
R. GEOFF DROMEY, Australian Software Quality Research Institute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LLIt is better not to proceed at all, than to proceed without method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’’

- Descartes

ver the past decade, the term “software quali-

ty,, has been widely used. In many instances

the term has been loosely used in relation to

process and product. This has created consid-

erable confusion and diverted the industry 0 from its primary goal - improving the quality

of the products of the various phases of software development.

It helps to get clear at the outset that some very elusive notions

- like “quality,” “goodness,” and “fitness-for-purpose” - are

expeviential. That is, people make a judgment, depending on their

particular needs or perspective, that something they use,

encounter, or examine is “good” or has “quality.” Exactly what

tangible properties engender such a response is something quite

different. In our quest to improve software quality, we must

devote much more attention to this area.

Another source of semantic confusion stems from the oft-

heard advice that “quality should be built into software.” This

very misleading statement distracts from the real issue - how to

build software that manifests high-level quality attributes. We

cannot build high-level quality attributes like reliability or main-

tainability into software. W h a t we can do is identify and build in

a consistent, harmonious, and complete set of product properties

(such as modules without side effects) that result in manifesta-

tions of reliability and maintainability. We must also link these

tangible product properties to high-level quality attributes.

0 7 4 0 7 4 5 9 / 9 6 / 5 0 5 00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1 9 9 6 I E E E I E E E S O F T W A R E

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Linkages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 1. Elements of a product quality

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 . Factors tha t determine
product quality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

While some attention has been paid
to high-level quality attributes, little
has been devoted to the systematic
study of tangible product properties
and their influence on high-level quali-
ty attributes. Today the dominant
modus operandi for software develop-
ment is ‘heavily process-oriented. This
rests on the widely held belief that you
need a quality process to produce a

quality product. T h e flaw in this
approach is that the emphasis on
process usually comes at the expense of
constructing, refining, and using ade-
quate product quality models. Instead,
developers frequently rely on public or
internal software-engineering stan-
dards that are not always helpful.’

The fundamental axiom of software
product quality is: a poroduct’s tangible
intemaal chavacteristics or properties deter-
mine its extevnal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAquality attributes.
Developers must build these internal
properties into a product in order for it
to exhibit the desired external quality
attributes. A product quality model,
therefore, must comprehensively iden-
tify the tangible (measurable and/or

zodel.

assessable) internal product character-
istics that have the most significant
effect on external quality attributes.
And it must establish the dependencies
between the two. Until we use better
product quality models, we will not
derive the full advantages of process
assessment and improvement. When
we are clearer about what we are trylng
to achieve in terms of product quality,

it should be much easier to tune our
processes accordingly.

Our understanding of what consti-
tutes quality software has certainly not
exhibited an unfluctuating advance
toward greater truth. W e can make
real advances only when we understand
the work of others, h d it wanting, and
try to overcome its weaknesses while
building on its strengths.

An ultimate theory of software qud-
ity, like the chimera of the ancient
Greeks, is a mythical beast of hybrid
character and fanciful conception.* We
are obliged, however, to strive to make
progress, even though we realize that
progress often brings a new set of
problems.

There have been a few attempts to
tackle the problem of product quality
systematically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand comprehensively.3-6
In general, however, efforts have
stalled because of

+ the perceived scale of the prob-
lem,

+ the diversity of quality defects in
software, and

+ the difficulty of factoring high-
level quality attributes down to tangi-
ble properties.

We can overcome these barriers by
adopting the strategy of always pro-
ceeding from the tangible and measur-
able to the less tangible, higher level

quality attributes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

QUALIN MODEL FRAMEWORK

What sort of framework can link
tangible product properties to intangi-
ble quality attributes? In tackling this
problem, we must face two issues:

+ many product properties appear

to influence the quality of software, and

+ apart from some empirical and
anecdotal evidence,' there is little for-
mal basis for establishing which prod-
uct properties affect which high-level
quality attributes.

To address these issues, we need a

generic quality model and a process to
build such models for different software
products. Figure 1 shows the three
principal elements of a generic quality
model: product properties that influ-
ence quality, a set of high-level quality

attributes, and a means of linking them.

Product model. Products are com-
posed of components. Some compo-
nents are atomic; others are composed
of simpler components. For example,
the components of a software imple-
mentation are variables, expressions,
statements, and so on. Given this con-
ceptual model, product quality is large-

ly determined by the
+ choice of components that make

up the product and how they are
implemented,

+ tangible properties of the individ-
ual components, and

+ tangible properties associated
with component composition.

Figure 2 illustrates these qvality
reqmrements.

