Cornish-Fisher expansions for sample autocovariances and other functions of sample moments of linear processes

Christopher S. Withers ${ }^{\text {a }}$ and Saralees Nadarajah ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Applied Mathematics Group
${ }^{\mathrm{b}}$ School of Mathematics, University of Manchester

Abstract

We give Cornish-Fisher expansions for general smooth functions of the sample cross-moments of a stationary linear process. Examples include the distributions of the sample mean, the sample autocovariance and the sample autocorrelation.

1 Introduction and summary

The theory of linear processes is well developed. We refer the readers to the excellent books: Hannan (1962, 1970), Kendall and Ord (1990) and Taniguchi and Kakizawa (2000). However, there has been little work giving Cornish-Fisher expansions for general smooth functions of the sample cross-moments of stationary linear processes. Among the known work, we mention Praskova-Vizkova (1976) and Albers (1978), where Edgeworth expansions are given for the Kendall rank correlation coefficient. See also Phillips (1977), where Edgeworth expansions for the least squares estimate of the coefficient of a first order autoregressive process are given.

The aim of this note is to derive the Cornish-Fisher expansions for general stationary linear processes. The results are organized as follows. Section 2 obtains expansions for the cumulants of the sample cross-moments of a linear process. In Section 3, we give the Cornish-Fisher expansions for functions of the sample moments. Section 4 gives examples, including explicit formulas for the first two terms of the Cornish-Fisher expansions for the sample mean, the sample autocovariance, and the sample autocorrelation. Section 5 shows the practical value of the results in Section 4 by means of simulation.

2 The cumulants of the sample cross-moments

Let $\left\{e_{i}\right\}$ be independent and identically distributed random variables from some distribution function F on R with finite cumulants $\tau_{1}, \tau_{2}, \ldots$ We consider the

[^0]general stationary linear process
\[

$$
\begin{equation*}
X_{i}=\sum_{j=0}^{\infty} \rho_{j} e_{i-j} \tag{2.1}
\end{equation*}
$$

\]

This includes the class of stationary ARMA processes. Its mean is $\mu=\alpha_{1} \tau_{1}$, where $\alpha_{1}=\sum_{j=0}^{\infty} \rho_{j}$. We denote the noncentral cross-moments, central cross-moments, and cross-cumulants of $\left(X_{i_{1}}, \ldots, X_{i_{r}}\right)$ by

$$
\begin{align*}
M_{i_{1} \cdots i_{r}} & =E X_{i_{1}} \cdots X_{i_{r}}, \quad \mu_{i_{1} \cdots i_{r}}=E\left(X_{i_{1}}-\mu\right) \cdots\left(X_{i_{r}}-\mu\right) \tag{2.2}\\
\kappa_{i_{1} \cdots i_{r}} & =\kappa\left(X_{i_{1}}, \ldots, X_{i_{r}}\right)
\end{align*}
$$

For relationships between them see, for example, Stuart and Ord (1987). We write these generically as

$$
\mathbf{M}=\mathbf{M}(\boldsymbol{\mu}), \quad \boldsymbol{\mu}=\boldsymbol{\mu}(\mathbf{M}), \quad \boldsymbol{\kappa}=\boldsymbol{\kappa}(\boldsymbol{\mu})
$$

and so on. These can be written down from their univariate versions. For example, $E X^{2}=\operatorname{var}(X)+E^{2} X$ implies

$$
M_{12}=\operatorname{covar}\left(X_{1}, X_{2}\right)+\left(E X_{1}\right)\left(E X_{2}\right)
$$

and $\kappa_{4}=\mu_{4}-3 \mu_{2}^{2}$ implies

$$
\kappa_{1234}=\mu_{1234}-\mu_{12} \mu_{34}-\mu_{13} \mu_{24}-\mu_{14} \mu_{23}=\mu_{1234}-\sum^{3} \mu_{12} \mu_{34}
$$

say. Given a sequence of integers i_{1}, \ldots, i_{r}, set

$$
\begin{align*}
i_{0} & =\min _{k=1}^{r} i_{k}, \quad I_{k}=i_{k}-i_{0} \geq 0 \quad \text { for } k=1, \ldots, r \tag{2.3}\\
I_{0} & =\max _{k=1}^{r} I_{k}=\max _{k=1}^{r} i_{k}-i_{0}
\end{align*}
$$

Since $\left\{X_{i}\right\}$ is stationary,

$$
M_{i_{1} \cdots i_{r}}=M_{I_{1} \cdots I_{r}}, \quad \mu_{i_{1} \cdots i_{r}}=\mu_{I_{1} \cdots I_{r}}, \quad \kappa_{i_{1} \cdots i_{r}}=\kappa_{I_{1} \cdots I_{r}}
$$

These are not changed by permuting subscripts. Also at least one I_{k} is zero. In Withers and Nadarajah (2009c), we showed that

$$
\kappa_{i_{1} \cdots i_{r}}=\alpha\left(i_{1}, i_{2}, \ldots, i_{r}\right) \tau_{r}
$$

where

$$
\alpha\left(i_{1}, i_{2}, \ldots, i_{r}\right)=\alpha\left(I_{1}, I_{2}, \ldots, I_{r}\right)=\sum_{j=0}^{\infty} \rho_{j+I_{1}} \rho_{j+I_{2}} \cdots \rho_{j+I_{r}}
$$

where $\alpha\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ is finite for processes like ARMA processes, where ρ_{j} decrease to zero exponentially. For example,

$$
\kappa_{r}\left(X_{i}\right)=\alpha_{r} \tau_{r}
$$

where

$$
\alpha_{r}=\alpha(0,0, \ldots, 0)=\sum_{j=0}^{\infty} \rho_{j}^{r}
$$

and $0,0, \ldots, 0$ denotes a string of r zeros. For $I \geq 0$, the I th autocovariance and autocorrelation are

$$
\begin{equation*}
\kappa_{0 I}=\operatorname{covar}\left(X_{0}, X_{I}\right)=\alpha(0, I) \tau_{2}, \quad \operatorname{corr}\left(X_{0}, X_{I}\right)=\alpha(0, I) / \alpha_{2}, \tag{2.4}
\end{equation*}
$$

where

$$
\alpha(0, I)=\sum_{j=0}^{\infty} \rho_{j} \rho_{j+I}, \quad \alpha_{2}=\alpha(0,0)=\sum_{j=0}^{\infty} \rho_{j}^{2}
$$

Also

$$
\begin{aligned}
& \alpha(0, T)=\alpha(0,|T|), \\
& \alpha\left(0, T_{1}, T_{2}\right)=\alpha\left(0, T_{2}-T_{1},-T_{1}\right)=\alpha\left(0,\left|T_{2}-T_{1}\right|,\left|T_{1}\right|\right) \\
& \text { if } T_{1}<T_{2}<0 \text { or } T_{1}<0<T_{2} .
\end{aligned}
$$

Example 2.1. For the $\operatorname{AR}(1) X_{i}-\phi X_{i-1}=e_{i}$,

$$
\rho_{j}=\phi^{j}, \quad \alpha_{r}=\left(1-\phi^{r}\right)^{-1}, \quad \alpha\left(i_{1}, i_{2}, \ldots, i_{r}\right) / \alpha_{r}=\phi^{\sum_{k=1}^{r} I_{k}}
$$

