
IEEE TRANSACTIONS ON VERY LARGE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003 679

Corner Sequence—A P-Admissible Floorplan
Representation With a Worst Case

Linear-Time Packing Scheme
Jai-Ming Lin, Yao-Wen Chang, Member, IEEE, and Shih-Ping Lin

Abstract—Floorplanning/placement allocates a set of modules
into a chip so that no two modules overlap and some specified ob-
jective is optimized. To facilitate floorplanning/placement, we need
to develop an efficient and effective representation to model the
geometric relationship among modules. In this paper, we present a
P-admissible representation, called corner sequence (CS), for non-
slicing floorplans. CS consists of two tuples that denote the packing
sequence of modules and the corners to which the modules are
placed. CS is very effective and simple for implementation. Also,
it supports incremental update during packing. In particular, it
induces a generic worst case linear-time packing scheme that can
also be applied to other representations. Experimental results show
that CS achieves very promising results for a set of commonly used
MCNC benchmark circuits.

Index Terms—Floor planning, layout, physical design, place-
ment, VLSI design.

I. INTRODUCTION

A S TECHNOLOGY advances, circuit sizes and design
complexity increase rapidly. To cope with the increasing

design complexity, hierarchical design and intellectual property
(IP) modules are widely used. Further, as device dimensions are
reduced, the capacitive, resistive, and inductive parasitic effects
increase, which makes interconnect delay become the dominant
factor in determining the overall circuit performance in deep
submicrometer technologies. As an early stage of very large
scale integration (VLSI) physical design, floorplanning has a
great impact on chip size and global interconnect structure.
This trend makes module floorplanning/placement much more
critical to the quality of a VLSI design than ever. To facilitate
floorplanning/placement, however, we need a representation
to model the geometric relationship among modules. Such
a representation induces a solution structure for floorplan
optimization. It is thus desired to develop an efficient, flexible,

Manuscript received February 2, 2002; revised September 6, 2002. This work
was supported in part by the National Science Council of Taiwan, R.O.C., under
Grant NSC-89-2215-E-009-117.

J.-M. Lin was with the Department of Computer and Information Science,
National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. He is now with
the Realtek Semiconductor Corporation, Hsinchu 300, Taiwan, R.O.C.

Y.-W. Chang is with the Department of Electrical Engineering and Graduate
Institute of Electronics Engineering, National Taiwan University, Taipei 106,
Taiwan, R.O.C. (e-mail: ywchang@cc.ee.ntu.edu.tw).

S.-P. Lin is with the Department of Electronics Engineering,
National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
gis89583@cis.nctu.edu.tw).

Digital Object Identifier 10.1109/TVLSI.2003.816137

Fig. 1. (a) Slicing floorplan. (b) Nonslicing floorplan.

and effective representation to cope with the high complexity in
modern floorplan design.

A. Previous Work

There exist a few floorplan representations in the literature,
e.g., [1], [3], [4], [7]–[11], and [15]. We shall first review these
representations and the type of floorplans that they can repre-
sent. A slicing floorplan is one of the simplest types of floor-
plans. A slicing structure can be obtained by recursively cutting
rectangles horizontally or vertically into smaller rectangles; oth-
erwise it is nonslicing. Fig. 1(a) and (b) shows a slicing floor-
plan and a nonslicing one, respectively. For the slicing structure,
Otten [11] first used a binary tree to represent a slicing floorplan.
Wong and Liu [15] proposed a normalized Polish expression to
improve the binary-tree representation. The slicing structure has
smaller solution space, resulting in faster running time. How-
ever, most designs have nonslicing floorplan structures.

For the nonslicing floorplan structure, there exist several
well-known “old” graph-based representations. Ohtsukiet al.
[10] used a pair of horizontal and vertical directed acyclic
graphs, calledpolar graphs, to represent a topological place-
ment. Other representations such asadjacency graphsand
channel intersection graphsare also widely used [13].

The nonslicing floorplan representations have attracted much
attention in the literature recently, e.g.,sequence pair (SP)[8],
bounded-sliceline grid (BSG)[9], O-tree[3], B -tree[1], corner
block list (CBL) [4], and transitive closure graph (TCG)[7].
Murataet al. [8] used two sequences of module names (called
the SP) to represent the geometric relations among modules.
They defined theP-admissible solution space, which satisfies
the following four requirements [8]:

1) solution space is finite;
2) every solution is feasible;
3) packing and cost evaluation can be performed in polyno-

mial time;

1063-8210/03$17.00 © 2003 IEEE

680 IEEE TRANSACTIONS ON VERY LARGE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

4) best evaluated packing in the space corresponds to an op-
timal placement.

