Cornish–Fisher expansions for sample autocovariances and other functions of sample moments of linear processes

Christopher S. Withers^a and Saralees Nadarajah^b

^aApplied Mathematics Group ^bSchool of Mathematics, University of Manchester

Abstract. We give Cornish–Fisher expansions for general smooth functions of the sample cross-moments of a stationary linear process. Examples include the distributions of the sample mean, the sample autocovariance and the sample autocovrelation.

1 Introduction and summary

The theory of linear processes is well developed. We refer the readers to the excellent books: Hannan (1962, 1970), Kendall and Ord (1990) and Taniguchi and Kakizawa (2000). However, there has been little work giving Cornish–Fisher expansions for general smooth functions of the sample cross-moments of stationary linear processes. Among the known work, we mention Praskova-Vizkova (1976) and Albers (1978), where Edgeworth expansions are given for the Kendall rank correlation coefficient. See also Phillips (1977), where Edgeworth expansions for the least squares estimate of the coefficient of a first order autoregressive process are given.

The aim of this note is to derive the Cornish–Fisher expansions for general stationary linear processes. The results are organized as follows. Section 2 obtains expansions for the cumulants of the sample cross-moments of a linear process. In Section 3, we give the Cornish–Fisher expansions for functions of the sample moments. Section 4 gives examples, including explicit formulas for the first two terms of the Cornish–Fisher expansions for the sample mean, the sample autocovariance, and the sample autocorrelation. Section 5 shows the practical value of the results in Section 4 by means of simulation.

2 The cumulants of the sample cross-moments

Let $\{e_i\}$ be independent and identically distributed random variables from some distribution function *F* on *R* with finite cumulants τ_1, τ_2, \ldots . We consider the

Key words and phrases. Cornish-Fisher expansions, cumulants, linear process, stationary processes.

Received January 2010; accepted May 2010.

general stationary linear process

$$X_{i} = \sum_{j=0}^{\infty} \rho_{j} e_{i-j}.$$
 (2.1)

This includes the class of stationary ARMA processes. Its mean is $\mu = \alpha_1 \tau_1$, where $\alpha_1 = \sum_{j=0}^{\infty} \rho_j$. We denote the noncentral cross-moments, central cross-moments, and cross-cumulants of $(X_{i_1}, \ldots, X_{i_r})$ by

$$M_{i_{1}\cdots i_{r}} = EX_{i_{1}}\cdots X_{i_{r}}, \qquad \mu_{i_{1}\cdots i_{r}} = E(X_{i_{1}} - \mu)\cdots (X_{i_{r}} - \mu),$$

$$\kappa_{i_{1}\cdots i_{r}} = \kappa(X_{i_{1}}, \dots, X_{i_{r}}).$$
(2.2)

For relationships between them see, for example, Stuart and Ord (1987). We write these generically as

$$\mathbf{M} = \mathbf{M}(\boldsymbol{\mu}), \qquad \boldsymbol{\mu} = \boldsymbol{\mu}(\mathbf{M}), \qquad \boldsymbol{\kappa} = \boldsymbol{\kappa}(\boldsymbol{\mu})$$

and so on. These can be written down from their univariate versions. For example, $EX^2 = var(X) + E^2X$ implies

$$M_{12} = \operatorname{covar}(X_1, X_2) + (EX_1)(EX_2),$$

and $\kappa_4 = \mu_4 - 3\mu_2^2$ implies

$$\kappa_{1234} = \mu_{1234} - \mu_{12}\mu_{34} - \mu_{13}\mu_{24} - \mu_{14}\mu_{23} = \mu_{1234} - \sum_{\mu=1}^{3} \mu_{12}\mu_{34}$$

say. Given a sequence of integers i_1, \ldots, i_r , set

$$i_{0} = \min_{k=1}^{r} i_{k}, \qquad I_{k} = i_{k} - i_{0} \ge 0 \qquad \text{for } k = 1, \dots, r,$$

$$I_{0} = \max_{k=1}^{r} I_{k} = \max_{k=1}^{r} i_{k} - i_{0}.$$
(2.3)

Since $\{X_i\}$ is stationary,

$$M_{i_1\cdots i_r} = M_{I_1\cdots I_r}, \qquad \mu_{i_1\cdots i_r} = \mu_{I_1\cdots I_r}, \qquad \kappa_{i_1\cdots i_r} = \kappa_{I_1\cdots I_r}.$$

These are not changed by permuting subscripts. Also at least one I_k is zero. In Withers and Nadarajah (2009c), we showed that

$$\kappa_{i_1\cdots i_r} = \alpha(i_1, i_2, \ldots, i_r)\tau_r,$$

where

$$\alpha(i_1, i_2, \dots, i_r) = \alpha(I_1, I_2, \dots, I_r) = \sum_{j=0}^{\infty} \rho_{j+I_1} \rho_{j+I_2} \cdots \rho_{j+I_r},$$

where $\alpha(i_1, i_2, ..., i_r)$ is finite for processes like ARMA processes, where ρ_j decrease to zero exponentially. For example,

$$\kappa_r(X_i) = \alpha_r \tau_r,$$

where

$$\alpha_r = \alpha(0, 0, \dots, 0) = \sum_{j=0}^{\infty} \rho_j^r$$

and 0, 0, ..., 0 denotes a string of *r* zeros. For $I \ge 0$, the *I*th autocovariance and autocorrelation are

$$\kappa_{0I} = \operatorname{covar}(X_0, X_I) = \alpha(0, I)\tau_2, \qquad \operatorname{corr}(X_0, X_I) = \alpha(0, I)/\alpha_2, \quad (2.4)$$

where

$$\alpha(0, I) = \sum_{j=0}^{\infty} \rho_j \rho_{j+I}, \qquad \alpha_2 = \alpha(0, 0) = \sum_{j=0}^{\infty} \rho_j^2.$$

Also

$$\alpha(0, T) = \alpha(0, |T|),$$

$$\alpha(0, T_1, T_2) = \alpha(0, T_2 - T_1, -T_1) = \alpha(0, |T_2 - T_1|, |T_1|)$$

if $T_1 < T_2 < 0$ or $T_1 < 0 < T_2$.

