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Abstract—Non-dominated sorting plays an important role in
Pareto-based multi-objective evolutionary algorithms (MOEAs).
When faced with many-objective optimization problems (multi-
objective optimization problems (MOPs) with more than 3
objectives), the number of comparisons needed in non-dominated
sorting becomes very large. In view of this, a new corner sort is
proposed in this paper. Corner sort first adopts a fast and simple
method to obtain a non-dominated solution from the corner
solutions, and then uses the non-dominated solution to ignore the
solutions dominated by it to save comparisons. Obtaining the non-
dominated solutions requires much fewer objective comparisons
in corner sort. In order to evaluate its performance, several state-
of-the-art non-dominated sorts are compared with our corner
sort on three kinds of artificial solution sets of MOPs and the
solution sets generated from MOEAs on benchmark problems.
On the one hand, the experiments on artificial solution sets show
the performance on the solution sets with different distribution.
On the other hand, the experiments on the solution sets generated
from MOEAs show the influence different sorts bring to MOEAs.
The results show that corner sort performs well especially on
many-objective optimization problems. Corner sort uses fewer
comparisons than others.

Index Terms—Non-dominated sort, Pareto based MOEA,
many-objective optimization, corner sort

I. INTRODUCTION

Non-dominated sorting is an essential component of Pareto-

based MOEAs, which plays an important role in the devel-

opment of Pareto-based MOEAs. Pareto-based MOEA is a

kind of MOEAs with the selection operator based on Pareto

dominance, such as MOGA [1], NSGA[2], NSGA-II [3],

NPGA [4], SPEA [5], SPEA2 [6], PAES [7], PESA-II [8],

MOPSO [9], and TDEA [10]. As the development of Pareto-

based MOEAs so far, non-dominated sorting is still a key topic

of Pareto-based MOEAs, because most computation cost of

Pareto-based MOEAs comes from non-dominated sorting.

Non-dominated sorting is a process of assigning solutions to

different ranks. According to Pareto dominance, the solutions

in the same rank are non-dominated by each other and they

are dominated by at least one solution in their former rank.

Non-dominated sorting is required to output the right Pareto

dominance rank. All the non-dominated sorts output the same

result by inputting the same solution set. The only difference

is their different computational cost. The time complexity of

the native non-dominated sorting is O(mN3), where m is the

number of objectives and N is the magnitude of solution set.

In 2002, Deb [3] proposed a fast non-dominated sort, which

lowers the complexity to O(mN2). However, there is still

some waste on some unnecessary comparisons.

Many-objective optimization problem is a kind of special

MOPs with more than 3 objectives [11]. Its large number of

objectives increase its difficulties for Pareto-based MOEAs due

to their weak Pareto dominance selection pressure [12], [13],

[14], [15]. Objective reduction [16], [17], and scalarization

methods [18] are some strategies to reduce the difficulties

of the original problems. Also, many MOEAs aim to solve

many-objective optimization problems, such as IBEA [19],

HypE [20], and MODELS [21]. Among the studies of many-

objective optimization, dominance strategy and ranking are

mainly focused on. For example, a controlling dominance

area is proposed to strengthen the selection for many-objective

optimization problems in [22]; a epsilon-ranking is adopted to

improve Pareto dominance in [23]; a kind of fuzzy dominance

is applied in [24], [25]; different kinds of data structure and

representation increase the speed of ranking in [26], [27].

In view of the characteristics of many-objective optimization

problems, non-dominated sort has to face new challenges

because of the large number of objective comparisons. The

challenges come from two aspects. Firstly, as the number of

objectives increases, more objective comparisons are needed

to determine their dominance relation. Secondly, the existing

comparison saving method cannot work effectively on many-

objective optimization problems, because there are fewer

dominated solutions to be ignored in the solution set. In

view of this, a corner sort is proposed specially for the

comparison saving of many-objective optimization problems.

Thus, MOEAs can save more computational cost (both time

and space) for solving many-objective optimization problems.

The common comparison saving method is also adopted in

corner sort. Corner sort saves the comparisons in the process

of obtaining the non-dominated solutions. It discards the

solutions dominated by the non-dominated solutions in the

sorting for the current rank. The contributions of this paper

include the following.

