
Brazilian Journal of Probability and Statistics
2012, Vol. 26, No. 2, 149–166
DOI: 10.1214/10-BJPS126
© Brazilian Statistical Association, 2012

Cornish–Fisher expansions for sample autocovariances and
other functions of sample moments of linear processes
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Abstract. We give Cornish–Fisher expansions for general smooth functions
of the sample cross-moments of a stationary linear process. Examples include
the distributions of the sample mean, the sample autocovariance and the sam-
ple autocorrelation.

1 Introduction and summary

The theory of linear processes is well developed. We refer the readers to the ex-
cellent books: Hannan (1962, 1970), Kendall and Ord (1990) and Taniguchi and
Kakizawa (2000). However, there has been little work giving Cornish–Fisher ex-
pansions for general smooth functions of the sample cross-moments of stationary
linear processes. Among the known work, we mention Praskova-Vizkova (1976)
and Albers (1978), where Edgeworth expansions are given for the Kendall rank
correlation coefficient. See also Phillips (1977), where Edgeworth expansions for
the least squares estimate of the coefficient of a first order autoregressive process
are given.

The aim of this note is to derive the Cornish–Fisher expansions for general sta-
tionary linear processes. The results are organized as follows. Section 2 obtains
expansions for the cumulants of the sample cross-moments of a linear process. In
Section 3, we give the Cornish–Fisher expansions for functions of the sample mo-
ments. Section 4 gives examples, including explicit formulas for the first two terms
of the Cornish–Fisher expansions for the sample mean, the sample autocovariance,
and the sample autocorrelation. Section 5 shows the practical value of the results
in Section 4 by means of simulation.

2 The cumulants of the sample cross-moments

Let {ei} be independent and identically distributed random variables from some
distribution function F on R with finite cumulants τ1, τ2, . . . . We consider the
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general stationary linear process

Xi =
∞∑

j=0

ρjei−j . (2.1)

This includes the class of stationary ARMA processes. Its mean is μ = α1τ1, where
α1 = ∑∞

j=0 ρj . We denote the noncentral cross-moments, central cross-moments,
and cross-cumulants of (Xi1, . . . ,Xir ) by

Mi1···ir = EXi1 · · ·Xir , μi1···ir = E(Xi1 − μ) · · · (Xir − μ),
(2.2)

κi1···ir = κ(Xi1, . . . ,Xir ).

For relationships between them see, for example, Stuart and Ord (1987). We write
these generically as

M = M(μ), μ = μ(M), κ = κ(μ)

and so on. These can be written down from their univariate versions. For example,
EX2 = var(X) + E2X implies

M12 = covar(X1,X2) + (EX1)(EX2),

and κ4 = μ4 − 3μ2
2 implies

κ1234 = μ1234 − μ12μ34 − μ13μ24 − μ14μ23 = μ1234 −
3∑

μ12μ34

say. Given a sequence of integers i1, . . . , ir , set

i0 = r

min
k=1

ik, Ik = ik − i0 ≥ 0 for k = 1, . . . , r,

(2.3)
I0 = r

max
k=1

Ik = r
max
k=1

ik − i0.

Since {Xi} is stationary,

Mi1···ir = MI1···Ir , μi1···ir = μI1···Ir , κi1···ir = κI1···Ir .

These are not changed by permuting subscripts. Also at least one Ik is zero. In
Withers and Nadarajah (2009c), we showed that

κi1···ir = α(i1, i2, . . . , ir )τr ,

where

α(i1, i2, . . . , ir ) = α(I1, I2, . . . , Ir) =
∞∑

j=0

ρj+I1ρj+I2 · · ·ρj+Ir ,

where α(i1, i2, . . . , ir ) is finite for processes like ARMA processes, where ρj de-
crease to zero exponentially. For example,

κr(Xi) = αrτr ,
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where

αr = α(0,0, . . . ,0) =
∞∑

j=0

ρr
j

and 0,0, . . . ,0 denotes a string of r zeros. For I ≥ 0, the I th autocovariance and
autocorrelation are

κ0I = covar(X0,XI ) = α(0, I )τ2, corr(X0,XI ) = α(0, I )/α2, (2.4)

where

α(0, I ) =
∞∑

j=0

ρjρj+I , α2 = α(0,0) =
∞∑

j=0

ρ2
j .