(By this definition, the slicing tree is not a P-admissible rep-
resentation since it cannot represent many optimal nonslicing
placements.) For cost evaluation, the SP needs to compute
longest paths in its induced constraint graphs, which takes
significant running time. To reduce the time complexity, Tang
and Wong [14] proposed a faster packing scheme (called
FAST-SP) by computing the longest common subsequence.
Another nonslicing representation, namely, the BSG, was
proposed by Nakatakeet al. [9]. There could be multiple
representations corresponding to one BSG packing and, thus,
the BSG incurs significant redundancies. Both the SP and BSG
are P-admissible and can represent general floorplans.

Guo et al. [3] first proposed a tree-based representation
(called the O-tree) forcompacted nonslicing floorplans.
To obtain a good solution after perturbation, a sequence of
one-dimensional compaction and transformations between a
placement and its representation are required. Changet al.
[1] presented a binary tree-based representation (called the
B -tree), also forcompactednonslicing floorplans. The B-tree
is a restricted version of the O-tree with faster operations and
simpler data structures. Given a B-tree, however, it may fail
to obtain a placement corresponding to the original B-tree
because of its two-dimensional packing nature.

Honget al. [4] proposed a CBL formosaicnonslicing floor-
plans. By mosaic floorplans, we mean that each room (region)
in the chip contains one and only one module (i.e., no empty
region). The CBL has a faster packing scheme; however, it is
not P-admissible since it cannot guarantee a feasible solution
in each perturbation and many infeasible solutions may be gen-
erated before a feasible solution is found. Further, the mosaic
floorplans that the CBL representation can represent are more
restricted than compacted floorplans (but are more general than
slicing ones).

Recently, Lin and Chang proposed a TCG forgeneralfloor-
plans [7]. The TCG is P-admissible. Different from the graph-
based representations presented in the early days (e.g., the polar
graph, adjacency graph, etc.), the TCG can guarantee its fea-
sibility during perturbation by manipulating the transitive and
reduction edges in a TCG, resulting in a good structure for so-
lution perturbation. However, the operations to keep a feasible
TCG are relatively complicated.

B. Our Contribution

We present, in this paper, a P-admissible representation
[called a corner sequence(CS)] for compactednonslicing
floorplans. A CS consists of two tuples that denote the packing
sequence of modules and the corresponding corners to which
the modules are placed. A CS is very effective and very simple
for implementation. Also, it supports incremental update
during packing. In particular, a CS induces a generic worst
case linear-time packing scheme that can also be applied to
other existing representations. Experimental results show that
a CS obtains the best silicon area and wirelength for a set of
commonly used MCNC benchmark circuits, as compared to
the published works.

Fig. 2. (a) PlacementP in a chip. (b) The contourR of P .

The remainder of this paper is organized as follows. Section II
formulates the floorplan/placement design problem. Section III
presents the procedures to build a CS from a placement and
transform a CS to a placement. Section IV introduces the pertur-
bations and floorplan design algorithm for a CS. Experimental
results are reported in Section V. Finally, we conclude our study
and discuss future research directions in Section VI.

II. PRELIMINARIES

Let be a set of modules whose
width, height, and area are denoted by, , and ,

. Let denote the coordinate of the
bottom–left (top–right) corner of module. A placement is
an assignment of for each , , such that no
two modules overlap. The goal of floorplanning/placement is
to minimize some predefined cost metric such as the area (i.e.,
the minimum bounding rectangle of), the wirelength (i.e., the
summation of the half-bounding box of interconnections), or a
linear combination of area and wirelength, induced by the as-
signment of ’s on the chip.

In the CS representation, modules are placed one at a time
according to a predefined sequence. When a module is placed,
we insert the module into two neighboring modules in the con-
tour formed by those placed modules. To facilitate this process,
we should first introduce the concept of the contour. We use the
following notations for the technical discussions.

• : denotes thedummy moduleon the left
side (bottom) of a placement; it is used to specify the
starting (ending) position of a contour in a placement. Let

and .
• : is dominated by in the direction if and

only if and , i.e., is placed to the right
of and ’s top boundary is higher than’s.

