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ABSTRACT

We consider the problem of providing communication pro-

tocol support for large-scale group collaboration systems for

use in environments such as the Internet which are subject

to packet loss, wide variations in end-to-end delays, and

transient partitions. We identify a set of requirements that

are critical for the design of such group collaboration sys-

tems. These include dynamic awareness notifications, reli-

able data delivery, and scalability to large numbers of users.

We present a communication service, Corona, that attempts

to meet these requirements. Corona supports two commtt-

nication paradigms: the publish-subscn”be paradigm and the

peer group paradigm. We present the interfaces provided by

Corona to applications which are based on these paradigms.

We describe the semantics of each interface method call and

show how they can help meet the above requirements.
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INTRODUCTION

Interest in applications that permit synchronous collabora-

tion over the Internet has greatly increased recently. Such

collaborative applications allow people located geographi-

cally apart to share and act upon data amongst themselves.

This data may encompass a wide range of media and content.

It may be graphical images, streams of raw data from vari-

ous monitoring instruments [5], application window element

state [13], files, or plain text [9, 14].

In a collaborative system, there are data sources or producers

of the data and data recipients or consumers of the data. The

data needs to be ~ransported from the data sources to the data
recipients over existing communication infrastructures such
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as the Internet where data packets may be delayed, lost, or

where recipients may become temporarily unreachable. Fttr-

thermore, the r~ipients may dynamically join and leave the

system, resulting in a changing membership of the system.

Also, in certain situations, the number of recipients may be

very large, and the data transport mechanisms need to deliver

the data in a cost-effective manner in such situations as well.

We have been investigating such data transport issues within

the context of the Upper Atmospheric Research Collabora-

tor (UARC) project [5]. As part of this project we are de-

veloping a collaborative system to provide space scientists

with the means to effectively view and analyze data collected

by various remote instruments, present ones being located

in Greenland. The goal of the UARC system is to develop

groupware technologies that would not only largely eliminate

the need for costly trips to remote sites to collect data by pro-

viding access to remote instruments, but also to provide fa-

cilities for better and more frequent collaboration between a

distributed community of scientists.

In the UARC system, data generated by remote sources such

as radars, Fabry-Perot interferometers, All-Sky Imagers, and

IRIS magnetometers is disseminated over wide-mea net-

works to space scientists at their home institutions around the

world (for e.g., Maryland, California, Alaska, Florid% Den-

mark, etc.). A “data server” gathers data from the instrtt-

ments and multicasts them to clients which run at various

sites around the world. These clients then graphically display

the data in various data windows.

The UARC system also provides support for synchronization

of data display windows among the participants. Scientists

can view data in real-time through a window sharing pack-

age called DistView [13]. All changes to the shared window,
caused by various window operations such as button click,

pointer move, scroll, resize, etc., are immediately reflected

in all copies of the window, subject to network latencies.

Figure 1 shows the typical user interface provided by a

UARC client. The windows to the right and top-left dis-

play plots of data and images. Different UARC applications
have access to the same data, obtained from the remote in-

struments, and can display different views of that data, de-

pending on the needs of the individual scientists. A message
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Figure 1: UARC Client Graphical Interface

window (bottom left in Figure 1) supports n-way textual talk.

Over the past two years, several prototypes of UARC have

been used by scientists in their scientific campaigns withlin-

creasing effectiveness. The usage has also led to higher de-

mands on the system in terms of tolerance tonetwork and sys-

tem unreliability &d scalability to a larger number of users.

Furthermore, it has become desirable to generalize the IcoI-

Iaborative technologies developed in UARC so that they can

be used for building other open, distributed collaboratories.

The framework of tools that this evolving generalization ef-

fort will provide is called the “Collaborator Builders Envi-

ronment”, or CBE [10].

This effort has led us to identify the need for a rniddleware

communication layer consisting of a set of “common ser-

vices” that can be used to support data dissemination and

tools for collaborating using this data. one can view these

services as the building blocks of a collaborator.

