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LLIt is better not to proceed at all, than to  proceed without method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’’ 

- Descartes 

ver the past decade, the term “software quali- 

ty,, has been widely used. In many instances 

the term has been loosely used in relation to 

process and product. This has created consid- 

erable confusion and diverted the industry 0 from its primary goal - improving the quality 

of the products of the various phases of software development. 

It helps to get clear at the outset that some very elusive notions 

- like “quality,” “goodness,” and “fitness-for-purpose” - are 

expeviential. That is, people make a judgment, depending on their 

particular needs or  perspective, that something they use, 

encounter, or examine is “good” or has “quality.” Exactly what 

tangible properties engender such a response is something quite 

different. In our quest to improve software quality, we must 

devote much more attention to this area. 

Another source of semantic confusion stems from the oft- 

heard advice that “quality should be built into software.” This 

very misleading statement distracts from the real issue - how to 

build software that manifests high-level quality attributes. We 

cannot build high-level quality attributes like reliability or main- 

tainability into software. W h a t  we can do is identify and build in 

a consistent, harmonious, and complete set of product properties 

(such as modules without side effects) that result in manifesta- 

tions of reliability and maintainability. We must also link these 

tangible product properties to high-level quality attributes. 
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Figure 1. Elements of a product quality 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  Factors tha t  determine 
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While some attention has been paid 
to high-level quality attributes, little 
has been devoted to the systematic 
study of tangible product properties 
and their influence on high-level quali- 
ty attributes. Today the dominant 
modus operandi for software develop- 
ment is ‘heavily process-oriented. This 
rests on the widely held belief that you 
need a quality process to produce a 

quality product.  T h e  flaw in this 
approach is that  the emphasis on 
process usually comes at the expense of 
constructing, refining, and using ade- 
quate product quality models. Instead, 
developers frequently rely on public or 
internal software-engineering stan- 
dards that are not always helpful.’ 

The fundamental axiom of software 
product quality is: a poroduct’s tangible 
intemaal chavacteristics or properties deter- 
mine its extevnal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAquality attributes. 
Developers must build these internal 
properties into a product in order for it 
to exhibit the desired external quality 
attributes. A product quality model, 
therefore, must comprehensively iden- 
tify the tangible (measurable and/or 

zodel. 

assessable) internal product character- 
istics that have the most significant 
effect on external quality attributes. 
And it must establish the dependencies 
between the two. Until we use better 
product quality models, we will not 
derive the full advantages of process 
assessment and improvement. When 
we are clearer about what we are trylng 
to achieve in terms of product quality, 

it should be much easier to tune our 
processes accordingly. 

Our understanding of what consti- 
tutes quality software has certainly not 
exhibited an unfluctuating advance 
toward greater truth. W e  can make 
real advances only when we understand 
the work of others, h d  it wanting, and 
try to overcome its weaknesses while 
building on its strengths. 

An ultimate theory of software qud- 
ity, like the chimera of the ancient 
Greeks, is a mythical beast of hybrid 
character and fanciful conception.* We 
are obliged, however, to strive to make 
progress, even though we realize that 
progress often brings a new set of 
problems. 

There have been a few attempts to 
tackle the problem of product quality 
systematically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand comprehensively.3-6 
In general, however, efforts have 
stalled because of 

+ the perceived scale of the prob- 
lem, 

+ the diversity of quality defects in 
software, and 

+ the difficulty of factoring high- 
level quality attributes down to tangi- 
ble properties. 

We can overcome these barriers by 
adopting the strategy of always pro- 
ceeding from the tangible and measur- 
able to the less tangible, higher level 

quality attributes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

QUALIN MODEL FRAMEWORK 

What sort of framework can link 
tangible product properties to intangi- 
ble quality attributes? In tackling this 
problem, we must face two issues: 

+ many product properties appear 

to influence the quality of software, and 

+ apart from some empirical and 
anecdotal evidence,' there is little for- 
mal basis for establishing which prod- 
uct properties affect which high-level 
quality attributes. 

To address these issues, we need a 

generic quality model and a process to 
build such models for different software 
products. Figure 1 shows the three 
principal elements of a generic quality 
model: product properties that influ- 
ence quality, a set of high-level quality 

attributes, and a means of linking them. 

Product model. Products are com- 
posed of components. Some compo- 
nents are atomic; others are composed 
of simpler components. For example, 
the components of a software imple- 
mentation are variables, expressions, 
statements, and so on. Given this con- 
ceptual model, product quality is large- 

ly determined by the 
+ choice of components that make 

up the  product and how they are  
implemented, 

+ tangible properties of the individ- 
ual components, and 

+ tangible properties associated 
with component composition. 

Figure 2 illustrates these qvality 
reqmrements. 

