.6 0.25 166.038 | 171.209 | 149.434 | 148375 | 172.622 [ 184.382 | 525.296 | 568.255
1.8 0.6 0.30 160.792 | 175.521 | 144.713 | 130.950 | 165.247 | 172.523 | 517.746 | 570.017
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Experimental measurements were also performed that confirmed

tx)=t+2[r—xY32r—x)*?], xe[0r]

the analytical predictions with errors less than 6 percent. The

corner-filleted flexures are shown to be more compliant in bend-
ing compared to the right circular flexures. They also induce sub-

t(x)=t, xe[r,l—r]
t()=t+2[r—(I=x) "3 2r —1+x)"2,

(48)
xel[l—=r,l]

stantially lower stresses but are less precise in keeping the posi- ) ) )
tion of the rotation center. All these conclusions are formulated 9-2 Bending Moment and Axial Force for Compliance
after studying several compliance ratio functions that are definEgctors. Referring to Fig. 5, the bending moment and axial

in terms of two non-dimensional variables.
Nomenclature

intermediate function
compliance

Young’'s modulus

force

Flexure cross-sectional moment of area, integral
stiffness

bending moment

normal force

elastic strain energy

flexure width

function

geometric variable

stress concentration factor
flexure length

fillet radius

flexure thickness

reference axes
non-dimensional parameters
rotation angle

normal stress

x
<
Il

>
»

=
SR N~=~—xT o CZZIRXR—_—TIMO >

Subscripts

axial

bending

elastic

minimum, maximum
reference axes

a
b

e

min, max
X, Y, Z
Superscripts

* = right circular flexure hinge

9 Appendix

9.1 Moments of Area. The moment of area varies since
the cross-sectional thicknesss different on the three intervals,

flexure cross-sectional area, intermediate function

tation.
of Egs.(2) are:

force of Egs.(2) are:

[M=M21—XFyl (49)

N=F,;

9.3 Bending Moment and Axial Force for Precision of Ro-
Referring to Fig. 5, the bending moment and axial force

M=M,;—xF,;+(x—=1/2)F
{ 1 yl y5 (50)

N=Fy;+Fxs
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