• Corner sort adopts a simple and fast way to obtain

non-dominated solutions according to a characteristic

of MOPs (the solution of the best objective is non-

dominated). It only requires N − 1 objective compar-

isons for the set of N solutions. The corner solutions

are preferentially selected to obtain the non-dominated

solutions, which is the reason why the proposed sort is

called ”corner sort”.

• In our experiments, the number of the comparisons be-

tween two objectives rather than the number of the domi-

nance comparisons between two solutions is employed to

evaluate the performance of the different non-dominated

sorts, which describes the computational cost fairly.

The rest of this paper is organized as follows. The related
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Fig. 1. Examples of corner solutions.

concepts will be introduced in section II. The basic idea and

details of corner sort are given in section III. Section IV is

the experimental part to show the performance of corner sort.

Finally, section V concludes the whole paper.

II. BACKGROUND

A. Pareto Dominance

Pareto dominance is defined for comparing two solutions

with multiple objectives, which is the base of non-dominated

sorting. One vector is said to dominate another one only if

all of its objectives are not worse than another one’s. Vectors

x = (x1, ..., xi, ..., xm) and y = (y1, ..., yi, ..., ym) are two

solutions of a minimization problem with m objectives. If xi ≤
yi(1 ≤ i ≤ m) and x ̸= y, x dominates y, written as x ≺ y.

Usually, dominance comparison is applied by comparing the

objective values of two solutions sequentially. Theoretically,

it needs m objective comparisons to determine the relation

between two solutions for an MOP with m objectives. In

fact, an effective method is applied in all the existing non-

dominated sort. As the objective comparisons are serial, the

dominance relation is regarded as ”non-dominated” once meet-

ing conflict. Thus, it needs 2 to m objective comparisons.

In other words, the cost of different solutions is different.

It is unfair to employ the number of comparisons of two

solutions to evaluate the performance of non-dominated sort.

In the experiment of section IV, we employ the number of

objective comparisons to evaluate the performance of different

non-dominated sorts.

B. Corner Solutions

For an MOP with m objectives, the solution which is

considered k objectives (k < m) in the m-objective space is

called a corner solution [28]. In this paper, we only consider

the corner solutions with k = 1. There are some examples of

corner solutions in Figure 1.

C. Existing Non-Dominated Sort Algorithms

Non-dominated sort is one of the most complicated pro-

cesses in Pareto-based MOEAs. Its natural time complexity

is O(mN3), which is too high for the solution set of a

large scale. All non-dominated sorts aim at obtaining the

right dominance rank of the solution set at the same time of

lowering the number of comparisons.

Fast non-dominated sort [3] is the first fast algorithm to

lower the complexity to O(mN2). As [29] shows, No-Free-

Lunch does not hold all the time. We can still find gener-

ally outperforming sorting algorithms. There are still some

unnecessary comparisons in fast non-dominated sort. In the

later study, researchers devoted themselves to reducing the

unnecessary comparisons in the sorting. Among their research,

non-dominated rank sort [30] and deductive sort [31] are

the examples of O(mN2) non-dominated sorts with some

comparison saving strategies.

1) Fast Non-Dominated Sort : Fast non-dominated sort

[3] is the promotion of the development of Pareto-based

MOEAs. It first travels all of the solutions to obtain all the

dominance relation between every two solutions. According

to such relation, the dominance rank is assigned finally. Fast

non-dominated sort need at most mN(N − 1) objective com-

parisons For every solution p in fast non-dominated sort, list

Sp stores the solutions which are dominated by solution p, and

counter np records the number of the solutions which dominate

solution p. The space complexity is O(N2). When the scale of

solution set increases, both time and space complexity increase

rapidly.

2) Non-Dominated Rank Sort : Non-dominated rank sort

in [30] is a sort with comparison saving strategy, which is

faster than fast non-dominated sort. It sorts the non-dominated

solutions in the current solution set sequentially. If one solution

is dominated by any solution in the current solution set, its

following comparisons to the rest solutions are ignored. If

one solution is non-dominated in the current solution set, it is

marked as the current rank and deleted in the current solution

set. In the worst case, non-dominated rank sort requires

mN(N−1)/2 objective comparisons. The time complexity of

non-dominated rank sort is still O(mN2). It does ignore some

unnecessary comparisons for the dominated solutions, which

requires less cost than fast non-dominated sort. Furthermore,

its space complexity is only O(N).
3) Deductive Sort : Although non-dominated rank sort

requires fewer comparisons, it still wastes some comparisons.