Inherent rules-of-foorm govern the 
use of each component type. For  
example, a variable must be initialized 
before it can be used. And mles-ofcorn- 
positzon govern the way components are 
used in the context of other compo- 
nents. Violating any of these rules 
affects product quality. Some violations 
are severe enough to affect functionali- 
ty, SO the product cannot perform as 
intended. Less severe violations might 
not affect functionality, but will affect 
other high-level quality attributes such 

J A N U A R Y  1 9 9 6  



as efficiency and maintainability. 

are: 
The  possible Sources of violation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ using the wrong component in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF i p r e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProduct properties that afect guality. 

given context, 
+ improperly implementing a com- 

ponent, and 
+ misusing a component in relation 

to other components. 
Now let’s take a more careful look 

at the nature and range of properties 
that may be associated with compo- 
nents. Simply identifying large num- 
bers of potential properties does not 
provide a good basis for constructing a 
quality model. Figure 3 shows a better 
basis for classifying the tangible quali- 
ty-carrying properties of components. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Correctness propert ies. Things can go 
wrong either with the way components 
are deployed directly or in context. 
Some properties are so significant that 

if they are violated the product will not 
perform as intended. Such correctness 
properties deserve separate considera- 
tion and so are classified separately. 
Correctness properties may be internal 
- associated with individual compo- 
nents - or contextual - associated 
with the way components are used in 
context. 

Internal properties. Every component has 
a noma1 firm that defines its internal 
“truth.”8 For example, the body of a 
loop must always ensure progress 
toward termination. A component’s 
normal form should not be violated, 
regardless of the context. Internal 
properties measure how well a compo- 
nent has been deployed according to 
its intended use or implementation 
requirements or how well it has been 
composed. 

Contexfuol properties. How components 
are composed influences product quali- 
ty, but how can we associate properties 
with the large number of possible rela- 
tionships? W e  need to characterize 
relational quality without getting 
involved in a combinatorial explosion. 

Figure 4. Contextual properties, expressed according to (A) a Yelation between 
components and (B) an external property of  a component. 

One practical way to do this is to avoid 
focusing on the relations and instead to 
associate contextual properties with 
individual components. Figure 4 illus- 
trates the difference in approach: 
Suppose that when component A and 
component B are composed, there is 
inherent redundancy in their relation- 
ship. Figure 4a describes the redun- 
dancy in terms of the relationship 
between A and B, but Figure 4b assigns 
the contextual property of redundancy 

to component B. In this way, contextu- 
al properties deal with the extemal 
influences by and on the use of a com- 
ponent. This approach significantly 
simplifies the task of dealing with qual- 
ity problems that stem from the com- 
position of large numbers of different 
types of components. Contextual prop- 
erties sometimes involve correctness, 
but many times they involve less severe 
problems that affect high-level quality 
attributes like maintainability. 

Descriptive properties. T o  be useful, a soft- 

ware product must be easy to under- 
stand and use for its intended purpose. 
These descriptive properties apply to 
requirements, designs, implementa- 
tions, and user interfaces. For example, 
program variables should have descrip- 

tive names. Sometimes, descriptive 
properties play the important role of 
specifymg functionality and constraints 
or identifying contexts, either formally 
or informally. 

Qualify affributes. Software quality is 
often discussed in terms of high-level 
attributes like functionality, reliability, 
and maintainability. Ideally, a set of 
high-level quality attributes should be 
complete, compatible, and nonoverlap- 
ping. But each high-level attribute usu- 
ally depends on several product prop- 
erties that are certainly not mutually 
exclusive in their effect on high-level 
quality. For example, various forms of 
redundancy affect both efficiency and 
maintainability. There is nothing we 
can do about this. Instead, we must 
ensure that the links between product 
properties and high-level attributes are 
clearly established. T h e  important 
thing is to focus on those high-level 
attributes that describe the priority 
needs for the software. Priorities can 
vary from product to product and pro- 
ject to project. 

Finally, if we accept the notion that 
a quality process is needed to produce 
a quality product, then we should 
demand that the product be developed 
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by a mature, well-defined process. In 
other words, we must attach a high- 
level attribute, “process-mature,” to 
each product’s quality model. T h s  is a 

practical way to link the process to 
product quality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Links. In trying to establish the links 
between tangible product properties 
and intangible quality attributes, we 
come up against the age-old cause- 
and-effect problem. Unfortunately, 
there is little we can do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- logically or 
formally - to establish these links. 
And it is a tedious, daunting task to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtry 

to empirically verify every link for 
every product property. Instead, I sug- 

gest we establish links for the four 
product properties already identified: 
correctness, internal, contextual, and 
descriptive. On the basis of the evi- 
dence and arguments, you can judge 
for yourself if you accept any broader 
links that might be proposed. 

Consider the correctness property 
and ISO-9126.9 All correctness proper- 
ties imply that a component, either 
directly or in context, is not imple- 
mented or does not function as intend- 
ed or designed. When this is true, nei- 

ther the functionality nor the reliability 
of the product can be guaranteed. 