• : We say that is dominated by in the
direction if and only if and , i.e., is
placed higher than and ’s right boundary is right to

’s.
• : The contour gives aminimal dom-

inating sequenceof modules, in which the modules are
not dominated by any other in theand directions in a
placement, i.e., , , , or .

• : thebendformed by the right boundary of and
the top one of of two adjacent modules and in .
Given a contour with modules, there exist bends.

Fig. 2(a) shows a placementwith eight modules , , ,
, , , , and . As shown in Fig. 2(b), denotes the

dummy module left to (below) . Since and ,

LIN et al.: CS—P-ADMISSIBLE FLOORPLAN REPRESENTATION 681

. Similarly, since and . The
contour of consists of the four modules, , , and
that are not dominated by any other module. There exist three
bends , , and in .

III. CORNERSEQUENCE(CS)

In this section, we present the CS representation.
uses a packing

sequence of the modules, as well as the corresponding
bends formed by the modules to describe a compacted
placement. We refer to each two-tuple (,) as a
termof the CS. We first show how to derive a CS representation
from a compacted placement.

A. From a Placement to a CS

A module is said tocoveranother if is higher than
and their projections in the axis overlaps or is to the right
of and their projections in the axis overlaps (i.e., ,

, and or if , , and).
Given a left and bottom compacted placement (i.e., an admis-
sible placement named in [3]), we first pick the dummy modules

and and make for the two chosen modules. The
module on the bottom-left corner of is picked (i.e.,
and) since it is the unique module at the bend of,
and the new becomes . When there exists more than
one module at the bends, we pick the left-most module that does
not cover other unvisited modules at the bends. Therefore, the
module at the bend is picked if exists and does
not cover the other unvisited moduleat the bend ; oth-
erwise, is picked. This process continues until no module is
available. Based on the above procedure, there exits at least one
module at a bend of the currentbefore all modules are chosen
since the placement is compacted.

Theorem 1: There exists a unique CS corresponding to a
compacted placement.

Proof: To prove that there exists a unique CS corre-
sponding to a compacted placement, we only need to show
that the chosen module of our procedure in each iteration is
unique. By our definition, there exits at least one module at a
bend of current before all modules are chosen. Without loss
of generality, if is composed of , , , , and , the
left-most module, located at a bend of, which does not cover
others, is unique. (If there are several modules at bends and
the first module covers others, we can choose the second one.
Similarly, we can choose the third if the second covers others,
and so on.) Therefore, by repeatedly choosing such a module in
a placement until no module is available, we can build a unique
CS corresponding to the placement.

Fig. 3(a)–(h) shows the process to build a CS from the place-
ment of Fig. 2(a). initially consists of and . Module

at the bottom-left corner is chosen first since it is the unique
module at the bend of (and). Fig. 3(a)
shows the resulting (denoted by heavily shaded areas). Simi-
larly, is chosen (and) and the new is
shown in Fig. 3(b). After in Fig. 3(b) is chosen, and are
removed from since and [see Fig. 3(c) for
the new]. As shown in Fig. 3(d), there exist two modules

Fig. 3. (a)–(h) Process to build a CS from a placement. (Note that the heavily
shaded modules denote those inR and the lightly shaded ones denote the visited
modules.) (i) Resulting CS.

and at bends. Although is left to , we pick first since
covers . This process repeats until no module is available,

and the resulting CS is shown in Fig. 3(i).

B. From a CS to a Placement

We have introduced the procedure to build a CS from a place-
ment. In this section, we present the packing scheme for a CS
[called dynamic sequence packing(DSP)], to transform a CS
into a placement. For DSP, a contour structure is maintained to
place a new module. Let be a doubly linked list that keeps
modules in a contour. Given a CS, we can obtain the corre-
sponding placement in time by inserting a node into
for each term in the CS, where is the number of modules.

initially consists of and that denote dummy modules
and , respectively. For each term (,),

in a CS, we insert a node between and in for and
assign the coordinate of as . This corresponds
to placing module at the bend . Those modules that
are dominated by in the direction should then be re-
moved from . This can be done by deleting the predecessor
(successor) ’s of in if ’s (’s) are smaller than .
The process repeats until no term in the CS is available. Let

denote the width (height) of a chip.
if is the node right before (behind) in the final .