Example 2.2. Consider the $\mathrm{AR}(2)$,

$$
X_{i}-\sum_{k=1}^{2} \phi_{k} X_{i-k}=e_{i}
$$

Write

$$
1-\sum_{k=1}^{2} \phi_{k} B^{k}=\prod_{k=1}^{2}\left(1-y_{k} B\right), \quad y_{k}=\left(\phi_{1} \pm \epsilon^{1 / 2}\right) / 2, \quad \epsilon=\phi_{1}^{2}+4 \phi_{2}
$$

where $k=1$ corresponds to + and $k=2$ to - . Suppose that $\epsilon \neq 0$. Then

$$
\begin{aligned}
& \left(1-\sum_{k=1}^{2} \phi_{k} B^{k}\right)^{-1}=\sum_{k=1}^{2} \gamma_{k}\left(1-y_{k} B\right)^{-1} \\
& \quad \gamma_{k}=(-1)^{k} y_{k} /\left(y_{1}-y_{2}\right)=\epsilon^{-1 / 2}(-1)^{k} y_{k}
\end{aligned}
$$

Taking B as the backwards operator $B X_{i}=X_{i-1}$ gives

$$
X_{i}=\sum_{k=1}^{2} \gamma_{k}\left(1-y_{k} B\right)^{-1} e_{i}=\sum_{k=1}^{2} \gamma_{k} \sum_{j=0}^{\infty} y_{k}^{j} e_{i-j}
$$

That is, (2.1) holds with

$$
\rho_{j}=\sum_{k=1}^{2} \gamma_{k} y_{k}^{j}
$$

Also by (2.4),

$$
\begin{aligned}
\epsilon^{1 / 2} \alpha(0, I) & =\sum_{k=0}^{\infty}\left(y_{1}^{k+1}-y_{2}^{k+1}\right)\left(y_{1}^{k+I+1}-y_{2}^{k+I+1}\right) \\
& =\sum_{i=1}^{2} y_{i}^{i+1} /\left(1-y_{i}^{2}\right)+\sum_{12}^{2} y_{1}^{i+1} y_{2} /\left(1-y_{1} y_{2}\right)
\end{aligned}
$$

where

$$
\sum_{12}^{2} y_{1}^{i+1} y_{2} /\left(1-y_{1} y_{2}\right)=y_{1}^{i+1} y_{2} /\left(1-y_{1} y_{2}\right)+y_{2}^{i+1} y_{1} /\left(1-y_{1} y_{2}\right)
$$

Similarly, $\alpha\left(i_{1}, i_{2}, \ldots, i_{r}\right) / \alpha_{r}$ can be written as the sum of 2^{r} terms.
For I_{0} of (2.3), define the (unbiased) sample noncentral cross-moments by

$$
\widehat{M}_{i_{1} \cdots i_{r}}=N^{-1} \sum_{t=1}^{N} X_{t+I_{1}} \cdots X_{t+I_{r}}
$$

for $N=n-I_{0}>0$, where n denotes the sample size. For example,

$$
\begin{equation*}
\widehat{\mu}=\widehat{M}_{0}=n^{-1} \sum_{j=1}^{n} X_{j}, \quad \widehat{M}_{0 a}=(n-a)^{-1} \sum_{j=1}^{n-a} X_{j} X_{j+a} \tag{2.5}
\end{equation*}
$$

for $0<a<n$. These sample moments are the building blocks of all our estimates. Define the sample central cross-moments and the sample cross-cumulants by $\widehat{\boldsymbol{\mu}}=$ $\boldsymbol{\mu}(\widehat{\mathbf{M}})$ and $\widehat{\boldsymbol{\kappa}}=\boldsymbol{\kappa}(\widehat{\boldsymbol{\mu}})$, respectively.

3 Cornish-Fisher expansions for functions of sample cross-moments

Under mild conditions [see Withers and Nadarajah (2008)], the r th order crosscumulants of the sample cross-moments have magnitude n^{1-r}, that is, for finite sequences of integers π_{1}, \ldots, π_{r} not depending on n,

$$
k\left(\pi_{1}, \ldots, \pi_{r}\right)=n^{r-1} \kappa\left(\widehat{M}_{\pi_{1}}, \ldots, \widehat{M}_{\pi_{r}}\right)
$$

is bounded in n. That is, $\left\{\widehat{M}_{\pi_{i}}\right\}$ satisfy the Cornish-Fisher assumption. We shall not prove this for the general case but rather illustrate it in the examples. Given an integer π, set

$$
\begin{equation*}
k_{r}=k(\pi, \ldots, \pi)=n^{r-1} \kappa_{r}\left(\widehat{M}_{\pi}\right), \quad Y_{n}=\left(n / k_{2}\right)^{1 / 2}\left(\widehat{M}_{\pi}-M_{\pi}\right) \tag{3.1}
\end{equation*}
$$

If the observations are nonlattice, the distribution and quantiles of Y_{n} can be expanded in powers of $n^{-1 / 2}$:

$$
\begin{align*}
& P_{n}(x)=P\left(Y_{n} \leq x\right) \approx \Phi(x)-\phi(x) \sum_{r=1}^{\infty} n^{-r / 2} h_{r}(x), \tag{3.2}\\
& p_{n}(x)=d P_{n}(x) / d x \approx \phi(x)\left[1+\sum_{r=1}^{\infty} n^{-r / 2} \bar{h}_{r}(x)\right], \tag{3.3}\\
& \Phi^{-1}\left(P_{n}(x)\right) \approx x-\sum_{r=1}^{\infty} n^{-r / 2} f_{r}(x), \tag{3.4}\\
& P_{n}^{-1}(\Phi(x)) \approx x+\sum_{r=1}^{\infty} n^{-r / 2} g_{r}(x), \tag{3.5}
\end{align*}
$$

where Φ and ϕ are the unit normal distribution and density, respectively, and $h_{r}(x)$, $\bar{h}_{r}(x), f_{r}(x), g_{r}(x)$ are polynomials in x and $\left\{K_{r}\right\}$, where $K_{r}=k_{r} / k_{2}^{r / 2}$. The expansions (3.2), (3.4) and (3.5) are given in Cornish and Fisher (1937) for $r \leq 4$. Fisher and Cornish (1960) give (3.5) for $r \leq 6$. For (3.3), see equation (3.3) of Withers and Nadarajah (2009b). There is also an alternative to the expansion (3.3) of the form

$$
\ln \left[p_{n}(x) / \phi(x)\right] \approx \sum_{r=1}^{\infty} n^{-r / 2} b_{r}(x)
$$

where for $r>1, b_{r}(x)$ is a polynomial of lower order than $\bar{h}_{r}(x)$: see Withers and Nadarajah (2009a).