Inherent rules-of-foorm govern the
use of each component type. For
example, a variable must be initialized
before it can be used. And mles-ofcorn-
positzon govern the way components are
used in the context of other compo-
nents. Violating any of these rules
affects product quality. Some violations
are severe enough to affect functionali-
ty, SO the product cannot perform as
intended. Less severe violations might
not affect functionality, but will affect
other high-level quality attributes such

J A N U A R Y 1 9 9 6

as efficiency and maintainability.

are:
The possible Sources of violation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ using the wrong component in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF i p r e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProduct properties that afect guality.

given context,
+ improperly implementing a com-

ponent, and
+ misusing a component in relation

to other components.
Now let’s take a more careful look

at the nature and range of properties
that may be associated with compo-
nents. Simply identifying large num-
bers of potential properties does not
provide a good basis for constructing a
quality model. Figure 3 shows a better
basis for classifying the tangible quali-
ty-carrying properties of components. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Correctness propert ies. Things can go
wrong either with the way components
are deployed directly or in context.
Some properties are so significant that

if they are violated the product will not
perform as intended. Such correctness
properties deserve separate considera-
tion and so are classified separately.
Correctness properties may be internal
- associated with individual compo-
nents - or contextual - associated
with the way components are used in
context.

Internal properties. Every component has
a noma1 firm that defines its internal
“truth.”8 For example, the body of a
loop must always ensure progress
toward termination. A component’s
normal form should not be violated,
regardless of the context. Internal
properties measure how well a compo-
nent has been deployed according to
its intended use or implementation
requirements or how well it has been
composed.

Contexfuol properties. How components
are composed influences product quali-
ty, but how can we associate properties
with the large number of possible rela-
tionships? W e need to characterize
relational quality without getting
involved in a combinatorial explosion.

Figure 4. Contextual properties, expressed according to (A) a Yelation between
components and (B) an external property of a component.

One practical way to do this is to avoid
focusing on the relations and instead to
associate contextual properties with
individual components. Figure 4 illus-
trates the difference in approach:
Suppose that when component A and
component B are composed, there is
inherent redundancy in their relation-
ship. Figure 4a describes the redun-
dancy in terms of the relationship
between A and B, but Figure 4b assigns
the contextual property of redundancy

to component B. In this way, contextu-
al properties deal with the extemal
influences by and on the use of a com-
ponent. This approach significantly
simplifies the task of dealing with qual-
ity problems that stem from the com-
position of large numbers of different
types of components. Contextual prop-
erties sometimes involve correctness,
but many times they involve less severe
problems that affect high-level quality
attributes like maintainability.

Descriptive properties. T o be useful, a soft-

ware product must be easy to under-
stand and use for its intended purpose.
These descriptive properties apply to
requirements, designs, implementa-
tions, and user interfaces. For example,
program variables should have descrip-

tive names. Sometimes, descriptive
properties play the important role of
specifymg functionality and constraints
or identifying contexts, either formally
or informally.

Qualify affributes. Software quality is
often discussed in terms of high-level
attributes like functionality, reliability,
and maintainability. Ideally, a set of
high-level quality attributes should be
complete, compatible, and nonoverlap-
ping. But each high-level attribute usu-
ally depends on several product prop-
erties that are certainly not mutually
exclusive in their effect on high-level
quality. For example, various forms of
redundancy affect both efficiency and
maintainability. There is nothing we
can do about this. Instead, we must
ensure that the links between product
properties and high-level attributes are
clearly established. T h e important
thing is to focus on those high-level
attributes that describe the priority
needs for the software. Priorities can
vary from product to product and pro-
ject to project.

Finally, if we accept the notion that
a quality process is needed to produce
a quality product, then we should
demand that the product be developed

I E E E S O F T W A R E h

by a mature, well-defined process. In
other words, we must attach a high-
level attribute, “process-mature,” to
each product’s quality model. T h s is a

practical way to link the process to
product quality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Links. In trying to establish the links
between tangible product properties
and intangible quality attributes, we
come up against the age-old cause-
and-effect problem. Unfortunately,
there is little we can do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- logically or
formally - to establish these links.
And it is a tedious, daunting task to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtry

to empirically verify every link for
every product property. Instead, I sug-

gest we establish links for the four
product properties already identified:
correctness, internal, contextual, and
descriptive. On the basis of the evi-
dence and arguments, you can judge
for yourself if you accept any broader
links that might be proposed.

Consider the correctness property
and ISO-9126.9 All correctness proper-
ties imply that a component, either
directly or in context, is not imple-
mented or does not function as intend-
ed or designed. When this is true, nei-

ther the functionality nor the reliability
of the product can be guaranteed.

In other words, a prerequisite for a

system to behave reliably and satisfy
its functional requirements is that the
tangible correctness properties of all
its components are satisfied. There-
fore, the correctness properties influ-
ence the quality attributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&nctionalzty
and relzabzlzty.

Following this approach, you can
classify product properties according to
the conceptual product-model classifi-

cations I have proposed. I do not have
enough space here to develop and jus-

tify all the llnks I will mention.

Model construction. Constructing and
refining a product quality model is
straightforward. It involves five steps:

1. Identify a set of high-level quali-
ty attributes for the product.

2. Identify the product compo-
nents. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 . Identify and classify the most sig-
nificant, tangible, quality-carrying
properties for each component.