In this paper we present a communicaticm service, Corona,

that provides scalable and reliable group communication fa-

cilities for such systems. The services provided by Corona

are based on two communication paradigms: the publzsh/-

subscribe paradigm and the peer group paradigm. These

paradigms help define the semantics for data transport for use

in collaborative systems. We present the interfaces provided

by Corona to collaborative applications, clescribe the seman-

tics associated with each interface method call, and show

how they can meet a variety of group colllaboraticmrequire-

ments.

The rest of the paper is organized as folllows: We first de-

scribe the requirements of group collaboration systems in

the “Group Collaboration Requirements” section. The :next

section, “Communication Services Features”, describes ‘how

these requirements translate into functionality provided by a
communication service. In section, “Corona Services”,, we

describe our communication service that attempts to provide

these features. Next, “Semantics of the Corona Services”, de-

scribes in detail the interfaces of the Colrona methods, their

semantics, and how they meet the above requirements. We

close with comparison to related work, conclusions, and fu-

ture plans.

GROUP COLLABORATION REQUIREMENTS

In developing Corona, we considered various requirements

that could be placed upon a collaborative system, with regard

to the users’ expectations and styles of collaboration. The

requirements grew out of our experience with the initial im-

plementation of UARC and the communication needs of the

evolution of UARC, the CBE tocdkit [10]. Based on this, we

have identified the following set of requirements:

1. Diferent kinds of data require diferent levels of consis-

tency. Data is typically replicated at each site in a collabora-

tive system. Maintaining the consistency of the replicas usu-

ally requires that update messag,es to the replicated data be

ordered consistently. In an Internet environment, however, .

a second determinant of data consistency is reliable delivery

of update messages. In this paper we primarily address the

reliability aspect as related to data consistency. Earlier work

on ordering of messages by Greenberg and Marwood [7]and

Dom-ish [3,4] can be integrated with our work. Hence, in the

rest of the paper, when we refer to data consistency we mean

consistency impacted by the reliable delivery of update mes-

sages.

A collaborative system must be flexible with regards to the

reliability guarantees it provides for data. Consider some ex-

amples from the I.JARCproject:

o In the chatbox application, it is imperative the system re-

liably deliver messages to all users. Sending a message

to fellow collaborators andlhaving only some of them

receive it degrades the quality and effectiveness of the
collaboration.

o For scientific data obtained from remote monitoring in-

struments, some loss of data is usually tolerable due
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to the inherent redundancy of the data. For example,

the IRIS magnetometer produces a data stream in which

data packets are generated at a rate of 1 every 30 sec-

onds. The graphical viewer application that displays the

data is capable of displaying it at a lesser quality of res-

olution if some data packets are lost.

● Within UARC, the user’s view of what instruments are

available should be consistent at quiescence. All users

should have access to the same view of what instruments

and applications are available.

The implication of this is that a communication service must

not enforce a single data consistency policy for all types of

data. Mechanisms must be provided to permit different con-

sistency policies to be used with different applications and

their data.

2. Diflerent modes of collaboration require different kinds of

awareness.

Users collaborate in a different manner depending upon the

nature of the task and data being collaborated upon. These

different modes of collaboration lead to different awareness

requirements described below. By awareness, we mean in-

formation pertaining to who the users are, what groups they

belong to, and what access they have to the data.

● Users collaborating in shared workspaces need to know

with whom they are sharing the workspace and what op-

erations are being performed and by whom. Users of

a shared data annotation window, for instance, need to

know with whom they are viewing the window and who

is annotating the data. Additionally, users need to be

made aware of failures. A user may wish to take certain

actions if one of their collaborators loses connection to

the collaborator.

● Users viewing streams of instrument data may be less

concerned as to who is looking at the data as they may

wish to think about it in private.

Thtts a communication service needs jexibility in mrtintain-

ing and providing user access to knowledge of other users and

failures. Not providing a means for applications to either re-

quest membership and failure information or receive updates

dynamically weakens the quality of collaboration available to

the user who could benefit from this knowledge.

3. Dynamics in consistency and awareness requirements vary

upon usage.

A user’s awareness of other users of a particular collaborative

application, as well as the consistency requirements on the

data, are not static during the course of a collaboration. In

particular:

● On-demand awareness is needed to provide awareness

of whether a particular user or set of users are looking at

●

a particular data when that data set becomes the center

of attention. Normally, such awareness is not necessary.