Also

α(0, T ) = α(0, |T |),
α(0, T1, T2) = α(0, T2 − T1,−T1) = α(0, |T2 − T1|, |T1|)

if T1 < T2 < 0 or T1 < 0 < T2.

Example 2.1. For the AR(1) Xi − φXi−1 = ei ,

ρj = φj , αr = (1 − φr)−1, α(i1, i2, . . . , ir )/αr = φ
∑r

k=1 Ik .

Example 2.2. Consider the AR(2),

Xi −
2∑

k=1

φkXi−k = ei.

Write

1 −
2∑

k=1

φkB
k =

2∏
k=1

(1 − ykB), yk = (φ1 ± ε1/2)/2, ε = φ2
1 + 4φ2,

where k = 1 corresponds to + and k = 2 to −. Suppose that ε �= 0. Then(
1 −

2∑
k=1

φkB
k

)−1

=
2∑

k=1

γk(1 − ykB)−1,

γk = (−1)kyk/(y1 − y2) = ε−1/2(−1)kyk.

Taking B as the backwards operator BXi = Xi−1 gives

Xi =
2∑

k=1

γk(1 − ykB)−1ei =
2∑

k=1

γk

∞∑
j=0

y
j
k ei−j .
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That is, (2.1) holds with

ρj =
2∑

k=1

γky
j
k .

Also by (2.4),

ε1/2α(0, I ) =
∞∑

k=0

(yk+1
1 − yk+1

2 )(yk+I+1
1 − yk+I+1

2 )

=
2∑

i=1

yi+1
i /(1 − y2

i ) +
2∑
12

yi+1
1 y2/(1 − y1y2),

where
2∑

12

yi+1
1 y2/(1 − y1y2) = yi+1

1 y2/(1 − y1y2) + yi+1
2 y1/(1 − y1y2).

Similarly, α(i1, i2, . . . , ir )/αr can be written as the sum of 2r terms.

For I0 of (2.3), define the (unbiased) sample noncentral cross-moments by

M̂i1···ir = N−1
N∑

t=1

Xt+I1 · · ·Xt+Ir

for N = n − I0 > 0, where n denotes the sample size. For example,

μ̂ = M̂0 = n−1
n∑

j=1

Xj, M̂0a = (n − a)−1
n−a∑
j=1

XjXj+a (2.5)

for 0 < a < n. These sample moments are the building blocks of all our estimates.
Define the sample central cross-moments and the sample cross-cumulants by μ̂ =
μ(M̂) and κ̂ = κ(μ̂), respectively.

3 Cornish–Fisher expansions for functions of sample cross-moments

Under mild conditions [see Withers and Nadarajah (2008)], the r th order cross-
cumulants of the sample cross-moments have magnitude n1−r , that is, for finite
sequences of integers π1, . . . , πr not depending on n,

k(π1, . . . , πr) = nr−1κ(M̂π1, . . . , M̂πr )

is bounded in n. That is, {M̂πi
} satisfy the Cornish–Fisher assumption. We shall

not prove this for the general case but rather illustrate it in the examples. Given an
integer π , set

kr = k(π, . . . , π) = nr−1κr(M̂π ), Yn = (n/k2)
1/2(M̂π − Mπ). (3.1)
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If the observations are nonlattice, the distribution and quantiles of Yn can be ex-
panded in powers of n−1/2:

Pn(x) = P(Yn ≤ x) ≈ 
(x) − φ(x)

∞∑
r=1

n−r/2hr(x), (3.2)

pn(x) = dPn(x)/dx ≈ φ(x)

[
1 +

∞∑
r=1

n−r/2hr(x)

]
, (3.3)


−1(Pn(x)) ≈ x −
∞∑

r=1

n−r/2fr(x), (3.4)

