NASA Technical Paper 1917

NASA TP 1917 c.1

Cornering Characteristics of the Nose-Gear Tire of the Space Shuttle Orbiter

William A. Vogler and John A. Tanner

LONN COPY: RETURN NO APWL TECHNICAL LINHAR HIRTLAND AFB. N.M.

OCTOBER 1981

phile.

NASA Technical Paper 1917

٤,

L

Cornering Characteristics of the Nose-Gear Tire of the Space Shuttle Orbiter

William A. Vogler Kentron International, Inc. Hampton, Virginia John A. Tanner Langley Research Center Hampton, Virginia

Scientific and Technical Information Branch

INTRODUCTION

The Space Shuttle Orbiter is the first space vehicle designed to land like a conventional airplane, and, as such, it is subjected to the same crosswind effects as commercial and military airplanes. As in the case of conventional airplanes, crosswinds during approach and initial rollout phases of the landing are usually manageable because the pilot can maintain directional control by taking advantage of aerodynamic forces. As ground speed is reduced, however, aerodynamic forces become less effective, and the pilot must rely upon differential braking or nose-gear steering to provide the desired spacecraft heading on the runway. The response of the Space Shuttle to nose-gear steering input is defined, in part, by the cornering characteristics of the nose-gear tire; thus, a need exists to establish these cornering characteristics under realistic operating conditions.

The purpose of this paper is to present results of an investigation of the cornering characteristics of the 32×8.8 nose-gear tire of the Space Shuttle Orbiter on a dry concrete runway. These characteristics, which included side and drag forces and friction coefficients, aligning and overturning torques, friction-force moment arm, and the lateral center-of-pressure shift, were obtained over a range of yaw angles from 0° to 12° and tire vertical loads from 22 kN (5000 lbf) to 133 kN (30 000 lbf). This range of yaw angles and vertical loads spans the expected envelope of loads and yaw angles to be encountered during Space Shuttle landing operations. The tests were conducted at ground speeds that ranged from 50 to 100 knots (1 knot = 0.5144 m/sec).

SYMBOLS

Values are given in both the International System of Units (SI) and in the U.S. Customary Units. The measurements and calculations were made in the U.S. Customary Units. Factors relating the two systems are given in reference 1.

- F_d drag force parallel to plane of wheel
- F_s side force perpendicular to plane of wheel
- F, tire vertical force
- h axle height

r

- M_y overturning torque
- M_z aligning torque
- g friction-force moment arm
- V carriage or ground speed
- y_c lateral center-of-pressure shift

β coefficients of curve-fitting equations

 μ_d drag-force friction coefficient, parallel to plane of wheel

 μ_s side-force friction coefficient, perpendicular to plane of wheel

 ψ tire yaw angle

APPARATUS AND TEST PROCEDURE

Test Tires

The tires used in this investigation were 32×8.8 , type VII, bias-ply aircraft tires of 20-ply rating with a maximum speed rating of 217 knots and a three-groove tread pattern. A photograph of two test tires having new and worn treads is presented in figure 1. The worn tire is shown unmounted and thus unpressurized. The new tire which had an original groove depth of 0.25 cm (0.1 in.) is shown mounted and pressurized. During the course of this investigation, the test tire was changed when the tread was completely worn off and, thus, a total of three tires were used. Throughout the investigation, the tire inflation pressure was maintained at the nominal operational pressure of 2.07 MPa (300 psi).

Test Facility

The investigation was performed on the 48 000 kg (106 000 lbm) test carriage at the Langley Aircraft Landing Loads and Traction Facility described in reference 2. Figure 2 is a photograph of the carriage with the test-wheel assembly installed, and figure 3 is a close-up view of the tire and wheel mounted within the instrumented dynamometer used to provide accurate measurements of the tire-ground forces.

For the tests described in this paper, approximately 122 m (400 ft) of the available 366 m (1200 ft) of the flat concrete runway was used to provide cornering data. The concrete surface in the test area had a light broom finish in the transverse direction that provided an average texture depth of 159 μ m (0.00626 in.), slightly less than that of a typical operational runway. The test runway was level (no crown) and, for all tests, the surface was kept dry.

Instrumentation

Tire friction forces were measured with the dynamometer shown in figure 3 and illustrated schematically in figure 4. Strain gages were mounted on the five dynamometer support beams: two of the beams were used to measure vertical forces, two were used for measuring drag forces parallel to the wheel plane, and a single beam was used to measure side force perpendicular to the wheel plane. Three accelerometers on the test-wheel axle provided information for inertia corrections to the force data. An electronic interval timer provided a measure of the carriage speed. A slide-wire potentiometer was used to obtain a measure of drop carriage displacement and indirectly to provide a measure of axle height. All data outputs were fed into signal conditioning equipment and then into a frequency-modulated tape recorder.

Test Procedure

The testing technique consisted of rotating the dynamometer and wheel assembly to the preselected yaw angle, propelling the test carriage to the desired speed, lowering the tire onto the dry runway and applying the selected vertical load, and recording the outputs from the on-board instrumentation. The yaw angle of the wheel assembly, held constant for each test run, ranged from 0° to 12° in 2° increments with additional tests at a yaw angle of 1°. The nominal carriage speeds ranged from about 43 to 104 knots and were measured when the maximum vertical load was attained. Tire vertical loading was varied hydraulically through a range from zero to 147 kN (33 000 lbf) and then back to zero during the course of a typical run, and the loading rate was approximately 133 kN/sec (30 000 lbf/sec).