For example, users of a UARC instrument data viewer

may be viewing an atmospheric image but not be con-

cerned about who else is viewing it. When a particular

user starts annotating that image, though, the users need

to be aware of who is annotating and seeing that anno-

tation.

Data may have to be delivered more reliably and consis-

tently when it is the subject of discussion. Continuing

with the data image example, missing data in an image

or graph would not be tolerated when it is the focal point
of attention among users.

Thus, a communication service must be capable of dynamic

change in the nature of the consistency of data and member-

ship knowledge of a collaborative group.

4. Different participant roles imply diferent awareness re-

quirements.

Within a collaboration, some users may have a higher prior-

ity than others. There may be users that have the privilege of

modifying the data. We refer to such high-priority users as

principals. Other users, referred to as observers, may only be

allowed to receive data. For example, in a collaboration in-
volving a whiteboard application, the principals could write

on the board, while the observers could only passively view

the changes.

Principals in a collaboration need a high level of awareness of

each other during the session since each can potentially make

modifications to the shared data. On the other hand, little or

no (as well as less accurate information) maybe quite accept-

able to observers. Observers need not be notified of failures

or leaving or joining of other participants. Thus, a communic-
ation service must be capable of supporting different classes

of users within a single collaboration.

5. Different collaborative applications have diflerent scala-

bility requirements.

Some collaborative applications by nature are oriented to-

wards small groups of users, while others are oriented to-
wards large groups. For example, in UARC, a single data

source application such as the radar instrument, needs to
disseminate data to potentially hundreds, even thousands of

users. On the other hand, a DistView shared window [13],

typically has tens of users, often much fewer. The commttni-

cation service must support both kinds of applications.

6. Failure notification. Users need to be notified promptly of

failures, particularly when strong awareness of group mem-

bers is necessary. For example, a failure that causes some

users in a shared window collaboration to lose connection to

the collaboration, should be announced to all surviving users.
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COMMUNICATION SERVICE FEATURES

The goal of a communication service is to deliver data from

a source to one or more destinations in a manner that meets

the semantic requirements of the data being delivered. In the

Group Collaboration Requirements section we described a

variety of such semantic requirements. Further, the commu-

nication service must be able to operate over existing com-

munication infrastructures such as the Internet which are sub-

ject to congestion, packet loss, and transient partitions. To

address the requirements of collaboration systems and the

operating environment, the communication service must be

concerned with four main features: reliabilityy, awareness,

failure-notification, and scalability. We discuss each below.

Reliability

The need for reliability stems directly from the fact that the

communication service needs to function in environments

such as the Internet where data packets may be delayed, lost,

and destinations may become temporarily unreachable in the

system. Further participant processes may also fail.

In collaborative systems, processes need to reliably trans-

mit messages from a source to multiple destinations (also re-

ferred to as a reliable multicast). This is a significantly more

difficult problem from the problem of reliably sending mes-

sages between two processes (and for which TCP has been so

successful over the years). This is so for the following two
reasons. Firstly, network congestion and transient partitions

may cause destinations to become temporarily unreachable.

This prevents a multicast of a message to multiple destina-

tions from terminating successfully: the message is received

by destinations that are reachable, but not by those that hap-

pen to be unreachable at that time. Secondly, it is possible

that the sender of a message may crash after it has multicast

one or more messages to multiple destinations, where some

of the destinations have received all of the messages, but oth-

ers have not.

Awareness and Failure Notification

Depending on the nature of the collaboration, the users have

varying degrees of awareness of other participants of the col-

laborative session. We denote by view the set of users that

a given user is aware of 1. As users dynamically join and

leave the collaborative session or if users are perceived to

have failed, the awareness information maintained for the

users needs to be updated carefully. Similarly, when user site

failures are detected, appropriate failure-notification needs to

take place.

Scalability

Certain data streams in the collaboration system may need

to be delivered to potentially large numbers of users, and

the communication service should allow for this in a cost-

1~i~ ~~age of the term view is distinct from its usage in user interface

work.

effective manner, i.e., communication protocols for certain

data streams must be scalable.