Example 2.1. For the AR(1) $X_i - \phi X_{i-1} = e_i$,

$$\rho_j = \phi^j, \qquad \alpha_r = (1 - \phi^r)^{-1}, \qquad \alpha(i_1, i_2, \dots, i_r) / \alpha_r = \phi^{\sum_{k=1}^r I_k}.$$

Example 2.2. Consider the AR(2),

$$X_i - \sum_{k=1}^2 \phi_k X_{i-k} = e_i.$$

Write

$$1 - \sum_{k=1}^{2} \phi_k B^k = \prod_{k=1}^{2} (1 - y_k B), \qquad y_k = (\phi_1 \pm \epsilon^{1/2})/2, \qquad \epsilon = \phi_1^2 + 4\phi_2,$$

where k = 1 corresponds to + and k = 2 to -. Suppose that $\epsilon \neq 0$. Then

$$\left(1 - \sum_{k=1}^{2} \phi_k B^k\right)^{-1} = \sum_{k=1}^{2} \gamma_k (1 - y_k B)^{-1},$$
$$\gamma_k = (-1)^k y_k / (y_1 - y_2) = \epsilon^{-1/2} (-1)^k y_k.$$

Taking *B* as the backwards operator $BX_i = X_{i-1}$ gives

$$X_i = \sum_{k=1}^{2} \gamma_k (1 - y_k B)^{-1} e_i = \sum_{k=1}^{2} \gamma_k \sum_{j=0}^{\infty} y_k^j e_{i-j}.$$

That is, (2.1) holds with

$$\rho_j = \sum_{k=1}^2 \gamma_k y_k^j$$

Also by (2.4),

$$\epsilon^{1/2} \alpha(0, I) = \sum_{k=0}^{\infty} (y_1^{k+1} - y_2^{k+1})(y_1^{k+I+1} - y_2^{k+I+1})$$
$$= \sum_{i=1}^{2} y_i^{i+1} / (1 - y_i^2) + \sum_{12}^{2} y_1^{i+1} y_2 / (1 - y_1 y_2)$$

where

$$\sum_{12}^{2} y_1^{i+1} y_2 / (1 - y_1 y_2) = y_1^{i+1} y_2 / (1 - y_1 y_2) + y_2^{i+1} y_1 / (1 - y_1 y_2).$$

Similarly, $\alpha(i_1, i_2, ..., i_r)/\alpha_r$ can be written as the sum of 2^r terms.

For I_0 of (2.3), define the (unbiased) sample noncentral cross-moments by

$$\widehat{M}_{i_1\cdots i_r} = N^{-1} \sum_{t=1}^N X_{t+I_1} \cdots X_{t+I_r}$$

for $N = n - I_0 > 0$, where *n* denotes the sample size. For example,

$$\widehat{\mu} = \widehat{M}_0 = n^{-1} \sum_{j=1}^n X_j, \qquad \widehat{M}_{0a} = (n-a)^{-1} \sum_{j=1}^{n-a} X_j X_{j+a}$$
 (2.5)

for 0 < a < n. These sample moments are the building blocks of all our estimates. Define the *sample central cross-moments* and the *sample cross-cumulants* by $\hat{\mu} = \mu(\hat{\mathbf{M}})$ and $\hat{\kappa} = \kappa(\hat{\mu})$, respectively.

3 Cornish–Fisher expansions for functions of sample cross-moments

Under mild conditions [see Withers and Nadarajah (2008)], the *r*th order crosscumulants of the sample cross-moments have magnitude n^{1-r} , that is, for finite sequences of integers π_1, \ldots, π_r not depending on *n*,

$$k(\pi_1,\ldots,\pi_r)=n^{r-1}\kappa(\widehat{M}_{\pi_1},\ldots,\widehat{M}_{\pi_r})$$

is bounded in *n*. That is, $\{\widehat{M}_{\pi_i}\}\$ satisfy the Cornish–Fisher assumption. We shall not prove this for the general case but rather illustrate it in the examples. Given an integer π , set

$$k_r = k(\pi, \dots, \pi) = n^{r-1} \kappa_r(\widehat{M}_{\pi}), \qquad Y_n = (n/k_2)^{1/2} (\widehat{M}_{\pi} - M_{\pi}).$$
 (3.1)

If the observations are nonlattice, the distribution and quantiles of Y_n can be expanded in powers of $n^{-1/2}$:

$$P_n(x) = P(Y_n \le x) \approx \Phi(x) - \phi(x) \sum_{r=1}^{\infty} n^{-r/2} h_r(x),$$
(3.2)

$$p_n(x) = dP_n(x)/dx \approx \phi(x) \left[1 + \sum_{r=1}^{\infty} n^{-r/2} \overline{h}_r(x) \right],$$
(3.3)

$$\Phi^{-1}(P_n(x)) \approx x - \sum_{r=1}^{\infty} n^{-r/2} f_r(x),$$
(3.4)

$$P_n^{-1}(\Phi(x)) \approx x + \sum_{r=1}^{\infty} n^{-r/2} g_r(x),$$
 (3.5)

where Φ and ϕ are the unit normal distribution and density, respectively, and $h_r(x)$, $\overline{h}_r(x)$, $f_r(x)$, $g_r(x)$ are polynomials in x and $\{K_r\}$, where $K_r = k_r/k_2^{r/2}$. The expansions (3.2), (3.4) and (3.5) are given in Cornish and Fisher (1937) for $r \le 4$. Fisher and Cornish (1960) give (3.5) for $r \le 6$. For (3.3), see equation (3.3) of Withers and Nadarajah (2009b). There is also an alternative to the expansion (3.3) of the form

$$\ln[p_n(x)/\phi(x)] \approx \sum_{r=1}^{\infty} n^{-r/2} b_r(x),$$

where for r > 1, $b_r(x)$ is a polynomial of lower order than $\overline{h}_r(x)$: see Withers and Nadarajah (2009a).

Given $p \ge 1$ and finite sequences of integers π_1, \ldots, π_p not depending on *n*, set

$$\theta_a = M_{\pi_a}, \qquad \widehat{\theta}_a = \widehat{M}_{\pi_a}, \qquad \boldsymbol{\theta} = (\theta_1, \dots, \theta_p), \qquad \widehat{\boldsymbol{\theta}} = (\widehat{\theta}_1, \dots, \widehat{\theta}_p),$$
$$k^{a_1 \cdots a_r} = n^{r-1} \kappa (\widehat{\theta}_{a_1}, \dots, \widehat{\theta}_{a_r})$$

for $a_1, \ldots, a_r \in \{1, \ldots, p\}$. So, $k^{a_1 \cdots a_r}$ is bounded. That is, $\hat{\theta}$ satisfies the multivariate Cornish–Fisher condition. So, by the multivariate form of the argument used in Cornish and Fisher (1937), Fisher and Cornish (1960), the multivariate Edgeworth expansion holds for $\mathbf{Y}_n = n^{1/2}(\hat{\theta} - \theta)$. For $\hat{\theta}$ a sample mean, this gives the classical multivariate Edgeworth expansion: see equations (6.11)–(6.23) of Barndoff-Nielsen and Cox (1989) for expansions for the density, and Bhattacharya and Rao (1976) for expansions for the distribution and density.