ç

٤.,

Data Reduction

All data were recorded on analog magnetic tape filtered to 1000 Hz. The analog data were then processed through a low pass filter (cutoff frequency of 60 Hz), digitized at 250 samples per second, and used to generate time-history plots for data analysis. From these digitized data, direct measurements were obtained of the drag force (sum of two drag beams), the side force, the vertical force applied to the tire (sum of two vertical beams), the vertical displacement of the drop carriage, and the vertical, drag, and side accelerations of the dynamometer. The instantaneous vertical-, drag-, and side-force data were corrected for acceleration effects and combined as necessary to compute both the instantaneous drag-force friction coefficient parallel to the plane of the wheel and the side-force friction coefficient perpendicular to the plane of the wheel. The load transfer between the two dragforce beams (see fig. 4) provided a measure of the aligning torque about the vertical or steering axis of the wheel. The load transfer between the two vertical-force beams (again see fig. 4) provided a measure of the overturning torque about the axis mutually perpendicular with the vertical and rotation axes. The lateral center-ofpressure shift of the vertical-load pressure distribution due to yawed rolling was defined by

$$y_{c} = (M_{x} - hF_{s})/F_{z}$$
⁽¹⁾

where h was the height of the axle above the runway surface. The friction-force moment arm q (see ref. 3 for definition) due to yawed rolling was defined by the equation

$$q = M_z / \sqrt{F_d^2 + F_s^2}$$
 (2)

A least-squares fairing technique (see ref. 4) was used to smooth the digitized data from each run. In this application, seventh-order polynomial line segments were fitted to the data where each line segment was faired through 40 data points with a 10-point overlap between each segment. Linear interpolation was used to insure a smooth transition between line segments within each overlap region, and eight line segments were necessary to fair the data for each second of test duration. The effect of this smoothing routine was to limit the frequency response of the data to 24 Hz without introducing the phase shifts associated with electronic filters. The influence of the fairing technique on the data from a typical run is illustrated in figure 5. Figures 5(a) and 5(b) are time histories of the unsmoothed and smoothed side force, respectively, and figures 5(c) and 5(d) are time histories of the unsmoothed and smoothed vertical force, respectively. The side force is plotted as a function of the vertical force in figure 5(e) before smoothing and in figure 5(f) after smoothing. The various cornering characteristics from each run were plotted as a function of vertical force, and discrete data points were chosen at preselected vertical-force values (dashed vertical lines in fig. 5(f)) to establish the influence of parameter variations on tire cornering characteristics.

RESULTS AND DISCUSSION

Data from the yawed-rolling tests conducted on the nose-gear tire of the Space Shuttle Orbiter are presented in table I together with the corresponding test conditions. For purposes of discussion, these data are also presented in figures 6 to 13. The tests examined the effects of three parameters - tire vertical load, yaw angle, and ground speed - on the characteristics of side and drag forces, aligning and overturning torques, friction-force moment arm, and lateral center-of-pressure shift. The data are presented in the form of carpet plots to illustrate functional relationships between the characteristics and the test parameters. In the carpet plots, each characteristic is presented as a function of both vertical load and yaw angle, and the ground speed is identified by test-point symbols. Lines of constant load and constant yaw angle were then fitted to the data in a weighted least-squares fashion to serve as an interpolation aid. The coefficients of bicubic interpolation equations for each characteristic are presented in table II. A glossary of terms used in the study of tire mechanical properties is presented in reference 3. Subsequent paragraphs discuss in detail the effects of tire vertical load, yaw angle, and ground speed on the cornering characteristics of the Space Shuttle nose-gear tire.

Side Force

The effect of the test parameters on the developed side force F_s is presented in figure 6 where the side force is measured normal to the wheel plane (as opposed to cornering force which is measured normal to the direction of motion). When yaw angle is held constant, side force increases with increasing vertical load and generally reaches a maximum at vertical loads between 89 kN (20 000 lbf) and 133 kN (30 000 lbf). This figure also shows that the effect on side force due to changes in the vertical load become more pronounced as yaw angle is increased. As expected, increasing yaw angle while holding vertical load constant increases the side force regardless of the vertical load. At low vertical loadings, however, the side force appears to reach a maximum around the maximum yaw angle tested. No discernible trends are evident with variations in ground speed. Frequently, during high-yaw-angle tests, the lower vertical-load test points are reached in the loading process before the tire has fully spun up. When this condition exists, the side force and other cornering characteristics are negligibly small (see fig. 5(f), for example), and these data were not included in this report.

Since side-force data are generally presented in dimensionless form, they were divided by the respective vertical load on the tire. This process yielded, by definition, side-force friction coefficients μ_s , which are presented in the carpet plot of figure 7. For fixed yaw angles, there is a decrease in μ_s with increasing vertical load. The figure also shows that for most fixed vertical loads, μ_s increases

as the yaw angle is increased. For the lightly loaded tire (44.5 kN (10 000 lbf)), a peak value in $\mu_{\rm S}$ of 0.57 is observed at approximately 8° which is in close agreement with the value of 0.60 predicted by equation (88) in reference 5. As the tire vertical load increases, the yaw angle for maximum $\mu_{\rm S}$ increases; and for tire vertical loads greater than 89 kN (20 000 lbf), the peak in $\mu_{\rm S}$ is reached at yaw angles which are beyond the range tested in this investigation. Again, no trends due to variation in ground speed are evident. These trends are similar to the trends observed in reference 3.