By scalability we mean that the proposed protocols for data

delivery are cost-effective even when there are a very large

number (100’s, 1000’s, even tens of thousands) of destina-

tions that the data needs to be delivered to. The cost metric

that we use to determine the scalability of the protocols is pri-

marily number of messages. Other metrics such as latency

are possible and we plan to investigate these in the future.

CORONA SERVICES

In order to support the features described in the Communicat-

ion Services Features section, we propose a communication

service, Corona. Corona provides two classes of services:

thepublisldsubscnbe service and thepeergroup service. The

publishkubscribe service is based on the publisWsubscribe

paradigm [11], while the peer group service is based on the

peer group paradigm.

The publishkubscribe paradigm is characterized by one or

more data sources or publishers sending data to multiple re-

cipients or subscribers. The form of communication here is

of an anonymous nature. The publishers are aware of the set

of subscribers, but the subscribers are unaware of each other

and are only aware of the publisher that they are receiving

data from. The publishkubscribe paradigm supports a weak

form of reliability and awareness for the subscribers, as we

will describe in the next section. This form of communica-

tion, however, lends itself to scalability, as we will also show

in the next section.

In order to implement this paradigm, we propose a two-level

architecture, illustrated in Figure 2. In this architecture, a

publisher multicasts data to a set of intermediate nodes, re-

ferred to as distributors. The distributors then route the c~ata

to other distributors, which in turn send the data to the local

subscribers.

A key point of this architecture is that by introducing the

distributors we are minimizing system-wide awareness nnd

change. A distributor is aware of only its local set of sub-

scribers and has no awareness of arty of the other subscribers
in the system. This allows the system to scale nicely as sub-

scribers can join and leave without affecting the entire sys-

tem. Furthermore, since distributors act as routers and muhi-

cast the messages to the local subscribers only, the burden of

a single source multicasting a message to a very large numlber

of destinations and dealing with the associated ack-implosion

is alleviated to a large extent.

The second type of service provided by Corona is the peer

group service. It is based on thepeer groupparadigm of com-

munication which is characterized by all of the group mem-

bers being aware of each other. This allows each member to

send and receive data to and from each other. Thus commu-

nication is not anonymous, rather it is named. Thus in a peer
group, all members can be both a data source and a data recip-

ient, and are aware of each other. The peer group paradigm

thus supports a strong form of reliability and awareness for
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Figure 2: System Architecture

Publish/Subscribe Service Peer Group Service

Paradigm Idea Anonymous communication Named communication

Reliability Weak Strong

Awareness Weak Strong

Failure Notification Minimal Extensive

Scalability Yes No

Table 1: Comparison of the two classes of services provided by Corona

the group members.

In a peer group, it is possible to have certain members as prin-

cipals and other members observers. The principals are pro-

vided with strong reliability and awareness guarantees, while
the observers have much weaker guarantees. Further, ob-

servers can only receive data while principals can send and

receive data. We elaborate on this in the next section. Corona

allows for a subscriber to join an existing peer group. This

allows a user to dynamically alter their awareness and relia-

bility guarantees.

In Table 1, we summarize the key aspects of the two classes

of services provided by Corona.

SEMANTICS OF THE CORONA SERVICES

We describe the semantics of the publishlsubscribe and peer

group services provided by Corona. In order to justify some
of the design choices made, we first analyze the cost of im-

plementing the semantics.

Reliability/Awareness and Scalability ‘IYadeoffs

Reliability and awareness are closely related to each other

and both have an inverse relationship with scalability. Strong

forms of reliability and awareness are costly to implement in

terms of number of messages, and hence less scalable. Thus

there is a fundamental tradeoff between the reliability/aware-

ness requirements and the scalability requirements. Here we

formalize this tradeoff. This will then allow us to determine

appropriate forms of reliability/awareness for modes of col-

laboration that need to be scalable and those that do not need

to be scalable.

Assume that there are n users in the system. We evaluate the

cost of ensuring reliability/awareness when a new user joins

or leaves the system, and when a process is suspected of hav-

ing failed.

