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  A second order topological insulator is designed on a platform of a two-

dimensional (2D) square lattice with all coupling coefficients being positive. 

Simulated results show the existence of two types of nontrivial corner states in this 

system, with one type being identified as bound states in the continuum (BIC). The 

non-BIC corner states are also found by surrounding a nontrivial sample with a 

trivial one, and interestingly, these perfectly confined corner states can be gradually 

delocalized and merge into edge states by tuning the inter-system coupling 

coefficient. Both BIC and non-BIC corner states are originated from bulk dipole 

moments rather than the quantized quadrupole moments, with the corresponding 

topological invariant being the 2D Zak phase. Full wave simulations based on 

realistic acoustic waveguide structures are demonstrated. Our proposal provides an 

experimentally feasible platform for the study of interplay between BIC and high 

order topological insulator, and evolution from corner states to edge states. 

 

Topology, a mathematical concept, was introduced to physics along with the discovery of the 

quantum Hall effect [1-3]. This concept has attracted growing attention accompanying the 

developments of various topological effects, including quantum spin Hall effect [4,5]and quantum 

valley Hall effect [6,7]. Recently, some other topological materials, such as Floquet topological 

insulators and topological crystalline insulators, were proposed and studied[8-12]. A key 

characteristic of a topological material is the existence of gapless edge states on its boundary, 

which are immune to defects and impurities as long as the corresponding symmetry is preserved, 

leading to robust unidirectional transport of electrons without backscattering. Thus, it had been 

believed that a d-dimensional nontrivial material should host (d-1)-dimensional gapless edge states 

on its boundary, until the so-called higher order topological insulators (HOTI) was found very 

recently [13-17]. It turns out that a d-dimensional topological insulator does not necessarily 

possess (d-1)-dimensional edge state, alternatively it can support (d-n)-dimensional boundary 
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states. For example, a two-dimensional (2D) second order topological insulator does not exhibit 

one- dimensional (1D) gapless edge states, but hosts nontrivial zero-dimensional (0D) corner states. 

Several tight-binding models, considering quantized quadrupole and octupole moments, have been 

proposed as candidates for HOTI [13,18], and the attention has soon been extended to the platforms 

of classical waves including electromagnetic [19-21], acoustics [22-24] and mechanical waves [25] 

due to their flexibility in adjusting the geometries and potentials.  

As another emerging interesting topic in wave propagation,  the bound states in continuum 

(BIC) refer to localized and non-radiative modes whose frequencies are embed in the continuous 

spectrum of radiating waves [26]. The physical mechanism behind this somehow counter-intuitive 

phenomenon is diverse , and the prohibited radiation may be attributed to the symmetry mismatch 

[27] or decoupling through separability [28], or due to an interference effect between multiple 

radiation channels [29,30]. The ultrahigh quality factor of the BIC is unique and highly desirable 

for large-area high-power applications including lasing [31-33], sensing [34,35], filtering [36], and 

nonlinearity enhancement [26].  

In this work, we study both the topologically nontrivial corner states and the BIC. We 

demonstrate that these two seemly unrelated topics could be combined naturally in a simple 2D 

system. We focus on a special kind of corner states which are simultaneously BIC and nontrivial 

boundary states of a HOTI. Physical properties of the corner states are studied and explored in 

realistic acoustic waveguide structures both analytically from a tight binding model and 

numerically by full wave simulations. Interestingly, in the same platform we also identify the 

existence of the non-BIC corner states of a second order HOTI. The evolution and transition 

between these two types of corners states can be realized by tuning the intersystem coupling 

coefficient. Different from the previously reported works [13,25], the proposed 2D system in our 

work does not rely on the introduction of a negative hoppling amplitude for the realization of a 

HOTI. Although both of them are characterized by the 2D Zak phase, their origins of are 

intrinsically different:  the corner states studied here are strongly related to the bulk dipole 

moments [21,23], while the corner states reported in Ref. [13] are due to the quantized quadruple 

moments.  