Drag Force

The effect of the test parameters on the developed drag force F_d is presented in figure 8 where the drag force is measured parallel to the wheel plane. When the yaw angle is held constant, drag force generally increases with tire vertical load. Increasing the yaw angle while holding the vertical load constant generally decreases the drag force. For the lightly loaded case (44.5 kN (10 000 lbf)), a minimum drag force is observed around 8°; and for the heavily loaded case (133 kN (30 000 lbf)), a peak drag force is observed at approximately 6°. Dividing the drag force by the respective tire vertical load produces the drag-force friction coefficient μ_d , and values of this coefficient are presented in figure 9. These coefficients represent rolling resistance values, and their absolute values are usually below 0.05. Considerable scatter is observed in the data for small yaw angles (less than 2°), and no discernible trends are established in this yaw-angle range. For fixed yaw angles between 4° and 12°, $\mu_{\rm d}$ increases with increasing vertical load. When the vertical load is held constant, μ_d generally decreases when the yaw angle is increased from 4° to 12°. For the 66.7-kN (15 000-1bf) vertical load case, a minimum μ_d value is observed between 10° and 12°; and for the heavily loaded case, a maximum μ_d value is observed between 4° and 6°. No trends due to variation in the ground speed are observed for either F_d or μ_d .

Aligning Torque

Aligning torque M_z is defined as the torque developed about the steering axis of a yawed tire. Positive M_z is considered self-aligning; that is, it tends to reduce yaw angle. Aligning torques for the Shuttle Orbiter nose-gear tire are presented in figure 10. The figure shows that when the yaw angle is held constant, aligning torque generally increases with increasing vertical load. This trend is reversed for the lightly loaded tire at high yaw angles. When vertical load is held constant and yaw angle is increased from zero, aligning torque increases rapidly, reaches a maximum, and then decreases with further increases in yaw. For several conditions, specifically when the tire was lightly loaded and at high yaw angles, the torque is negative; that is, no longer self-aligning. In general, the aligning torque appears to reach a maximum value at yaw angles between 2° and 6°. Figure 10 also shows that aligning torque is insensitive to variations in ground speed. These trends are consistent with data from references 3 and 6.

Overturning Torque

The torque which tends to tilt the wheel plane away from the vertical is referred to as overturning torque M_{χ} . The carpet plot of figure 11 shows the effects that vertical load and yaw angle have on M_{χ} over a range of ground speed. At small yaw angles (less than 4°) the overturning torque reaches peak values for

tire vertical loads between 89 kN and 133 kN (20 000 lbf and 30 000 lbf); at higher yaw angles the overturning torque increases with increasing vertical load. Figure 11 also shows that, as expected, an increase in yaw angle at a fixed vertical load increases the overturning torque and that the rate of increase generally increases as the vertical load becomes larger. These trends are similar to those reported in reference 4. As in the case of the other characteristics, there appears to be no discernible effects due to ground-speed variations.

Friction-Force Moment Arm

The friction-force moment arm q is the distance from the friction-force resultant vector to the steering axis and is considered positive when the friction force acts along a line behind the steering axis. The friction-force resultant vector and moment arm represent a force system which is statically equivalent to the actual forces and moments in the footprint. Friction-force moment arms computed from the data of these tests are plotted in figure 12 to show the effect of the various test parameters. The moment arm increases with increasing vertical load on the tire and generally decreases with increasing yaw angle. The moment arm is insensitive to ground-speed variations. At high yaw angles and at light loads, q is negative, as expected, since the aligning torque (fig. 10) is negative at these test conditions.

Center-of-Pressure Shift

Little information is available in the literature on lateral movement of the center of pressure in the tire footprint under yawed-rolling conditions because of the severe instrumentation demands to acquire that parameter. However, measurements of the lateral center-of-pressure shift y_c were obtained in this investigation and are presented in figure 13 as a function of vertical load and yaw angle. For yaw angles below 8°, y_c appears to be fairly insensitive to variations in the vertical load; and for yaw angles above 8°, y_c appears to increase with increasing vertical load. As the yaw angle is increased from 0°, y_c increases rapidly, but the rate of increase reduces at the higher yaw angles. For the lightly loaded case, a peak in y_c is observed at a yaw angle of about 8°. Once again, y_c appears to be insensitive to ground-speed variations. The variation of y_c with yaw angle and its insensitivity to ground-speed changes are consistent with the data of reference 3.

CONCLUDING REMARKS

An experimental investigation was conducted to evaluate the cornering characteristics of the 32×8.8 nose-gear tire of the Space Shuttle Orbiter. Data were obtained on a dry concrete runway at nominal ground speeds ranging from 50 to 100 knots and over a range of tire vertical loads and yaw angles which span the expected envelope of loads and yaw angles to be encountered during Space Shuttle landing operations. The cornering characteristics investigated included side and drag forces and friction coefficients, aligning and overturning torques, frictionforce moment arm, and the lateral center-of-pressure shift.

The results of this investigation indicate that the cornering characteristics of the Space Shuttle nose-gear tire are insensitive to variations in ground speed over the range tested. The effects on cornering characteristics of variations in the tire vertical load and yaw angle are as expected. Trends observed are consistent with trends observed during previous cornering tests involving other tire sizes.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 August 13, 1981

ş.

REFERENCES

1. Standard for Metric Practice. E 380-79, American Soc. Testing & Mater., c.1980.

- 2. Tanner, John A.: Fore-and-Aft Elastic Response Characteristics of 34 × 9.9, Type VII, 14 Ply-Rating Aircraft Tires of Bias-Ply, Bias-Belted, and Radial-Belted Design. NASA TN D-7449, 1974.
- 3. Tanner, John A.; Stubbs, Sandy M.; and McCarty, John L.: Static and Yawed-Rolling Mechanical Properties of Two Type VII Aircraft Tires. NASA TP-1863, 1981.
- 4. Alfaro-Bou, Emilio; and Vaughan, Victor L., Jr.: Light Airplane Crash Tests at Impact Velocities of 13 and 27 m/sec. NASA TP-1042, 1977.
- 5. Smiley, Robert F.; and Horne, Walter B.: Mechanical Properties of Pneumatic Tires With Special Reference to Modern Aircraft Tires. NASA TR R-64, 1960. (Supersedes NACA TN 4110.)
- 6. Tanner, John A.; and Dreher, Robert C.: Cornering Characteristics of a 40 × 14-16 Type VII Aircraft Tire and a Comparison With Characteristics of a C40 × 14-21 Cantilever Aircraft Tire. NASA TN D-7351, 1973.