For example, if a ≺ b, b ≺ c, then a ≺ c. The comparisons

between a and c is unnecessary. Deductive sort [31] aims at

saving these comparisons. On the one hand, it ignores the

comparisons of the dominated solutions to the rest solutions

as non-dominated rank sort. On the other hand, it marked and

ignored any dominated solutions in the ranking of current rank.

Similar to non-dominated rank sort, deductive sort requires

mN(N − 1)/2 objective comparisons in the worst case. Its

time complexity is O(mN2) and its space complexity is

O(N).

III. CORNER SORT

A. Basic Idea

The basic idea of saving comparisons in corner sort is

to use the non-dominated solutions to ignore the solutions

which they dominate. Two processes of corner sort combine

together for the aim of comparison saving. One is ignoring the

dominated solutions as that in deductive sort. The other one

is obtaining the non-dominated solutions, which is unique to
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corner sort. Naturally, it needs m(N−1) at most and 2(N−1)
at least objective comparisons for obtaining a non-dominated

solution in the solution set of N solutions. We wonder if some

characteristics of MOP can help to save comparisons in this

process. We find that the solutions with the best objective are

definitely non-dominated. In other words, corner solutions [28]

are selected preferentially for non-dominated solutions.

Because only N − 1 comparisons on only one objective

are needed for obtaining a non-dominated solution, it is much

fewer than the m(N − 1) objective comparisons especially

for many-objective optimization problems. Although it saves

comparisons, its time complexity is still O(mN2). Its space

complexity is O(N).
After obtaining one non-dominated solution, corner sort

marks the solutions dominated by the obtained non-dominated

solution to ignore in the later sort of the current rank. As the

non-dominated solutions have been ranked, their comparisons

to the unmarked solutions are only to check whether they

dominates the unmarked solutions.

B. Corner Sort

The implementation of corner sort is a loop of two steps,

obtaining a non-dominated solution and marking the solu-

tions which are dominated by the non-dominated solution.

For an MOP with m objectives, at least m non-dominated

solutions are available. For a sequential process, only one

non-dominated solution is needed for each time. It is worth

discussing the order of choosing non-dominated solutions.

The best order depends on the distribution of the solution

set. However, the situation cannot be estimated in advance.

The uniform distribution is the average of all the situations.

Therefore, we use the solution set with a kind of uniform

distribution for all the situations to analyze this problem. There

are two cases as shown in Figure 2, where the white points

are non-dominated solutions and the light grey area is the area

that they dominate. Case A is to choose the non-dominated

solutions in a looping order and Case B is to choose the

non-dominated solutions always in one objective. In Figure

2, it is clear that the marked area in Case A is larger than

that of Case B. The looping order is adopted for choosing

the non-dominated solutions in corner sort. It does not mean

Case B is useless. In some particular situations that there are

more solutions around objective f1, Case B performs better

than Case A. However, if there are more solutions around

other objectives, Case B performs least-effectively. Taken all

these different kinds of distribution into consideration, it is

impossible to require that our sort has the best efficiency in

all different situations. Case A is not the best order for all the

situations but the most robust order, because it never acts too

badly on these solution sets with any particular distribution.

The pseudo code of corner sort is given in Table I. In

Table I, if the non-dominated solution is obtained from ob-

jective fj , objective fj is ignored in its later comparisons

to other unmarked solutions. As the non-dominated solution

has the best objective fj , the comparisons on objective fj is

unnecessary. In order to explain the process of corner sort,

an sorting example is included in Figure 3. Firstly, all the

solutions in P are unmarked, corner sort obtains the non-

dominated solution and marks the solutions that the non-

dominated solution dominates. It chooses the non-dominated

solutions in a looping order as in subfigure A. It finishes

sorting of rank one when all the solutions are all marked as in

subfigure B, the white points are in rank one. After that all the

unranked solutions are unmarked for the sorting of the next

rank as in subfigure C. Corner sort loopingly acts as above

until all the solutions are ranked.