Suppose \mathbf{Y}_n converges in law to the multivariate normal $\mathcal{N}_p(\mathbf{0}, \mathbf{V})$ with $p \times p$ covariance $\mathbf{V} = (k^{a_1 a_2})$ and distribution $\Phi_{\mathbf{V}}(\mathbf{x})$ say, and

$$P_n(\mathbf{x}) = P(\mathbf{Y}_n \le \mathbf{x}) \approx Q_n(-\partial/\partial \mathbf{x})\Phi_{\mathbf{V}}(\mathbf{x}), \tag{3.6}$$

where for $\widehat{\theta}$ nonlattice

$$Q_n(\mathbf{s}) = 1 + \sum_{r=1}^{\infty} n^{-r/2} q_r(\mathbf{s})$$

and $q_r(\mathbf{s})$ is a polynomial in $\mathbf{s} \in \mathbb{R}^p$ and $\{k^{a_1 \cdots a_i}, 1 \le i \le r+2\}$. If **V** is bounded away from zero as *n* increases, that is, if its eigenvalues are bounded away from zero, then the density of \mathbf{Y}_n with respect to Lebesgue measure has the expansion

$$p_n(\mathbf{x}) \approx Q_n(-\partial/\partial \mathbf{x})\phi_{\mathbf{V}}(\mathbf{x}),$$
 (3.7)

where $\phi_{\mathbf{V}}(\mathbf{x})$ is the density of $\Phi_{\mathbf{V}}(\mathbf{x})$. The coefficient of $n^{-r/2}$ in $p_n(\mathbf{x})$ is a linear combination of the multivariate Hermite polynomials.

Now suppose that $\mathbf{t} = \mathbf{t}(\boldsymbol{\theta}) : \mathbb{R}^p \to \mathbb{R}^q$ is a smooth function with finite derivatives $\mathbf{t}_{c_1c_2\cdots} = \partial_{c_1}\partial_{c_2}\cdots \mathbf{t}(\boldsymbol{\theta})$, where $\partial_c = \partial/\partial\theta_c$. Let t^b be the *b*th component of \mathbf{t} , $b = 1, \dots, q$. Then the *r*th order cross-cumulants of $\mathbf{\hat{t}} = \mathbf{t}(\mathbf{\hat{\theta}})$ are also of magnitude n^{1-r} with an expansion of the form

$$\kappa(\hat{t}^{b_1},\ldots,\hat{t}^{b_r}) = \sum_{i=r-1}^{\infty} n^{-i} K_i^{b_1\cdots b_r}, \qquad (3.8)$$

where b_1, \ldots, b_r lie in $1, \ldots, q$ and the cumulant coefficients $K_i^{b_1 \cdots b_r}$ are given in terms of $\{k^{a_1 \cdots a_r}\}$ and the derivatives $\mathbf{t}_{.c_1c_2\cdots}$, by the Appendix to Withers (1982) with $K_i^{a_1 \cdots a_r} = \delta_{i,r-1}k^{a_1 \cdots a_r}$. Here, $\delta_{i,j} = 0$ if $i \neq j$ and $\delta_{i,j} = 1$ if i = j. Alternatively, one can use James and Mayne (1962). For example, the $q \times q$ asymptotic covariance of $\mathbf{Z}_n = n^{1/2}(\hat{\mathbf{t}} - \mathbf{t})$ is $(K_1^{b_1b_2})$, where

$$K_1^{b_1b_2} = t_{a_1}^{b_1} k^{a_1 a_2} t_{a_2}^{b_2}, \tag{3.9}$$

and we use the tensor summation convention of implicit summation of the repeated pairs (in this case a_1, a_2) over their range $1, \ldots, p$.

Also \mathbb{Z}_n has Edgeworth type expansions of the form (3.6)–(3.7), where now $q_r(\mathbf{t})$ is a polynomial in $\mathbf{t} \in \mathbb{R}^p$ and $\{K_j^{a_1 \cdots a_i}, 1 \le i \le r+2\}$.

If q = 1 then (3.8) and (3.9) take the form

$$\kappa_r(\hat{t}) = \sum_{i=0}^{\infty} n^{-i} a_{ri}, \qquad a_{21} = t \cdot a_1 k^{a_1 a_2} t \cdot a_2.$$
(3.10)

So, if also a_{21} has a nonzero limit or is bounded away from zero as $n \to \infty$, then

$$Z_n/a_{21}^{1/2} = (n/a_{21})^{1/2}(\hat{t} - t)$$

has the Cornish–Fisher expansions (3.2)–(3.5), where now $h_r(x)$, $\overline{h_r}(x)$, $f_r(x)$, $g_r(x)$ are polynomials in x and $\{A_{ri}, 1 \le i \le r+2\}$ given in Withers (1984) for $r \le 4$, and A_{ri} is the standardized cumulant coefficient $A_{ri} = a_{ri}/a_{21}^{r/2}$. For example,

$$h_1(x) = f_1(x) = g_1(x) = A_{11} + A_{32}(x^2 - 1)/6,$$

$$\overline{h_1}(x) = A_{11}x + A_{32}(x^3 - 3x)/6.$$

Note that h_k and \overline{h}_k are linear combinations of the first k even and odd Hermite polynomials, respectively. Expressions for $\{a_{ri}\}$ are given in Withers (1982). For example, a_{21} is given by (3.10), and the cumulant coefficients of \hat{t} needed for the second term of the Cornish–Fisher expansions are

$$a_{11} = t_{ij}k^{ij}/2, \qquad a_{32} = t_{i}t_{j}t_{k}k^{ijk} + 3s_{j}t_{jk}s_{k},$$
 (3.11)

again using the tensor summation convention, where $s_j = k^{ji} t_{i}$. If p = 2, (3.10) and (3.11) can be written

$$a_{21} = t_{\cdot 1}^2 k_{11} + 2t_{\cdot 1} t_{\cdot 2} k_{12} + t_{\cdot 2}^2 k^{22}, \qquad a_{11} = \sum_{i=1}^2 t_{\cdot ii} k^{ii} / 2 + t_{\cdot 12} k^{12},$$

$$a_{32} = \sum_{i=1}^2 t_{\cdot i}^3 k^{iii} + 3 \sum_{12}^2 t_{\cdot 1}^2 t_{\cdot 2} k^{112} + 3 \sum_{j=1}^2 s_j^2 t_{\cdot jj} + 6s_1 t_{\cdot 12} s_2,$$
(3.12)

where

$$\sum_{12}^{2} t_{\cdot 1}^{2} t_{\cdot 2} k^{112} = t_{\cdot 1}^{2} t_{\cdot 2} k^{112} + t_{\cdot 2}^{2} t_{\cdot 1} k^{221}.$$

4 Examples

First note that transforming from i_1, \ldots, i_r to $T_k = i_k - i_1, k = 2, \ldots, r$, gives

$$\sum_{i_1=1}^{n_1} \cdots \sum_{i_r=1}^{n_r} \alpha(i_1, \dots, i_r) = \sum_{-n_1 < T_k < n_k, k=2, \dots, r} \alpha(0, T_2, \dots, T_r) D_r(n, T),$$

where

$$D_r(n, T) = \min(n_1, n_2 - T_2, \dots, n_r - T_r) + \min(0, T_2, \dots, T_r)$$