TABLE I.- SUMMARY OF TEST CONDITIONS AND TIRE CORNERING CHARACTERISTICS

ν,	ψ,	Fz	Fs	Fd	Mz	M _x	Уc	q	
knots	đeg	kN lbf	kN lbf	kN lbf (a)	N-m in-lbf	N-m in-lbf	cm in. (a)	cm in. (a)	
50	Ø	22.24 5000 44.48 10000 66.72 15000 88.96 20000	0.00 0 .59 132 .20 44 .98 220	****N/A**** ****N/A**** ****N/A**** ****N/A****	224.0 1982 472.8 4185 298.6 2643 373.3 3304	-356 -3147 -89 -787 -444 -3933 -89 -787	****N/A**** ****N/A**** ****N/A**** ****N/A****	****N/A**** ****N/A**** ****N/A**** ****N/A****	
51	Ø	22.24 5000 44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	.41 93 .82 185 .96 216 .96 216 .96 216 1.23 278	****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A****	435.5 3855 383.3 3392 592.3 5242 540.0 4780 487.8 4317 487.8 4317	187 1652 249 2203 373 3304 187 1652 0 0 187 1652	****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A****	****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A****	
78	Ø	22.24 5000 44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	0.00 0 .39 88 .20 44 .98 220 .98 220 .98 220 .98 220	****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A****	298.6 2643 373.3 3304 547.5 4846 398.2 3524 423.1 3744 448.0 3965	-267 -2360 -178 -1573 0 0 89 787 267 2360 -267 -2360	****N/A*** ****N/A*** ****N/A*** ****N/A*** ****N/A*** ****N/A***	****N/P**** ****N/P**** ****N/P**** ****N/P**** ****N/P****	
104	Ø	22.24 5000 44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	.20 44 .59 132 .78 176 .78 176 .98 220 .98 220	****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A****	124.4 1101 224.0 1982 248.9 2203 273.8 2423 273.8 2423 248.9 2203	-178 -1573 Ø Ø 178 1573 -178 -1573 Ø Ø	****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A**** ****N/A****	****N/A*** ****N/A*** ****N/A*** ****N/A*** ****N/A*** ****N/A***	
43	1	44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	4.51 1013 6.27 1410 7.64 1718 8.23 1850 7.64 1718	2.69 604 1.46 327 2.69 604 4.31 969 3.08 692	373.3 3304 497.7 4405 647.0 5727 796.4 7048 945.7 8370	1600 14160 2311 20453 2933 25960 2933 25960 2844 25173	1305 .13 .05 .33 .13 .23 .09 .28 .11	7.16 2.82 7.67 3.02 7.80 3.07 8.56 3.37 11.38 4.48	
75	1	22.24 5000 44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	3.14 705 5.09 1145 7.25 1630 7.84 1762 7.84 1762 7.64 1718	.17 38 1.96 441 2.52 566 2.69 604 4.26 957 4.20 944	273.8 2423 448.0 3965 572.4 5066 746.6 6608 871.0 7709 995.5 8811	1155 10227 1778 15733 2666 23600 2933 25960 2755 24386 2755 24386	1506 0.00 0.00 .20 .08 .28 .11 .15 .06 .20 .08	8.43 3.32 8.56 3.37 7.54 2.97 9.19 3.62 9.60 3.78 11.51 4.53	
100	1	22.24 5000 44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	3.14 705 5.49 1233 7.64 1718 8.23 1850 8.03 1806 7.84 1762	.28 63 1.01 227 2.13 478 2.69 604 2.91 654 3.70 831	273.8 2423 448.0 3965 547.5 4846 746.6 6608 895.9 7930 1020.3 9031	1155 10227 2044 18093 2844 25173 3022 26746 2933 25960 2755 24386	0.00 0.00 0502 .20 .08 .23 .09 .20 .08 .15 .06	8.05 3.17 8.05 3.17 7.04 2.77 8.69 3.42 10.36 4.08 11.76 4.63	
52	2	22.24 5000 44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	5.49 1233 10.39 2335 13.91 3128 16.07 3612 15.87 3568 15.09 3392	.34 76 1.01 227 1.62 365 2.24 503 2.91 654 2.74 617	298.6 2643 572.4 5066 821.3 7269 1169.7 10352 1493.2 13216 1742.1 15419	2222 19666 4355 38546 5599 49559 6222 55066 6399 56639 6133 54279	.43 .17 1.40 .55 1.17 .46 1.19 .47 1.04 .41 .97 .38	5.49 2.16 5.49 2.16 5.77 2.27 7.67 3.02 9.19 3.62 11.13 4.38	

. . . .

^aNotation N/A refers to data not available.

TABLE I.- Continued

۵.

1 >

Υ.