C. Corner Sort for Many-Objective Optimization Problems

For many-objective optimization problems, the cost of non-

dominated sorting increases rapidly with the number of ob-

jectives. The comparisons between two solutions of many-

objective optimization problems are very expensive, because

they have more objectives to be compared. In many-objective

optimization problems, the solutions are hard to be dominated.

Thus, there is less chance to save comparisons by ignoring the

dominated solutions. Corner sort aims to save comparisons

from the process of obtaining the non-dominated solutions. It

only requires N − 1 comparisons on one objective. Normally,

2 to m objective comparisons are needed for the comparison

of two solutions. N − 1 comparisons on one single objective

are definitely fewer than m(N−1) objective comparisons. The

more objectives one MOP has, the more objective comparisons

corner sort can save.

In the real world, there are many-objective optimization

problems based on preference. Corner sort is suitable for the

preference based many-objective optimization. The order of

choosing non-dominated solution can be referred to preference

information (such as weight vector and lexicographic mini-

mum). In this way, the sorting is more efficient.

IV. EXPERIMENTAL STUDIES

We test the performance of different non-dominated sorts on

both artificial datasets and the solution sets from MOEAs. On

the one hand, the artificial datasets describe the situation that

MOEAs may meet. As only the objective values are considered

in non-dominated sorts, the artificial datasets only include

objective values. The experiments on those datasets aim to

analyze the behaviors of different sorts on the solution sets

with particular distribution. On the other hand, the experiments

on the solution sets from MOEAs aim to show the influence

that different sorts bring to MOEAs. Fast non-dominated sort

[3], non-dominated rank sort [30], and deductive sort [31]

are employed as the compared algorithms in our experiment.

As the process of obtaining non-dominated solutions does not

need to compare all the objectives of two solutions, it is not

available to adopt the number of comparisons between two

solutions to evaluate the performance. We use the number of

objective comparisons and execution time to evaluate the per-

formance of different non-dominated sorts. It is worth noting

that the objective comparisons for obtaining non-dominated

solutions in corner sort are included in the total number

of objective comparisons. Since all the non-dominated sorts

obtain the same Pareto dominance rank for the same solution

set and the aim of our experiments is to evaluate the efficiency
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Fig. 2. Two cases of choosing non-dominated solution.

TABLE I
PSEUDO CODE OF CORNER SORT.

Corner sort

Parameters: P -Solution set, N -The number of solutions, Rank-Rank result, m-Number of objectives.
Rank[1 : N ] = 0
i = 1
Do

Unmark all the unranked solutions(whose ranks are 0), j = 1
Do

Find solution P [q] of the best objective f among the unmarked ones
mark q, Rank[q] = i
j = (j + 1)%m+ 1 // Loop objectives
For k = 1 : N

If P [k] is unmarked and P [q] ≺ P [k]
Mark P [k]

End
End

Until all the solutions in P are marked
i = i+ 1

Until all the solutions in P are ranked

Fig. 3. An example of corner sort. Subfigure A: Corner solutions are ranked and the solutions dominated by them are ignored. Subfigure B: Ranking for
the first rank is finished. Subfigure C: The unranked solutions are unmarked. Subfigure D: Corner solutions of the rest unmarked solutions are ranked and the
solutions dominated by them are ignored. Subfigure E: Ranking for the second rank is finished.

of different sorts, the results of ranking are not included in this

paper.

A. Experiments on Cloud Dataset

1) Cloud Dataset: Cloud dataset is a dataset of uniform-

random distributed solutions, which describes the random situ-

ation in Pareto-based MOEAs. The sample creation algorithm

is shown in Table II. Such a case usually occurs at the

beginning of MOEAs. The relation between the number of

fronts and the number of objectives is shown in Figure 4. With

the increasing of objectives, the number of fronts decreases

rapidly, because most solutions are non-dominated by each

other in many-objective optimization problems.

TABLE II
SAMPLE CREATION ALGORITHM FOR CLOUD DATASET.