= $D(n_1, \dots, n_r; T_2, \dots, T_r)$

say. For example, if $n_k \equiv n$ then

$$D_r(n,T) = n - \delta_r(T),$$

where

$$\delta_r(T) = \max(0, T_2, \dots, T_r) - \min(0, T_2, \dots, T_r).$$

Example 4.1. Cornish–Fisher expansions for $\hat{\mu}$ of (2.5). Take $p = 1, \pi = i$ so that $\widehat{M}_i = \hat{\mu}$. Then

$$k_r = n^{r-1} \kappa_r(\widehat{\mu}) = \tau_r U_{nr}, \qquad (4.1)$$

where

$$U_{nr} = n^{-1} \sum_{i_1, \dots, i_r=1}^n \alpha(i_1, \dots, i_r)$$

= $n^{-1} \sum_{|T_k| < n, k=2, \dots, r} \alpha(0, T_2, \dots, T_r) [1 - \delta_r(T)/n].$ (4.2)

So, as $n \to \infty$,

$$U_{nr} \rightarrow U_r = \sum_{T_2,\dots,T_r=-\infty}^{\infty} \alpha(0, T_2,\dots,T_r)$$

and $k_r \to \tau_r U_r$. So, as $n \to \infty$, k_r is bounded if U_r is finite and k_2 is bounded away from zero if $U_2 > 0$. We now show in detail how to express the sum (4.2) explicitly for r = 2, 3. Write

$$U_{n2} = \sum_{|T| < n} \alpha(0, T)(1 - |T|/n), \qquad U_{n3} = u_{n1} + 2u_{n2},$$

where

$$u_{n1} = \sum_{-n < T_2 = T_3 < n} \alpha(0, T_2, T_3)(1 - |T_2|/n)$$

= $-\alpha_3 + \sum_{T=0}^{n-1} [\alpha(0, T, T) + \alpha(0, 0, T)](1 - T/n)$

since $\alpha(0, T, T) = \alpha(0, 0, -T)$,

$$u_{n2} = \sum_{-n < T_2 < T_3 < n} \alpha(0, T_2, T_3) (1 - \delta_3(T)/n)$$

and

$$\delta_3(T) = \begin{cases} T_3, & 0 \le T_2 < T_3, \\ T_3 - T_2, & T_2 \le 0 < T_3, \\ -T_2, & T_2 < T_3 \le 0. \end{cases}$$

So, $u_{n2} = \sum_{i=3}^{5} u_{ni}$, where

$$u_{n3} = \sum_{0 \le T_2 < T_3 < n} \alpha(0, T_2, T_3)(1 - T_3/n),$$

$$u_{n4} = \sum_{-n < T_2 \le 0 < T_3 < n} \alpha(0, T_2, T_3)[1 - (T_3 - T_2)/n],$$

$$u_{n5} = \sum_{-n < T_2 < T_3 \le 0} \alpha(0, T_2, T_3)(1 + T_2/n).$$

To illustrate this, consider the AR(1) process of Example 2.1. Transforming to s = n - T, $\omega = \phi^{-1}$ and setting

$$R_{n}(\omega) = \sum_{s=0}^{n} \omega^{s} = (\omega^{n+1} - 1)/(\omega - 1),$$

$$b_{n}(\phi) = \sum_{T=0}^{n-1} \phi^{T} (1 - T/n) = \phi^{n-1} \beta_{n}(\omega),$$

$$\beta_{n}(\omega) = \sum_{s=1}^{n} s \omega^{s-1} = (d/d\omega) R_{n}(\omega)$$

$$= (n+1)\omega^{n}/(\omega - 1) - (\omega^{n+1} - 1)/(\omega - 1)^{2},$$

we can write

$$\alpha(0,T) = \alpha_2 \phi^{|T|}, \qquad U_{n2}/\alpha_2 = \sum_{|T| < n} \phi^{|T|} (1 - |T|/n) = -1 + 2b_n(\phi),$$

$$U_{n2}/\alpha_2 = -1 + 2[1/(1 - \phi) - n^{-1}\phi(1 - \phi^n)/(1 - \phi)^2],$$

$$u_{n1}/\alpha_3 = -1 + \sum_{T=0}^{n-1} (\phi^{2T} + \phi^T)(1 - T/n) = -1 + b_n(\phi^2)/n + b_n(\phi)/n.$$

Set

$$f(\phi) = \sum_{T=1}^{n-1} T \phi^T = \phi \beta_{n-1}(\phi), \qquad g(\phi) = R_{n-1}(\phi),$$

$$a_3 = \sum_{T=1}^{n-1} \phi^T (1 - \phi^T) / (1 - \phi) = [R_{n-2}(\phi) - R_{n-2}(\phi^2)] / (1 - \phi),$$

$$b_3 = \sum_{1 \le T_3 < n} \phi^{T_3} T_3 R_{T_3 - 1}(\phi) = (1 - \phi)^{-1} [f(\phi) - f(\phi^2)].$$

Then

$$u_{n3}/\alpha_3 + 1 = \sum_{0 \le T_2 < T_3 < n} \phi^{T_2 + T_3} (1 - T_3/n) = a_3 - b_3/n.$$

Also since $\alpha(0, j, -k) = \alpha(0, k, j+k) = \phi^{j+2k}$, $u_{n4}/\alpha_3 = \sum_{0 \le j,k < n} [1 - (j+k)/n] \alpha(0, k, j+k) = a_4 - b_4/n$,

where

$$a_4 = \sum_{0 \le k < n} \phi^{2k} (1 - \phi^k) / (1 - \phi) = [g(\phi^2) - g(\phi^3)] / (1 - \phi),$$

$$b_4 = g(\phi^2) f(\phi) + g(\phi) f(\phi^2).$$

Also

$$u_{n5}/\alpha_3 = \sum_{0 < j < k < n} (1 - k/n)\phi^{2k-j} = a_5 - b_5/n,$$

where $a_5 = \phi^3 [R_{n-4}(\phi) - R_{n-4}(\phi^2)]/(\omega - 1)$ and $b_5 = [f(\phi) - f(\phi^2)]/(\omega - 1)$.

If we truncate the Cornish–Fisher series at K - 1 terms, that is with remainder $O(n^{-K/2})$, then we can ignore all exponentially small components in k_r . For example, in the AR(1) case in the last example we can replace k_r by $k'_r = \tau_r U'_{nr}$, where

$$\begin{split} U'_{n2}/\alpha_2 &= -1 + (1 - \phi - \phi/n)/(1 - \phi)^2, \\ U'_{n3}/\alpha_3 &= u'_{n1} + 2\sum_{j=2}^5 u'_j/\alpha_3, \qquad u'_{n1}/\alpha_3 + 1 = 2\sum_{T=1}^\infty \phi^{2T}(1 - T/n), \\ u'_3/\alpha_3 &= [f'(\phi^2) - f'(\phi)]/(\phi - 1), \\ u'_4/\alpha_3 &= g'(\phi^2)f'(\phi) + g'(\phi)f'(\phi^2), \\ u'_5/\alpha_3 &= [f'(\phi) - f'(\phi^2)]/(\omega - 1)^2, \\ f'(\phi) &= \sum_{T=1}^\infty T\phi^T = \phi/(\phi - 1)^2, \qquad g'(\phi) = \sum_{k=0}^\infty \phi^k = 1/(1 - \phi). \end{split}$$

So, for $j = 2, 3, u'_{nj}$ has the form $a'_j - b'_j / n$, where a'_j and b'_j do not depend on n.