Given $p \geq 1$ and finite sequences of integers π_{1}, \ldots, π_{p} not depending on n, set

$$
\begin{gathered}
\theta_{a}=M_{\pi_{a}}, \quad \widehat{\theta}_{a}=\widehat{M}_{\pi_{a}}, \quad \boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{p}\right), \quad \widehat{\boldsymbol{\theta}}=\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{p}\right), \\
k^{a_{1} \cdots a_{r}}=n^{r-1} \kappa\left(\widehat{\theta}_{a_{1}}, \ldots, \widehat{\theta}_{a_{r}}\right)
\end{gathered}
$$

for $a_{1}, \ldots, a_{r} \in\{1, \ldots, p\}$. So, $k^{a_{1} \cdots a_{r}}$ is bounded. That is, $\widehat{\boldsymbol{\theta}}$ satisfies the multivariate Cornish-Fisher condition. So, by the multivariate form of the argument used in Cornish and Fisher (1937), Fisher and Cornish (1960), the multivariate Edgeworth expansion holds for $\mathbf{Y}_{n}=n^{1 / 2}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})$. For $\widehat{\boldsymbol{\theta}}$ a sample mean, this gives the classical multivariate Edgeworth expansion: see equations (6.11)-(6.23) of BarndoffNielsen and Cox (1989) for expansions for the density, and Bhattacharya and Rao (1976) for expansions for the distribution and density.

Suppose \mathbf{Y}_{n} converges in law to the multivariate normal $\mathcal{N}_{p}(\mathbf{0}, \mathbf{V})$ with $p \times p$ covariance $\mathbf{V}=\left(k^{a_{1} a_{2}}\right)$ and distribution $\Phi_{\mathbf{V}}(\mathbf{x})$ say, and

$$
\begin{equation*}
P_{n}(\mathbf{x})=P\left(\mathbf{Y}_{n} \leq \mathbf{x}\right) \approx Q_{n}(-\partial / \partial \mathbf{x}) \Phi_{\mathbf{V}}(\mathbf{x}) \tag{3.6}
\end{equation*}
$$

where for $\widehat{\boldsymbol{\theta}}$ nonlattice

$$
Q_{n}(\mathbf{s})=1+\sum_{r=1}^{\infty} n^{-r / 2} q_{r}(\mathbf{s})
$$

and $q_{r}(\mathbf{s})$ is a polynomial in $\mathbf{s} \in R^{p}$ and $\left\{k^{a_{1} \cdots a_{i}}, 1 \leq i \leq r+2\right\}$. If \mathbf{V} is bounded away from zero as n increases, that is, if its eigenvalues are bounded away from zero, then the density of \mathbf{Y}_{n} with respect to Lebesgue measure has the expansion

$$
\begin{equation*}
p_{n}(\mathbf{x}) \approx Q_{n}(-\partial / \partial \mathbf{x}) \phi_{\mathbf{V}}(\mathbf{x}) \tag{3.7}
\end{equation*}
$$

where $\phi_{\mathbf{V}}(\mathbf{x})$ is the density of $\Phi_{\mathbf{V}}(\mathbf{x})$. The coefficient of $n^{-r / 2}$ in $p_{n}(\mathbf{x})$ is a linear combination of the multivariate Hermite polynomials.

Now suppose that $\mathbf{t}=\mathbf{t}(\boldsymbol{\theta}): R^{p} \rightarrow R^{q}$ is a smooth function with finite derivatives $\mathbf{t}_{c_{1} c_{2} \cdots}=\partial_{c_{1}} \partial_{c_{2}} \cdots \mathbf{t}(\boldsymbol{\theta})$, where $\partial_{c}=\partial / \partial \theta_{c}$. Let t^{b} be the b th component of \mathbf{t}, $b=1, \ldots, q$. Then the r th order cross-cumulants of $\widehat{\mathbf{t}}=\mathbf{t}(\widehat{\boldsymbol{\theta}})$ are also of magnitude n^{1-r} with an expansion of the form

$$
\begin{equation*}
\kappa\left(t^{b_{1}}, \ldots, \hat{t}^{b_{r}}\right)=\sum_{i=r-1}^{\infty} n^{-i} K_{i}^{b_{1} \cdots b_{r}}, \tag{3.8}
\end{equation*}
$$

where b_{1}, \ldots, b_{r} lie in $1, \ldots, q$ and the cumulant coefficients $K_{i}^{b_{1} \cdots b_{r}}$ are given in terms of $\left\{k^{a_{1} \cdots a_{r}}\right\}$ and the derivatives $\mathbf{t}_{c_{1} c_{2} \ldots}$, by the Appendix to Withers (1982) with $K_{i}^{a_{1} \cdots a_{r}}=\delta_{i, r-1} k^{a_{1} \cdots a_{r}}$. Here, $\delta_{i, j}=0$ if $i \neq j$ and $\delta_{i, j}=1$ if $i=j$. Alternatively, one can use James and Mayne (1962). For example, the $q \times q$ asymptotic covariance of $\mathbf{Z}_{n}=n^{1 / 2}(\widehat{\mathbf{t}}-\mathbf{t})$ is $\left(K_{1}^{b_{1} b_{2}}\right)$, where

$$
\begin{equation*}
K_{1}^{b_{1} b_{2}}=t_{\cdot a_{1}}^{b_{1}} k^{a_{1} a_{2}} t_{\cdot a_{2}}^{b_{2}} \tag{3.9}
\end{equation*}
$$

and we use the tensor summation convention of implicit summation of the repeated pairs (in this case a_{1}, a_{2}) over their range $1, \ldots, p$.

Also \mathbf{Z}_{n} has Edgeworth type expansions of the form (3.6)-(3.7), where now $q_{r}(\mathbf{t})$ is a polynomial in $\mathbf{t} \in R^{p}$ and $\left\{K_{j}^{a_{1} \cdots a_{i}}, 1 \leq i \leq r+2\right\}$.

If $q=1$ then (3.8) and (3.9) take the form

$$
\begin{equation*}
\kappa_{r}(\hat{t})=\sum_{i=0}^{\infty} n^{-i} a_{r i}, \quad a_{21}=t \cdot a_{1} k^{a_{1} a_{2}} t \cdot a_{2} \tag{3.10}
\end{equation*}
$$

So, if also a_{21} has a nonzero limit or is bounded away from zero as $n \rightarrow \infty$, then

$$
Z_{n} / a_{21}^{1 / 2}=\left(n / a_{21}\right)^{1 / 2}(\hat{t}-t)
$$

has the Cornish-Fisher expansions (3.2)-(3.5), where now $h_{r}(x), \bar{h}_{r}(x), f_{r}(x)$, $g_{r}(x)$ are polynomials in x and $\left\{A_{r i}, 1 \leq i \leq r+2\right\}$ given in Withers (1984) for $r \leq 4$, and $A_{r i}$ is the standardized cumulant coefficient $A_{r i}=a_{r i} / a_{21}^{r / 2}$. For example,

$$
\begin{aligned}
& h_{1}(x)=f_{1}(x)=g_{1}(x)=A_{11}+A_{32}\left(x^{2}-1\right) / 6 \\
& \bar{h}_{1}(x)=A_{11} x+A_{32}\left(x^{3}-3 x\right) / 6
\end{aligned}
$$