Fig. 4 shows the packing scheme for the CS shown in
Fig. 4(a). initially consists of and . We first insert a node

between and since and . The
coordinate of is . Fig. 4(b) shows the resulting

682 IEEE TRANSACTIONS ON VERY LARGE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Fig. 4. (b)–(i) DSP packing scheme for the CS shown in (a), where
CS = h(b ; [b ; b])(b ; [b ; b])(b ; [b ; b])(b ; [b ; b])(b ; [b ; b]),
(b ; [b ; b])(b ; [b ; b])(b ; [b ; b])i.

placement and . Similarly, is inserted between and
in of Fig. 4(b) since and [see Fig. 4(c)
for the resulting placement and]. After we insert a node
between the two nodes and in of Fig. 4(c) for the third
term (,) in the CS, the predecessor (successor)
of is deleted because [see Fig. 4(d)].
The process repeats for all terms in the CS, and the resulting
placement and are shown in Fig. 4(i). The width (height) of a
chip is since the node right before (behind)

is in .
Theorem 2: The solution space of a CS is bounded by ,

where is the number of modules.
Proof: uses a

packing sequence formed by modules, as well as the cor-
responding bends of the modules to describe a placement.
Given modules, there are permutations in the packing se-
quence . By the DSP scheme, we insert a nodeinto for
each module in the CS to get its coordinate. Initially, con-
tains two nodes and . Therefore, we have only one choice
to insert the node between and . After the first node is in-

serted into , there are two choices for inserting the second
module into . Similarly, there are at most choices for in-
serting the th node into if no node is deleted from . There-
fore, the solution space of the CS is bounded by

Thus, the theorem follows.
It should be noted that, in addition to the number of modules,

the solution space of the CS also depends on the dimensions of
the modules. The above theorem considers the worst case for
the CS—all modules appear in the contour all the time during
packing. Obviously, it is quite often that only part of the modules
are in the contour. Therefore, the practical solution space of the
CS is significantly smaller than .

Theorem 3: There exists a placement corresponding to each
CS.

Proof: The CS uses a packing sequenceof modules, as
well as the corresponding bendsof the modules to describe
a compacted placement. There exists a unique placement cor-
responding to a CS if each module is placed at the designated
bend, as defined in the CS. If the designated bend is not avail-
able, there always exists a bend associated with the current con-
tour for placing the module.

Theorem 4: The DSP packing scheme packs modules cor-
rectly in time, where is the number of modules.

Proof: The DSP scheme packs modules correctly if it can
place modules at the designated bends defined in a CS. For each
term (,) in the CS, it inserts a node between two
neighboring nodes and in , which corresponds to placing
module at the bend . Since corresponds to the
module left to (below) , the coordinate of is

. Since a contour is formed by modules that are not dom-
inated by others in the and directions, those modules that
are dominated by must be removed after is placed in order
to place the next module correctly. The predecessor (successor)

’s of in are deleted during DSP if ’s (’s) are smaller
than . It is clear that ’s (’s) are smaller than for
those nodes ’s before (behind) . Therefore, ’s are domi-
nated by if their coordinates ’s (’s) are also smaller
than . The process is repeated until no module is avail-
able. Therefore, DSP packs modules correctly for a CS.

The DSP takes a constant time to insert a nodeinto the
designated location of if we keep a pointer for each node in

. If there are modules in a CS, the time complexity to insert
nodes into is . In addition to inserting nodes into,
we also have to delete those nodes that are dominated by the
inserting nodes. Since a node can be deleted at most one time,
the cost of deleted nodes is no more than . Therefore, the
time complexity of the DSP scheme is time.

Based on the above discussion, we have the following the-
orem:

Theorem 5: The CS is a P-admissible representation.
Proof: To prove the CS is a P-admissible representation,

we have to show that it satisfies the four conditions proposed by
Murataet al. [8] as follows:

1) By Theorem 2, its solution space is and, thus,
finite.

LIN et al.: CS—P-ADMISSIBLE FLOORPLAN REPRESENTATION 683

Fig. 5. Incremental update for cost evaluation. (a) and (b) [(c) and (d)] show
a CS and the corresponding placement. Note that the CS’s in (a) and (c) are the
same as in the first five terms; the coordinates of the modules remain the same
in (c) and (d).

2) By Theorem 3, it guarantees a feasible packing for each
CS.

3) By Theorem 4, packing and cost evaluation can be per-
formed in time.

4) By Theorem 1, all compacted placements can be repre-
sented by CS and, thus, the optimal solution exists in the
CS solution space. Further, the best evaluated packing
in the CS solution space corresponds to an optimal
placement.