P −1
n (
(x)) ≈ x +

∞∑
r=1

n−r/2gr(x), (3.5)

where 
 and φ are the unit normal distribution and density, respectively, and hr(x),
hr(x), fr(x), gr(x) are polynomials in x and {Kr}, where Kr = kr/k

r/2
2 . The ex-

pansions (3.2), (3.4) and (3.5) are given in Cornish and Fisher (1937) for r ≤ 4.
Fisher and Cornish (1960) give (3.5) for r ≤ 6. For (3.3), see equation (3.3) of
Withers and Nadarajah (2009b). There is also an alternative to the expansion (3.3)
of the form

ln[pn(x)/φ(x)] ≈
∞∑

r=1

n−r/2br(x),

where for r > 1, br(x) is a polynomial of lower order than hr(x): see Withers and
Nadarajah (2009a).

Given p ≥ 1 and finite sequences of integers π1, . . . , πp not depending on n, set

θa = Mπa, θ̂a = M̂πa , θ = (θ1, . . . , θp), θ̂ = (θ̂1, . . . , θ̂p),

ka1···ar = nr−1κ(θ̂a1, . . . , θ̂ar )

for a1, . . . , ar ∈ {1, . . . , p}. So, ka1···ar is bounded. That is, θ̂ satisfies the multivari-
ate Cornish–Fisher condition. So, by the multivariate form of the argument used in
Cornish and Fisher (1937), Fisher and Cornish (1960), the multivariate Edgeworth
expansion holds for Yn = n1/2(̂θ − θ). For θ̂ a sample mean, this gives the clas-
sical multivariate Edgeworth expansion: see equations (6.11)–(6.23) of Barndoff-
Nielsen and Cox (1989) for expansions for the density, and Bhattacharya and Rao
(1976) for expansions for the distribution and density.

Suppose Yn converges in law to the multivariate normal Np(0,V) with p × p

covariance V = (ka1a2) and distribution 
V(x) say, and

Pn(x) = P(Yn ≤ x) ≈ Qn(−∂/∂x)
V(x), (3.6)
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where for θ̂ nonlattice

Qn(s) = 1 +
∞∑

r=1

n−r/2qr(s)

and qr(s) is a polynomial in s ∈ Rp and {ka1···ai ,1 ≤ i ≤ r + 2}. If V is bounded
away from zero as n increases, that is, if its eigenvalues are bounded away from
zero, then the density of Yn with respect to Lebesgue measure has the expansion

pn(x) ≈ Qn(−∂/∂x)φV(x), (3.7)

where φV(x) is the density of 
V(x). The coefficient of n−r/2 in pn(x) is a linear
combination of the multivariate Hermite polynomials.

Now suppose that t = t(θ) :Rp → Rq is a smooth function with finite deriva-
tives t·c1c2··· = ∂c1∂c2 · · · t(θ), where ∂c = ∂/∂θc. Let tb be the bth component of t,
b = 1, . . . , q . Then the r th order cross-cumulants of t̂ = t(̂θ) are also of magnitude
n1−r with an expansion of the form

κ(̂tb1, . . . , t̂br ) =
∞∑

i=r−1

n−iK
b1···br

i , (3.8)

where b1, . . . , br lie in 1, . . . , q and the cumulant coefficients K
b1···br

i are given in
terms of {ka1···ar } and the derivatives t·c1c2···, by the Appendix to Withers (1982)
with K

a1···ar

i = δi,r−1k
a1···ar . Here, δi,j = 0 if i �= j and δi,j = 1 if i = j . Alterna-

tively, one can use James and Mayne (1962). For example, the q × q asymptotic
covariance of Zn = n1/2(̂t − t) is (K

b1b2
1 ), where

K
b1b2
1 = tb1·a1

ka1a2 tb2·a2
, (3.9)

and we use the tensor summation convention of implicit summation of the repeated
pairs (in this case a1, a2) over their range 1, . . . , p.