4. Propose a set of axioms for link-
ing product properties to quality
attributes.

5. Evaluate the model, identify its
weaknesses, and either refine i t o r

scrap it and start again.
In this way you can construct

testable, assessable, and refineable
quality models for the key products of
software development: the require-
ments specification, the design, and the
implementation. Each of these models

could be the focus of a complete arti-

cle; here I can describe only the key
aspects of each. My intent is to illus-
trate h m to develop such models. You
will see that the emphasis changes as
we move from one type of product to
another. And, although it seems logical
to consider requirements first, then
design, and then implementation, I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
think it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be clearer if I deviate from
this sequence.

IMPLEMENTATION
QUALITY MODEL

T h e implementation is where all
the poor decisions and quality prob-
lems from earlier development phases
ultimately come home to roost. Not to

mention the quality problems that are
born in the implementation phase
itself. As Nicklaus Wirth so aptly put
it, “in programming, the devil hides in
the detail.” Here I focus on some of
the detail - both the simple and more
complex properties - that affect the

integrity of individual components and
their use in context.

In this undertaking I cannot ignore
the influence of the programming lan-

guage. A language can influence soft-
ware quality

+ negatively, by permitting bad
practices and/or by preventing good
practices;

+ neutrally, by permitting both
good and bad practices; and

+ pmitiueb, by preventing bad prac-
tices and enforcing good practices.

Most popular languages fall into the
first two categories. As a consequence,
they place a heavy burden on the pro-
grammer to produce good quality soft-
ware. This is hardly ideal. Program-
ming is hard enough without asking
programmers to shoulder so much
responsibility. A language that influ-
enced quality positively could poten-
tially reduce quality defects by a

tremendous amount. It is not necessary
to take away the programmer’s free-
dom; rather, the goal is to remove a

programmer’s license to apply bad
practices.

There are three ways to do this:
design better languages and compilers,
implement more rigorous inspections,
or build better static analyzers that
implement programming standards
that define effective quality models.
T h e quality model for implementa-
tions I describe here supports these
three suggested strategies.

Identify quality attributes. An effective
way to identify a set of high-level qual-
ity attributes for software implementa-
tions is to ask, “what are the most
important uses of this implementa-
t ion?” ISO-9126 provides a good
response to this question, in the form
of the first six attributes and their sub-
attributes listed in Table 1. T o these,
we add the attributes process-mature
and reusability. As you might expect,
the quality attributes in Table 1 are
broad and intangible and so are of little
help in building software with such
attributes. T o make progress, we must

J A N U A R Y 1 9 9 6

I Attributes Subattributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

use the quality-model framework and
proceed to identify tangible product
properties that will result in these
intangible quality attributes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Identify components. It is relatively

straightforward to identify an appro-
priate set of product components for
an implementation because the lan-
guage’s grammar identifies them.
Implementation components fit broad-
ly into two categories: those that
describe computations and those that
describe data. In the first category are
things like loops, if-statements, guards,
assignments, and expressions. In the

second category are things like vari-
ables, constants, and types. I have pub-

lished a detailed list elsewhere.”

Identify quality-carrying properties.
Arriving a t a set of quality-carrying
properties for each component is an
empirical process. It can, however, be
guided by asking a series of questions
like, “Is there any property associated
with this component that affects cor-
rectness?”

Consider variables, for example.
Variables, fundamental components of

every imperative language, possess a
small, well-defined set of quality-carry-
ing properties, shown in Figure 5.
Clearly, if a variable is not assigned
before it is used or if it is not of the
appropriate precision, correctness
could be affected. Using a variable for
more than one purpose in a given
module certainly threatens correctness
and makes a module less descriptive.

Declaring then failing to use a variable
and using a global variable in a module
both represent contextual problems :

that affect quality. Finally, failing to i
give a variable a descriptive name or i
failing to document the purpose of a

variable affects its descriptive proper-
ties. I can’t guarantee that this list is
exhaustive, but experienced practition-
ers have failed to uncover additional
properties.

T o ensure that variables have no
negative impact on quality when you

Functionality Suitability, accuracy, interoperability,
compliance security

I
Relinbi li zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAty -Ma turi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAty, fault-tolerance, recow-2 hi lity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

I Efficiency Time behavior, resource behavior I 1 Usaltility Untlerstnndability, Iralnability, operability I I Maintainability Analyzability, changeability, stability, testability I
1 Portabilit!. :Iclaptabitity, instatlability, conforrnance, repiaceability

1 Reusability Machine-independent, separable, configurable I
, I Process-manire Client-orientctl, weil-defined, ;tssureJ, effective

Quality-carrying Pro erty Quality impact
properties classiEcation

Component //

* . Descriptive

p y e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProduct properties of a variable component and their efiect on quality.

Componeni

Quality.carrying Pro erty Quality impact
properties classigcation

Computable J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P

. .
. Maintainability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreuse 1

we 6. Product properties of an expression component and their effect on quality.

implement programs, you should
therefore ensure that all of these tangi-
ble component properties are satisfied.