C. Incremental Update During Packing

By the packing scheme proposed in the above section, we
only need to recompute the coordinates of modules after theth
term if the new CS has the same firstterms as the original
CS. Fig. 5(a) and (b) [(c) and (d)] shows a CS and the corre-
sponding placement. Note that the CS of Fig. 5(a) differs from
that of Fig. 5(c) in only the last three terms. Therefore, if the
coordinates of the modules in the CS of Fig. 5(a) have been ob-
tained, only the coordinates of modules, , and in these
terms need to be recomputed [i.e., the coordinates of, , ,

, and remain the same, as in Figs. 5(b) and (d)]. However,
to facilitate such an incremental update, we need to knowfor
the placement of modules in the first terms to continue the
packing scheme.

Traditional simulated annealing-based floorplan design algo-
rithms perturb a given solution, and then compute coordinates
of modules from scratch in each perturbation. Different from
these methods, we first determine those modules in the first
terms that do not change before the perturbation and record the

for the placement of these modules. Thus, the packing of
the new solution can go on from the th module.

Fig. 6. Example of exchanging two modulesb andb in S andS for the
CS in Fig. 5(a). (a) CS after the modules inS andS have been exchanged.
(b) L for those modulesb , b , b , b , andb , whose coordinates remain the
same. (c)–(e) Resulting placement andL after the modulesb , b , andb have
been packed, respectively. (f) Resulting CS after the operation.

TABLE I
FIVE MCNC BENCHMARK CIRCUITS

IV. SOLUTION PERTURBATION

We develop a simulated annealing-based algorithm [5] by
using the CS for nonslicing floorplan design. Given an initial
solution represented by a CS, the algorithm perturbs the CS to
obtain a new CS.

The simulated annealing algorithm is described as follows.
We randomize an initial CS. The corresponding placement of
the CS can be obtained by the DSP scheme. We then perturb a
CS into another CS to search for a better solution. As mentioned
earlier, we can obtain a placement incrementally after each per-
turbation. We apply the following four perturbations to obtain a
new CS.

• Exchange: Exchange two modules in and .
• Insert: Insert the th term between theth and th

terms.
• Rotate: Rotate the module in .
• Randomize: Randomize a new for the module in by

choosing arbitrary neighboring nodes in.
For the exchange and insert (rotate and randomize) operations,
the first terms of the given CS will not be changed during per-
turbation, where . Therefore,
for each perturbation, we only need to consider the modules

684 IEEE TRANSACTIONS ON VERY LARGE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

TABLE II
AREA AND RUN-TIME COMPARISONSAMONG O-TREE (SUN SPARC ULTRA60), B -TREE (ON SUN SPARC ULTRA-I), ENHANCED O-TREE

(ON SUN SPARC ULTRA60), CBL (ON SUN SPARC 20), TCG (ON SUN SPARC ULTRA60), AND CS (ON SUN SPARC ULTRA60)
FOR AREA OPTIMIZATION. (CBL MIGHT NOT USE THE SAME HP CIRCUIT SINCE IT REPORTS AN AREA

OF ABOUT SEVEN TIMES LARGER THAN OTHERS)

after the th term and perform an incremental update on the ex-
isting packing (solution). The coordinate of modulein ,

can be obtained by inserting a nodeinto two
neighboring nodes and in if . However, if
the designated nodes do not exist in, we randomly insert the
node into two arbitrary neighboring nodes and in
and, thus, . Note that we can guarantee a feasible
solution after each perturbation by applying this process.

Fig. 6 illustrates the procedure to perturb the CS shown in
Fig. 5(a) using the exchange operation. If two modulesand

in and are exchanged, we have the new CS shown in
Fig. 6(a). Fig. 6(b) shows the placement andfor the CS before
perturbation. Modules , , , , and are in the first five
terms of the CS, and will not be changed for this perturbation
since here. The coordinates of the
modules in the last three terms of the CS can be obtained by their
corresponding bends. (We insert nodes between two designated
neighboring nodes according to their bends.) Fig. 6(c) shows the
resulting placement and after we insert the node between
the nodes and in the of Fig. 6(b). For , we then cannot
place it at the designated bend because there do not exist
two adjacent nodes and in the of Fig. 6(c). Therefore, we
randomly insert into two arbitrary neighboring nodes in.
There are three candidate bends for placing , ,
and (see and the placement). If we insert between

and (the new bend of becomes), the resulting
placement and is given in Fig. 6(d). Similarly, we intend to
insert between nodes and for the module in the of
Fig. 6(d). However, there do not exist two neighboring nodes
and in the of Fig. 6(d); thus, we randomly insert it between
the nodes and [see Fig. 6(e) for the resulting placement
and]. Finally, we have the resulting CS shown in Fig. 6(f).