In other words, a prerequisite for a 

system to behave reliably and satisfy 
its functional requirements is that the 
tangible correctness properties of all 
its components are satisfied. There- 
fore, the correctness properties influ- 
ence the quality attributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&nctionalzty 
and relzabzlzty. 

Following this approach, you can 
classify product properties according to 
the conceptual product-model classifi- 

cations I have proposed. I do not have 
enough space here to develop and jus- 

tify all the llnks I will mention. 

Model construction. Constructing and 
refining a product quality model is 
straightforward. It involves five steps: 

1. Identify a set of high-level quali- 
ty attributes for the product. 

2. Identify the product compo- 
nents. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 .  Identify and classify the most sig- 
nificant, tangible, quality-carrying 
properties for each component. 

4. Propose a set of axioms for link- 
ing product properties to quality 
attributes. 

5. Evaluate the model, identify its 
weaknesses, and either refine i t  o r  

scrap it and start again. 
In  this way you can construct 

testable, assessable, and refineable 
quality models for the key products of 
software development: the require- 
ments specification, the design, and the 
implementation. Each of these models 

could be the focus of a complete arti- 

cle; here I can describe only the key 
aspects of each. My intent is to illus- 
trate h m  to develop such models. You 
will see that the emphasis changes as 
we move from one type of product to 
another. And, although it seems logical 
to consider requirements first, then 
design, and then implementation, I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
think it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be clearer if I deviate from 
this sequence. 

IMPLEMENTATION 
QUALITY MODEL 

T h e  implementation is where all 
the poor decisions and quality prob- 
lems from earlier development phases 
ultimately come home to roost. Not to 

mention the quality problems that are 
born in the implementation phase 
itself. As Nicklaus Wirth so aptly put 
it, “in programming, the devil hides in 
the detail.” Here I focus on some of 
the detail - both the simple and more 
complex properties - that affect the 

integrity of individual components and 
their use in context. 

In this undertaking I cannot ignore 
the influence of the programming lan- 

guage. A language can influence soft- 
ware quality 

+ negatively, by permitting bad 
practices and/or by preventing good 
practices; 

+ neutrally, by permitting both 
good and bad practices; and 

+ pmitiueb, by preventing bad prac- 
tices and enforcing good practices. 

Most popular languages fall into the 
first two categories. As a consequence, 
they place a heavy burden on the pro- 
grammer to produce good quality soft- 
ware. This is hardly ideal. Program- 
ming is hard enough without asking 
programmers to shoulder so much 
responsibility. A language that influ- 
enced quality positively could poten- 
tially reduce quality defects by a 

tremendous amount. It is not necessary 
to take away the programmer’s free- 
dom; rather, the goal is to remove a 

programmer’s license to apply bad 
practices. 

There are three ways to do this: 
design better languages and compilers, 
implement more rigorous inspections, 
or build better static analyzers that 
implement programming standards 
that define effective quality models. 
T h e  quality model for implementa- 
tions I describe here supports these 
three suggested strategies. 

Identify quality attributes. An effective 
way to identify a set of high-level qual- 
ity attributes for software implementa- 
tions is to ask, “what are the most 
important uses of this implementa- 
t ion?” ISO-9126 provides a good 
response to this question, in the form 
of the first six attributes and their sub- 
attributes listed in Table 1. T o  these, 
we add the attributes process-mature 
and reusability. As you might expect, 
the quality attributes in Table 1 are 
broad and intangible and so are of little 
help in building software with such 
attributes. T o  make progress, we must 
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I Attributes Subattributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

use the quality-model framework and 
proceed to identify tangible product 
properties that will result in these 
intangible quality attributes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Identify components. It is relatively 

straightforward to identify an appro- 
priate set of product components for 
an implementation because the lan- 
guage’s grammar identifies them. 
Implementation components fit broad- 
ly into two categories: those that 
describe computations and those that 
describe data. In the first category are 
things like loops, if-statements, guards, 
assignments, and expressions. In the 

second category are things like vari- 
ables, constants, and types. I have pub- 

lished a detailed list elsewhere.” 

Identify quality-carrying properties. 
Arriving a t  a set of quality-carrying 
properties for each component is an 
empirical process. It can, however, be 
guided by asking a series of questions 
like, “Is there any property associated 
with this component that affects cor- 
rectness?” 

Consider variables, for example. 
Variables, fundamental components of 

every imperative language, possess a 
small, well-defined set of quality-carry- 
ing properties, shown in Figure 5. 
Clearly, if a variable is not assigned 
before it is used or if it is not of the 
appropriate precision, correctness 
could be affected. Using a variable for 
more than one purpose in a given 
module certainly threatens correctness 
and makes a module less descriptive. 