The PC considered here is a 2D square lattice composed of rings and waveguides filled with 

air. As illustrated in Fig. 1(a), the unit cell with lattice constant 𝑎 = 4𝑚 contains four identical 
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hollow rings with inner and outer radii as 𝑟0 = 0.35𝑚 and 𝑟1 = 0.5𝑚. Each ring is connected to 

its nearest neighbors by four rectangular waveguides. The acoustic wave propagates inside the 

network of these rings and waveguides. Its pressure field 𝜑 satisfies the governing equation[∇2 +𝜔2 𝑐2]𝜑(𝑟, 𝜔) = 0⁄ , where c is the sound velocity in air and the boundaries of the rings and 

waveguides are treated as hard walls. 

The adjacent rings are correlated only through the wave guides, suggesting that the rings and 

waveguides effectively act as sites and coupling, respectively, in the picture of tight binding 

[37,38]. In the low frequency regime, the hopping amplitude (i.e., coupling coefficient) between 

two neighboring rings is proportional to the width of the waveguides, because only fundamental 

modes can survive inside the waveguides. The intracell and intercell hopping amplitudes are 

denoted as 𝑤 and 𝑣, respectively, and they can be realized in a realistic PC structure by waveguides 

with different widths [39,40]. For such a PC system, in the momentum space, the Hamiltonian can 

be written as 

𝛨(𝑘) = ( 
 𝜀𝑠 −𝑤 − 𝑣𝑒−𝑖𝑘𝑥𝑎 −𝑤 − 𝑣𝑒−𝑖𝑘𝑦𝑎 0−𝑤 − 𝑣𝑒𝑖𝑘𝑥𝑎 𝜀𝑠 0 −𝑤 − 𝑣𝑒−𝑖𝑘𝑦𝑎−𝑤 − 𝑣𝑒𝑖𝑘𝑦𝑎 0 𝜀𝑠 −𝑤 − 𝑣𝑒−𝑖𝑘𝑥𝑎0 −𝑤 − 𝑣𝑒𝑖𝑘𝑦𝑎 −𝑤 − 𝑣𝑒𝑖𝑘𝑥𝑎 𝜀𝑠 ) 

 
 ,                            (1) 

where 𝜀𝑠  is the onsite energy (or eigenfrequency) of each ring. Let us consider two different 

configurations of the unit cells. Configuration A has the hopping amplitudes 𝑤 = 5𝑣 , and 

configuration B has 𝑣 = 5𝑤. As shown in Fig. 1(a), these two configurations can be simulated in 

PC systems by setting the corresponding waveguide widths as 𝑑𝑤 = 0.05𝑚 and 𝑑𝑣 = 0.01𝑚( for 

configuration A),
 

and 𝑑𝑤 = 0.01𝑚  and 𝑑𝑣 = 0.05𝑚  (for configuration B), respectively. 

Obviously, periodically repeating these unit cells in the 2D space would eventually give rise to 

two identical PCs that share the same band structure. Both the simulation results obtained from the 

finite element method (black dots) and the calculation results by the tight-binding model (red 

curves) are plot in Fig. 1(b), and they agree with each other very well. Detailed fitting parameters 

for the tight-binding model are given in Ref. [41].  

Although configurations A (𝑤 = 5𝑣) and B (𝑣 = 5𝑤) share the identical band structure, they 

are topologically inequivalent. Inspired by the well-known 1D SSH model, one can simply guess 

that at the critical point 𝑤 = 𝑣 [42], where the band gap closes, topological phase transition occurs. 
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To rigorously characterize the topological phase transition, we need to calculate the corresponding 

topological index or invariant. Here the relevant topological invariant is the 2D Zak phase or 2D 

polarization, which is defined as the integral of the Berry connection through [43] 