Note that h_{k} and \bar{h}_{k} are linear combinations of the first k even and odd Hermite polynomials, respectively. Expressions for $\left\{a_{r i}\right\}$ are given in Withers (1982). For example, a_{21} is given by (3.10), and the cumulant coefficients of \widehat{t} needed for the second term of the Cornish-Fisher expansions are

$$
\begin{equation*}
a_{11}=t_{\cdot i j} k^{i j} / 2, \quad a_{32}=t_{. i} t_{\cdot j} t_{\cdot k} k^{i j k}+3 s_{j} t_{\cdot j k} s_{k} \tag{3.11}
\end{equation*}
$$

again using the tensor summation convention, where $s_{j}=k^{j i} t_{. i}$. If $p=2$, (3.10) and (3.11) can be written

$$
\begin{align*}
& a_{21}=t_{.1}^{2} k_{11}+2 t .1 t_{.2} k_{12}+t_{.2}^{2} k^{22}, \quad a_{11}=\sum_{i=1}^{2} t_{\cdot i i} k^{i i} / 2+t .12 k^{12} \tag{3.12}\\
& a_{32}=\sum_{i=1}^{2} t_{\cdot i}^{3} k^{i i i}+3 \sum_{12}^{2} t_{.1}^{2} t_{.2} k^{112}+3 \sum_{j=1}^{2} s_{j}^{2} t_{\cdot j j}+6 s_{1} t_{.12} s_{2}
\end{align*}
$$

where

$$
\sum_{12}^{2} t_{.1}^{2} t \cdot 2 k^{112}=t_{.1}^{2} t_{.2} k^{112}+t_{.2}^{2} t_{.1} k^{221}
$$

4 Examples

First note that transforming from i_{1}, \ldots, i_{r} to $T_{k}=i_{k}-i_{1}, k=2, \ldots, r$, gives

$$
\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{r}=1}^{n_{r}} \alpha\left(i_{1}, \ldots, i_{r}\right)=\sum_{-n_{1}<T_{k}<n_{k}, k=2, \ldots, r} \alpha\left(0, T_{2}, \ldots, T_{r}\right) D_{r}(n, T),
$$

where

$$
\begin{aligned}
D_{r}(n, T) & =\min \left(n_{1}, n_{2}-T_{2}, \ldots, n_{r}-T_{r}\right)+\min \left(0, T_{2}, \ldots, T_{r}\right) \\
& =D\left(n_{1}, \ldots, n_{r}: T_{2}, \ldots, T_{r}\right)
\end{aligned}
$$

say. For example, if $n_{k} \equiv n$ then

$$
D_{r}(n, T)=n-\delta_{r}(T),
$$

where

$$
\delta_{r}(T)=\max \left(0, T_{2}, \ldots, T_{r}\right)-\min \left(0, T_{2}, \ldots, T_{r}\right)
$$

Example 4.1. Cornish-Fisher expansions for $\widehat{\mu}$ of (2.5).
Take $p=1, \pi=i$ so that $\widehat{M}_{i}=\widehat{\mu}$. Then

$$
\begin{equation*}
k_{r}=n^{r-1} \kappa_{r}(\widehat{\mu})=\tau_{r} U_{n r}, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{align*}
U_{n r} & =n^{-1} \sum_{i_{1}, \ldots, i_{r}=1}^{n} \alpha\left(i_{1}, \ldots, i_{r}\right) \\
& =n^{-1} \sum_{\left|T_{k}\right|<n, k=2, \ldots, r} \alpha\left(0, T_{2}, \ldots, T_{r}\right)\left[1-\delta_{r}(T) / n\right] . \tag{4.2}
\end{align*}
$$

So, as $n \rightarrow \infty$,

$$
U_{n r} \rightarrow U_{r}=\sum_{T_{2}, \ldots, T_{r}=-\infty}^{\infty} \alpha\left(0, T_{2}, \ldots, T_{r}\right)
$$

and $k_{r} \rightarrow \tau_{r} U_{r}$. So, as $n \rightarrow \infty, k_{r}$ is bounded if U_{r} is finite and k_{2} is bounded away from zero if $U_{2}>0$. We now show in detail how to express the sum (4.2) explicitly for $r=2,3$. Write

$$
U_{n 2}=\sum_{|T|<n} \alpha(0, T)(1-|T| / n), \quad U_{n 3}=u_{n 1}+2 u_{n 2}
$$

where

$$
\begin{aligned}
u_{n 1} & =\sum_{-n<T_{2}=T_{3}<n} \alpha\left(0, T_{2}, T_{3}\right)\left(1-\left|T_{2}\right| / n\right) \\
& =-\alpha_{3}+\sum_{T=0}^{n-1}[\alpha(0, T, T)+\alpha(0,0, T)](1-T / n)
\end{aligned}
$$

since $\alpha(0, T, T)=\alpha(0,0,-T)$,

$$
u_{n 2}=\sum_{-n<T_{2}<T_{3}<n} \alpha\left(0, T_{2}, T_{3}\right)\left(1-\delta_{3}(T) / n\right)
$$

and

$$
\delta_{3}(T)= \begin{cases}T_{3}, & 0 \leq T_{2}<T_{3} \\ T_{3}-T_{2}, & T_{2} \leq 0<T_{3}, \\ -T_{2}, & T_{2}<T_{3} \leq 0\end{cases}
$$

So, $u_{n 2}=\sum_{i=3}^{5} u_{n i}$, where

$$
\begin{aligned}
& u_{n 3}=\sum_{0 \leq T_{2}<T_{3}<n} \alpha\left(0, T_{2}, T_{3}\right)\left(1-T_{3} / n\right), \\
& u_{n 4}=\sum_{-n<T_{2} \leq 0<T_{3}<n} \alpha\left(0, T_{2}, T_{3}\right)\left[1-\left(T_{3}-T_{2}\right) / n\right], \\
& u_{n 5}=\sum_{-n<T_{2}<T_{3} \leq 0} \alpha\left(0, T_{2}, T_{3}\right)\left(1+T_{2} / n\right) .
\end{aligned}
$$

To illustrate this, consider the $\operatorname{AR}(1)$ process of Example 2.1. Transforming to $s=n-T, \omega=\phi^{-1}$ and setting

$$
\begin{aligned}
R_{n}(\omega) & =\sum_{s=0}^{n} \omega^{s}=\left(\omega^{n+1}-1\right) /(\omega-1) \\
b_{n}(\phi) & =\sum_{T=0}^{n-1} \phi^{T}(1-T / n)=\phi^{n-1} \beta_{n}(\omega) \\
\beta_{n}(\omega) & =\sum_{s=1}^{n} s \omega^{s-1}=(d / d \omega) R_{n}(\omega) \\
& =(n+1) \omega^{n} /(\omega-1)-\left(\omega^{n+1}-1\right) /(\omega-1)^{2}
\end{aligned}
$$

we can write

$$
\begin{aligned}
& \alpha(0, T)=\alpha_{2} \phi^{|T|}, \quad U_{n 2} / \alpha_{2}=\sum_{|T|<n} \phi^{|T|}(1-|T| / n)=-1+2 b_{n}(\phi) \\
& U_{n 2} / \alpha_{2}=-1+2\left[1 /(1-\phi)-n^{-1} \phi\left(1-\phi^{n}\right) /(1-\phi)^{2}\right] \\
& u_{n 1} / \alpha_{3}=-1+\sum_{T=0}^{n-1}\left(\phi^{2 T}+\phi^{T}\right)(1-T / n)=-1+b_{n}\left(\phi^{2}\right) / n+b_{n}(\phi) / n
\end{aligned}
$$