Declaring then failing to use a variable 
and using a global variable in a module 
both represent contextual problems : 

that affect quality. Finally, failing to i 
give a variable a descriptive name or i 
failing to document the purpose of a 

variable affects its descriptive proper- 
ties. I can’t guarantee that this list is 
exhaustive, but experienced practition- 
ers have failed to uncover additional 
properties. 

T o  ensure that variables have no 
negative impact on quality when you 
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we 6. Product properties of an expression component and their effect on quality. 

implement programs, you should 
therefore ensure that all of these tangi- 
ble component properties are satisfied. 

In a similar way, you can associate a 

set of quality-carrying properties with 

each of the other components used by a 

particular language. Expressions, like 
variables, are fundamental components 

of all imperative programming lan- 
guages. They also possess a small, well- 
defined set of quality-carrying proper- 
ties. Figure 6 shows these properties. 

What these properties tell us is that 

expressions should not have a structure 
that risks division by zero, or taking 
the square root of a negative number, 
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I Product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAproperties Quality attributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Linking product propevties t o  quality attributes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Attributes Subattributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUnderstandable Motivated, coherent, self-contained I 

1 Adaptable Modifiable, extensible, reusable I 

and so on. An expression should have 
no side-effects (compare the use of 
expressions in C), contain no unneces- 
sary arithmetic or logical computa- 
tions, and contain defined constants 
rather than mystery numbers. 

The result of this exercise is some- 
thing tangible that programmers and 
others can use to produce quality soft- 

ware. Violation of any of these proper- 
ties represents a quality defect that can 
be detected. 

How do you know when you have 
identified all the relevant properties for 
variables? The  answer is simple: You 
don’t! However, this is not as bad as it 
seems. When you identify the need for 
a new quality-carrying property, you 
simply add it to the model, thereby 
refining and strengthening it. 

Link properties to attributes. NOW we 

must link product properties to high- 
level quality attributes. Earlier, I rea- 
soned that correctness properties affect 

the quality attributes’ functionality and 
reliability. Using the same reasoning, I 
can generate the links in Figure 7. For 
example, redundancy in the body of 
loops affects both maintainability and 
efficiency and, to a lesser extent, relia- 
bility. 

Linking product properties to the 
quality attributes is neither unique nor 
absolute. I claim only that this is a suf- 

ficient set that provides some (but not 
complete) guidance on assessing the 
high-level quality impact of violations 
of various tangible product properties. 
These links do, however, let us deal 
with both high- and low-level design 
issues, consistency and completeness 
issues, and the characterization of 
functionality. In choosing the links, I 
deliberately tried to minimize overlap. 

REQUIREMENTS QUALITY MODEL 

Much has been written about the 
difficulties in obtaining and formulat- 
ing requirements. I won’t summarize 
those issues here. Instead, I describe 
key aspects of a quality model for 
requirements, focusing mainly on 
requirements rather than a complete 
requirements specification. 

identify qualify attributes. To identify 
high-level quality attributes of a 

requirements specification, ask “What 
do I want to do with this specifica- 
tion?” Principally, you want to 

+ use i t  to describe a problem’s 
requirements; 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse it as the basis for design; 
+ use it as. the instrument of con- 

tract and common understanding 
among the client, the users, and the 
developer; 

+ change it to meet new or modified 
requirements; and 

+ reuse or adapt i t  to help solve 
another problem. 

T o  use i t  as a specification, the 
client must be able to understand it 
and have confidence that  it describes 
what he requires. To use it as the basis 
for design, the designer must be able to 
understand it and have confidence that 
it contains all the relevant information. 
Because requirements often change 
over the  life of a project, i t  must 
accommodate change. So the resulting 
quality model must meet various needs 
of different parties. 

These might appear to be the same 
needs identified for an implementa- 
tion, but there is quite a difference in 
emphasis. ISO-9126, for example, 
buries the attribute understandability 

in maintainability, as the subattribute 
analyzability. Yet understandability is 

much more important in requirements 
than, say, functionality or reliability. I 
suggest the quality attributes in Table 
2 do a better job of capturing the high- 
level quality needs and expectations of 
requirements than ISO-9126. 

Identify components. I think the root 
cause of many problems with require- 
ments is confusion over exactly what 
requirements are and what form they 
should take. I also think that the form 
you choose can have a significant effect 
on the quality of your requirements. 
Requirements start out as an idea 
about a perceived need. How users 
express this need varies greatly, 
depending on the scale of the problem. 
Requirements must evolve from this 
idea - which is sometimes very vague 
and informal - to something that is 
tangible, accurate, controllable, verifi- 
able, and implementable. 

There  are many opinions about 
how best to specify requirements, and 
clearly no representation is appropriate 
for every system. I am not going to 
join the debate about whether require- 
ments should be formal or not, or 
whether they should be specified in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 
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or VDM. I am interested in the funda- 
mental underlying form that require- 
ments should exhibit, regardless of 
representation. T o  write good require- 
ments, you must be able to see beyond 
representations to the underlying 
form. 