Also Zn has Edgeworth type expansions of the form (3.6)–(3.7), where now
qr(t) is a polynomial in t ∈ Rp and {Ka1···ai

j ,1 ≤ i ≤ r + 2}.
If q = 1 then (3.8) and (3.9) take the form

κr (̂t) =
∞∑
i=0

n−iari , a21 = t·a1k
a1a2 t·a2 . (3.10)

So, if also a21 has a nonzero limit or is bounded away from zero as n → ∞, then

Zn/a
1/2
21 = (n/a21)

1/2(̂t − t)

has the Cornish–Fisher expansions (3.2)–(3.5), where now hr(x), hr(x), fr(x),
gr(x) are polynomials in x and {Ari,1 ≤ i ≤ r + 2} given in Withers (1984) for
r ≤ 4, and Ari is the standardized cumulant coefficient Ari = ari/a

r/2
21 . For exam-

ple,

h1(x) = f1(x) = g1(x) = A11 + A32(x
2 − 1)/6,

h1(x) = A11x + A32(x
3 − 3x)/6.
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Note that hk and hk are linear combinations of the first k even and odd Hermite
polynomials, respectively. Expressions for {ari} are given in Withers (1982). For
example, a21 is given by (3.10), and the cumulant coefficients of t̂ needed for the
second term of the Cornish–Fisher expansions are

a11 = t·ij kij /2, a32 = t·i t·j t·kkijk + 3sj t·jksk, (3.11)

again using the tensor summation convention, where sj = kji t·i . If p = 2, (3.10)
and (3.11) can be written

a21 = t2·1k11 + 2t·1t·2k12 + t2·2k22, a11 =
2∑

i=1

t·iikii/2 + t·12k
12,

(3.12)

a32 =
2∑

i=1

t3·ikiii + 3
2∑

12

t2·1t·2k112 + 3
2∑

j=1

s2
j t·jj + 6s1t·12s2,

where

2∑
12

t2·1t·2k112 = t2·1t·2k112 + t2·2t·1k221.

4 Examples

First note that transforming from i1, . . . , ir to Tk = ik − i1, k = 2, . . . , r , gives

n1∑
i1=1

· · ·
nr∑

ir=1

α(i1, . . . , ir ) = ∑
−n1<Tk<nk,k=2,...,r

α(0, T2, . . . , Tr)Dr(n,T ),

where

Dr(n,T ) = min(n1, n2 − T2, . . . , nr − Tr) + min(0, T2, . . . , Tr)

= D(n1, . . . , nr :T2, . . . , Tr)

say. For example, if nk ≡ n then

Dr(n,T ) = n − δr(T ),

where

δr(T ) = max(0, T2, . . . , Tr) − min(0, T2, . . . , Tr).

Example 4.1. Cornish–Fisher expansions for μ̂ of (2.5).
Take p = 1, π = i so that M̂i = μ̂. Then

kr = nr−1κr(μ̂) = τrUnr, (4.1)
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where

Unr = n−1
n∑

i1,...,ir=1

α(i1, . . . , ir )

(4.2)
= n−1

∑
|Tk |<n,k=2,...,r

α(0, T2, . . . , Tr)[1 − δr(T )/n].

So, as n → ∞,

Unr → Ur =
∞∑

T2,...,Tr=−∞
α(0, T2, . . . , Tr)

and kr → τrUr . So, as n → ∞, kr is bounded if Ur is finite and k2 is bounded
away from zero if U2 > 0. We now show in detail how to express the sum (4.2)
explicitly for r = 2,3. Write

Un2 = ∑
|T |<n

α(0, T )(1 − |T |/n), Un3 = un1 + 2un2,

where

un1 = ∑
−n<T2=T3<n

α(0, T2, T3)(1 − |T2|/n)

= −α3 +
n−1∑
T =0

[α(0, T , T ) + α(0,0, T )](1 − T/n)

since α(0, T , T ) = α(0,0,−T ),

un2 = ∑
−n<T2<T3<n

α(0, T2, T3)
(
1 − δ3(T )/n

)
and

δ3(T ) =
⎧⎨⎩

T3, 0 ≤ T2 < T3,
T3 − T2, T2 ≤ 0 < T3,
−T2, T2 < T3 ≤ 0.