Sample creation algorithm for cloud dataset

Parameters: N -The number of solutions,m-The number of objectives,
U(0,1)-Uniformly distributed number in[0,1]
For i=1:N

For j=1:m
Dataset(i,j)=U(0,1)

End
End

2) Results: The computational complexity of non-

dominated sort comes from two aspects, numbers of solutions

and objectives. The results are divided into two parts, one is

the experiment on the dataset of a fixed number of objectives
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Fig. 4. The number of fronts in the cloud dataset with 2–30 objectives of
10000 solutions.

with variable numbers of solutions and the other one is the

experiment on the dataset of a fixed number of solutions with

variable numbers of objectives.

Figure 5 is the result of numbers of objective comparisons

with variable numbers of solutions. According to Figure 5, fast

non-dominated sort requires the most objective comparisons.

Non-dominated rank sort requires fewer objective comparisons

than fast non-dominated sort but more than deductive sort

and corner sort. For low-dimensional objectives such as two

objectives, deductive sort requires fewer comparisons than

corner sort. For high-dimensional objectives, deductive sort

requires more comparisons than corner sort. Also, the perfor-

mance of deductive sort and corner sort on the cloud dataset

of different numbers of objectives are different by Figure 5.

This is because the dominance relation in the cloud dataset

with different numbers of objectives is different. Since there

are more fronts in the 2-objective cloud dataset, deductive

sort can ignore more dominated solutions. Because of its

ignoring strategy, deductive sort ignores solutions in a random

way. Deductive sort requires fewer objective comparisons than

corner sort in the low-dimensional cases.

Figure 6 shows the average execution time of 4 non-

dominated sorts on cloud dataset with different numbers of

solutions from 30 independent runs. Fast non-dominated sort

costs the most execution time, which is the same as the result

of numbers of comparisons. Deductive sort costs more time

than non-dominated rank sort. Corner sort costs the least time

in most cases.

According to Figures 5 and 6, all the sorts require more

computational cost with the increasing numbers of solu-

tions. Fast non-dominated sort increases most rapidly. Non-

dominated rank sort increases more slowly than fast non-

dominated sort, because it discards the non-dominated ones in

the later sorting. As both deductive sort and corner sort ignore

the dominated solutions in the sorting of one rank, they use

fewer objective comparisons.

The left subfigure in Figure 7 shows the result of numbers

of objective comparisons with variable numbers of objectives.

The number of objective comparisons of all the non-dominated

sorts increase with the objective number. For the datasets with

more than 15 objectives, the objective comparison stops in-

creasing, because cloud datasets with more than 15 objectives

TABLE III
SAMPLE CREATION ALGORITHM FOR FIXED FRONT DATASET.

Sample creation algorithm for cloud dataset

Parameters: N -Number of solutions,m-Number of objectives,f-number of fronts
U(0,1)-Uniformly distributed number in[0,1]
N1= ⌈N/f⌉ %the number of solutions on every front
N2 = mod(N, f) %the number of solutions on the last front
For i=1:N1 %the first front

Dataset(i,1)=U(0,1); For j=2:m-1
Dataset(i,j)=U(0,1)*sum(Dataset(i,1:j-1))

End
Dataset(i,m)=1-sum(Dataset(i,1:m-1))

End
For i=2:f − 1 %the 2nd-f -1-th front

For j=1:N1

Dataset(j +N1 ∗ (i− 1),:)=Dataset(j,:)*i
End

End
For i=1:N2

Dataset(i+N1 ∗ (f − 1),:)=Dataset(i,:)*f
End
Rearrange the order of the dataset randomly.

have only one front, which means there are no dominated

solutions to be ignored. It is worth noting that the number of

objective comparison of deductive sort increases faster than

that of corner sort. Though corner sort requires more com-

parisons than deductive sort for MOPs with low-dimensional

objectives, it requires fewer comparisons for MOPs with high-

dimensional objectives. The right subfigure in Figure 7 shows

the average execution time with variable numbers of objectives

from 30 independent runs. It costs a little bit more execution

time for the dataset with more objectives. Fast non-dominated

sort costs the most execution time, and corner sort costs the

least execution time.