At the highest level there are only 

two underlying types of requirements: 

functional and nonfunctional. Both 
may be most simply specified using just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
variables and constraints. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Functional requirements. It is very tempting 
to specify functional requirements with 
the phrase, “we want a system that 
does zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .” This may be appropriate for 
users, but it is a trap that developers 
should not fall into. There are no good 

tools that  can accurately express 

actions or transformations. So express- 
ing requirements this way risks misin- 
terpretation, ambiguity, omission, and 
inconsistency. 

A better way is to place constraints 
on outputs or  express relations 
between inputs and outputs. After all, 
it is the result a system produces, not 
the function it performs, that ultimate- 

ly is important. 

At its most basic level, a function 

accepts a set of inputs and uses or 

transforms them to produce a set of 
outputs. T o  specify functionality, first 
identify all the desired outputs and all 
the inputs needed to produce them. 
One very simple representation is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Output-Variable-List 
.= . Function-Name 

(Input-Variable-List) 

This captures the dataflow and may 
be directly translated into a dataflow 
diagram. 

Next, specify all the constraints on 
the inputs, all the constraints on the 
outputs, and the relations between the 
inputs and the outputs. Constraints 
may be either simple or  complex. 
They may either be a property of an 
individual variable or they may express 
relations among sets of variables. A 
relation identifies a condition that can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Quality-carrying Pro erty Quality impact 
DroDerties classiEcafion 

Component 

Individual 
requireinent 

‘ Nonred 
UIOU- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F i p r e  8. Linking product propenies to  quality attributes. 

be either true or false. A simple con- 
straint involves one or more variables 

and a relational operator (for example, 

a < b). Logical connectives (and, or, 

not) and quantifiers (for all) are used 
to build more complex constraints. 
The  important thing is to identify all 
variables and characterize relations 
accurately, using connectives and 
quantifiers. 

Another good way to express the 
highest level of functionality is to 
design the user interface as part of the 

requirements process. A user interface 

and user manual give users the clearest 

picture of how their requests will be 
realized. An architect would not think 
of going ahead with a building until 
the owner is happy with the perspec- 
tive plans. Perhaps there is a lesson 
here for software engineers. 

Non functionol requirements. Nonfunctional 
requirements can vary widely. Again, 

it is important to turn these require- 
ments into something tangible. Like 
functional requirements, nonfunction- 
al requirements must be clear-cut and 
completely verifiable. A nonfunctional 
requirement is a constraint, such as 
“the software must conform to the 
Company Programming Standard 
XXX.” In this case, the variables are 
software and programming standard 
and the relation is conform. The con- 
straint can be judged to be either true 
or false. W h a t  is important is that the 

variables and the relations are well- 
defined. 

The  discussion so far suggests the 

following components: 

+ requirements set, 
+ individual requirements, 
+ constraints, 
+ variables, 
+ constants, and 
+ relations. 

Identify quality-carrying properties. 
Establishing the quality-carrying prop- 

erties of requirements components is 
similar to establishing them for imple- 

mentation components. Individual 

requirements are the key components 
of a requirements specification. In  
assigning a set of quality-carrying 
properties to a requirement, you must 
be careful to avoid assigning properties 
that rightly belong to the components 
of a requirement (such as the variables 
and constraints). Most of the quality- 
carrying properties of a requirement 
relate to  relationships among the 

requirement’s components. The  first 
property we will consider relates to the 
form of requirements: All the inputs 
and outputs associated with a require- 
ment must be included. If they are not, 

the requirement is incomplete. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A second quality-carrying property 

of a requirement is that the set of con- 
straints associated with it must be com- 
patible and therefore consistent. In 
order for a requirement to accurately 
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Subattributes 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. .. -. 
Cori fo rm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa lit, functional, valid, constrained 

Resource-efficient, rational 

, wcll-tlcfined, assured 
~ 

capture what is required it must also be 
explicit, precise, and nonredundant. 

Finally, it is important that we can 
easily trace a requirement back to the 

user requirements and verify whether 
or not each requirement is satisfied. 
For a requirement to be verifiable it 
must be possible to use a defined pro- 

cedure to establish whether or not it is 

satisfied. 

Figure 8 shows the quality-carrying 
properties of individual requirements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

link properties to attributes. Using rea- 
soning similar to that which I used for 
the implementation example, I gener- 
ated the links in Figure 8. 

ESlGN QUALITY MODEL 

Programmers' desire to begin cod- 

ing as soon as possible has meant that 
design has not traditionally received 
the attention it deserves. As a conse- 
quence, our understanding of how to 
do design, what the real purpose of 
design is, what constltutes good design, 
and what to measure to assess design 
quality is still relatively immature. 