Set

$$
\begin{aligned}
f(\phi) & =\sum_{T=1}^{n-1} T \phi^{T}=\phi \beta_{n-1}(\phi), \quad g(\phi)=R_{n-1}(\phi) \\
a_{3} & =\sum_{T=1}^{n-1} \phi^{T}\left(1-\phi^{T}\right) /(1-\phi)=\left[R_{n-2}(\phi)-R_{n-2}\left(\phi^{2}\right)\right] /(1-\phi), \\
b_{3} & =\sum_{1 \leq T_{3}<n} \phi^{T_{3}} T_{3} R_{T_{3}-1}(\phi)=(1-\phi)^{-1}\left[f(\phi)-f\left(\phi^{2}\right)\right] .
\end{aligned}
$$

Then

$$
u_{n 3} / \alpha_{3}+1=\sum_{0 \leq T_{2}<T_{3}<n} \phi^{T_{2}+T_{3}}\left(1-T_{3} / n\right)=a_{3}-b_{3} / n
$$

Also since $\alpha(0, j,-k)=\alpha(0, k, j+k)=\phi^{j+2 k}$,

$$
u_{n 4} / \alpha_{3}=\sum_{0 \leq j, k<n}[1-(j+k) / n] \alpha(0, k, j+k)=a_{4}-b_{4} / n,
$$

where

$$
\begin{aligned}
a_{4} & =\sum_{0 \leq k<n} \phi^{2 k}\left(1-\phi^{k}\right) /(1-\phi)=\left[g\left(\phi^{2}\right)-g\left(\phi^{3}\right)\right] /(1-\phi), \\
b_{4} & =g\left(\phi^{2}\right) f(\phi)+g(\phi) f\left(\phi^{2}\right)
\end{aligned}
$$

Also

$$
u_{n 5} / \alpha_{3}=\sum_{0<j<k<n}(1-k / n) \phi^{2 k-j}=a_{5}-b_{5} / n
$$

where $a_{5}=\phi^{3}\left[R_{n-4}(\phi)-R_{n-4}\left(\phi^{2}\right)\right] /(\omega-1)$ and $b_{5}=\left[f(\phi)-f\left(\phi^{2}\right)\right] /(\omega-1)$.
If we truncate the Cornish-Fisher series at $K-1$ terms, that is with remainder $O\left(n^{-K / 2}\right)$, then we can ignore all exponentially small components in k_{r}. For example, in the $\mathrm{AR}(1)$ case in the last example we can replace k_{r} by $k_{r}^{\prime}=\tau_{r} U_{n r}^{\prime}$, where

$$
\begin{aligned}
U_{n 2}^{\prime} / \alpha_{2} & =-1+(1-\phi-\phi / n) /(1-\phi)^{2}, \\
U_{n 3}^{\prime} / \alpha_{3} & =u_{n 1}^{\prime}+2 \sum_{j=2}^{5} u_{j}^{\prime} / \alpha_{3}, \quad u_{n 1}^{\prime} / \alpha_{3}+1=2 \sum_{T=1}^{\infty} \phi^{2 T}(1-T / n), \\
u_{3}^{\prime} / \alpha_{3} & =\left[f^{\prime}\left(\phi^{2}\right)-f^{\prime}(\phi)\right] /(\phi-1), \\
u_{4}^{\prime} / \alpha_{3} & =g^{\prime}\left(\phi^{2}\right) f^{\prime}(\phi)+g^{\prime}(\phi) f^{\prime}\left(\phi^{2}\right), \\
u_{5}^{\prime} / \alpha_{3} & =\left[f^{\prime}(\phi)-f^{\prime}\left(\phi^{2}\right)\right] /(\omega-1)^{2}, \\
f^{\prime}(\phi) & =\sum_{T=1}^{\infty} T \phi^{T}=\phi /(\phi-1)^{2}, \quad g^{\prime}(\phi)=\sum_{k=0}^{\infty} \phi^{k}=1 /(1-\phi) .
\end{aligned}
$$

So, for $j=2,3, u_{n j}^{\prime}$ has the form $a_{j}^{\prime}-b_{j}^{\prime} / n$, where a_{j}^{\prime} and b_{j}^{\prime} do not depend on n.
Example 4.2. Cornish-Fisher expansions for the sample autocovariance assuming that $\mu=0$. (This assumption is common in the literature on the grounds that the series can be adjusted by subtracting the estimated mean. However, we shall see in Example 4.3 that it gives the wrong variance if $\mu \neq 0$.)

In this case $\mu_{0 a}=M_{0 a}$ can be estimated by $\widehat{M}_{0 a}$. So, $\pi=\{0, a\}$ and k_{r} of (3.1) is given by

$$
\begin{equation*}
k_{r}=n^{r-1} \kappa_{r}\left(\widehat{M}_{0 a}\right) . \tag{4.3}
\end{equation*}
$$

For example,

$$
k_{2}=\sum_{|T|<n-a}(1-|T| / n) g_{T}^{a a}
$$

implies

$$
\sum_{T=-\infty}^{\infty} g_{T}^{a a}>0
$$

as $n \rightarrow \infty$, where

$$
\begin{aligned}
g_{T}^{a a} & =\kappa_{0, a, T, T+a}+\kappa_{0, T}^{2}+\kappa_{0, T+a} \kappa_{a, T} \\
& =\tau_{4} \alpha(0, a, T, T+a)+\tau_{2}^{2} \alpha(0, T)^{2}+\tau_{2}^{2} \alpha(0, T+a) \alpha(a, T)
\end{aligned}
$$

[Recall that $\kappa_{i j \ldots}$ are defined by (2.2).] So, k_{2} is bounded away from zero and K_{r} is bounded in n and the Cornish-Fisher expansions apply.

Example 4.3. The autocovariance without assuming that $\mu=0$.
In this case, we take $p=2, \theta_{1}=\mu, \theta_{2}=M_{0 a}$ and $t=t(\boldsymbol{\theta})=\kappa_{0 a}=\theta_{2}-\theta_{1}^{2}$. So, by (3.12)

$$
\begin{align*}
t .1 & =-2 \mu, \quad t .2=1, \quad t .11=-2, \quad t .12=t .22=0 \\
a_{21} & =4 \mu^{2} k^{11}-4 \mu k^{12}+k^{22}, \tag{4.4}\\
a_{11} & =-k^{11}, \quad a_{32}=-8 \mu^{3} k^{111}+12 \mu^{2} k^{112}-6 \mu k^{122}+k^{222}-2 s_{1}^{2}
\end{align*}
$$

at $s_{1}=-2 \mu k^{11}+k^{12}$. Also

$$
k^{1^{r}}=k_{r} \text { of (4.1) }
$$

and

$$
k^{12}=n \kappa\left(\widehat{\mu}, \widehat{M}_{0 a}\right)=N^{-1} \sum_{t_{1}=1}^{n} \sum_{t_{2}=1}^{N} g_{T}^{\prime}=N^{-1} \sum_{T=1-n}^{N-1} D(n, N: T) g_{T}^{\prime}
$$

where

$$
\begin{aligned}
g_{T}^{\prime} & =\kappa\left(X_{t_{1}}, X_{t_{2}} X_{t_{2}+a}\right)=\kappa_{0, T, T+a}+\mu\left(\kappa_{0, T+a}+\kappa_{0, T}\right) \\
N & =n-a, \quad T=t_{2}-t_{1}, \quad D(n, N: T)=\min (n, N-T)+\min (0, T)
\end{aligned}
$$