ν,	ψ,	Fz	Fs	Fd	Mz	M _x	Уc	q
knots	deg	kN lbf	kN lbf	kN 1bf	N-m in-lbf	N-m in-1bf	cm in.	cm in.
76	2	44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	10.78 2423 14.11 3172 15.87 3568 16.07 3612 15.09 3392	.17 38 1.96 441 3.14 705 4.42 994 3.92 881	472.8 4185 796.4 7048 1095.0 9692 1418.5 12555 1692.3 14978	4266 37760 5511 48773 6133 54279 6222 55066 6133 54279	.76 .30 .76 .30 .99 .39 .84 .33 .89 .35	4.22 1.66 5.36 2.11 6.78 2.67 8.43 3.32 10.49 4.13
101	2	22.24 5000 44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	5.88 1322 10.58 2379 14.30 3216 15.28 3436 15.87 3568 14.70 3304	1.57 352 1.01 227 2.80 629 3.36 755 3.81 856 4.65 1045	273.8 2423 448.Ø 3965 746.6 66Ø8 1119.9 9912 1443.4 12775 1717.2 15198	2400 21240 4355 38546 5955 52706 6133 54279 6311 55853 5777 51133	1.07 .42 1.55 .61 1.45 .57 1.40 .55 1.17 .46 1.04 .41	3.84 1.51 4.34 1.71 4.98 1.96 7.29 2.87 8.81 3.47 11.13 4.38
53	' 4	44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	18.03 4053 25.28 5683 29.20 6564 29.79 6696 27.83 6256	2.74 617 .45 101 1.74 390 2.58 579 4.03 906	423.1 3744 671.9 5947 1269.2 11233 1816.7 16079 2488.7 22026	7288 64506 10310 91252 12088 106986 12443 110132 11910 105412	2.21 .87 2.36 .93 2.31 .91 2.11 .83 1.96 .77	2.44 .96 2.69 1.06 4.34 1.71 6.02 2.37 8.81 3.47
77	4	44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	20.18 4537 26.26 5903 29.59 6652 29.59 6652 27.63 6211	1.12 252 .28 63 1.90 428 3.92 881 5.82 1309	298.6 2643 746.6 6608 1368.8 12115 2015.8 17841 2588.2 22907	7999 70799 10755 95186 11999 106199 12088 106986 11910 105412	1.83 .72 2.31 .91 2.24 .88 2.16 .85 1.80 .71	1.52 .60 2.82 1.11 4.60 1.81 6.78 2.67 8.56 3.37
102	4	66.72 15000 88.96 20000 111.21 25000 133.45 30000	25.67 5771 29.98 6740 29.79 6696 29.20 6564	3.81 856 3.14 705 4.37 982 5.21 1171	895.9 7930 1319.0 11674 1791.8 15859 2488.7 22026	10310 91252 11732 103839 12266 108559 11643 103052	2.08 .82 1.96 .77 2.08 .82 1.83 .72	3.58 1.41 4.47 1.76 5.89 2.32 8.43 3.32
72	6	44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	22.14 4978 31.55 7093 38.60 8678 41.35 9295 41.35 9295	-1.01 -227 .06 13 .84 189 3.36 755 4.37 982	-49.8 -441 273.8 2423 671.9 5947 1592.7 14097 2488.7 22026	8621 76306 12710 112492 15554 137665 16621 147105 16710 147892	1.35 .53 2.36 .93 2.77 1.09 2.72 1.07 2.67 1.05	2510 .89 .35 1.65 .65 3.84 1.51 6.02 2.37
75	6	44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	24.28 5458 31.27 7031 36.35 8172 37.04 8326 36.21 8141	1.14 256 1.18 264 2.35 529 3.64 819 5.29 1189	505.2 4471 783.9 6938 1550.4 13722 2247.3 19890 2944.1 26057	10017 88656 13252 117291 15679 138767 15865 140419 15741 139317	2.95 1.16 3.43 1.35 3.63 1.43 3.38 1.33 3.07 1.21	2.06 .81 2.51 .99 4.29 1.69 6.10 2.40 8.15 3.21
104	6	88.96 20000 111.21 25000 133.45 30000	37.86 8511 39.78 8943 40.05 9004	1.92 432 2.86 643 4.62 1040	940.7 8326 1411.1 12489 2473.7 21894	15119 133811 15990 141520 16736 148128	2.24 .88 2.36 .93 2.69 1.06	2.51 .99 3.48 1.37 6.17 2.43
101	6	44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	24.83 5581 33.47 7524 36.49 8203 36.90 8295 35.12 7894	20 -44 .55 123 1.92 432 3.37 758 4.70 1057	17.4 154 574.9 5088 1149.8 10176 1985.9 17577 2909.2 25749	10639 94163 14372 127203 15679 138767 15927 140969 15430 136564	4.04 1.59 4.29 1.69 3.84 1.51 3.58 1.41 3.33 1.31	0.00 0.00 1.70 .67 3.12 1.23 5.46 2.15 8.23 3.24