So, un2 = ∑5
i=3 uni , where

un3 = ∑
0≤T2<T3<n

α(0, T2, T3)(1 − T3/n),

un4 = ∑
−n<T2≤0<T3<n

α(0, T2, T3)[1 − (T3 − T2)/n],

un5 = ∑
−n<T2<T3≤0

α(0, T2, T3)(1 + T2/n).
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To illustrate this, consider the AR(1) process of Example 2.1. Transforming to
s = n − T , ω = φ−1 and setting

Rn(ω) =
n∑

s=0

ωs = (ωn+1 − 1)/(ω − 1),

bn(φ) =
n−1∑
T =0

φT (1 − T/n) = φn−1βn(ω),

βn(ω) =
n∑

s=1

sωs−1 = (d/dω)Rn(ω)

= (n + 1)ωn/(ω − 1) − (ωn+1 − 1)/(ω − 1)2,

we can write

α(0, T ) = α2φ
|T |, Un2/α2 = ∑

|T |<n

φ|T |(1 − |T |/n) = −1 + 2bn(φ),

Un2/α2 = −1 + 2[1/(1 − φ) − n−1φ(1 − φn)/(1 − φ)2],

un1/α3 = −1 +
n−1∑
T =0

(φ2T + φT )(1 − T/n) = −1 + bn(φ
2)/n + bn(φ)/n.

Set

f (φ) =
n−1∑
T =1

T φT = φβn−1(φ), g(φ) = Rn−1(φ),

a3 =
n−1∑
T =1

φT (1 − φT )/(1 − φ) = [Rn−2(φ) − Rn−2(φ
2)]/(1 − φ),

b3 = ∑
1≤T3<n

φT3T3RT3−1(φ) = (1 − φ)−1[f (φ) − f (φ2)].

Then

un3/α3 + 1 = ∑
0≤T2<T3<n

φT2+T3(1 − T3/n) = a3 − b3/n.

Also since α(0, j,−k) = α(0, k, j + k) = φj+2k ,

un4/α3 = ∑
0≤j,k<n

[1 − (j + k)/n]α(0, k, j + k) = a4 − b4/n,

where

a4 = ∑
0≤k<n

φ2k(1 − φk)/(1 − φ) = [g(φ2) − g(φ3)]/(1 − φ),

b4 = g(φ2)f (φ) + g(φ)f (φ2).
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Also

un5/α3 = ∑
0<j<k<n

(1 − k/n)φ2k−j = a5 − b5/n,

where a5 = φ3[Rn−4(φ)−Rn−4(φ
2)]/(ω − 1) and b5 = [f (φ)− f (φ2)]/(ω − 1).

If we truncate the Cornish–Fisher series at K − 1 terms, that is with remain-
der O(n−K/2), then we can ignore all exponentially small components in kr . For
example, in the AR(1) case in the last example we can replace kr by k′

r = τrU
′
nr ,

where

U ′
n2/α2 = −1 + (1 − φ − φ/n)/(1 − φ)2,

U ′
n3/α3 = u′

n1 + 2
5∑

j=2

u′
j /α3, u′

n1/α3 + 1 = 2
∞∑

T =1

φ2T (1 − T/n),

u′
3/α3 = [f ′(φ2) − f ′(φ)]/(φ − 1),

u′
4/α3 = g′(φ2)f ′(φ) + g′(φ)f ′(φ2),

u′
5/α3 = [f ′(φ) − f ′(φ2)]/(ω − 1)2,

f ′(φ) =
∞∑

T =1

T φT = φ/(φ − 1)2, g′(φ) =
∞∑

k=0

φk = 1/(1 − φ).

So, for j = 2,3, u′
nj has the form a′

j − b′
j /n, where a′

j and b′
j do not depend on n.

Example 4.2. Cornish–Fisher expansions for the sample autocovariance assuming
that μ = 0. (This assumption is common in the literature on the grounds that the
series can be adjusted by subtracting the estimated mean. However, we shall see in
Example 4.3 that it gives the wrong variance if μ �= 0.)

In this case μ0a = M0a can be estimated by M̂0a . So, π = {0, a} and kr of (3.1)
is given by

kr = nr−1κr(M̂0a). (4.3)

For example,

k2 = ∑
|T |<n−a

(1 − |T |/n)gaa
T

implies

∞∑
T =−∞

gaa
T > 0
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as n → ∞, where

gaa
T = κ0,a,T ,T +a + κ2

0,T + κ0,T +aκa,T

= τ4α(0, a, T , T + a) + τ 2
2 α(0, T )2 + τ 2

2 α(0, T + a)α(a,T ).