             𝐏 = 12𝜋 ∫𝑑𝑘𝑥𝑑𝑘𝑦 Tr[𝐀(𝑘𝑥, 𝑘𝑦)] ,                                                                 (2) 

where 𝐀(𝑘𝑥, 𝑘𝑦) = 〈𝜓|𝑖 ∂𝐤|𝜓〉 is the Berry connection, and the integration is performed over the 

entire Brillouin zone (BZ). For a system with inversion symmetry, the calculation of P can be 

substantially simplified by checking the parities of eigenstates at the high symmetry points in the 

BZ [44]: 

       

𝑃𝑖 = 12 (∑ 𝑞𝑖𝑛𝑛 modulo2),    (−1)𝑞𝑖𝑛 = 𝜂(𝑋𝑖)𝜂(𝛤)   ,                                                (3) 

where the summation is taken over all the occupied bands and 𝜂 denotes the parity associated with 𝜋 rotation, 𝑖 stands for 𝑥 or 𝑦. Equation (3) indicates the topology of the current PC system is 

encoded in the parities of Bloch eigenstates at high symmetry points. For example, the eigenstates 

calculated from finite element simulation and the corresponding eigenvectors at X point on the 3rd 

branch for configurations A and B are shown in Fig. 1(b). It is easy to find that the parity 𝜂 

associated with 𝜋 rotation is ‘-’ for configuration A and ‘+’ for configuration B. The difference of 

parity 𝜂 implies that the topology of the two configurations are different because the topology 

depends on the way the unit cell is chosen[21,42,45,46]. By taking all eigenstates at the high 

symmetry points into account, we obtain 𝑃𝐴 = (0,0) and 𝑃𝐵 = (1 2⁄ , 1 2⁄ ), which means that 

configuration A is trivial and B is nontrivial.  

          Recently, people found that in 2D systems the polarization (𝑃𝑥, 𝑃𝑦)  corresponds to the 

Wannier center of the Bloch state, which is the expectation value of the Wannier function in the 

real space. The value of 𝑃 = 𝑝𝑥2 + 𝑝𝑦2 indicates the distance of the Wannier center from the origin 

of a lattice site [13,14]. From a topological perspective, the mismatch of the Wannier center with 

the origin of a lattice site gives rise to second-order boundary state at the corner of the system. 

These corner states are topologically nontrivial since they have the same origin as the end states 

in the 1D SSH model. In this way, an analytically solvable tight-binding model with 𝑤 = 0 (or 𝑣 = 0) would offer direct insight for the existence of corner states. For a 2D system with 𝑁 × 𝑁 

unit cells as shown in Fig. 1(a), it corresponds to a topologically nontrivial phase with 𝑤 = 0. 

Among all 4𝑁2 sites of the system, there are 4𝑁 − 4 dimers, (𝑁 − 1)2 tetramers, and 4 isolated 
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sites. Every dimer occupies energy 𝜀𝑠 + 𝑣 and 𝜀𝑠 − 𝑣. The tetramer occupies energy 𝜀𝑠 ± 𝑣, and 

two degenerated energy 𝜀𝑠 . More interestingly, there are 4 isolated sites with energy 𝜀𝑠 , from 

which 4 corner states can be built. Here we want to point out that the energy of the corner state, 𝜀𝑠, falls into the energy spectrum of the bulk tetramer states, which means that these corner states 

are embedded in the continuum. To the best of our knowledge, this is the first observation of 

nontrivial corner states in the continuum. In contrast, if 𝑣 = 0, the system is in the topologically 

trivial phase. There are  𝑁2 bulk tetramer states, and no corners states are observed. Thus, we can 

conclude that the corner states only appear in a topologically nontrivial system.  