In a similar way, you can associate a

set of quality-carrying properties with

each of the other components used by a

particular language. Expressions, like
variables, are fundamental components

of all imperative programming lan-
guages. They also possess a small, well-
defined set of quality-carrying proper-
ties. Figure 6 shows these properties.

What these properties tell us is that

expressions should not have a structure
that risks division by zero, or taking
the square root of a negative number,

I E E E S O F T W A R E

I Product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAproperties Quality attributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Linking product propevties t o quality attributes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Attributes Subattributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUnderstandable Motivated, coherent, self-contained I

1 Adaptable Modifiable, extensible, reusable I

and so on. An expression should have
no side-effects (compare the use of
expressions in C), contain no unneces-
sary arithmetic or logical computa-
tions, and contain defined constants
rather than mystery numbers.

The result of this exercise is some-
thing tangible that programmers and
others can use to produce quality soft-

ware. Violation of any of these proper-
ties represents a quality defect that can
be detected.

How do you know when you have
identified all the relevant properties for
variables? The answer is simple: You
don’t! However, this is not as bad as it
seems. When you identify the need for
a new quality-carrying property, you
simply add it to the model, thereby
refining and strengthening it.

Link properties to attributes. NOW we

must link product properties to high-
level quality attributes. Earlier, I rea-
soned that correctness properties affect

the quality attributes’ functionality and
reliability. Using the same reasoning, I
can generate the links in Figure 7. For
example, redundancy in the body of
loops affects both maintainability and
efficiency and, to a lesser extent, relia-
bility.

Linking product properties to the
quality attributes is neither unique nor
absolute. I claim only that this is a suf-

ficient set that provides some (but not
complete) guidance on assessing the
high-level quality impact of violations
of various tangible product properties.
These links do, however, let us deal
with both high- and low-level design
issues, consistency and completeness
issues, and the characterization of
functionality. In choosing the links, I
deliberately tried to minimize overlap.

REQUIREMENTS QUALITY MODEL

Much has been written about the
difficulties in obtaining and formulat-
ing requirements. I won’t summarize
those issues here. Instead, I describe
key aspects of a quality model for
requirements, focusing mainly on
requirements rather than a complete
requirements specification.

identify qualify attributes. To identify
high-level quality attributes of a

requirements specification, ask “What
do I want to do with this specifica-
tion?” Principally, you want to

+ use i t to describe a problem’s
requirements;

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse it as the basis for design;
+ use it as. the instrument of con-

tract and common understanding
among the client, the users, and the
developer;

+ change it to meet new or modified
requirements; and

+ reuse or adapt i t to help solve
another problem.

T o use i t as a specification, the
client must be able to understand it
and have confidence that it describes
what he requires. To use it as the basis
for design, the designer must be able to
understand it and have confidence that
it contains all the relevant information.
Because requirements often change
over the life of a project, i t must
accommodate change. So the resulting
quality model must meet various needs
of different parties.

These might appear to be the same
needs identified for an implementa-
tion, but there is quite a difference in
emphasis. ISO-9126, for example,
buries the attribute understandability

in maintainability, as the subattribute
analyzability. Yet understandability is

much more important in requirements
than, say, functionality or reliability. I
suggest the quality attributes in Table
2 do a better job of capturing the high-
level quality needs and expectations of
requirements than ISO-9126.

Identify components. I think the root
cause of many problems with require-
ments is confusion over exactly what
requirements are and what form they
should take. I also think that the form
you choose can have a significant effect
on the quality of your requirements.
Requirements start out as an idea
about a perceived need. How users
express this need varies greatly,
depending on the scale of the problem.
Requirements must evolve from this
idea - which is sometimes very vague
and informal - to something that is
tangible, accurate, controllable, verifi-
able, and implementable.

There are many opinions about
how best to specify requirements, and
clearly no representation is appropriate
for every system. I am not going to
join the debate about whether require-
ments should be formal or not, or
whether they should be specified in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2

J A N U A R Y 1 9 9 6

or VDM. I am interested in the funda-
mental underlying form that require-
ments should exhibit, regardless of
representation. T o write good require-
ments, you must be able to see beyond
representations to the underlying
form.

At the highest level there are only

two underlying types of requirements:

functional and nonfunctional. Both
may be most simply specified using just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
variables and constraints. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Functional requirements. It is very tempting
to specify functional requirements with
the phrase, “we want a system that
does zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .” This may be appropriate for
users, but it is a trap that developers
should not fall into. There are no good

tools that can accurately express

actions or transformations. So express-
ing requirements this way risks misin-
terpretation, ambiguity, omission, and
inconsistency.

A better way is to place constraints
on outputs or express relations
between inputs and outputs. After all,
it is the result a system produces, not
the function it performs, that ultimate-

ly is important.