TABLE I.- Continued

v,	ψ,	Fz	Fs	Fd	Mz	M _x	Уc	q
knots	deg	kN lbf	kN lbf	kN lbf	N-m in-lbf	N-m in-lbf	cm in.	cm in.
75	8	44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	25.24 5674 34.16 7678 42.11 9467 44.58 10022 44.72 10053	51 -115 .24 53 .59 132 4.19 943 5.88 1322	-348.4 -3084 -156.8 -1388 296.1 2621 1254.3 11101 2404.0 21278	9706 85903 13501 119493 17172 151982 18229 161344 18665 165198	1.50 .59 2.44 .96 3.53 1.39 3.51 1.38 3.61 1.42	-1.3553 4618 .71 .28 2.87 1.13 5.28 2.08
79	8	44.48 10000 56.72 15000 88.96 20000 111.21 25000 133.45 30000	23.73 5335 34.43 7740 39.37 8850 42.52 9559 42.66 9590	.08 18 .55 123 1.53 344 2.90 652 4.51 1013	69.7 617 191.6 1696 609.7 5396 1167.2 10330 1985.9 17577	10203 90308 14870 131608 17109 151432 18540 164097 18478 163546	3.81 1.50 4.50 1.77 4.60 1.81 4.29 1.69 3.84 1.51	.28 .11 .64 .25 1.60 .63 2.77 1.09 4.65 1.83
105	8	88.96 20000 111.21 25000 133.45 30000	43.62 9806 45.40 10207 48.15 10824	04 -9 2.51 564 2.82 634	104.5 925 313.6 2775 1898.8 16806	17669 156388 18354 162445 20469 181167	3.15 1.24 3.02 1.19 3.56 1.40	.18 .07 1.70 .67 3.58 1.41
100	8	44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	26.34 5921 35.53 7987 42.11 9467 46.23 10392 44.85 10084	55 -123 1.18 264 3.49 784 2.67 599 5.92 1330	-470.4 -4163 -209.0 -1850 226.5 2004 1062.7 9405 2073.0 18348	10266 90859 14248 126101 17234 152533 19038 168502 18727 165749	2.06 .81 2.84 1.12 3.58 1.41 3.94 1.55 3.86 1.52	-1.7067 5321 .64 .25 2.24 .88 4.57 1.80
101	8	44.48 10000 66.72 15000 88.96 20000 111.21 25000 133.45 30000	23.18 5211 35.94 8079 42.25 9498 44.99 10115 43.62 9806	1.14 256 1.41 317 2.78 626 3.61 811 5.53 1242	52.3 463 139.4 1233 731.7 6476 1655.0 14648 2107.9 18656	10079 89207 14932 132159 18043 159692 19225 170154 19038 168502	4.42 1.74 4.11 1.62 4.65 1.83 4.72 1.86 4.04 1.59	0.00 0.00 .46 .18 1.70 .67 3.05 1.20 4.83 1.90
74	10	66.72 15000 88.96 20000 111.21 25000 133.45 30000	35.94 8079 48.15 10824 52.54 11811 54.04 12150	1.57 352 3.61 811 4.70 1057 6.15 1383	-522.6 -4626 69.7 617 522.6 4626 1376.2 12181	14870 131608 20034 177313 22087 195485 23082 204295	3.68 1.45 4.67 1.84 4.78 1.88 4.90 1.93	-1.4256 .18 .07 .99 .39 2.51 .99
74	10	66.72 15000 88.96 20000 111.21 25000 133.45 30000	32.37 7278 43.07 9683 49.66 11163 52.40 11780	.59 132 1.10 247 2.59 581 3.80 855	-226.5 -2004 104.5 925 731.7 6476 1550.4 13722	13439 118943 18478 163546 21402 189427 22771 201542	3.28 1.29 4.47 1.76 4.80 1.89 4.88 1.92	7128 .36 .14 1.42 .56 3.05 1.20
98	10	66.72 15000 88.96 20000 111.21 25000 133.45 30000	37.31 8388 46.50 10454 50.48 11348 52.40 11780	.16 35 1.57 352 1.92 432 4.31 969	-783.9 -6938 -627.1 -5551 -296.1 -2621 592.3 5242	14745 130507 19100 169053 21216 187775 22522 199339	2.87 1.13 4.17 1.64 4.47 1.76 4.78 1.88	-2.1685 1.3553 6425 1.17 .46
100	10	66.72 15000 88.96 20000 111.21 25000 133.45 30000	33.61 7555 42.39 9529 45.13 10145 46.50 10454	.24 53 1.21 273 1.92 432 3.53 793	-174.2 -1542 191.6 1696 487.8 4317 871.0 7709	14061 124449 18292 161894 19723 174559 20469 181167	3.68 1.45 4.70 1.85 4.67 1.84 4.42 1.74	5321 .46 .18 1.07 .42 2.16 .85
76	12	66.72 15000 88.96 20000 111.21 25000 133.45 30000	33.06 7432 43.21 9714 52.95 11903 57.61 12952	.63 141 1.33 300 2.43 546 3.41 767	-261.3 -2313 -156.8 -1388 52.3 463 574.9 5088	14061 124449 18852 166850 22833 202093 25446 225220	4.24 1.67 5.16 2.03 5.31 2.09 5.82 2.29	8132 3614 .10 .04 .99 .39

.

. . N

TABLE I.- Concluded

v,	ψ,	F	z	F	s	E	ď	1	¹ z	M	^I x	Ус	3		1
knots	deg	kN	lbf	kN	lbf	kN	lbf	N-m	in-1bf	N-m	in-1bf	cm	in.	Cm	in.
99	12	66.72 88.96 111.21 133.45	15000 20000 25000 30000	37.45 49.11 57.20 59.67	8419 11040 12859 13414	1.02 1.45 2.27 4.12	229 326 511 925	-940.7 -801.3 -662.0 69.7	-8326 -7093 -5859 617	15119 20220 23393 24887	133811 178965 207048 220264	3.28 4.52 4.70 4.95	1.29 1.78 1.85 1.95	-2.51 -1.52 -1.07 .10	99 60 42 .04
100	12	66.72 98.96 111.21 133.45	15000 20000 25000 30000	34.29 41.97 48.56 53.91	77Ø9 9436 10916 12119	24 .90 1.18 2.98	-53 203 264 670	-557.5 -522.6 -331.0 278.7	-4934 -4626 -2930 2467	14310 17856 21091 23393	126652 158040 186674 207048	3.53 4.11 4.75 5.03	1.39 1.62 1.87 1.98	-1.52 -1.17 71 .53	60 46 28 .21

TABLE II.- BICUBIC

¢

1

$$\begin{bmatrix} Characteristic = \beta_0 + \beta_1 F_z + \beta_2 F_z^2 + \beta_3 F_z^3 \end{bmatrix}$$