       Although the conditions of 𝑤 = 0 or 𝑣 = 0 are extreme, in the following we will show that 

the topological properties discussed earlier persist under more relaxed conditions, where neither 𝑤  nor 𝑣  is zero. For a 𝑁 × 𝑁  system with  𝑤 > 𝑣 > 0  (i.e., configuration A), there are 2𝑁 

eigenstates with energy 𝜀𝑠. We intentionally introduce small random perturbations in the hopping 

amplitudes and onsite energies to lift the degeneracy of these 2𝑁  states. We find that the 

randomly perturbed system has an energy spectrum that preserves the main features of the 

original periodic system, and no corner states are found. This is consistent with our previous 

analysis, since configuration A is topologically trivial. In contrast, configuration B (𝑣 > 𝑤 > 0) 

can be adiabatically connected to the extreme case of 𝑤 = 0, thus we expect that the corner states 

appear in the frequency range of bulk states. This is indeed verified by our calculations. In fact, 

even after we introduce random perturbations into configuration B, we can still find 4 corner 

states with energy around 𝜀𝑠. For a sample of configuration B with 𝑁 = 10, we calculate the 

frequencies of the eigenstate by using both finite element simulation and tight-binding model, 

and the results are shown in Fig. 2(b). Both results confirm that the 4 corner states fall into the 

range of bulk state frequency. The corresponding pressure field distributions given by both the 

tight-binding model and finite-element simulations are shown in Figs. 2(c) and 2(d), respectively. 

In addition to the corner states found in a simple nontrivial system with configuration B, we 

also find another form of corner state in a more complex composite system consisting of a 

nontrivial sample surrounded by a trivial sample, as shown in Fig. 3(a). Here we simply set the 

width of the waveguides connecting the two systems 𝑑, representing intersystem hopping, to be 

identical to 𝑑𝑣  , characterizing the intercell hopping in the nontrivial phase (configuration B), i.e., 𝑑 = 𝑑𝑣 = 5𝑐𝑚. Four corner states are found at the interface between trivial and nontrivial phases. 
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All of these four corner states are in the bulk gap region, which differs from the case shown in 

Fig. 2. The corresponding pressure field distributions for the corner states are obtained by using 

both the tight-binding model (Fig. 3(c)) and the finite element simulations (Fig. 3(d)). Both results 

confirm that the fields are highly localized around the four corners of the interface between the 

trivial and nontrivial phases.  

More interesting features of these four corner states are the delocalization and even merging 

into edge states when the intersystem hopping (denoted as 𝑡 in the tight-binding model) is tuned 

[41]. When connecting configuration A with configuration B, we are endowed with some degree 

of freedom on selecting the intersystem hopping 𝑡 (or the waveguide width 𝑑), as illustrated in 

Fig. 4(a). Different intersystem hopping leads to different configurations of the corner states as 

demonstrated in Fig. 4(c). To determine the critical value of 𝑡 (or 𝑑), one can take the following 

strategy by calculating the projected band structure of a ribbon structure consisting of a nontrivial 

sample sandwiched between two trivial samples with varying 𝑡. There always exists a band gap 

in the projected band structure except when 𝑡 = 𝑡𝑐 = 10.8, which, in our set up, corresponds to 

the waveguide width 𝑑 = 𝑑𝑐 = 8.18𝑐𝑚 in the full wave simulations [41]. From the tight-binding 

model, it is interesting to find that the size of the band gap depends linearly on (𝑡 − 𝑡𝑐) when 𝑡 
deviates from 𝑡𝑐 , as shown explicitly in Fig. 4(b). We show the energy spectrum and field 

distribution at  𝑡 = 𝑡𝑐 = 10.8 in the middle panels of Figs. 4(c) and 4(d), respectively, and 

observe that the corner states merge into the edge state in this case. This is because the band gap 

vanishes at 𝑡 = 𝑡𝑐 = 10.8 and the corner states have to share the same energy with the edge states. 

In conjunction with the results presented in Fig. 3, it implies that the corner states are not 

determined solely by the bulk topological invariant, and in some cases, they also depend crucially 

on the boundary conditions [23]. This finding indicates a new and effective way to manipulate 

the corner states by simply tuning the intersystem hopping. Figures 4(c) and 4(d) show the energy 

spectra and field distributions of corner states with different values of 𝑡. We observe that the 

corner states can stay below and isolated from the edge states, then merge into the edge states, 

and further stay above and isolated from the edge states, as the intersystem hopping 𝑡 
continuously increases.  