and we have used, in the notation of page 58 of McCullagh (1987), $\kappa^{1,23}=\kappa^{1,2,3}+$ $\kappa^{2} \kappa^{1,3}+\kappa^{3} \kappa^{1,2}$. Also

$$
k^{2 \cdots 2}=k^{2^{r}}=k_{r} \text { of (4.3). }
$$

By (4.4), a_{32} needs

$$
\begin{aligned}
k^{112} & =n^{2} \kappa\left(\widehat{\mu}, \widehat{\mu}, \widehat{M}_{0 a}\right)=N^{-1} \sum_{t_{1}, t_{2}=1}^{n} \sum_{t_{3}=1}^{N} g_{2 T} \\
& =N^{-1} \sum_{-n<T_{2}<n,-n<T_{3}<N} g_{2 T} D\left(n, n, N: T_{2}, T_{3}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
g_{2 T} & =\kappa\left(X_{t_{1}}, X_{t_{2}}, X_{t_{3}} X_{t_{3}+a}\right)=\kappa\left(X_{0}, X_{T_{2}}, X_{T_{3}} X_{T_{3}+a}\right) \\
& =\kappa^{1,2,34}=\kappa^{1,2,3,4}+\kappa^{3} \kappa^{1,2,4}+\kappa^{4} \kappa^{1,2,3}+\kappa^{1,3} \kappa^{2,4}+\kappa^{1,4} \kappa^{2,3}
\end{aligned}
$$

in the notation of equation (3.2) of McCullagh (1987). So,

$$
g_{2 T}=\kappa_{0, T_{2}, T_{3}, T_{3}+a}+\mu \kappa_{0, T_{2}, T_{3}+a}+\mu \kappa_{0, T_{2}, T_{3}}+\kappa_{0, T_{3}} \kappa_{T_{2}, T_{3}+a}+\kappa_{0, T_{3}+a} \kappa_{T_{2}, T_{3}} .
$$

Finally, a_{32} needs

$$
\begin{aligned}
k^{122} & =n^{2} \kappa\left(\widehat{\mu}, \widehat{M}_{0 a}, \widehat{M}_{0 a}\right)=\left(n / N^{2}\right) \sum_{t_{1}=1}^{n} \sum_{t_{2}, t_{3}=1}^{N} g_{3 T} \\
& =\left(n / N^{2}\right) \sum_{-n<T_{2}<N,-n<T_{3}<N} g_{3 T} D_{3}(n: T) \\
& =\left(n / N^{2}\right) \sum_{-n<T_{2}<N,-n<T_{3}<N} g_{3 T}\left[n-\delta_{3}(T)\right], \\
\delta_{3}(T) & =\max \left(a, T_{2}, T_{3}\right)-\min \left(0, T_{2}, T_{3}\right), \\
g_{3 T} & =\kappa\left(X_{t_{1}}, X_{t_{2}} X_{t_{2}+a}, X_{t_{3}} X_{t_{3}+a}\right)=\kappa\left(X_{T_{2}} X_{T_{2}+a}, X_{T_{3}} X_{T_{3}+a}, X_{0}\right) \\
& =\kappa^{12,34,5}=\sum_{i=1}^{6} U_{i}, \\
U_{1} & =\kappa^{1,2,3,4,5}, \\
U_{2} & =\kappa^{1,2,3,4} \kappa^{5}+\kappa^{1,2,3,5} \kappa^{4}+\kappa^{1,2,4,5} \kappa^{3}+\kappa^{1,3,4,5} \kappa^{2}+\kappa^{2,3,4,5} \kappa^{1}, \\
U_{3} & =\kappa^{1,2,3} \kappa^{4,5}+\kappa^{1,2,4} \kappa^{3,5}+\kappa^{1,3,4} \kappa^{2,5}+\kappa^{2,3,4} \kappa^{1,5}, \\
U_{4} & =\kappa^{1,3,5} M^{2,4}+\kappa^{1,4,5} M^{2,3}+\kappa^{2,3,5} M^{1,4}+\kappa^{2,4,5} M^{1,3}, \\
M^{i j} & =\kappa^{i, j}+\kappa^{i} \kappa^{j}
\end{aligned}
$$

and

$$
\begin{aligned}
U_{5}= & \kappa^{1,3}\left(\kappa^{2,5} \kappa^{4}+\kappa^{4,5} \kappa^{2}\right)+\kappa^{1,4}\left(\kappa^{2,5} \kappa^{3}+\kappa^{3,5} \kappa^{2}\right)+\kappa^{1,5}\left(\kappa^{2,3} \kappa^{4}+\kappa^{2,4} \kappa^{3}\right) \\
& +\kappa^{2,3} \kappa^{4,5} \kappa^{1}+\kappa^{2,4} \kappa^{3,5} \kappa^{1}
\end{aligned}
$$

in the notation of page 255 of McCullagh (1987). So, in the notation of (2.2),

$$
\begin{aligned}
& U_{1}=\kappa_{T_{2}, T_{2}+a, T_{3}, T_{3}+a, 0}, \\
& U_{2} / \mu=\kappa_{T_{2}, T_{2}+a, T_{3}, T_{3}+a}+\kappa_{0, T_{2}, T_{2}+a, T_{3}}+\kappa_{0, T_{2}, T_{2}+a, T_{3}+a} \\
& +\kappa_{0, T_{2}, T_{3}, T_{3}+a}+\kappa_{0, T_{2}+a, T_{3}, T_{3}+a,} \\
& U_{3}=\kappa_{T_{2}, T_{2}+a, T_{3}} \kappa_{0, T_{3}+a}+\kappa_{T_{2}, T_{2}+a, T_{3}+a} \kappa_{0, T_{3}}+\kappa_{T_{2}, T_{3}, T_{3}+a} \kappa_{0, T_{2}+a} \\
& +\kappa_{T_{2}+a, T_{3}, T_{3}+a} \kappa_{0, T_{2}}, \\
& U_{4}=\kappa_{0, T_{2}, T_{3}}\left(\kappa_{T_{2}, T_{3}}+\mu^{2}\right)+\kappa_{0, T_{2}, T_{3}+a}\left(\kappa_{T_{2}+a, T_{3}}+\mu^{2}\right) \\
& +\kappa_{0, T_{2}+a, T_{3}}\left(\kappa_{T_{2}, T_{3}+a}+\mu^{2}\right)+\kappa_{0, T_{2}+a, T_{3}+a}\left(\kappa_{T_{2}, T_{3}}+\mu^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
U_{5} / \mu= & \kappa_{T_{2}, T_{3}}\left[\kappa_{0, T_{2}+a}+\kappa_{0, T_{3}+a}\right]+\kappa_{T_{2}, T_{3}+a}\left[\kappa_{0, T_{2}+a}+\kappa_{0, T_{3}}\right] \\
& +\kappa_{0, T_{2}}\left[\kappa_{T_{2}+a, T_{3}}+\kappa_{T_{2}, T_{3}}\right]+\kappa_{T_{2}+a, T_{3}} \kappa_{0, T_{3}+a}+\kappa_{T_{2}, T_{3}} \kappa_{0, T_{3}} .
\end{aligned}
$$

Example 4.4. Cornish-Fisher expansions for the sample autocorrelation assuming that $\mu=0$.