Example 4.2. Cornish–Fisher expansions for the sample autocovariance assuming that $\mu = 0$. (This assumption is common in the literature on the grounds that the series can be adjusted by subtracting the estimated mean. However, we shall see in Example 4.3 that it gives the wrong variance if $\mu \neq 0$.)

In this case $\mu_{0a} = M_{0a}$ can be estimated by \widehat{M}_{0a} . So, $\pi = \{0, a\}$ and k_r of (3.1) is given by

$$k_r = n^{r-1} \kappa_r(\widehat{M}_{0a}). \tag{4.3}$$

For example,

$$k_2 = \sum_{|T| < n-a} (1 - |T|/n) g_T^{aa}$$

implies

$$\sum_{T=-\infty}^{\infty} g_T^{aa} > 0$$

as $n \to \infty$, where

$$g_T^{aa} = \kappa_{0,a,T,T+a} + \kappa_{0,T}^2 + \kappa_{0,T+a}\kappa_{a,T}$$

= $\tau_4 \alpha(0, a, T, T+a) + \tau_2^2 \alpha(0, T)^2 + \tau_2^2 \alpha(0, T+a) \alpha(a, T)$

[Recall that $\kappa_{ij\dots}$ are defined by (2.2).] So, k_2 is bounded away from zero and K_r is bounded in *n* and the Cornish–Fisher expansions apply.

Example 4.3. The autocovariance without assuming that $\mu = 0$.

In this case, we take p = 2, $\theta_1 = \mu$, $\theta_2 = M_{0a}$ and $t = t(\theta) = \kappa_{0a} = \theta_2 - \theta_1^2$. So, by (3.12)

$$t_{.1} = -2\mu, \qquad t_{.2} = 1, \qquad t_{.11} = -2, \qquad t_{.12} = t_{.22} = 0,$$

$$a_{21} = 4\mu^2 k^{11} - 4\mu k^{12} + k^{22}, \qquad (4.4)$$

$$a_{11} = -k^{11}, \qquad a_{32} = -8\mu^3 k^{111} + 12\mu^2 k^{112} - 6\mu k^{122} + k^{222} - 2s_1^2$$

$$= -2\mu k^{11} + k^{12}. \text{ Also}$$

$$k^{1^r} = k_r$$
 of (4.1)

and

at s_1

$$k^{12} = n\kappa(\widehat{\mu}, \widehat{M}_{0a}) = N^{-1} \sum_{t_1=1}^{n} \sum_{t_2=1}^{N} g'_T = N^{-1} \sum_{T=1-n}^{N-1} D(n, N:T) g'_T,$$

where

$$g'_T = \kappa(X_{t_1}, X_{t_2}X_{t_2+a}) = \kappa_{0,T,T+a} + \mu(\kappa_{0,T+a} + \kappa_{0,T}),$$

$$N = n - a, \qquad T = t_2 - t_1, \qquad D(n, N:T) = \min(n, N - T) + \min(0, T),$$

and we have used, in the notation of page 58 of McCullagh (1987), $\kappa^{1,23} = \kappa^{1,2,3} + \kappa^2 \kappa^{1,3} + \kappa^3 \kappa^{1,2}$. Also

$$k^{2\cdots 2} = k^{2^r} = k_r$$
 of (4.3).

By (4.4), *a*₃₂ needs

$$k^{112} = n^2 \kappa(\widehat{\mu}, \widehat{\mu}, \widehat{M}_{0a}) = N^{-1} \sum_{t_1, t_2=1}^n \sum_{t_3=1}^N g_{2T}$$
$$= N^{-1} \sum_{-n < T_2 < n, -n < T_3 < N} g_{2T} D(n, n, N : T_2, T_3),$$

where

$$g_{2T} = \kappa (X_{t_1}, X_{t_2}, X_{t_3}X_{t_3+a}) = \kappa (X_0, X_{T_2}, X_{T_3}X_{T_3+a})$$
$$= \kappa^{1,2,34} = \kappa^{1,2,3,4} + \kappa^3 \kappa^{1,2,4} + \kappa^4 \kappa^{1,2,3} + \kappa^{1,3} \kappa^{2,4} + \kappa^{1,4} \kappa^{2,3}$$

in the notation of equation (3.2) of McCullagh (1987). So,

 $g_{2T} = \kappa_{0,T_{2},T_{3},T_{3}+a} + \mu \kappa_{0,T_{2},T_{3}+a} + \mu \kappa_{0,T_{2},T_{3}} + \kappa_{0,T_{3}} \kappa_{T_{2},T_{3}+a} + \kappa_{0,T_{3}+a} \kappa_{T_{2},T_{3}}.$ Finally, a_{32} needs

$$\begin{split} k^{122} &= n^2 \kappa \left(\widehat{\mu}, \widehat{M}_{0a}, \widehat{M}_{0a} \right) = (n/N^2) \sum_{t_1=1}^n \sum_{t_2, t_3=1}^N g_{3T} \\ &= (n/N^2) \sum_{-n < T_2 < N, -n < T_3 < N} g_{3T} D_3(n:T) \\ &= (n/N^2) \sum_{-n < T_2 < N, -n < T_3 < N} g_{3T} [n - \delta_3(T)], \\ \delta_3(T) &= \max(a, T_2, T_3) - \min(0, T_2, T_3), \\ g_{3T} &= \kappa(X_{t_1}, X_{t_2} X_{t_2+a}, X_{t_3} X_{t_3+a}) = \kappa(X_{T_2} X_{T_2+a}, X_{T_3} X_{T_3+a}, X_0) \\ &= \kappa^{12,34,5} = \sum_{i=1}^6 U_i, \\ U_1 &= \kappa^{1,2,3,4,5}, \\ U_2 &= \kappa^{1,2,3,4,5} + \kappa^{1,2,3,5} \kappa^4 + \kappa^{1,2,4,5} \kappa^3 + \kappa^{1,3,4,5} \kappa^2 + \kappa^{2,3,4,5} \kappa^1, \\ U_3 &= \kappa^{1,2,3} \kappa^{4,5} + \kappa^{1,2,4} \kappa^{3,5} + \kappa^{1,3,4} \kappa^{2,5} + \kappa^{2,3,4} \kappa^{1,5}, \\ U_4 &= \kappa^{1,3,5} M^{2,4} + \kappa^{1,4,5} M^{2,3} + \kappa^{2,3,5} M^{1,4} + \kappa^{2,4,5} M^{1,3}, \\ M^{ij} &= \kappa^{i,j} + \kappa^i \kappa^j \end{split}$$