In conclusion, we find two types of nontrivial corners states in a second-order topological 

insulator, and interestingly, one type is identified as BIC, which means that they are perfectly 
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confined without any radiation even when they lie inside the continuum and coexist with extended 

states. Both types of corner states are found to be associated with the nonzero dipole momentum 

in the bulk, in contrast with the quantized quadrupole momentum as reported in the literature. We 

develop a simple tight binding model which can provide analytic solution and direct insight into 

the origin of the corner states. Full wave simulations based on the realistic acoustic waveguide 

system are also presented, and together with the tight binding model they corroborate the 

robustness of the corner states even when random perturbation is introduced. Our findings not 

only offer an experimentally feasible platform for the study of HOTI in classical wave systems, 

but also provide an alternative way for the realization of BIC in a simple system. It may stimulate 

subsequent explorations on the interesting interplay between BIC and HOTI as well as large-area 

high-power applications in acoustic waves.  
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Fig. 1(a) Schematic of the acoustic ring-waveguide system that can be described by the Hamiltonian model, 

i.e., Eq. (1). Each unit cell contains four identical hollow rings, whose inner and outer radii are fixed, 

connected by rectangular waveguides. Two different unit cells with inversed intercell and intracell hoppings 

are circled out. The hopping is characterized by the rectangular waveguides, whose width represents the 

hopping strength. (b) The calculated band structure using finite element method (black dots), compared 

with the results obtained from the tight-binding model(red line), where the fitting parameter is 𝜀𝑠 = 26.375, w = 5, v = 1. The symbol “ ” means the parity of the states under 𝜋 rotation, which is derived from the 

eigenfield distributions and eigenvectors shown in the right inset.  

  





9 

 

 

Fig. 2 The corner states in continuum. (a)  Illustration of a 3 × 3 lattice with 𝑤 = 0, the corner states 

naturally appear. (b) The eigenmodes of a 10 10 sample calculated from both tight-binding model (red 

point) and numerical simulation result (black point). In the tight-binding model calculations, we introduce 

small random perturbations to all of the sites energy and coupling parameters. The energy spectrum is 

plotted after an ensemble average of 10 configurations. The result shows four corner states in the bulk 

frequency region marked as purple stars. The field distribution of the four corner states from tight-binding 

model and finite-element simulation are shown in (c) and (d), respectively. The sample size we calculated 

in (d) is 3 × 3 for simplicity and clear observation. 

  



10 

 

 

Fig. 3 The corner states in a gap of topological phononic clusters. (a)  The sample consists of topologically 

nontrivial system B surrounded by a topologically trivial system A. (b) The eigenmodes of the sample 

calculated from both tight-binding model (red point) and finite-element simulation result. We also set the 

coupling between system A and system B as 𝑡 = 5. The result shows four corner states in the band gap 

region. (c) and (d) The field distribution of the four corner states from tight-binding model (c) and finite 

element simulation (d), respectively.  
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Fig. 4 The corner states evolution against intersystem hopping 𝑡. The sample consists 27 × 27 unit cells. 

(a) The schematic of a structure that contains two interfaces between system A and system B, where the 

coupling parameters are undetermined. (b) The estimated band gap size of the edge states as a function of 

hopping parameters 𝑡 in the tight binding models. The result indicates there would be a gapless edge state 

when 𝑡 = 𝑡𝑐 = 10.8. (c): The eigenfrequency spectrum of the sample when we change intersystem hopping 𝑡. The red points are corner states and the blue points are edge states. (d) The corner states delocalize when 

the gap of the edge states disappears at certain intersystem hopping 𝑡 = 𝑡𝑐 = 10.8. 
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