Cornering characteristics		Coefficients of β for -										
		β ₀	β1	β2	β ₃	β ₄						
F _s ,	SI	-3.3416×10^3	9.4981 × 10 ⁻²	-7.8146 × 10 ⁻⁸	-4.0600×10^{-12}	3.3435×10^3						
N (lbf)	v.s.	(-7.5123×10^2)	(9.4981×10^{-2})	(-3.4761×10^{-7})	$(-8.0333 \times 10^{-11})$	(7.5165×10^2)						
μ s	SI	-3.1045×10^{-3}	2.3555×10^{-7}	-3.7580×10^{-12}	1.6522×10^{-17}	0.16670						
	u.s.	(-3.1045×10^{-3})	(1.0478 × 10 ⁻⁶)	$(-7.4358 \times 10^{-11})$	(1.4542×10^{-15})	(0.16670)						
F _d ,	SI	9.4574 × 10^2	1.7911×10^{-2}	1.9823×10^{-7}	-1.5041×10^{-12}	-5.8040×10^2						
N (Ibf)	v.s.	(2.1261×10^2)	(1.7911×10^{-2})	(8.8179 × 10 ⁻⁷)	$(-2.9762 \times 10^{-11})$	(-1.3048×10^2)						
μ _d	SI	3.8969×10^{-2}	2.5601×10^{-9}	-3.8621×10^{-13}	-3.9400×10^{-18}	-9.9506 × 10-3						
	u.s.	(3.8969 × 10 ⁻²)	(1.1388 × 10 ⁻⁸)	$(-7.6418 \times 10^{-12})$	(-3.4678 × 10 ⁻¹⁶)	(-9.9506 × 10 ⁻³)						
M _z ,	SI	1.9507 × 10	8.2103 × 10 ⁻⁴	-3.2516×10^{-9}	-1.9424×10^{-14}	1.7663 × 10^2						
N-m (in-lbf)	v.s.	(1.7265×10^2)	(3.2324×10^{-2})	(-5.6944×10^{-7})	$(-1.5131 \times 10^{-11})$	(1.5633×10^3)						
^M x′	SI	-7.9353×10^2	3.0389×10^{-2}	-1.3274×10^{-7}	-7.4122×10^{-13}	7.1965×10^2						
N-m (in→lbf)	v.s.	(-7.0233×10^3)	(1.1964)	(-2.3246×10^{-5})	(-5.7741 × 10 ⁻¹⁰	(6.3694×10^3)						
У _С , ст (in.)	SI	-1.3149	2.1476 × 10 ⁻⁵	-2.3572×10^{-10}	9.3808 × 10 ⁻¹⁶	8.3236 × 10						
	U.S.	(-5.1769 × 10 ⁻¹)	(3.7611×10^{-5})	(-1.8363×10^{-9})	(3.2506×10^{-14})	(3.2770×10^{-1})						
q,	SI	1.1223 × 10	-7.2742×10^{-5}	6.8968 × 10 ⁻¹⁰	-4.2993×10^{-16}	-2.9192						
Cm (in.)	U.S.	(4.4184)	(-1.2739×10^{-4})	(5.3726×10^{-9})	(-1.4898 × 10 ⁻¹⁴)	(-1.1493)						

^aBoundary values of characteristic, 0 when $F_z = 30\ 000,\ 25\ 000,\ 20\ 000,\ 15\ 000,\ 10\ 000,\ 5000,\ and 0 lbf with <math>\psi = 0^\circ$; and when $\psi = 1^\circ,\ 2^\circ,\ 4^\circ,\ 6^\circ,\ 8^\circ,\ 10^\circ,\ and\ 12^\circ$ with $F_z = 0$ for a total of 14 additional points to weight boundary. ^bBoundary values of characteristic, 0 when $F_z = 30\ 000,\ 25\ 000,\ 20\ 000,\ 15\ 000,\ 10\ 000,\ and\ 5000\ lbf with <math>\psi = 0^\circ$; repeated for a total of 167 additional points to weight boundary. ^cNo boundary value weighting used. ^dBoundary values used in (a) above repeated for a total of 84 additional points to weight boundary.

INTERPOLATION EQUATIONS

١

÷

 $+ \beta_4 \psi + \beta_5 \psi^2 + \beta_6 \psi^3 + \beta_7 F_z \psi + \beta_8 F_z \psi^2 + \beta_9 F_z^2 \psi \Big]$