and

$$U_{5} = \kappa^{1,3} (\kappa^{2,5} \kappa^{4} + \kappa^{4,5} \kappa^{2}) + \kappa^{1,4} (\kappa^{2,5} \kappa^{3} + \kappa^{3,5} \kappa^{2}) + \kappa^{1,5} (\kappa^{2,3} \kappa^{4} + \kappa^{2,4} \kappa^{3}) + \kappa^{2,3} \kappa^{4,5} \kappa^{1} + \kappa^{2,4} \kappa^{3,5} \kappa^{1}$$

in the notation of page 255 of McCullagh (1987). So, in the notation of (2.2),

$$U_{1} = \kappa_{T_{2}, T_{2}+a, T_{3}, T_{3}+a, 0},$$

$$U_{2}/\mu = \kappa_{T_{2}, T_{2}+a, T_{3}, T_{3}+a} + \kappa_{0, T_{2}, T_{2}+a, T_{3}} + \kappa_{0, T_{2}, T_{2}+a, T_{3}+a} + \kappa_{0, T_{2}, T_{3}, T_{3}+a} + \kappa_{0, T_{2}+a, T_{3}, T_{3}+a},$$

$$U_{3} = \kappa_{T_{2}, T_{2}+a, T_{3}}\kappa_{0, T_{3}+a} + \kappa_{T_{2}, T_{2}+a, T_{3}+a}\kappa_{0, T_{3}} + \kappa_{T_{2}, T_{3}, T_{3}+a}\kappa_{0, T_{2}+a} + \kappa_{T_{2}+a, T_{3}, T_{3}+a}\kappa_{0, T_{2}+a},$$

$$U_{4} = \kappa_{0, T_{2}, T_{3}}(\kappa_{T_{2}, T_{3}} + \mu^{2}) + \kappa_{0, T_{2}, T_{3}+a}(\kappa_{T_{2}+a, T_{3}} + \mu^{2}) + \kappa_{0, T_{2}+a, T_{3}+a}(\kappa_{T_{2}, T_{3}} + \mu^{2})$$

and

$$U_5/\mu = \kappa_{T_2,T_3}[\kappa_{0,T_2+a} + \kappa_{0,T_3+a}] + \kappa_{T_2,T_3+a}[\kappa_{0,T_2+a} + \kappa_{0,T_3}] + \kappa_{0,T_2}[\kappa_{T_2+a,T_3} + \kappa_{T_2,T_3}] + \kappa_{T_2+a,T_3}\kappa_{0,T_3+a} + \kappa_{T_2,T_3}\kappa_{0,T_3}$$

Example 4.4. Cornish–Fisher expansions for the sample autocorrelation assuming that $\mu = 0$.

Take p = 2, q = 1, $t = \theta_2/\theta_1$, $\theta_1 = M_{00}$, $\theta_2 = M_{0a}$ at $a_1 = 0$ and $a_2 = a$. So, t is the *a*th autocorrelation and $\hat{t} = \widehat{M}_{0a}/\widehat{M}_{00}$ is the *a*th sample autocorrelation. So, $t_1 = -\theta_2/\theta_1^2$, $t_2 = 1/\theta_1$, $t_{11} = 2\theta_2/\theta_1^3$, $t_{12} = -1/\theta_1^2$ and $t_{22} = 0$.

Example 4.5. Cornish–Fisher expansions for the sample autocorrelation without assuming that $\mu = 0$.

Take

$$p = 3, \quad q = 1, \quad \theta_1 = \mu, \quad \theta_2 = M_{00}, \quad \theta_3 = M_{0a},$$

$$D = \operatorname{var}(X_0) = \theta_2 - \theta_1^2, \quad N = \operatorname{covar}(X_0, X_a) = \theta_3 - \theta_1^2, \quad (4.5)$$

$$t = \operatorname{covar}(X_0, X_a) / \operatorname{var}(X_0) = N/D.$$

So, a_{21} , a_{11} and a_{32} are given by (3.12) with $t_{.1} = 2\mu(t-1)/D$, $t_{.2} = -N/D^2$, $t_{.3} = 1/D^2$, $t_{.22} = 2\theta_2/\theta_1^3$, $t_{.23} = -1/\theta_1^2$ and $t_{.33} = 0$.

Example 4.6. Suppose that

$$t = \kappa (X_0 X_{a_1}, X_0 X_{a_2}) = \theta_3 - \theta_1 \theta_2, \qquad \theta_1 = M_{0a_1}, \\ \theta_2 = M_{0a_2}, \qquad \theta_3 = M_{00a_1 a_2}.$$

Set $k^{a_1a_2} = n\kappa(\widehat{M}_{0a_1}, \widehat{M}_{0a_2}), N_i = n - a_i$ and $T = t_2 - t_1$. Then

$$k^{a_1a_2} = n(N_1N_2)^{-1} \sum_{t_1=1}^{N_1} \sum_{t_2=1}^{N_2} g_T = n(N_1N_2)^{-1} \sum_{T=1-N_1}^{N_2-1} D(N_1, N_2:T)g_T,$$

where $g_T = \kappa(X_{t_1}X_{t_1+a_1}, X_{t_2}X_{t_2+a_2}) = \kappa(X_0X_{a_1}, X_TX_{T+a_2}) = \kappa^{12,34}$ in the notation of McCullagh. This is given by eleven terms in the equation above (3.2) of McCullagh.

Other examples, where the method can be applied is to functions of the estimates of the sample autocorrelations, such as estimates of the coefficients of ARMA processes. This includes the Yule–Walker estimates of the coefficients of an AR(p).

Example 4.7. From equation (5.42) of Kendall and Ord (1990), for the AR(2)

$$X_i = \delta + \sum_{j=1}^{2} \phi_j X_{t-j} + e_i - \tau_1.$$

The Yule–Walker estimates are given by replacing (μ, r_1, r_2) by their estimates in

$$\delta = \left(1 - \sum_{j=1}^{2} \phi_j\right) \mu, \qquad \phi_1 = r_1 (1 - r_2) / (1 - r_1^2), \qquad \phi_2 = (r_2 - r_1^2) / (1 - r_1^2),$$

where $r_a = \operatorname{covar}(X_0, X_a) / \operatorname{var}(X_0)$ is the *a*th autocorrelation, as in (4.5). Set $p = 4, q = 2, \theta_1 = \mu, \theta_2 = M_{00}, \theta_3 = M_{01}, \theta_4 = M_{02}, D = \operatorname{var}(X_0) = \theta_2 - \theta_1^2, N_1 = \operatorname{covar}(X_0, X_1) = \theta_3 - \theta_1^2$ and $N_2 = \operatorname{covar}(X_0, X_2) = \theta_4 - \theta_1^2$. Then