At its most basic level, a function

accepts a set of inputs and uses or

transforms them to produce a set of
outputs. T o specify functionality, first
identify all the desired outputs and all
the inputs needed to produce them.
One very simple representation is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Output-Variable-List
.= . Function-Name

(Input-Variable-List)

This captures the dataflow and may
be directly translated into a dataflow
diagram.

Next, specify all the constraints on
the inputs, all the constraints on the
outputs, and the relations between the
inputs and the outputs. Constraints
may be either simple or complex.
They may either be a property of an
individual variable or they may express
relations among sets of variables. A
relation identifies a condition that can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Quality-carrying Pro erty Quality impact
DroDerties classiEcafion

Component

Individual
requireinent

‘ Nonred
UIOU- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F i p r e 8. Linking product propenies to quality attributes.

be either true or false. A simple con-
straint involves one or more variables

and a relational operator (for example,

a < b). Logical connectives (and, or,

not) and quantifiers (for all) are used
to build more complex constraints.
The important thing is to identify all
variables and characterize relations
accurately, using connectives and
quantifiers.

Another good way to express the
highest level of functionality is to
design the user interface as part of the

requirements process. A user interface

and user manual give users the clearest

picture of how their requests will be
realized. An architect would not think
of going ahead with a building until
the owner is happy with the perspec-
tive plans. Perhaps there is a lesson
here for software engineers.

Non functionol requirements. Nonfunctional
requirements can vary widely. Again,

it is important to turn these require-
ments into something tangible. Like
functional requirements, nonfunction-
al requirements must be clear-cut and
completely verifiable. A nonfunctional
requirement is a constraint, such as
“the software must conform to the
Company Programming Standard
XXX.” In this case, the variables are
software and programming standard
and the relation is conform. The con-
straint can be judged to be either true
or false. W h a t is important is that the

variables and the relations are well-
defined.

The discussion so far suggests the

following components:

+ requirements set,
+ individual requirements,
+ constraints,
+ variables,
+ constants, and
+ relations.

Identify quality-carrying properties.
Establishing the quality-carrying prop-

erties of requirements components is
similar to establishing them for imple-

mentation components. Individual

requirements are the key components
of a requirements specification. In
assigning a set of quality-carrying
properties to a requirement, you must
be careful to avoid assigning properties
that rightly belong to the components
of a requirement (such as the variables
and constraints). Most of the quality-
carrying properties of a requirement
relate to relationships among the

requirement’s components. The first
property we will consider relates to the
form of requirements: All the inputs
and outputs associated with a require-
ment must be included. If they are not,

the requirement is incomplete. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A second quality-carrying property

of a requirement is that the set of con-
straints associated with it must be com-
patible and therefore consistent. In
order for a requirement to accurately

I E E E S O F T W A R E

Subattributes

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. .. -.
Cori fo rm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa lit, functional, valid, constrained

Resource-efficient, rational

, wcll-tlcfined, assured
~

capture what is required it must also be
explicit, precise, and nonredundant.

Finally, it is important that we can
easily trace a requirement back to the

user requirements and verify whether
or not each requirement is satisfied.
For a requirement to be verifiable it
must be possible to use a defined pro-

cedure to establish whether or not it is

satisfied.

Figure 8 shows the quality-carrying
properties of individual requirements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

link properties to attributes. Using rea-
soning similar to that which I used for
the implementation example, I gener-
ated the links in Figure 8.

ESlGN QUALITY MODEL

Programmers' desire to begin cod-

ing as soon as possible has meant that
design has not traditionally received
the attention it deserves. As a conse-
quence, our understanding of how to
do design, what the real purpose of
design is, what constltutes good design,
and what to measure to assess design
quality is still relatively immature.

Constructing a quality model for

design is therefore less straightforward.
T h e existence of so many different
design methods suggests that there is
not even any general consensus about
what the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcomponents of a design are and
what is an appropriate representation. In

order to construct a generic quality
model for design, we must t ry to
address some of these fundamental
questions.

T o create a design, ideally we
begin with a set of functional and a set

of nonfunctional requirements that
describe what behaviors and what
characteristics the implemented sys-
tem must exhibit. T h e design must
show how each of these requirements
is to be realized in the context of the
overall system.

To do this for functional require-

ments, there are really only two alter-
natives: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdecomposition based on the
identification of smaller, simpler func-
tional components and composition
based on object functionality. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmix of

both is often the most appropriate for
creating loosely coupled systems. In

using these design strategies we must
establish the relationships among the

functional requirements in the system,
the most desirable situation always
being to keep functional requirements
as nearly independent as possible.

Taking all this into account, a suffi-

ciently detailed list of what a design
does includes:

+ satisfy the requirements and be
easily traceable back to those require-

ments,

+ provide a basis for implementa-
tion and facilitate this transition,

+ provide a framework for imple-
menting functionality correctly and
effectively encapsulating data,

+ control complexity of hctionali- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ty and data at all levels,

+ lead to the production of quality
software,

+ express computations using com-
ponents,

+ manage the dataflow among com-

ponents,
+ incorporate components from

other applications (reuse),
+ be easy to modify, extend, and

verify,

+ localize the effects of change and
runtime problems,

+ produce software that is easy to
understand a t several levels,

+ cut problems at their joints and
thereby satisfy the principle of corre-
spondence," and

+ recognize and solve specific prob-
lems using known architectures.

identify quality attributes. Neither the
ISO-9126 quality-attribute set nor our
set for requirements is appropriate for

design. However, there are similarities.