Take $p=2, q=1, t=\theta_{2} / \theta_{1}, \theta_{1}=M_{00}, \theta_{2}=M_{0 a}$ at $a_{1}=0$ and $a_{2}=a$. So, t is the a th autocorrelation and $\widehat{t}=\widehat{M}_{0 a} / \widehat{M}_{00}$ is the a th sample autocorrelation. So, $t .1=-\theta_{2} / \theta_{1}^{2}, t .2=1 / \theta_{1}, t .11=2 \theta_{2} / \theta_{1}^{3}, t .12=-1 / \theta_{1}^{2}$ and $t .22=0$.

Example 4.5. Cornish-Fisher expansions for the sample autocorrelation without assuming that $\mu=0$.

Take

$$
\begin{align*}
p & =3, \quad q=1, \quad \theta_{1}=\mu, \quad \theta_{2}=M_{00}, \quad \theta_{3}=M_{0 a} \\
D & =\operatorname{var}\left(X_{0}\right)=\theta_{2}-\theta_{1}^{2}, \quad N=\operatorname{covar}\left(X_{0}, X_{a}\right)=\theta_{3}-\theta_{1}^{2} \tag{4.5}\\
t & =\operatorname{covar}\left(X_{0}, X_{a}\right) / \operatorname{var}\left(X_{0}\right)=N / D
\end{align*}
$$

So, a_{21}, a_{11} and a_{32} are given by (3.12) with $t .1=2 \mu(t-1) / D, t .2=-N / D^{2}$, $t .3=1 / D^{2}, t .22=2 \theta_{2} / \theta_{1}^{3}, t .23=-1 / \theta_{1}^{2}$ and $t .33=0$.

Example 4.6. Suppose that

$$
\begin{aligned}
t & =\kappa\left(X_{0} X_{a_{1}}, X_{0} X_{a_{2}}\right)=\theta_{3}-\theta_{1} \theta_{2}, \quad \theta_{1}=M_{0 a_{1}} \\
\theta_{2} & =M_{0 a_{2}}, \quad \theta_{3}=M_{00 a_{1} a_{2}} .
\end{aligned}
$$

Set $k^{a_{1} a_{2}}=n \kappa\left(\widehat{M}_{0 a_{1}}, \widehat{M}_{0 a_{2}}\right), N_{i}=n-a_{i}$ and $T=t_{2}-t_{1}$. Then

$$
k^{a_{1} a_{2}}=n\left(N_{1} N_{2}\right)^{-1} \sum_{t_{1}=1}^{N_{1}} \sum_{t_{2}=1}^{N_{2}} g_{T}=n\left(N_{1} N_{2}\right)^{-1} \sum_{T=1-N_{1}}^{N_{2}-1} D\left(N_{1}, N_{2}: T\right) g_{T},
$$

where $g_{T}=\kappa\left(X_{t_{1}} X_{t_{1}+a_{1}}, X_{t_{2}} X_{t_{2}+a_{2}}\right)=\kappa\left(X_{0} X_{a_{1}}, X_{T} X_{T+a_{2}}\right)=\kappa^{12,34}$ in the notation of McCullagh. This is given by eleven terms in the equation above (3.2) of McCullagh.

Other examples, where the method can be applied is to functions of the estimates of the sample autocorrelations, such as estimates of the coefficients of ARMA processes. This includes the Yule-Walker estimates of the coefficients of an $\operatorname{AR}(p)$.

Example 4.7. From equation (5.42) of Kendall and Ord (1990), for the AR(2)

$$
X_{i}=\delta+\sum_{j=1}^{2} \phi_{j} X_{t-j}+e_{i}-\tau_{1} .
$$

The Yule-Walker estimates are given by replacing (μ, r_{1}, r_{2}) by their estimates in $\delta=\left(1-\sum_{j=1}^{2} \phi_{j}\right) \mu, \quad \phi_{1}=r_{1}\left(1-r_{2}\right) /\left(1-r_{1}^{2}\right), \quad \phi_{2}=\left(r_{2}-r_{1}^{2}\right) /\left(1-r_{1}^{2}\right)$, where $r_{a}=\operatorname{covar}\left(X_{0}, X_{a}\right) / \operatorname{var}\left(X_{0}\right)$ is the a th autocorrelation, as in (4.5). Set $p=4, q=2, \theta_{1}=\mu, \theta_{2}=M_{00}, \theta_{3}=M_{01}, \theta_{4}=M_{02}, D=\operatorname{var}\left(X_{0}\right)=\theta_{2}-\theta_{1}^{2}$, $N_{1}=\operatorname{covar}\left(X_{0}, X_{1}\right)=\theta_{3}-\theta_{1}^{2}$ and $N_{2}=\operatorname{covar}\left(X_{0}, X_{2}\right)=\theta_{4}-\theta_{1}^{2}$. Then

$$
\phi_{1}=N_{1}\left(D-N_{2}\right) /\left(D^{2}-N_{1}^{2}\right), \quad \phi_{2}=\left(D N_{2}-D_{1}^{2}\right) /\left(D^{2}-N_{1}^{2}\right)
$$

which we write as $\boldsymbol{\phi}=\mathbf{t}=\mathbf{t}(\boldsymbol{\theta})$. Now substitute partial derivatives. For example, for $t=\phi_{1}, a_{21}$ needs

$$
\begin{aligned}
t_{\cdot 1}^{1}= & N_{1 \cdot 1}\left[\left(D-N_{2}\right) /\left(D^{2}-N_{1}^{2}\right)+2 N_{1}^{2}\left(D-N_{2}\right) /\left(D^{2}-N_{1}^{2}\right)^{2}\right] \\
& -N_{2 \cdot 1} N_{1} /\left(D^{2}-N_{1}^{2}\right)+D \cdot{ }_{1} N_{1}\left[1 /\left(D^{2}-N_{1}^{2}\right)-2 D\left(D-N_{2}\right) /\left(D^{2}-N_{1}^{2}\right)^{2}\right] \\
= & D \cdot 1 \sum_{i=1}^{2} \gamma_{i}\left(D^{2}-N_{1}^{2}\right)^{-i}, \quad \gamma_{1}=\theta_{2}-\theta_{4}, \quad \gamma_{2}=2 N_{1}\left(D-N_{2}\right)\left(\theta_{3}-\theta_{2}\right)
\end{aligned}
$$

and

$$
t_{.2}^{1}=N_{1}\left(D^{2}-N_{1}^{2}\right)^{-2} \gamma_{4}, \quad \gamma_{4}=-\theta_{2}^{2}+2 \theta_{1}^{2}\left(\theta_{3}-\theta_{4}\right)+2 \theta_{2} \theta_{4}-\theta_{3}^{2}
$$

using $N_{i .1}=D_{.1}=-2 \theta_{1}$ and simplifying.
Finally, the method can be adapted to allow for a nonstationary mean, for example, by adding a parametric regression function to the right-hand side of (2.1).