Ensuring awareness amongst the group of processes of a user

join/leave/fail can be achieved using a coordinator based so-

lution. The coordinator first proposes a view to the n users

and waits for acknowledgments (aclc’s) from them. The co-

ordinator then collects the ack’s, revises the proposed view if

necessary, and commits the view to the users in the revision.

The number of messages sent in order to ensure awareness of

the user join/leave/fail is thus of the order of 3n.

Reliability can also be ensured in a similar manner. The

sender multicasts a message, the receivers ack the message

to the sender, the sender sends out a stable message to all,

allowing them to agree and discard messages from buffers.

Thus the message cost of ensuring reliability and awareness

are both of the order of 3n messages.

Publish/Subscribe Service Interface and Semantics

The publish/subscribe service consists of one or more pub-

lishers disseminating data through the distributors to sub-
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scribers to the data. The actual interface provided by the pub-

lisb/subscribe service is presented in Table 2. We describe the

semantics of the important methods below.

createService(in String serviceName, out ServiceId aService)

A publisher calls this method to create a service with the

given name. We define a service as a stream of messages

from a publisher to the set of subscribers. The service identi-

fier, aService, is used to identify the service in calls to other

interface methods. The new service is registered with a sin-

gle distributor, referred to as theprinuziy distributor. The pri-

mary distributor then shares this information with the other

distributors.

publish(in ServiceId aService, in Message aMsg)

This method is used to publish data for a service. The se-

quence of events are illustrated in Fig. 3. The publisher first

sends the message to its primary distributor. The primary dis-

tributorthen sends the message to all of the other distributors.

Each of these distributors then sends the message to the local

subscribers.

subscnbe(in ServiceId aService, in RoleType role)

A subscriber sends a subscribe message to its primary distrib-

utor. The primary distributor adds this subscriber to its sub-

scriber view. Any data messages delivered to the distributor

for this service will now be sent to this subscriber. A pub-

lisher would also use this interface to establish themselves as

a publisher to a service.

unsubscribe(in ServiceId aService)

A subscriber sends an unsubscribe message to its primary

distributor. The distributor removes this subscriber from its

view.

Reliability/Awareness Cost in the Pnblisb/Subscribe Ser-

vice

The publishkubscribe service ensures a strong form of reli-

ability and awareness only amongst the distributors and not

amongst the subscribers, who are the end-users of the ser-
vice. It is possible for the subscribers to experience occa-

sional gaps in the data they receive. This may happen if the

distributor that the subscriber is connected to crashes. The

subscriber will then re-connect to a new distributor and will

start receiving messages from that distributor. It is possilble

that the new distributor may have the messages that the sub-

scriber may have missed, but it cannot be guaranteed.

The cost to achieve this weak form of reliability and aware-

ness is of the order of 3d, where d is the number of distrib-

utors. If we had tried to ensure this level of reliability and

awareness amongst all the subscribers in the system, then the

cost would be significantly higher, since the number of sub-

scribers can be significantly larger than the number of clis-

tributors. The rationale for this choice is the observation that

many data sources (e.g. instrument data) only require weak

forms of reliability.

Peer Group Service Interface and Semantics

For the peer group service, the interface methods, presented

in Table 3, and their associated semantics are discussed be-

low. Note that the peer group service supports two types of

members– observers that have limited peer group awareness

and can only receive data, and principals who have strong

awareness of group members and can send and receive d~ata.

createGroup(in String groupName, out GroupId aGmup)

This call allows a user to create a peer group and assign a

name to it. The distributors maintain information about ex-

isting peer groups in the system.

joinGroup(in Groupld aGroup, in RoleType role, in callback

AwarenessUpdate)

A member can join a specific peer group as a principal or as

an observer in the group, specified by the ‘role’ parameter.

(Note that access control as to who can use this interface to

join as a principal or observer is a policy of a higher-level ap-

plication, such as the CBE Session Manager [10].) A princi-

pal is at all times aware of other principals in the group and

also receives all failure notifications, delivered to the applica-

tion via the callback routine parameter ‘AwarenessUpdate’.