[Recall that κij ··· are defined by (2.2).] So, k2 is bounded away from zero and Kr

is bounded in n and the Cornish–Fisher expansions apply.

Example 4.3. The autocovariance without assuming that μ = 0.
In this case, we take p = 2, θ1 = μ, θ2 = M0a and t = t (θ) = κ0a = θ2 − θ2

1 . So,
by (3.12)

t·1 = −2μ, t·2 = 1, t·11 = −2, t·12 = t·22 = 0,

a21 = 4μ2k11 − 4μk12 + k22, (4.4)

a11 = −k11, a32 = −8μ3k111 + 12μ2k112 − 6μk122 + k222 − 2s2
1

at s1 = −2μk11 + k12. Also

k1r = kr of (4.1)

and

k12 = nκ(μ̂, M̂0a) = N−1
n∑

t1=1

N∑
t2=1

g′
T = N−1

N−1∑
T =1−n

D(n,N :T )g′
T ,

where

g′
T = κ(Xt1,Xt2Xt2+a) = κ0,T ,T +a + μ(κ0,T +a + κ0,T ),

N = n − a, T = t2 − t1, D(n,N :T ) = min(n,N − T ) + min(0, T ),

and we have used, in the notation of page 58 of McCullagh (1987), κ1,23 = κ1,2,3 +
κ2κ1,3 + κ3κ1,2. Also

k2···2 = k2r = kr of (4.3).

By (4.4), a32 needs

k112 = n2κ(μ̂, μ̂, M̂0a) = N−1
n∑

t1,t2=1

N∑
t3=1

g2T

= N−1
∑

−n<T2<n,−n<T3<N

g2T D(n,n,N : T2, T3),

where

g2T = κ(Xt1,Xt2,Xt3Xt3+a) = κ(X0,XT2,XT3XT3+a)

= κ1,2,34 = κ1,2,3,4 + κ3κ1,2,4 + κ4κ1,2,3 + κ1,3κ2,4 + κ1,4κ2,3
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in the notation of equation (3.2) of McCullagh (1987). So,

g2T = κ0,T2,T3,T3+a + μκ0,T2,T3+a + μκ0,T2,T3 + κ0,T3κT2,T3+a + κ0,T3+aκT2,T3 .

Finally, a32 needs

k122 = n2κ(μ̂, M̂0a, M̂0a) = (n/N2)

n∑
t1=1

N∑
t2,t3=1

g3T

= (n/N2)
∑

−n<T2<N,−n<T3<N

g3T D3(n :T )

= (n/N2)
∑

−n<T2<N,−n<T3<N

g3T [n − δ3(T )],

δ3(T ) = max(a, T2, T3) − min(0, T2, T3),

g3T = κ(Xt1,Xt2Xt2+a,Xt3Xt3+a) = κ(XT2XT2+a,XT3XT3+a,X0)

= κ12,34,5 =
6∑

i=1

Ui,

U1 = κ1,2,3,4,5,

U2 = κ1,2,3,4κ5 + κ1,2,3,5κ4 + κ1,2,4,5κ3 + κ1,3,4,5κ2 + κ2,3,4,5κ1,

U3 = κ1,2,3κ4,5 + κ1,2,4κ3,5 + κ1,3,4κ2,5 + κ2,3,4κ1,5,

U4 = κ1,3,5M2,4 + κ1,4,5M2,3 + κ2,3,5M1,4 + κ2,4,5M1,3,

Mij = κi,j + κiκj

and

U5 = κ1,3(κ2,5κ4 + κ4,5κ2) + κ1,4(κ2,5κ3 + κ3,5κ2) + κ1,5(κ2,3κ4 + κ2,4κ3)