5 Simulation study

Here, we illustrate the practical value of the results in Section 4.
One purpose of Cornish-Fisher expansions is to provide improved confidence intervals. The usual confidence intervals for the mean, autocovariance, and autocorrelation are based on Studentizing. The terms of the Cornish-Fisher expansions given by Examples 4.1-4.5 can be used to provide improved confidence intervals. We illustrate this fact by computing the coverage probabilities by means of simulation.

We simulated 10,000 samples of size n from (2.1) by assuming that the errors have the standard normal distribution. We calculated the Studentized intervals as well as those incorporating the Cornish-Fisher terms for the mean, autocovariance, and autocorrelation. The proportion of intervals containing the true value of these parameters is shown in Tables $5.1-5.3$ for $n=5,6, \ldots, 40$. We can see clearly that the confidence intervals incorporating the Cornish-Fisher terms make a real improvement. The Studentized intervals perform poorly for most values of n and even for large n.

Table 5.1 Simulated coverage probabilities for mean

n	Studentized	Using Cornish-Fisher terms
5	0.940	0.950
6	0.944	0.949
7	0.944	0.947
8	0.940	0.949
9	0.938	0.949
10	0.950	0.950
11	0.932	0.949
12	0.938	0.948
13	0.946	0.950
14	0.944	0.948
15	0.934	0.941
16	0.932	0.937
17	0.950	0.950
18	0.936	0.942
19	0.950	0.950
20	0.938	0.948
21	0.938	0.947
22	0.950	0.950
23	0.938	0.950
24	0.950	0.950
25	0.944	0.949
26	0.944	0.949
27	0.946	0.949
28	0.928	0.937
29	0.942	0.949
30	0.936	0.950
31	0.948	0.948
32	0.948	0.950
33	0.922	0.947
34	0.950	0.950
35	0.946	0.950
36	0.938	0.949
37	0.948	0.948
38	0.922	0.948
39	0.944	0.950
40	0.950	0.950

Acknowledgments

The authors would like to thank the Editor and the referee for carefully reading the article and for their comments which greatly improved the article.

Table 5.2 Simulated coverage probabilities for autocovariance

n	Studentized	Using Cornish-Fisher terms
5	0.942	0.947
6	0.938	0.943
7	0.938	0.949
8	0.946	0.950
9	0.942	0.949
10	0.948	0.949
11	0.940	0.949
12	0.944	0.950
13	0.944	0.949
14	0.948	0.950
15	0.942	0.948
16	0.946	0.948
17	0.942	0.950
18	0.948	0.950
19	0.942	0.946
20	0.928	0.949
21	0.944	0.950
22	0.950	0.950
23	0.946	0.950
24	0.948	0.950
25	0.934	0.947
26	0.946	0.948
27	0.940	0.942
28	0.938	0.941
29	0.936	0.946
30	0.946	0.949
31	0.940	0.946
32	0.944	0.948
33	0.936	0.946
34	0.942	0.945
35	0.938	0.944
36	0.948	0.950
37	0.950	0.950
38	0.938	0.944
39	0.922	0.942
40	0.938	0.950

References

Albers, W. (1978). A note on the Edgeworth expansion for the Kendall rank correlation coefficient. The Annals of Statistics 6, 923-925. MR0494667
Barndoff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics. London: Chapman \& Hall. MR1010226
Bhattacharya, R. N. and Rao, R. R. (1976). Normal Approximation and Asymptotic Expansions. New York: Wiley. MR0436272

Table 5.3 Simulated coverage probabilities for autocorrelation

n	Studentized	Using Cornish-Fisher terms
5	0.946	0.948
6	0.940	0.941
7	0.950	0.950
8	0.950	0.950
9	0.950	0.950
10	0.950	0.950
11	0.932	0.945
12	0.950	0.950
13	0.946	0.950
14	0.934	0.944
15	0.938	0.948
16	0.942	0.950
17	0.948	0.949
18	0.944	0.946
19	0.948	0.950
20	0.950	0.950
21	0.942	0.948
22	0.946	0.949
23	0.948	0.950
24	0.942	0.947
25	0.942	0.948
26	0.948	0.950
27	0.932	0.949
28	0.930	0.939
29	0.942	0.948
30	0.938	0.950
31	0.932	0.949
32	0.948	0.950
33	0.944	0.947
34	0.950	0.950
35	0.932	0.948
36	0.950	0.950
37	0.946	0.950
38	0.938	0.948
39	0.944	0.949
40	0.940	0.947

Cornish, E. A. and Fisher, R. A. (1937). Moments and cumulants in the specification of distributions. Revue de l'Institut Internat de Statistics 5, 307-322. Reproduced in The Collected Papers of R. A. Fisher, 4.
Fisher, R. A. and Cornish, E. A. (1960). The percentile points of distributions having known cumulants. Technometrics 2, 209-225.
Hannan, E. J. (1962). Time Series Analysis. New York: Wiley.
Hannan, E. J. (1970). Multiple Time Series. New York: Wiley. MR0279952

James, G. S. and Mayne, A. J. (1962). Cumulants of functions of random variables. Sankhyā, Ser. A 24, 47-54. MR0148183
Kendall, M. G. and Ord, K. (1990). Time Series, 3rd ed. London: Griffin. MR1074771
McCullagh, P. (1987). Tensor Methods in Statistics. London: Chapman \& Hall. MR0907286
Phillips, P. C. B. (1977). A general theorem in the theory of asymptotic expansions as an approximation to the finite sample distributions of econometric estimators. Econometrika 45, 1517-1534. MR0451493
Praskova-Vizkova, Z. (1976). Asymptotic expansion and a local limit theorem for a function of the Kendall rank correlation coefficient. The Annals of Statistics 4, 597-606. MR0405670
Stuart, A. and Ord, K. (1987). Kendall's Advanced Theory of Statistics 1, 5th ed. London: Griffin.
Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference for Time Series. New York: Springer. MR1785484
Withers, C. S. (1982). The distribution and quantiles of a function of parameter estimates. Annals of the Institute of Statistical Mathematics, Ser. A 34, 55-68. MR0650324
Withers, C. S. (1984). Asymptotic expansions for distributions and quantiles with power series cumulants. Journal of the Royal Statistical Society, Ser. B 46, 389-396. MR0790623
Withers, C. S. and Nadarajah, S. (2008). Edgeworth expansions for functions of weighted empirical distributions with applications to nonparametric confidence intervals. Journal of Nonparametric Statistics 20, 751-768. MR2467706
Withers, C. S. and Nadarajah, S. (2009a). Expansions for \log densities of asymptotically normal estimates. Statistical Papers DOI:10.1007/s00362-008-0135-2.
Withers, C. S. and Nadarajah, S. (2009b). Charlier and Edgeworth expansions via Bell polynomials. Probability and Mathematical Statistics 29, 271-280.
Withers, C. S. and Nadarajah, S. (2009c). The joint cumulants of a linear process. Technical report, Applied Mathematics Group, Industrial Research Ltd., Lower Hutt, New Zealand. (For electronic copy please contact the corresponding author.)

Applied Mathematics Group
Industrial Research Limited
Lower Hutt
New Zealand

School of Mathematics
University of Manchester
Manchester M13 9PL
UK
E-mail: mbbsssn2@manchester.ac.uk

[^0]: Key words and phrases. Cornish-Fisher expansions, cumulants, linear process, stationary processes.

 Received January 2010; accepted May 2010.