B. Experiments on Fixed Front Dataset

1) Fixed Front Dataset: Fixed front dataset [31] is a kind of

dataset with a controllable number of fronts, which describes

the situation in Pareto-based MOEAs when the search mainly

focuses on fronts. In the fixed front dataset, solutions are

divided into a fixed number of fronts with almost the same

size. Every front is distributed on a line or a plane as in Figure

8. The details of the sample creation algorithm are shown in

Table III. In order to understand this dataset deeply, we take an

example with F fronts and n solutions. For the solution in rank

R, there are n(F − R)/F solutions which are dominated by

that solution. The solutions are distributed in different fronts

with a same probability. Thus, the expectation of the solutions

can be dominated is
F∑

R=1

n
F

F−R
F

= n( 1
2
− 1

2F
), which is shown

in Figure 9.

2) Results: In the experiment on the fixed front dataset,

two factors influence the behavior of non-dominated sort very

much. One is the number of objectives, the other is the number

of fronts. The following experiment has two parts for those

two factors. As the influence of the number of solutions is

analyzed in the experiment of cloud dataset. The fixed front

datasets employed here are of a fixed number of solutions

(7500).

Figure 10 is the result of numbers of comparisons on the

fixed front dataset with variable numbers of fronts. The num-
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Fig. 5. Comparisons of 4 non-dominated sort on 2, 14, 30 objective cloud datasets with different numbers of solutions.

Fig. 6. Average execution time of 4 non-dominated sort on 2, 14, 30 objective cloud datasets with different numbers of solutions from 30 independent runs.

Fig. 7. Results of 4 non-dominated sort on 2–30 objective cloud datasets of 10000 solutions.

Fig. 8. An example of fixed front dataset is with 3 fronts and 15 solutions.
The solutions in the area of dotted lines are in the same front.

bers of comparisons of all the sorts drop with the increasing

number of fronts except for fast non-dominated sort, because

there are more solutions which can be dominated in the

datasets with larger number of fronts as Figure 9. It is clear that

fast non-dominated sort requires the most comparisons in all

cases of the experiment. Deductive sort and corner sort require

fewer comparisons than non-dominated rank sort. In most

cases, corner sort requires fewer comparisons than deductive

sort except for the cases with low-dimensional objectives. It

needs 2 to m objective comparisons between two solutions.

For the high-dimensional cases in Figure 10, we find that

the numbers of objective comparison of fast non-dominated

sort and non-dominated rank sort increase a little bit with

the number of fronts after their decreasing, because they do

not ignore the dominated solutions. Fast non-dominated sort
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Fig. 9. The expected number of solutions that can be dominated with variable
numbers of fronts in fixed front dataset.

ignores no solutions. Non-dominated rank sort just ignores a

part of comparisons of the dominated solutions.

Figure 11 shows the result of average execution time on

the fixed front dataset with variable numbers of fronts from

30 independent runs. Generally, the number of fronts does

not influence execution time very much. Similar to the result

on the cloud dataset, fast non-dominated sort costs the most

execution time, deductive sort costs the second most execution

time, and corner sort costs the least execution time among the

four sorts.

Figure 12 is the result of numbers of comparisons on the

fixed front dataset with variable numbers of objectives. From

the result, we find that only the number of comparisons of fast

non-dominated sort increases with the increasing number of

objectives. Among these 4 kinds of sorts, corner sort requires

the fewest comparisons.

Figure 13 is the result of average execution time on the

fixed front dataset with variable numbers of objectives from

30 independent runs. The execution time of 4 non-dominated

sorts is hardly influenced by the number of objectives. Corner

sort costs the least time in most cases of the experiment.

C. Experiment on Mix Dataset

1) Mix Dataset: The last two kinds of datasets are uni-

formly distributed. Cloud dataset is distributed in the objective

space. Fixed front dataset is distributed on fronts. In practical

process of MOEAs, solutions are not distributed such uni-

formly. In view of this, we add an experiment on nonuniform

datasets, i.e., mix dataset to test whether the distribution

influences the performance of corner sort. Mix dataset is built

by adding small size of cloud dataset to fixed front dataset

with one front as Figure 14.

2) Results: The left subfigure of Figure 15 is the result of

comparisons on the mix dataset with variable numbers of ob-

jectives. Fast non-dominated sort and non-dominated ranking

sort require the first and second most comparisons respectively.