	Number of data	Boundary				
β ₅	β ₆	β ₇	β ₈	β ₉	points used	condition
-4.0866	9.6513	6.9333×10^{-2}	-9.0677×10^{-4}	-1.6509×10^{-7}	139	(a)
(-9.1871×10^{-1})	(2.1697)	(6.9333×10^{-2})	(-9.0677×10^{-4})	(-7.3436×10^{-7})		
-1.2407×10^{-2}	1.1631×10^{-4}	-5.4298×10^{-7}	1.4449 × 10 ⁻⁸	-3.7037×10^{-13}	139	(b)
(-1.2407×10^{-2})	(1.1631×10^{-4})	(-2.4153×10^{-6})	(2.8590 × 10 ⁻⁷)	(-3.2598 × 10 ⁻¹¹)		
6.7920 × 10	1.0984×10^{-1}	-1.0844×10^{-3}	-8.0974×10^{-4}	6.8798 × 10 ⁻⁸	117	(c)
(1.5269 × 10)	(2.4694×10^{-2})	(-1.0844×10^{-3})	(-8.0974×10^{-4})	(3.0603 × 10 ⁻⁷)		
3.3772×10^{-4}	1.5060×10^{-5}	9.0355 × 10^{-8}	-6.8720×10^{-9}	1.7479×10^{-13}	117	(c)
(3.3772×10^{-4})	(1.5060 × 10 ⁻⁵)	(4.0192×10^{-7})	(-3.0568 × 10 ⁻⁸)	(3.4585×10^{-12})		
-6.2965 × 10	4.9674	3.8097×10^{-3}	-7.0523×10^{-4}	2.8409×10^{-8}	139	(b)
(-5.5729×10^2)	(4.3965 × 10)	(1.4999×10^{-1})	(-2.7765×10^{-2})	(4.9751 × 10 ⁻⁶)		
-1.0123×10^2	3.5308	3.5601×10^{-2}	-9.2192×10^{-4}	-7.2382×10^{-8}	139	(d)
(-8.9600×10^2)	(3.1250 × 10)	(1.4016)	(-3.6296×10^{-2})	(-1.2676 × 10 ⁻⁵)		
-9.8064×10^{-2}	9.6713 × 10^{-4}	2.7235×10^{-6}	5.1351 × 10^{-7}	-7.6350 × 10 ⁻¹¹	117	(c)
(-3.8608×10^{-2})	(3.8076×10^{-4})	(4.7695×10^{-6})	(8.9930 × 10 ⁻⁷)	$(-2.6742 \times 10^{-10})$		
1.8707×10^{-1}	-1.5328×10^{-3}	1.6389 × 10 ⁻⁵	-1.2566×10^{-6}	-1.8610×10^{-11}	117	(c)
(7.3653×10^{-2})	(-6.0346×10^{-4})	(2.8701 × 10 ⁻⁵)	(-2.2007 × 10 ⁻⁶)	(-1.4497 × 10 ⁻¹⁰)		

.....

13

····

L-81-3256.1

.

Figure 1.- New and worn tread condition of three-groove, 32 × 8.8, type VII, nose-gear test tire of Space Shuttle.

L-69-5860.2

Figure 2.- Photograph of carriage with test-wheel assembly installed.

L-80-4387.1

Figure 3.- Photograph of test tire and instrumented dynamometer.

Figure 4.- Schematic drawing of dynamometer details.

Figure 5.- Data fairing technique. Yaw angle, 10°; ground speed, 100 knots.

Figure 6.- Variation of side force with vertical load and yaw angle over a range of ground speed.

Vertical load, ${\rm F_{z}}$, and yaw angle, ψ

Figure 7.- Variation of side-force friction coefficient with vertical load and yaw angle over a range of ground speed.

Figure 8.- Variation of drag force with vertical load and yaw angle over a range of ground speed.

Figure 9.- Variation of drag-force friction coefficient with vertical load and yaw angle over a range of ground speed.

۰.

Figure 10.- Variation of aligning torque with vertical load and yaw angle over a range of ground speed.

Vertical load, ${\rm F_{Z}}$, and yaw angle, ψ

~

Figure 11.- Variation of overturning torque with vertical load and yaw angle over a range of ground speed.

Figure 13.- Variation of lateral center-of-pressure shift with vertical load and yaw angle over a range of ground speed.

r,

26

		·						
1. Report No. NASA TP-1917	2. Government Accession	No.	3. Recipient's Catalog No.					
4. Title and Subtitle CORNERING CHARACTERISTI	CS OF THE NOSE-GEAR		5. Report Date October 1981					
TIRE OF THE SPACE SHUTT		6. Performing Organization Code 505-44-33-01						
7. Author(s) William A. Vogler and J	ohn A. Tanner		8. Performing Organization Report No. L-14681					
	(**		10. Work Unit No.					
9. Performing Organization Name and Add	ress							
NASA Langley Research C Hampton, VA 23665	enter		11. Contract or Grant No.					
			13. Type of Report and Period Covered					
12. Sponsoring Agency Name and Address			Technical Paper					
National Aeronautics an Washington, DC 20546	d Space Administratio	on	14. Sponsoring Agency Code					
15. Supplementary Notes William A. Vogler: Kentron International, Inc., Hampton, Virginia. John A. Tanner: Langley Research Center.								
16. Abstract								
An experimental investigation was conducted to evaluate cornering characteristics of the 32 × 8.8 nose-gear tire of the Space Shuttle Orbiter. Data were obtained on a dry concrete runway at nominal ground speeds ranging from 50 to 100 knots and over a range of tire vertical loads and yaw angles which span the expected envelope of loads and yaw angles to be encountered during Space Shuttle landing operations. The cornering characteristics investigated included side and drag forces and friction coefficients, aligning and overturning torques, friction-force moment arm, and the lateral center-of-pressure shift. Results of this investigation indicate that the cornering characteristics of the Space Shuttle nose-gear tire are insensitive to variations in ground speed over the range tested. The effects on cornering characteristics of variations in the tire vertical load and yaw angle are as expected. Trends observed are consistent with trends observed during previous cornering tests involving other tire sizes.								
17. Key Words (Suggested by Author(s)) Nose-gear tire Cornering Mechanical properties	18.	Distribution Statemer Unclassifi	nt led - Unlimited Subject Category 39					
19. Security Classif. (of this report)	20. Security Classif. (of this page	e) 21. No. of	Pages 22. Price					
Unclassified	Unclassified	27	A03					
	l	<u> </u>	لا و مترس <u>ست</u> در ادمیه مددرو					

For sale by the National Technical Information Service, Springfield, Virginia 22161

T

F

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

11,

4

ţ

1

.

ì

į

6 I IU.D. 101381 S00903DS DEPT OF THE AIR FORCE AF WEAPONS LABORATORY ATTN: TECHNICAL LIBRARY (SUL) KIRTLAND AFB NM 87117

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return