Constructing a quality model for 

design is therefore less straightforward. 
T h e  existence of so many different 
design methods suggests that there is 
not even any general consensus about 
what the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcomponents of a design are and 
what is an appropriate representation. In 

order to construct a generic quality 
model for design, we must t ry  to 
address some of these fundamental 
questions. 

T o  create a design, ideally we 
begin with a set of functional and a set 

of nonfunctional requirements that  
describe what behaviors and what 
characteristics the implemented sys- 
tem must exhibit. T h e  design must 
show how each of these requirements 
is to be realized in the context of the 
overall system. 

To do this for functional require- 

ments, there are really only two alter- 
natives: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdecomposition based on the 
identification of smaller, simpler func- 
tional components and composition 
based on object functionality. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmix of 

both is often the most appropriate for 
creating loosely coupled systems. In 

using these design strategies we must 
establish the relationships among the 

functional requirements in the system, 
the most desirable situation always 
being to keep functional requirements 
as nearly independent as possible. 

Taking all this into account, a suffi- 

ciently detailed list of what a design 
does includes: 

+ satisfy the requirements and be 
easily traceable back to those require- 

ments, 

+ provide a basis for implementa- 
tion and facilitate this transition, 

+ provide a framework for imple- 
menting functionality correctly and 
effectively encapsulating data, 

+ control complexity of hctionali-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ty and data at all levels, 

+ lead to the production of quality 
software, 

+ express computations using com- 
ponents, 

+ manage the dataflow among com- 

ponents, 
+ incorporate components from 

other applications (reuse), 
+ be easy to modify, extend, and 

verify, 

+ localize the effects of change and 
runtime problems, 

+ produce software that is easy to 
understand a t  several levels, 

+ cut problems at their joints and 
thereby satisfy the principle of corre- 
spondence," and 

+ recognize and solve specific prob- 
lems using known architectures. 

identify quality attributes. Neither the 
ISO-9126 quality-attribute set nor our 
set for requirements is appropriate for 

design. However, there are similarities. 

A design must accurately satisfy 
requirements and be understandable 

and adaptable. And a design should be 

developed using a mature process. A 
design's quality, however, is distin- 
guished by its effectiveness in solving 
the problem a t  hand. An appropriate 
set of quality attributes is shown in 
Table 3. 

Identify components. T h e  choice of 

components for design is not clear-cut. 

There are a great variety of tools and 
graphical techniques to represent high- 
level and detailed designs. But all these 
tools and techniques do the same 
thing: they identify, characterize, 
express, encapsulate, and compose 
functionality and data. When all the 
syntactic sugar is stripped away, the 
fundamental building blocks and glue 

of a design are: 

+ modules (of various types), 
+ variables (inputs and outputs), 
+ pre- and postconditions, and 
+ various means of composition. 
Of these, modules - the actual 

components you choose to use - have 
the most effect on design quality. 
Therefore, I will focus here on mod- 
ules, but first I want to note that the 
souyce and sznk properties of variables 
are critical quality-carrying properties 
in understanding how a complex sys- 
tem fits together. 

In the case of modules, the great 
challenge in constructing a quality 
model is to decide, irrespective of rep- 
resentation, 

t what types of modules the system 
needs, 

+ what properties each type of 
module should exhibit, 

+ what components should com- 
pose each type of module, and 

+ how these components should be 
composed. 

In a single word, the fundamental 
issue is architecture. Just as the study 
and practice of architecture has made a 

great contribution to the quality of 
buildings, so too will the study and 
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practice of software architecture make 
an important contribution to the quali- 

ty of software design. We are only now 

entering the era of software architec- 
ture.12 

We must explore ways to substan- 
tially simplify the architecture of soft- 

ware and the accompanying develop- 
ment process. Conventional software 
is complex because its form is seem- 
ingly amorphous and because i t  is 
built from a juxtaposition and inter- 

twining of many structures. 
Is i t  really necessary to jumble 

together so many different structures? 
If we could reduce the variety of 
structures, we would have a much bet- 
ter chance of reducing software com- 
plexity and at the same time simplify- 
ing and clarifying the design process. 
Fundamentally, there are four ways to 
reduce complexity: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ reduce the variety of structures 

that may be composed, 
+ simplify the way structures may 

be composed, 

+ introduce a layering architecture 
that limits the types of structures that 
may be composed in a given layer, and 

+ introduce coupling and cohesion 
criteria, to separate computations that 
have no dependence a t  the level a t  

which they are performed. 

All four of these strategies have been 
successfully exploited by microelec- 

tronic engineering to  control and 
reduce the complexity of VLSI designs. 
Microelectronics, in fact, has success- 
fully used six broadly categorized levels 
of abstraction (architectural, behavioral, 
functional, gate, circuit, and layout) to 
control design complexity and struc- 
ture. This success suggests that we 
should seriously consider layering in 
software design. 