$$\phi_1 = N_1 (D - N_2) / (D^2 - N_1^2), \qquad \phi_2 = (DN_2 - D_1^2) / (D^2 - N_1^2)$$

which we write as $\phi = \mathbf{t} = \mathbf{t}(\theta)$. Now substitute partial derivatives. For example, for $t = \phi_1$, a_{21} needs

$$t_{\cdot 1}^{1} = N_{1 \cdot 1} [(D - N_{2})/(D^{2} - N_{1}^{2}) + 2N_{1}^{2}(D - N_{2})/(D^{2} - N_{1}^{2})^{2}] - N_{2 \cdot 1}N_{1}/(D^{2} - N_{1}^{2}) + D_{\cdot 1}N_{1} [1/(D^{2} - N_{1}^{2}) - 2D(D - N_{2})/(D^{2} - N_{1}^{2})^{2}] = D_{\cdot 1} \sum_{i=1}^{2} \gamma_{i} (D^{2} - N_{1}^{2})^{-i}, \qquad \gamma_{1} = \theta_{2} - \theta_{4}, \qquad \gamma_{2} = 2N_{1}(D - N_{2})(\theta_{3} - \theta_{2})$$

and

$$t_{2}^{1} = N_{1}(D^{2} - N_{1}^{2})^{-2}\gamma_{4}, \qquad \gamma_{4} = -\theta_{2}^{2} + 2\theta_{1}^{2}(\theta_{3} - \theta_{4}) + 2\theta_{2}\theta_{4} - \theta_{3}^{2}$$

using $N_{i,1} = D_{,1} = -2\theta_1$ and simplifying.

Finally, the method can be adapted to allow for a nonstationary mean, for example, by adding a parametric regression function to the right-hand side of (2.1).

5 Simulation study

Here, we illustrate the practical value of the results in Section 4.

One purpose of Cornish–Fisher expansions is to provide improved confidence intervals. The usual confidence intervals for the mean, autocovariance, and autocorrelation are based on Studentizing. The terms of the Cornish–Fisher expansions given by Examples 4.1–4.5 can be used to provide improved confidence intervals. We illustrate this fact by computing the coverage probabilities by means of simulation.

We simulated 10,000 samples of size n from (2.1) by assuming that the errors have the standard normal distribution. We calculated the Studentized intervals as well as those incorporating the Cornish–Fisher terms for the mean, autocovariance, and autocorrelation. The proportion of intervals containing the true value of these parameters is shown in Tables 5.1–5.3 for n = 5, 6, ..., 40. We can see clearly that the confidence intervals incorporating the Cornish–Fisher terms make a real improvement. The Studentized intervals perform poorly for most values of n and even for large n.

nStudentizedUsing Cornish–Fisher terms5 0.940 0.950 6 0.944 0.949 7 0.944 0.947 8 0.940 0.949 9 0.938 0.949 10 0.950 0.950 11 0.932 0.949 12 0.938 0.948 13 0.946 0.950 14 0.944 0.948 15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.947 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.948 38 0.922 0.948 39 0.944 0.950 40 0.950 0.950			
6 0.944 0.949 7 0.944 0.947 8 0.940 0.949 9 0.938 0.949 10 0.950 0.950 11 0.932 0.949 12 0.938 0.948 13 0.946 0.950 14 0.944 0.948 15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.947 22 0.950 0.950 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.948 38 0.922 0.948 39 0.944 0.950	n	Studentized	Using Cornish–Fisher terms
7 0.944 0.947 8 0.940 0.949 9 0.938 0.949 10 0.950 0.950 11 0.932 0.949 12 0.938 0.948 13 0.946 0.950 14 0.944 0.948 15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.947 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.948 38 0.922 0.948 39 0.944 0.950	5	0.940	0.950
8 0.940 0.949 9 0.938 0.949 10 0.950 0.950 11 0.932 0.949 12 0.938 0.948 13 0.946 0.950 14 0.944 0.948 15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.947 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.948 38 0.922 0.948 39 0.944 0.950	6	0.944	0.949
9 0.938 0.949 10 0.950 0.950 11 0.932 0.949 12 0.938 0.948 13 0.946 0.950 14 0.944 0.948 15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.947 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.948 38 0.922 0.948 39 0.944 0.950	7	0.944	0.947
10 0.950 0.950 11 0.932 0.949 12 0.938 0.948 13 0.946 0.950 14 0.944 0.948 15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.947 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.948 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.948 38 0.922 0.948 39 0.944 0.950	8	0.940	0.949
11 0.932 0.949 12 0.938 0.948 13 0.946 0.950 14 0.944 0.948 15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.947 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.948 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	9	0.938	0.949
12 0.938 0.948 13 0.946 0.950 14 0.944 0.948 15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.947 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.946 0.949 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	10	0.950	0.950
13 0.946 0.950 14 0.944 0.948 15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.947 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.948 38 0.922 0.948 39 0.944 0.950	11	0.932	0.949
14 0.944 0.948 15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.950 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	12	0.938	0.948
15 0.934 0.941 16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.950 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	13	0.946	0.950
16 0.932 0.937 17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.950 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	14	0.944	0.948
17 0.950 0.950 18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.950 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	15	0.934	0.941
18 0.936 0.942 19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.950 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	16	0.932	0.937
19 0.950 0.950 20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.950 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	17	0.950	0.950
20 0.938 0.948 21 0.938 0.947 22 0.950 0.950 23 0.938 0.950 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	18	0.936	0.942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	0.950	0.950
22 0.950 0.950 23 0.938 0.950 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	20	0.938	0.948
23 0.938 0.950 24 0.950 0.950 25 0.944 0.949 26 0.944 0.949 27 0.946 0.949 28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.950 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	21	0.938	0.947
240.9500.950250.9440.949260.9440.949270.9460.949280.9280.937290.9420.949300.9360.950310.9480.948320.9480.950330.9220.947340.9500.950350.9460.950360.9380.949370.9480.948380.9220.948390.9440.950	22	0.950	0.950
250.9440.949260.9440.949270.9460.949280.9280.937290.9420.949300.9360.950310.9480.948320.9480.950330.9220.947340.9500.950350.9460.950360.9380.949370.9480.948380.9220.948390.9440.950	23	0.938	0.950
260.9440.949270.9460.949280.9280.937290.9420.949300.9360.950310.9480.948320.9480.950330.9220.947340.9500.950350.9460.950360.9380.949370.9480.948380.9220.948390.9440.950	24	0.950	0.950
270.9460.949280.9280.937290.9420.949300.9360.950310.9480.948320.9480.950330.9220.947340.9500.950350.9460.950360.9380.949370.9480.948380.9220.948390.9440.950	25	0.944	0.949
28 0.928 0.937 29 0.942 0.949 30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	26	0.944	0.949
290.9420.949300.9360.950310.9480.948320.9480.950330.9220.947340.9500.950350.9460.950360.9380.949370.9480.948380.9220.948390.9440.950	27	0.946	0.949
30 0.936 0.950 31 0.948 0.948 32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	28	0.928	0.937
310.9480.948320.9480.950330.9220.947340.9500.950350.9460.950360.9380.949370.9480.948380.9220.948390.9440.950	29	0.942	0.949
32 0.948 0.950 33 0.922 0.947 34 0.950 0.950 35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	30	0.936	0.950
330.9220.947340.9500.950350.9460.950360.9380.949370.9480.948380.9220.948390.9440.950	31	0.948	0.948
340.9500.950350.9460.950360.9380.949370.9480.948380.9220.948390.9440.950	32	0.948	0.950
35 0.946 0.950 36 0.938 0.949 37 0.948 0.948 38 0.922 0.948 39 0.944 0.950	33	0.922	0.947
360.9380.949370.9480.948380.9220.948390.9440.950	34	0.950	0.950
370.9480.948380.9220.948390.9440.950	35	0.946	0.950
38 0.922 0.948 39 0.944 0.950	36	0.938	0.949
39 0.944 0.950	37	0.948	0.948
	38	0.922	0.948
40 0.950 0.950	39	0.944	0.950
	40	0.950	0.950