An observer does not receive view information related to the

members of the peer group. It can, however, query the dis-

tributor to obtain this awareness information, using the in-

terface methods getGroupListo and getMembersOf(group),

shown in Table 3.

leaveGrrxtp(in GrnupId aGmup)

A peer group member leaves a group by executing this

method. The primary distributor removes this peer from its

view, and if the peer was a principal, the other distributors

are notified so the peer can be remove from their views, as

well as notifying principals of this group of the change.

grrwpMulticast(in GroupId aGroup, in Message aMsg)

A principal sends a message to the peer group members using
this method. Strong reliability guarantees are provided on the

delivery of this message to the other principals in the group,

while the observers have weaker reliability guarantees (they

can miss certain messages).
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Method Function

connect(in Address serverHost, in int serverPort, in int Iota.lPort) connect to distributor

disconnect disconnect from distributor

createService(in String serviceName, out ServiceId aService) create service

deleteService(in ServiceId aService) delete service

subscribe(in ServiceId aService, in RoleType role) subscribe to service (as publisher, subscriber)

unsubscribe(in ServiceId aService) unsubscribe from service

publish(in ServiceId aService, in Message aMsg) publish data for a service

getServiceList(out ServiceIdList services) get list of available services

getGroupList(out GroupIdList groups) get list of available peer groups

Table 2: Corona Publish/Subscribe Service Interface

Method Function

connect(in Address serverHost, in int serverPort, in int localPort) connect to primary distributor

disconnect disconnect from distributor

createGroup(in String groupName, out GroupId aGroup) create peer group

groupMuIticast(in GroupId aGroup, in Message aMsg) multicast a message to the group

joinGroup(in GroupId aGroup, in RoleType role, in callback AwarenessUpdate) join a peer group

leaveGroup(in GroupId aGroup) leave a peer group

getGroupList(in GroupIdList groups) get list of available groups

getMembersOf(in GroupId aGroup, in RoleType role) find out membership of group

Table 3: Corona Peer Group Interface

Reliability/Awareness Cost in the Peer Group Service

The peer group service ensures strong awareness and reliabil-

ity amongst the principals. The cost to achieve this is of the

order of 3p, where p is the number of principals. Since the

number of principals in a peer group is typically small, this

cost will be reasonable.

Example Usage Scenarios

We describe below some scenarios that illustrate how the

above interfaces can be used by collaborative applications.

The first collaboration scenario pertains to a group where a

source is disseminating data to users who view the data but do

not interact or change this data. We describe how a publish-

subscribe group is created, subscribed to, and published to

by publishers and subscribers. The second collaboration sce-
nario pertains to a collaboration group where participants can

collaborate on the data, interacting and changing the data. We

describe how a peer group is created, how members join it,

messages are sent, and view changes and failures are handled.

Within the context of UARC, we describe a publish-

subscribe group for the IRIS magnetometer data. The

magnetometer data source application (the publisher) first

uses the connecto call to establish a connection to its pri-

mary distributor. After connecting, the publisher uses the

createServiceo method to create a new service, “iris-data”.

From this call it gets back an identifier for this service. The

primary distributor of this publisher then publicizes the new
group to other distributors. Users of client applications,

such as the UARC 2-D data viewer for viewing the data,

would join the collaboration by first using connecto, then

the getServicesListo method to get a list of known services.

From this list, they would choose the identifier for “iris-

data” and use subscribe to join “iris-data” in the role of

subscriber. Note that since this is a publish-subscribe group,

other subscribers and publishers would be unaware of such

joins. The use of a publish-subscribe group is reasonable

for this application; because the users are privately viewing

data.

We next describe a scenario where a peer group is formed

for the purpose of annotating the IRIS data. Assume that the

subscribers of the IRIS service decide to form a peer group

to annotate the IRIS data displays. A user application can
use the createGroupo method to create the peer group “iris-

annotation”. The primary distributor will distribute this new

group information to all distributors. After connecting and

getting the list of groups, users can join the collaboration

by executing joinGroupo. They can choose the role of a

principal-they will be able to create, edit and delete anno-

tations, or the role of an observer, capable of only seeing the

annotated data, but not modifying it. Who can join as a prin-

cipal and who canjoin as an observer is left to the using appli-

cation. When another principal joins (or leaves the group by

executing the leaveGroupo), the distributors will notify all

other principals in “iris-annotation” via the awareness noti-

fication mechanism using each principal’s AwarenessUpdate

callback routine provided in joinGroupo.