+ κ2,3κ4,5κ1 + κ2,4κ3,5κ1

in the notation of page 255 of McCullagh (1987). So, in the notation of (2.2),

U1 = κT2,T2+a,T3,T3+a,0,

U2/μ = κT2,T2+a,T3,T3+a + κ0,T2,T2+a,T3 + κ0,T2,T2+a,T3+a

+ κ0,T2,T3,T3+a + κ0,T2+a,T3,T3+a,

U3 = κT2,T2+a,T3κ0,T3+a + κT2,T2+a,T3+aκ0,T3 + κT2,T3,T3+aκ0,T2+a

+ κT2+a,T3,T3+aκ0,T2,

U4 = κ0,T2,T3(κT2,T3 + μ2) + κ0,T2,T3+a(κT2+a,T3 + μ2)

+ κ0,T2+a,T3(κT2,T3+a + μ2) + κ0,T2+a,T3+a(κT2,T3 + μ2)
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and

U5/μ = κT2,T3[κ0,T2+a + κ0,T3+a] + κT2,T3+a[κ0,T2+a + κ0,T3]
+ κ0,T2[κT2+a,T3 + κT2,T3] + κT2+a,T3κ0,T3+a + κT2,T3κ0,T3 .

Example 4.4. Cornish–Fisher expansions for the sample autocorrelation assum-
ing that μ = 0.

Take p = 2, q = 1, t = θ2/θ1, θ1 = M00, θ2 = M0a at a1 = 0 and a2 = a. So, t

is the ath autocorrelation and t̂ = M̂0a/M̂00 is the ath sample autocorrelation. So,
t·1 = −θ2/θ

2
1 , t·2 = 1/θ1, t·11 = 2θ2/θ

3
1 , t·12 = −1/θ2

1 and t·22 = 0.

Example 4.5. Cornish–Fisher expansions for the sample autocorrelation without
assuming that μ = 0.

Take

p = 3, q = 1, θ1 = μ, θ2 = M00, θ3 = M0a,

D = var(X0) = θ2 − θ2
1 , N = covar(X0,Xa) = θ3 − θ2

1 , (4.5)

t = covar(X0,Xa)/var(X0) = N/D.

So, a21, a11 and a32 are given by (3.12) with t·1 = 2μ(t − 1)/D, t·2 = −N/D2,
t·3 = 1/D2, t·22 = 2θ2/θ

3
1 , t·23 = −1/θ2

1 and t·33 = 0.

Example 4.6. Suppose that

t = κ(X0Xa1,X0Xa2) = θ3 − θ1θ2, θ1 = M0a1,

θ2 = M0a2, θ3 = M00a1a2 .

Set ka1a2 = nκ(M̂0a1 , M̂0a2), Ni = n − ai and T = t2 − t1. Then

ka1a2 = n(N1N2)
−1

N1∑
t1=1

N2∑
t2=1

gT = n(N1N2)
−1

N2−1∑
T =1−N1

D(N1,N2 :T )gT ,

where gT = κ(Xt1Xt1+a1,Xt2Xt2+a2) = κ(X0Xa1,XT XT +a2) = κ12,34 in the no-
tation of McCullagh. This is given by eleven terms in the equation above (3.2) of
McCullagh.

Other examples, where the method can be applied is to functions of the es-
timates of the sample autocorrelations, such as estimates of the coefficients of
ARMA processes. This includes the Yule–Walker estimates of the coefficients of
an AR(p).

Example 4.7. From equation (5.42) of Kendall and Ord (1990), for the AR(2)

Xi = δ +
2∑

j=1

φjXt−j + ei − τ1.
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The Yule–Walker estimates are given by replacing (μ, r1, r2) by their estimates in

δ =
(

1 −
2∑

j=1

φj

)
μ, φ1 = r1(1 − r2)/(1 − r2

1 ), φ2 = (r2 − r2
1 )/(1 − r2

1 ),

where ra = covar(X0,Xa)/var(X0) is the ath autocorrelation, as in (4.5). Set
p = 4, q = 2, θ1 = μ, θ2 = M00, θ3 = M01, θ4 = M02, D = var(X0) = θ2 − θ2