For the mix dataset with low-dimensional objectives, corner

sort requires more comparisons than deductive sort but the mix

dataset with high-dimensional objectives, corner sort requires

fewer comparisons than deductive sort, because it can save

more objective comparisons in the process of obtaining non-

dominated solutions than deductive sort. The right subfigure of

Figure 15 shows the result of execution time on the mix dataset

with variable numbers of objectives. Fast non-dominated sort

costs the most time. Non-dominated rank sort and corner sort

cost the least time. In summary, uniformity does not influence

non-dominated sorts.

D. Experiment on Data generated from MOEAs

1) Data generated from MOEAs: All the above experiments

are applied on the artificial datasets, which cannot reflect the

performance of non-dominated sorts in MOEAs. We adopted

DTLZ1 (|xg|=5) and DTLZ2 (|xg|=10) with 2-30 objectives

[32] for the experiment in this subsection. The data is from

the populations of every generation in MOEAs. We run 200

generations on those benchmark problems with a population

with 200 individuals in MOEAs. We adopt NSGA-II as the

MOEA in the experiment. The parameter settings are shown

in Table IV.

2) Results: There are 200 datasets for each problems. We

conclude the results in Figure 16 with a error bar plot, which

describes statistical information. In Figure 16, the numbers

of comparisons of all the sorts except deductive sort have no

influence with the number of objectives. Moreover, the execute

time increases a little bit with the number of objectives.

For DTLZ1, fast non-dominated sort requires both the most

comparisons and the longest time. Corner sort requires both

the fewest comparisons and the shortest time. The result of

DTLZ2 is similar to that of DTLZ1.

Furthermore, the behaviors in different stages of MOEAs

of different sorts are shown in Figure 17. In Figure 17, the

number of comparisons is shown with different generations.

Generally, corner sort performs best among these 4 sorts in

all the stages. For 2-objective problems, non-dominated rank

sort has worse performance at the beginning than that in other

stages. Corner sort and deductive sort has better performance

at the beginning than that in other stages. For MOPs with high

dimensional objectives, the stages have little influence on all

the sorts.

E. Discussion and Analysis

From these experiments above, we find corner sort save

more execution time and comparisons than other comparative

sorts on many-objective optimization problems. The advantage

of corner sort is in the process of obtaining non-dominated

solutions of many-objective problems. It only takes N -1

objective comparisons, which is fewer than other sorts. In the

beginning of MOEAs, which is simulated by cloud dataset,

corner sort outperforms others on many-objective problems.

In the end of MOEAs, which is simulated by fix front dataset,

corner sort still saves the most time and comparisons. The

distribution of dataset has no influence on the efficiency of

corner sort, which is shown by the experiment on mixed

dataset. From these experiments on artificial datasets, we

conclude those above. The experiment on the solution set

generated from MOEAs shows that corner sort saves the

most computational cost in whole procession of MOEAs.
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Fig. 10. Comparisons of 4 non-dominated sort on the fixed front datasets with 1˜20 fronts of 7500 solutions.

Fig. 11. Average execution time of 4 non-dominated sort on the fixed front datasets with 1˜20 fronts of 7500 solutions from 30 independent runs.

Fig. 12. Comparisons of 4 non-dominated sort on 1, 10, and 20 fixed front datasets with 2–30 objectives of 7500 solutions.

Fig. 13. Average execution time of 4 non-dominated sort on 1, 10, and 20 fixed front datasets from 30 independent runs.
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TABLE IV
PARAMETER SETTINGS FOR NSGA-II.

Crossover Mutation Crossover ratio Mutation ratio

SBX Polynomial mutation 1 1/(dimension of decision variables)

Fig. 14. An example of mix front dataset. Mix front is structured by a fixed
front dataset (one front) and a cloud dataset of smaller size.

Although the experiment on the benchmark problem reflects

the behaviors of different sorts, the problems in the real world

are different from the benchmark. However, we still can infer

that un-normalized objectives would not influence the behavior

of corner sort because of its separate sorting on objectives.