V. EXPERIMENTAL RESULTS

Based on simulated annealing [5], we implemented the
CS representation in the C programming language on a
433-MHz SUN Sparc Ultra-60 workstation with 1-GB memory.
We compared the CS with the O-tree [3], B-tree [1], enhanced
O-tree [12], CBL [4], and TCG [7], which were recently
published, based on the five MCNC benchmark circuits listed
in Table I. Columns 2–5 in Table I list the respective numbers
of modules, I/O pads, nets, and pins of the five circuits in the
circuits.

Fig. 7. Resulting placement of ami33 for optimizing area alone
(area= 1:178 mm).

TABLE III
WIRELENGTH AND RUN-TIME COMPARISONSAMONG O-TREE(ON SUN SPARC

ULTRA60), ENHANCED O-TREE (ON SUN SPARC ULTRA60), TCG (ON

SUN SPARC ULTRA60), AND CS (ON SUN SPARC ULTRA60)
FOR WIRELENGTH OPTIMIZATION

Fig. 8. Resulting placement of ami33 for optimizing wire alone
(wire = 43:67 mm).

LIN et al.: CS—P-ADMISSIBLE FLOORPLAN REPRESENTATION 685

TABLE IV
AREA, WIRELENGTH, AND RUN-TIME COMPARISONSAMONG O-TREE(ON SUN ULTRA60), ENHANCED O-TREE (ON SUN ULTRA60), CBL (ON SUN SPARC 20),

TCG (ON SUN ULTRA60),AND CS (ON SUN SPARC ULTRA60) FOR SIMULTANEOUS AREA AND WIRELENGTH OPTIMIZATION

Fig. 9. Resulting placement of ami33 for simultaneous optimizing area and
wire (area= 1:254 mm and wire= 48:13 mm).

Our experiments consist of three parts, i.e., area, wirelength,
and simultaneous area and wirelength optimizations. The area of
a placement is measured by that of the minimum bounding box
enclosing the placement. The area and run-time comparisons
among the O-tree, B-tree, enhanced O-tree, CBL, and TCG
are listed in Table II. As shown in Table II, the CS achieves
the best area utilization among the previous works for all of the
circuits. Fig. 7 shows the resulting placement for ami33 for area
optimization alone.

For timing optimization, we estimated the wirelength of
a net by half of the perimeter of the minimum bounding
box enclosing the net. The wirelength of a placement is
given by the summation of the wirelengths of all nets. The
comparisons with the O-tree, enhanced O-tree, and TCG are
listed in Table III. The results show that the CS achieves
the best wirelength compared with previous works. (Note that
there is not a comparison with the B-tree and CBL here since
they did not report the results on wirelength.) Fig. 8 shows
the resulting placement for ami33 for wirelength optimization
alone wire .

For simultaneous timing and wire optimization, we give the
same weights for area and wirelength in the cost function. The
area and wire comparisons among the O-tree, enhanced O-tree,
CBL, and TCG are listed in Table IV, and our results are com-
parable to the best published results. (Note that there is not
a comparison with the B-tree here since they did not report
the results on simultaneous area and wirelength optimization.)
Fig. 9 shows the resulting placement for ami33 for simulta-
neous area and wirelength optimization (area
and wire).

VI. CONCLUDING REMARKS

We have presented the CS representation for nonslicing floor-
plans. The CS is P-admissible. It is very simple and can be im-
plemented easily. Cost evaluation can also be performed incre-
mentally on the CS. In particular, it induces a generic worst case
linear-time packing scheme that can also be applied to other ex-
isting representations. Experimental results have shown that the
CS is a very promising representation.

REFERENCES

[1] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B-trees: A new
representation for nonslicing floorplans,” inProc. ACM/IEEE Design
Automation Conf., 2000, pp. 458–463.

[2] J. Cong, T. Kong, and D. Pang, “Buffer block planning for inter-
connect-driven floorplanning,” inProc. IEEE/ACM International
Computer-Aided Design Conf., 1999, pp. 358–361.

[3] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-tree representation of
nonslicing floorplan and its applications,” inProc. ACM/IEEE Design
Automation Conf., 1999, pp. 268–273.