A design must accurately satisfy
requirements and be understandable

and adaptable. And a design should be

developed using a mature process. A
design's quality, however, is distin-
guished by its effectiveness in solving
the problem a t hand. An appropriate
set of quality attributes is shown in
Table 3.

Identify components. T h e choice of

components for design is not clear-cut.

There are a great variety of tools and
graphical techniques to represent high-
level and detailed designs. But all these
tools and techniques do the same
thing: they identify, characterize,
express, encapsulate, and compose
functionality and data. When all the
syntactic sugar is stripped away, the
fundamental building blocks and glue

of a design are:

+ modules (of various types),
+ variables (inputs and outputs),
+ pre- and postconditions, and
+ various means of composition.
Of these, modules - the actual

components you choose to use - have
the most effect on design quality.
Therefore, I will focus here on mod-
ules, but first I want to note that the
souyce and sznk properties of variables
are critical quality-carrying properties
in understanding how a complex sys-
tem fits together.

In the case of modules, the great
challenge in constructing a quality
model is to decide, irrespective of rep-
resentation,

t what types of modules the system
needs,

+ what properties each type of
module should exhibit,

+ what components should com-
pose each type of module, and

+ how these components should be
composed.

In a single word, the fundamental
issue is architecture. Just as the study
and practice of architecture has made a

great contribution to the quality of
buildings, so too will the study and

J A N U A R Y 1 9 9 6 4 0

practice of software architecture make
an important contribution to the quali-

ty of software design. We are only now

entering the era of software architec-
ture.12

We must explore ways to substan-
tially simplify the architecture of soft-

ware and the accompanying develop-
ment process. Conventional software
is complex because its form is seem-
ingly amorphous and because i t is
built from a juxtaposition and inter-

twining of many structures.
Is i t really necessary to jumble

together so many different structures?
If we could reduce the variety of
structures, we would have a much bet-
ter chance of reducing software com-
plexity and at the same time simplify-
ing and clarifying the design process.
Fundamentally, there are four ways to
reduce complexity: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ reduce the variety of structures

that may be composed,
+ simplify the way structures may

be composed,

+ introduce a layering architecture
that limits the types of structures that
may be composed in a given layer, and

+ introduce coupling and cohesion
criteria, to separate computations that
have no dependence a t the level a t

which they are performed.

All four of these strategies have been
successfully exploited by microelec-

tronic engineering to control and
reduce the complexity of VLSI designs.
Microelectronics, in fact, has success-
fully used six broadly categorized levels
of abstraction (architectural, behavioral,
functional, gate, circuit, and layout) to
control design complexity and struc-
ture. This success suggests that we
should seriously consider layering in
software design.

By layering, I have in mind some-
thing quite different from traditional
top-down design. In my model, objects,
programs, processes, and systems are all
layered. The constructive principle is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
components constructed at one level may
only be used at the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnext level up. This
principle also means that a component

cannot be used to construct other com-

ponents in its own layer. I suggest the

following layered components be used
as the basic tools for constructing
designs. As in requirements, all the
module types that follow have the same
underlying form: a list of outputs, a
name, and a list of inputs, such as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Outl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO u t 2 , Outm

(Inl. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn2, Inn)
:= ModuleName

Buse luyer. Each abstract data type con-

sists of a set of primary functions in the
base layer that are not separately com-
pilable. Each of these functions uses no
other primary function of the abstract
data type. Assignments and other state-
changing statements are composed
using SSIR (sequence, selection, itera-
tion, and recursion).

Program layer. A program here is quite
different from a conventional program.
A program is composed solely of func-
tions from the base layer; it contains
absolutely no assignments. All state
changes are achieved by function out-
put. All functions are composed using
SSIR. Programs are separately compil-
able and executable and are well-suited
for expressing the high-level aspects of
a design.

Removing assignments from pro-
grams, which we call computation biding,
greatly simplifies their form. And,
because it is not possible to declare any
new type in a program, reuse is encour-
aged.

Process luyer. If all the functionality
associated with an individual object
cannot be captured using functions
and programs, a process layer is

added. Processes are composed solely
from the individual object's programs
using SSIR. Again, because there are
no assignments, processes have a very
simple form that is well-suited for
expressing high-level aspects of a

design. It is also possible to have high-
er level processes.

Systems luyer. It is sometimes neces-

sa ry to reactively compose programs

of an individual object. Systems com-
pose reactive programs and processes.
Systems are specified in a purely
declarative way. All the designer
needs to do is declare all system vari-
ables, identify which variables are
input to each program, and identify
which variables are output from each
program. T h e default is that each
program executes when all the pro-
grams that supply its inputs have ter-
minated. A finite-state machine that
looks after the I/O dependencies may
be used to control system exe~ution. '~
T h e system model is powerful
enough to accommodate various
architectures such as pipes, filters,
and client-server.