1 ,
N1 = covar(X0,X1) = θ3 − θ2

1 and N2 = covar(X0,X2) = θ4 − θ2
1 . Then

φ1 = N1(D − N2)/(D
2 − N2

1 ), φ2 = (DN2 − D2
1)/(D2 − N2

1 )

which we write as φ = t = t(θ). Now substitute partial derivatives. For example,
for t = φ1, a21 needs

t1·1 = N1·1[(D − N2)/(D
2 − N2

1 ) + 2N2
1 (D − N2)/(D

2 − N2
1 )2]

− N2·1N1/(D
2 − N2

1 ) + D·1N1[1/(D2 − N2
1 ) − 2D(D − N2)/(D

2 − N2
1 )2]

= D·1
2∑

i=1

γi(D
2 − N2

1 )−i , γ1 = θ2 − θ4, γ2 = 2N1(D − N2)(θ3 − θ2)

and

t1·2 = N1(D
2 − N2

1 )−2γ4, γ4 = −θ2
2 + 2θ2

1 (θ3 − θ4) + 2θ2θ4 − θ2
3

using Ni·1 = D·1 = −2θ1 and simplifying.

Finally, the method can be adapted to allow for a nonstationary mean, for ex-
ample, by adding a parametric regression function to the right-hand side of (2.1).

5 Simulation study

Here, we illustrate the practical value of the results in Section 4.
One purpose of Cornish–Fisher expansions is to provide improved confidence

intervals. The usual confidence intervals for the mean, autocovariance, and auto-
correlation are based on Studentizing. The terms of the Cornish–Fisher expansions
given by Examples 4.1–4.5 can be used to provide improved confidence intervals.
We illustrate this fact by computing the coverage probabilities by means of simu-
lation.

We simulated 10,000 samples of size n from (2.1) by assuming that the errors
have the standard normal distribution. We calculated the Studentized intervals as
well as those incorporating the Cornish–Fisher terms for the mean, autocovariance,
and autocorrelation. The proportion of intervals containing the true value of these
parameters is shown in Tables 5.1–5.3 for n = 5,6, . . . ,40. We can see clearly
that the confidence intervals incorporating the Cornish–Fisher terms make a real
improvement. The Studentized intervals perform poorly for most values of n and
even for large n.
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Table 5.1 Simulated coverage probabilities for mean

n Studentized Using Cornish–Fisher terms

5 0.940 0.950
6 0.944 0.949
7 0.944 0.947
8 0.940 0.949
9 0.938 0.949

10 0.950 0.950
11 0.932 0.949
12 0.938 0.948
13 0.946 0.950
14 0.944 0.948
15 0.934 0.941
16 0.932 0.937
17 0.950 0.950
18 0.936 0.942
19 0.950 0.950
20 0.938 0.948
21 0.938 0.947
22 0.950 0.950
23 0.938 0.950
24 0.950 0.950
25 0.944 0.949
26 0.944 0.949
27 0.946 0.949
28 0.928 0.937
29 0.942 0.949
30 0.936 0.950
31 0.948 0.948
32 0.948 0.950
33 0.922 0.947
34 0.950 0.950
35 0.946 0.950
36 0.938 0.949
37 0.948 0.948
38 0.922 0.948
39 0.944 0.950
40 0.950 0.950
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Table 5.2 Simulated coverage probabilities for autocovariance

n Studentized Using Cornish–Fisher terms

5 0.942 0.947
6 0.938 0.943
7 0.938 0.949
8 0.946 0.950
9 0.942 0.949

10 0.948 0.949
11 0.940 0.949
12 0.944 0.950
13 0.944 0.949
14 0.948 0.950
15 0.942 0.948
16 0.946 0.948
17 0.942 0.950
18 0.948 0.950
19 0.942 0.946
20 0.928 0.949
21 0.944 0.950
22 0.950 0.950
23 0.946 0.950
24 0.948 0.950
25 0.934 0.947
26 0.946 0.948
27 0.940 0.942
28 0.938 0.941
29 0.936 0.946
30 0.946 0.949
31 0.940 0.946
32 0.944 0.948
33 0.936 0.946
34 0.942 0.945
35 0.938 0.944
36 0.948 0.950
37 0.950 0.950
38 0.938 0.944
39 0.922 0.942
40 0.938 0.950
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