By layering, I have in mind some- 
thing quite different from traditional 
top-down design. In my model, objects, 
programs, processes, and systems are all 
layered. The constructive principle is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
components constructed at one level may 
only be used at the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnext level up. This 
principle also means that a component 

cannot be used to construct other com- 

ponents in its own layer. I suggest the 

following layered components be used 
as the basic tools for constructing 
designs. As in requirements, all the 
module types that follow have the same 
underlying form: a list of outputs, a 
name, and a list of inputs, such as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Outl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO u t 2 ,  . . . .  Outm 

(Inl. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn2, . . . .  Inn) 
:= ModuleName 

Buse luyer. Each abstract data type con- 

sists of a set of primary functions in the 
base layer that are not separately com- 
pilable. Each of these functions uses no 
other primary function of the abstract 
data type. Assignments and other state- 
changing statements are composed 
using SSIR (sequence, selection, itera- 
tion, and recursion). 

Program layer. A program here is quite 
different from a conventional program. 
A program is composed solely of func- 
tions from the base layer; it contains 
absolutely no assignments. All state 
changes are achieved by function out- 
put. All functions are composed using 
SSIR. Programs are separately compil- 
able and executable and are well-suited 
for expressing the high-level aspects of 
a design. 

Removing assignments from pro- 
grams, which we call computation biding, 
greatly simplifies their form. And, 
because it is not possible to declare any 
new type in a program, reuse is encour- 
aged. 

Process luyer. If all the functionality 
associated with an individual object 
cannot be captured using functions 
and programs, a process layer is 

added. Processes are composed solely 
from the individual object's programs 
using SSIR. Again, because there are 
no assignments, processes have a very 
simple form that is well-suited for 
expressing high-level aspects of a 

design. It is also possible to have high- 
er level processes. 

Systems luyer. It is sometimes neces- 

sa ry  to reactively compose programs 

of an individual object. Systems com- 
pose reactive programs and processes. 
Systems are specified in a purely 
declarative way. All the designer 
needs to do is declare all system vari- 
ables, identify which variables are 
input to each program, and identify 
which variables are output from each 
program. T h e  default is that  each 
program executes when all the pro- 
grams that supply its inputs have ter- 
minated. A finite-state machine that 
looks after the I/O dependencies may 
be used to control system exe~ution. '~ 
T h e  system model is powerful 
enough to  accommodate various 
architectures such as pipes, filters, 
and client-server. 

For example, part of a system speci- 

fication is 

b. d, e, f :=Reactivesystem( . . . . . .  
a .  b := p r o g l ( x .  y. z ) ,  
c := p r o g Z ( u ,  V I ,  
d ,  e := p r o g 3 ( a ,  c), 
f := p r o g & ( w )  . . .  
end-Reactivesystem 

Program outputs are on the left side of 

the assignment operator. In this case, 
prog3,  which depends on a and c for 

input, can execute only when progl and 
prog:! have terminated; p r o g 4  starts 
executing concurrently with p r o  g 1 and 
p r 0 g 2. All functions, programs, processes, 
and systems use the same foym t o  speczfi 
inputs and outputs. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAViolation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof transforma- 
tiona2 cohesion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Composite moddes. Programs, processes, 

and systems can have more than one 
object as input. Such components are 

not encapsulated within an object. 
However, you can use the same layer- 
ing principles as for object programs. 
Because it is not possible to declare 
new types other than in abstract data 
types (in the base layer), the layered 
architecture enforces and facilitates 
reuse from the lowest to the highest 
levels. Above the primary system and 
process layers, you might have sec- 

ondary and tertiary layers, each con- 
structed on exactly the same architec- 

tural principles. This architecture, cou- 
pled with strict rules for module cohe- 
sion based on I/O dependence, is a very 
powerful way to control the complexity 
of software a t  all levels. This frame- 
work is also well-suited for supporting 
design in a transparent way from the 
highest level down to the detailed 
implementation based on objects. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ident i fy  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAquality-tarrying properties. 
Modules are the highest level compo- 
nents in a software system. As such, 
they are always built from simpler 
components. Consequently, many of 
the quality issues that arise have to do 
with the quality of the components 
rather than the module itself. Having 
said that, modules do possess three key 
generic quality-carrying properties: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ cohesion (internal), 

+ coupling (contextual), and 
+ layering (internal). 

W e  have already considered layering. 

Cohesion and coupling are widely 
known and often referred to, but they 
are rarely defined or used in a way that 
can make an important contribution to 
design quality. If defined constructive- 
ly, these properties can play a key role 

in controlling complexity. 