For example, part of a system speci-

fication is

b. d, e, f :=Reactivesystem(.
a . b := p r o g l (x . y. z) ,
c := p r o g Z (u , V I ,
d , e := p r o g 3 (a , c),
f := p r o g & (w) . . .
end-Reactivesystem

Program outputs are on the left side of

the assignment operator. In this case,
prog3, which depends on a and c for

input, can execute only when progl and
prog:! have terminated; p r o g 4 starts
executing concurrently with p r o g 1 and
p r 0 g 2. All functions, programs, processes,
and systems use the same foym t o speczfi
inputs and outputs.

I E E E S O F T W A R E

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAViolation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof transforma-
tiona2 cohesion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Composite moddes. Programs, processes,

and systems can have more than one
object as input. Such components are

not encapsulated within an object.
However, you can use the same layer-
ing principles as for object programs.
Because it is not possible to declare
new types other than in abstract data
types (in the base layer), the layered
architecture enforces and facilitates
reuse from the lowest to the highest
levels. Above the primary system and
process layers, you might have sec-

ondary and tertiary layers, each con-
structed on exactly the same architec-

tural principles. This architecture, cou-
pled with strict rules for module cohe-
sion based on I/O dependence, is a very
powerful way to control the complexity
of software a t all levels. This frame-
work is also well-suited for supporting
design in a transparent way from the
highest level down to the detailed
implementation based on objects. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ident i fy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAquality-tarrying properties.
Modules are the highest level compo-
nents in a software system. As such,
they are always built from simpler
components. Consequently, many of
the quality issues that arise have to do
with the quality of the components
rather than the module itself. Having
said that, modules do possess three key
generic quality-carrying properties: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ cohesion (internal),

+ coupling (contextual), and
+ layering (internal).

W e have already considered layering.

Cohesion and coupling are widely
known and often referred to, but they
are rarely defined or used in a way that
can make an important contribution to
design quality. If defined constructive-
ly, these properties can play a key role

in controlling complexity.

Cohesion. The concept of cohesion is
often loosely or implicitly defined and
therefore poorly understood. A module
is made more complex when it includes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tu0 or more independent functions. A
function’s U0 dependencies provide a

basis for defining cohesion. Two out-

pu t variables are cohesive if they
depend on at least one common input.
A set of outputs is maximally cohesive
if the addition of any other output to
the set does not extend the set of
inputs on wRich the existing outputs
depend and there is no other output
that depends on any of the input set. A
function whose outputs all belong to a

single cohesive set satisfies the princi-
ple of transformational cohesion.

T h s concept is easiest to illustrate

with a directed biparti te graph.
Consider the module:

a, b , c := Name(v. w , x. y . z) . . .
a := v + w; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b := w*x;
c := y l z

end-Name

Figure 9 illustrates the si tuation:
Although a11 the outputs depend on all
the inputs, the output pair (a,b) has no
dependence on the input pair (y,z).
Hence the inputs y and z and the out-
put c should be in a separate function.
If you need more than one bipartite
graph to describe a function’s I /O
dependencies, then it is not transfor-
mationally cohesive and should be
split.

Another useful principle is separa-
tion of concerns, which requires that
modules

4 have no side effects,
+ employ no global variables,
+ have at least one output variable, and

+ contain only variables that are
each used for a single purpose.

Coupling. Modern languages and pro-
gramming practices have reduced the
problem of coupling. The issue here is

to ensure that modules do not use
global variables or exhibit side effects.
Data coupling fulfills these require-
m e n t ~ . ’ ~ A module is data coupled
when the only information passed to it
is via a parameter list and none of this
information is control information. It
is best if the language enforces these
requirements.

l ink properties to attributes. These
components and properties provide a
reference against-which you can assess
the design quality of any individual
module a t any level in a system, includ-
ing the top level.

Cohesion has a major effect on a

design’s effectiveness, understandabili-
ty, and adaptability. It measures how
well complexity has been controlled,
how well a solution has been com-
posed, and, by default, the integrity of
the functionality that has been isolated
in a given module (important for reuse
and adaptability). It is relatively
straightforward to implement an ana-
lyzer to detect cohesion problems like
those described here and to generate
corresponding metrics.

Coupling affects the design’s
understandability and adaptability.

This concepmal framework is suffi-

cient to support a purely object-ori-
ented approach to design but it also
recognizes loosely coupled compo-
nents and subsystems that may be
composed either conventionally or
reactively. Many designs fit naturally
into these broader, richer architectur-
al frameworks.