Theoretically, all those four comparative sorts have the same

level of computational complexity in the worst case. In the

worst case, fast dominated sort need mN(N − 1) objective

comparisons, while others need mN(N − 1)/2 objective

comparisons. Obviously, fast dominated sort is the worst one

without any comparison saving strategies. Thus, the analysis

for other sorts is necessary. Although they require the same

number of objective comparisons in the worst case, they have

different comparison saving methods. Figure 18 shows their

differences. All those sorts use a candidate solution to ignore

the comparisons of the dominated solutions. However, the

saved comparisons come from different ways. Non-dominated

rank sort only saves the comparisons to the rest solutions

when the candidate solution is dominated by any solutions.

Deductive sort also saves those comparisons. At the same

time, it saves the comparisons of the solutions which are

dominated by the candidate solution. Deductive sort saves

more comparisons than non-dominated sort definitely. Corner

sort obtains a non-dominated solution by only N − 1 objec-

tive comparisons, which saves comparisons. As the candidate

solution is non-dominated, the first part of saved comparisons

in Figure 18 cannot be obtained by corner sort. By the non-

dominated candidate solution, corner sort saves the second

part of comparisons in Figure 18 as deductive sort. It seems

to be hard to compare deductive sort and corner sort, which

depends on the situation of the solution set. Namely, when

the third part saves more comparisons than the first one,

corner sort is better than deductive sort. As the analysis of

Section III-C shows, the more objectives an MOP has, the

more objective comparisons corner sort saves by obtaining

non-dominated solutions. Moreover, there is less chance of a

solution to be dominated in the solution set of many-objective

problem. Few comparisons can be saved by the first part when

faced many-objective problems. Therefore, corner sort saves

more comparisons than deductive sort. That is the reason why

corner sort performs best among the comparative sorts on

many-objective optimization problems.

V. CONCLUSION

A novel corner sort for Pareto-based many-objective opti-

mization is proposed in this paper. The proposed sort aims at

saving comparison when obtaining non-dominated solutions.

It saves more objective comparisons and execution time than

other sorts on many-objective optimization problems accord-

ing to our comparative experiments.

Although corner sort performs well in many-objective prob-

lems, its performances on MOPs with low-dimensional ob-

jectives are not satisfactory. We hope to improve corner sort

further in our future work. As the proposed sort can obtain m
non-dominated solutions at the same time, we hope to develop

the current sort into a parallel version. Moreover, the order

of choosing non-dominated solution in corner sort affects its

behavior according to different cases of solution set. In the

future, we hope to improve it by adding a self-adaptive one.
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[17] A. López Jaimes, C. Coello Coello, and D. Chakraborty, “Objective
reduction using a feature selection technique,” in Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO’2008).
ACM, 2008, pp. 673–680.

[18] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Evolutionary
many-objective optimization by NSGA-II and MOEA/D with large
populations,” in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE

International Conference on. IEEE, 2009, pp. 1758–1763.

[19] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. XX, NO. X, XXX XXXX 11

Fig. 17. Comparisons of 4 non-dominated sort on 2, 14, 30 objectives using the datasets from MOEAs in different generations.

Fig. 18. The illustration of comparisons saved by different non-dominated
sorts.

search,” in Parallel Problem Solving from Nature-PPSN VIII. Springer,
2004, pp. 832–842.

[20] J. Bader and E. Zitzler, “A hypervolume-based optimizer for high-
dimensional objective spaces,” in New Developments in Multiple Ob-

jective and Goal Programming, ser. Lecture Notes in Economics and
Mathematical Systems, D. Jones, M. Tamiz, and J. Ries, Eds. Springer
Berlin Heidelberg, 2010, vol. 638, pp. 35–54.

[21] E. Hughes, “Many-objective directed evolutionary line search,” in Pro-

ceedings of the Genetic and Evolutionary Computation Conference

(GECCO’2011). ACM, 2011, pp. 761–768.

[22] H. Sato, H. Aguirre, and K. Tanaka, “Controlling dominance area of
solutions and its impact on the performance of MOEAs,” in Evolutionary

Multi-Criterion Optimization. Springer, 2007, pp. 5–20.

[23] H. Aguirre and K. Tanaka, “Space partitioning with adaptive ε-ranking
and substitute distance assignments: a comparative study on many-
objective mnk-landscapes,” in Proceedings of the Genetic and Evolu-

tionary Computation Conference (GECCO’2009). ACM, 2009, pp.
547–554.
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