Table 5.1Simulated coverage probabilities for mean

Acknowledgments

The authors would like to thank the Editor and the referee for carefully reading the article and for their comments which greatly improved the article.

n	Studentized	Using Cornish–Fisher terms
5	0.942	0.947
6	0.938	0.943
7	0.938	0.949
8	0.946	0.950
9	0.942	0.949
10	0.948	0.949
11	0.940	0.949
12	0.944	0.950
13	0.944	0.949
14	0.948	0.950
15	0.942	0.948
16	0.946	0.948
17	0.942	0.950
18	0.948	0.950
19	0.942	0.946
20	0.928	0.949
21	0.944	0.950
22	0.950	0.950
23	0.946	0.950
24	0.948	0.950
25	0.934	0.947
26	0.946	0.948
27	0.940	0.942
28	0.938	0.941
29	0.936	0.946
30	0.946	0.949
31	0.940	0.946
32	0.944	0.948
33	0.936	0.946
34	0.942	0.945
35	0.938	0.944
36	0.948	0.950
37	0.950	0.950
38	0.938	0.944
39	0.922	0.942
40	0.938	0.950

Table 5.2 Simulated coverage probabilities for autocovariance

References

Albers, W. (1978). A note on the Edgeworth expansion for the Kendall rank correlation coefficient. *The Annals of Statistics* **6**, 923–925. MR0494667

Barndoff-Nielsen, O. E. and Cox, D. R. (1989). *Asymptotic Techniques for Use in Statistics*. London: Chapman & Hall. MR1010226

Bhattacharya, R. N. and Rao, R. R. (1976). *Normal Approximation and Asymptotic Expansions*. New York: Wiley. MR0436272

n	Studentized	Using Cornish–Fisher terms
5	0.946	0.948
6	0.940	0.941
7	0.950	0.950
8	0.950	0.950
9	0.950	0.950
10	0.950	0.950
11	0.932	0.945
12	0.950	0.950
13	0.946	0.950
14	0.934	0.944
15	0.938	0.948
16	0.942	0.950
17	0.948	0.949
18	0.944	0.946
19	0.948	0.950
20	0.950	0.950
21	0.942	0.948
22	0.946	0.949
23	0.948	0.950
24	0.942	0.947
25	0.942	0.948
26	0.948	0.950
27	0.932	0.949
28	0.930	0.939
29	0.942	0.948
30	0.938	0.950
31	0.932	0.949
32	0.948	0.950
33	0.944	0.947
34	0.950	0.950
35	0.932	0.948
36	0.950	0.950
37	0.946	0.950
38	0.938	0.948
39	0.944	0.949
40	0.940	0.947

Table 5.3 Simulated coverage probabilities for autocorrelation

- Cornish, E. A. and Fisher, R. A. (1937). Moments and cumulants in the specification of distributions. *Revue de l'Institut Internat de Statistics* 5, 307–322. Reproduced in *The Collected Papers of R. A. Fisher*, 4.
- Fisher, R. A. and Cornish, E. A. (1960). The percentile points of distributions having known cumulants. *Technometrics* 2, 209–225.
- Hannan, E. J. (1962). Time Series Analysis. New York: Wiley.

Hannan, E. J. (1970). Multiple Time Series. New York: Wiley. MR0279952

- James, G. S. and Mayne, A. J. (1962). Cumulants of functions of random variables. *Sankhyā, Ser. A* 24, 47–54. MR0148183
- Kendall, M. G. and Ord, K. (1990). Time Series, 3rd ed. London: Griffin. MR1074771
- McCullagh, P. (1987). Tensor Methods in Statistics. London: Chapman & Hall. MR0907286
- Phillips, P. C. B. (1977). A general theorem in the theory of asymptotic expansions as an approximation to the finite sample distributions of econometric estimators. *Econometrika* 45, 1517–1534. MR0451493
- Praskova-Vizkova, Z. (1976). Asymptotic expansion and a local limit theorem for a function of the Kendall rank correlation coefficient. *The Annals of Statistics* **4**, 597–606. MR0405670
- Stuart, A. and Ord, K. (1987). Kendall's Advanced Theory of Statistics 1, 5th ed. London: Griffin.
- Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference for Time Series. New York: Springer. MR1785484
- Withers, C. S. (1982). The distribution and quantiles of a function of parameter estimates. *Annals of the Institute of Statistical Mathematics, Ser. A* **34**, 55–68. MR0650324
- Withers, C. S. (1984). Asymptotic expansions for distributions and quantiles with power series cumulants. *Journal of the Royal Statistical Society, Ser. B* **46**, 389–396. MR0790623
- Withers, C. S. and Nadarajah, S. (2008). Edgeworth expansions for functions of weighted empirical distributions with applications to nonparametric confidence intervals. *Journal of Nonparametric Statistics* 20, 751–768. MR2467706
- Withers, C. S. and Nadarajah, S. (2009a). Expansions for log densities of asymptotically normal estimates. *Statistical Papers* DOI:10.1007/s00362-008-0135-2.
- Withers, C. S. and Nadarajah, S. (2009b). Charlier and Edgeworth expansions via Bell polynomials. Probability and Mathematical Statistics 29, 271–280.
- Withers, C. S. and Nadarajah, S. (2009c). The joint cumulants of a linear process. Technical report, Applied Mathematics Group, Industrial Research Ltd., Lower Hutt, New Zealand. (For electronic copy please contact the corresponding author.)

Applied Mathematics Group Industrial Research Limited Lower Hutt New Zealand School of Mathematics University of Manchester Manchester M13 9PL UK E-mail: mbbsssn2@manchester.ac.uk