[4] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu,
“Corner block list: An effective and efficient topological representation
of nonslicing floorplan,” inProc. IEEE/ACM Int. Computer-Aided De-
sign Conf., 2000, pp. 8–12.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,”Science, vol. 220, no. 4598, pp. 671–680, May 1983.

[6] E. Lawler,Combinatorial Optimization: Networks and Matroids. New
York: Holt, Rinehart and Winston, 1976.

[7] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph-based rep-
resentation for nonslicing floorplans,” inProc. ACM/IEEE Design Au-
tomation Conf., 2001, pp. 764–769.

[8] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rec-
tangle-packing based module placement,” inProc. IEEE/ACM Int.
Computer-Aided Design Conf., 1995, pp. 472–479.

[9] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module place-
ment on BSG-structure and IC layout applications,” inProc. IEEE/ACM
Int. Computer-Aided Design Conf., 1996, pp. 484–491.

[10] T. Ohtsuki, N. Suzigama, and H. Hawanishi, “An optimization technique
for integrated circuit layout design,” inProc. ICCST, 1970, pp. 67–68.

[11] R. H. J. M. Otten, “Automatic floorplan design,” inProc. ACM/IEEE
Design Automation Conf., 1982, pp. 261–267.

[12] Y. Pang, C. K. Cheng, and T. Yoshimura, “An enhanced perturbing al-
gorithm for floorplan design using the O-tree representation,” inProc.
ACM Int. Physical Design Symp., 2000, pp. 168–173.

[13] S. M. Sait and H. Youssef,VLSI Physical Design Automation: Theory
and Practice, Singapore: World Scientific, 1999.

[14] X. Tang and D. F. Wong, “FAST-SP: A fast algorithm for block place-
ment based on sequence pair,” inProc. ACM Asia and South Pacific
Design Automation Conf., 2001, pp. 521–526.

[15] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in
Proc. ACM/IEEE Design Automation Conf., 1986, pp. 101–107.

686 IEEE TRANSACTIONS ON VERY LARGE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Jai-Ming Lin received the B.S., M.S., and Ph.D. degrees in computer and in-
formation science from the National Chiao Tung University, Taiwan, R.O.C., in
1996, 1998, and 2002, respectively.

He is currently a Computer-Aided Design (CAD) Engineer with the Realtek
Semiconductor Corporation, Hsinchu, Taiwan, R.O.C. His research interest fo-
cuses on physical design.

Yao-Wen Chang (S’94–M’96) received the B.S. degree from the National
Taiwan University, Taiwan, R.O.C., in 1988, and the M.S. and the Ph.D.
degrees from The University of Texas at Austin, in 1993 and 1996, respectively,
all in computer science.

He is currently an Associate Professor with the Department of Electrical Engi-
neering and the Graduate Institute of Electronics Engineering, National Taiwan
University. During the summer of 1994, he was with the VLSI Design Group,
IBM T. J. Watson Research Center, Yorktown Heights, NY. From 1996 to 2001,
he was on the faculty of the Department of Computer and Information Science,
National Chiao Tung University, Taiwan, R.O.C. His research interests are phys-
ical design automation, architectures, and systems for VLSI and combinatorial
optimization.

Dr. Chang is a member of the IEEE Circuits and Systems Society, the Asso-
ciation for Computing Machinery (ACM), and the ACM/Special Interest Group
on Design Automaiton (SIGDA). He has served on the Technical Program Com-
mittees of several international conferences on VLSI design automation. He
was the recipient of the Best Paper Award presented at the 1995 IEEE Inter-
national Conference on Computer Design (ICCD’95) for his work on field-pro-
grammable gate array (FPGA) routing. He received reviewers’ Best Paper nom-
inations at the 2000 ACM/IEEE Design Automation Conference (DAC’00) for
his research on the B-tree floorplan representation and the Best Paper nom-
ination at the 2002 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD’02) for his work on multilevel routing. He was the recipient
of a 2000 inaugural all-university Excellent Teaching Award presented by the
National Chiao Tung University.

Shih-Ping Lin received the B.S. and M.S. degrees in computer and information
science from the National Chiao Tung University, Taiwan, R.O.C., in 2000 and
2002, respectively, and is currently working toward the Ph.D. degree in elec-
tronics engineering at the National Chiao Tung University.

His research interests include floorplan and routing designs in VLSI.