Cohesion. The concept of cohesion is 
often loosely or implicitly defined and 
therefore poorly understood. A module 
is made more complex when it includes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tu0 or more independent functions. A 
function’s U0 dependencies provide a 

basis for defining cohesion. Two out- 

pu t  variables are cohesive if they 
depend on at least one common input. 
A set of outputs is maximally cohesive 
if the addition of any other output to 
the set  does not  extend the set  of 
inputs on wRich the existing outputs 
depend and there is no other output 
that depends on any of the input set. A 
function whose outputs all belong to a 

single cohesive set satisfies the princi- 
ple of transformational cohesion. 

T h s  concept is easiest to illustrate 

with a directed biparti te graph. 
Consider the module: 

a, b ,  c := Name(v. w ,  x. y .  z )  . . .  
a := v + w; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b := w*x; 
c := y l z  

end-Name 

Figure 9 illustrates the si tuation: 
Although a11 the outputs depend on all 
the inputs, the output pair (a,b) has no 
dependence on the input pair (y,z). 
Hence the inputs y and z and the out- 
put c should be in a separate function. 
If you need more than one bipartite 
graph to describe a function’s I /O 
dependencies, then it is not transfor- 
mationally cohesive and should be 
split. 

Another useful principle is separa- 
tion of concerns, which requires that 
modules 

4 have no side effects, 
+ employ no global variables, 
+ have at least one output variable, and 

+ contain only variables that are 
each used for a single purpose. 

Coupling. Modern languages and pro- 
gramming practices have reduced the 
problem of coupling. The issue here is 

to ensure that modules do not use 
global variables or exhibit side effects. 
Data coupling fulfills these require- 
m e n t ~ . ’ ~  A module is data coupled 
when the only information passed to it 
is via a parameter list and none of this 
information is control information. It 
is best if the language enforces these 
requirements. 

l ink properties to attributes. These 
components and properties provide a 
reference against-which you can assess 
the design quality of any individual 
module a t  any level in a system, includ- 
ing the top level. 

Cohesion has a major effect on a 

design’s effectiveness, understandabili- 
ty, and adaptability. It measures how 
well complexity has been controlled, 
how well a solution has been com- 
posed, and, by default, the integrity of 
the functionality that has been isolated 
in a given module (important for reuse 
and adaptability). It is relatively 
straightforward to implement an ana- 
lyzer to detect cohesion problems like 
those described here and to generate 
corresponding metrics. 

Coupling affects the design’s 
understandability and adaptability. 

This concepmal framework is suffi- 

cient to support a purely object-ori- 
ented approach to design but it also 
recognizes loosely coupled compo- 
nents and subsystems that may be 
composed either conventionally or 
reactively. Many designs fit naturally 
into these broader, richer architectur- 
al frameworks. 

T o  assess an overall design, you 
should assess modules a t  various lev- 
els for their cohesion, their coupling, 
and the extent to which they exploit 
layering to control complexity. For 
modules a t  the lowest levels it is also 
necessary to examine other measures 
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of control-structure complexity15 to 

assess detailed design quality. 
For example, suppose you have a 

typical C module that consists of a 

considerable number of assignments, a 
number of procedure and function 
calls, and a number of global variables, 
all composed using sequence, selec- 
tion, and iteration. From the mix of 

components alone, you can tell imme- 
diately that there has been no system- 
atic attempt at layering, at systematic 

functional decomposition, or at com- 

posing object functionality. The pres- 
ence of global variables also indicates 
coupling problems. This  module’s 
implementation-level flaws will show 
up in any corresponding design docu- 
ment, most likely in the form of seri- 
ous gaps in the description of the 
design. 

Such a module has probably been 
hacked together without any serious 
attempt at design. With a set of cou- 
pling, cohesion, and layering metrics, 
you can quickly characterize its design 
quality and begin to convert it into a 

form that conforms to the ideal sug- 
gested. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U seful suggestions about quality, 

when they are brought to our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

attention, usually strike us at  once as 

familiar and revelatory. We see them 
as sensible, reflecting what we have 
felt but perhaps not expressed. What 
I have proposed here is not identical 
to quality, nor is it a substitute for 
what people experience as quality. 
What I have strived to do is create a 

number of things that I hope get  
close to capturing and conveying the 
same idea. 

T h e  proposed quality models 
demonstrate, by waj7 of example, that 
it is possible to create a framework 
that you can use in a practical way, 
both to build better products and to 
assess and assure their quality. Over 
time, the details will evolve and be 
refined. In trying to understand ideas 
like quality and its relationship to 
other knowledge, we sometimes end zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I E E E  S O F T W A R E  

ip with false explanations, substitu- 
ions, and proposals. These can have 

detrimental effect on the state of 
iractice. On the subject of software 
luality, we must therefore always 
mploy careful thinking and constant 
igilance to avoid casual confusion. 

I do not pretend to have presented 

a satisfactory “solution” here, but I 
certainly have learned from the expe- 

rience and have attained an undimin- 
ished appetite to join others in trying 
to herd the mythical beast of software 

4 quality into a tighter corner. 
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