T o assess an overall design, you
should assess modules a t various lev-
els for their cohesion, their coupling,
and the extent to which they exploit
layering to control complexity. For
modules a t the lowest levels it is also
necessary to examine other measures

J A N U A R Y 1 9 9 6

of control-structure complexity15 to

assess detailed design quality.
For example, suppose you have a

typical C module that consists of a

considerable number of assignments, a
number of procedure and function
calls, and a number of global variables,
all composed using sequence, selec-
tion, and iteration. From the mix of

components alone, you can tell imme-
diately that there has been no system-
atic attempt at layering, at systematic

functional decomposition, or at com-

posing object functionality. The pres-
ence of global variables also indicates
coupling problems. This module’s
implementation-level flaws will show
up in any corresponding design docu-
ment, most likely in the form of seri-
ous gaps in the description of the
design.

Such a module has probably been
hacked together without any serious
attempt at design. With a set of cou-
pling, cohesion, and layering metrics,
you can quickly characterize its design
quality and begin to convert it into a

form that conforms to the ideal sug-
gested. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U seful suggestions about quality,

when they are brought to our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

attention, usually strike us at once as

familiar and revelatory. We see them
as sensible, reflecting what we have
felt but perhaps not expressed. What
I have proposed here is not identical
to quality, nor is it a substitute for
what people experience as quality.
What I have strived to do is create a

number of things that I hope get
close to capturing and conveying the
same idea.

T h e proposed quality models
demonstrate, by waj7 of example, that
it is possible to create a framework
that you can use in a practical way,
both to build better products and to
assess and assure their quality. Over
time, the details will evolve and be
refined. In trying to understand ideas
like quality and its relationship to
other knowledge, we sometimes end zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I E E E S O F T W A R E

ip with false explanations, substitu-
ions, and proposals. These can have

detrimental effect on the state of
iractice. On the subject of software
luality, we must therefore always
mploy careful thinking and constant
igilance to avoid casual confusion.

I do not pretend to have presented

a satisfactory “solution” here, but I
certainly have learned from the expe-

rience and have attained an undimin-
ished appetite to join others in trying
to herd the mythical beast of software

4 quality into a tighter corner.

REFERENCES
1. S.L. Pfleeger, N. Fenton, and S. Page, “Evaluating Software Engineering Standards,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComputer, Sept.

1994, pp. 71-79.

2. E.F. Carritt, The Theory ofBeauty, Metheun, London, 1962.

3. B.W. Boehm et al., Characteristics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Soflware Quality, North-Holland, New York, 1978.

4. B. Kitchenham, “Towards a Constructive Quality Model,” So@uare Eizg. y., July 1987, pp. 105-1 12.

5. B.W. Kernighan and P.J. Plaugher, The Elements ofProgrammiizg Style, McGraw-Hill, New York,

6. M. Deutsch and R. Willis, Soflware Quality Engineering, Prentice-Hall, Eiiglewood Cliffs, N.J., 1988.

7. M.M. Pickard and B.D. Carter, “Maintainability: What Is It and How Do W e Measure It?” Sofnuare
Eng. Notes, July 1993, pp, A36-39.

8. S. Pan and R.G. Dromey, “Beyond Structured Programming,” Proc. Int’l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACui$ on Software Eng., IEEE
CS Press, Los Alamitos, Calif., 1996, to appear.

9. Software Pmdzict Evaluation - Quality Characteristics and Guidelinesfir Their Use, ISO/IEC Standard,

EO-9126, Int’l Organization for Standardization, Geneva, 1991.

10. R.G. Dromey, “AModel for Software Product Quality,” IEEE Trans, Sofiuare Eng., Feb. 1995, pp.
146- 162.

11. M. Jackson, P?imiples of P q ~ u m Design, Academic Press, London, 1976.

12. D. Garlan and M. Shaw, “An Introduction to Software Architecture,” Tech. Report CMU/SEI-94-

TR-21, Software Eng. Institute, Carnegie Mellon, Pittsburgh,l994.

13. T. Lightfoot, A Computational Modelfor Reactive Systems, Griffith University, honours thesis, 1995.

14. G. Myers, Sofnuare Reliability: Principles and Practices, John Wiley & Sons, New York, 1976.

15. S. Pan and R.G. Dromey, “Reengineering Loops,” ComputerJ., to appear.

1974. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R. Geoff Dromey is the Foundation Professor at the School of Compuung and

Informauon Technology at Griffith University. H e is the founder of the Software

Quality Insutute, through which he has worked closely wlth industrial, national, and

international standards bodies and governments H e has worked at Stanford

University, the Austrialian NauonaI University, and Wollongong University His

current research interests are applymg formal and empirical methods to improve

software quality and software-development productivity H e has authored or coau-

thored two books and more than 50 papers H e serves on the editorial boards of four

lournals

member of the IEEE and ACM

Dromey received a PhD in chemical physics from LaTrohe University H e is a

ddress quesuons about this arucle to Dromey at Australian Software Quality Research Institute, Faculty of

ience and Technology, Nathan Campus, Kessels Rd Brisbane, Griffith University, Queendand 41 11

ustralia, g dromey@cit.gu edu au