Note that the awareness levels are reasonable for this appli-

cation, because annotating is an interactive task, and each
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principal will want to be aware of others annotating the data.

If an observer failed or left, the other observers in “iris-

annotation” would not be notified, nor would the principals,

unless they requested such notification.

How Corona Addresses Group Collaboration Require-

ments

We now return to the original group collaboration require-

ments outlined in the Group Collaboration Requirements sec-

tion and describe how they are addressed by Corona.

1. Di@erentkinds of data require different levels of consis-

tency Corona provides weaker consistency requirements and

stronger consistency requirements with the appropriate se-

mantics through the publish/subscribe and peer group ser-

vices, respectively.

2. Different modes of collaboration require different kinds

of awareness. Corona provides weak awareness guarantees

to peer group observers and subscribers and strong aware-

ness guarantees to peer group principals by distinguishing be-

tween them through differences in view management.

3. Dynamics in consistency and awareness requirements vary

upon usage. Corona provides for dynamic change in reli-

ability and awareness guarantees through the publish/sub-

scribe service’s interface for allowing subscribers to join peer

groups as observers and thus gain stronger awareness and

vice-versa.

4. Different participant roles imply different awareness re-

quirements. By providing the distinction between principals

and observers within a peer group collaboration, Corona pro-

vides different awareness guarantees for each type of peer

group member.

5. Different collaborative applications have different scala-

bility requirements. Corona provides data dissemination ca-

pability to large groups with weak reliability and awareness

guarantees with thepublish/subscribeservice and peer shared

data capability to small groups with strong reliability and

awareness guarantees with the peer group service.

6. Failure notification. Corona provides failure notification

to principalsin a peer group collaboration as part of the strong

awareness guarantees provided to peer group principals.

CORONA PROTOCOLS AND IMPLEMENTATION

We describe briefly the protocols used to implement the prim-

itives of the two classes of Corona services. There are two

main aspects to the protocols: view management and rnulti-

casting, View management ensures awareness of the various

users as well as performs failure notification. Multicasting

involves sending the message to one or more destinations and

ensuring reliable delivery.

Message Management Protocol Driver

M*age Delivery and

Stability Manager

Message Multknst Manager

Figure 4: Major Components of the Software Architecture

The main components used to implement the protocols are il-

lustrated in Figure 4. We describe each and their implement-

ation below:

View Manager

The view manager component is responsible for ensuring that
a given user is aware of other users in the collaborative ses-

sions it is a part of. Depending on the role of the user in these

collaborative sessions, i.e., whether the user is a publisher,

subscriber, observer, or principal, the view manager executes

the appropriate protocols for ensuring that the user maintains

the level of awareness associated with its role.

Each distributor process maintains three views: the view

consisting of the other distributors in the system; the view

consisting of the set of local publish-subscribe clients;

and the view of peer groups and their members. In the

distributor implementation, these views are managed by

three components—a DistributorViewManager that uses a

strong group membership protocol [8] to maintain a con-

sistent view of active distributor processes; the PublishSub-

scribeClientViewManager which maintains a single distribu-

tor’s view of services and local publisher/subscriber clients,

and the PeerGroupViewManager which maintains a view of

known peer groups and their members-observers and princi-

pals.

Message Multicast Manager

This component multicasts a message to a group of users. It

obtains from the ViewManager a list of destinations, and for

each destination, the timeout and retransmit values from the

Failure Manager. The message is then sent to each destina-

tion and retransmitted at the timeout interval or until an ac-

knowledgment is received. If the number of retransmits ex-

ceeds some maximum, the Failure Manager is notified.

Failure Manager

The Failure Manager has several functions. It maintains

timeout and retransmit values for each destination that the

user wishes to send messages to, providing this information

to the Message Multicast Manager when it needs to multicast

a message to a group of users.

The Message Multicast Manager in turn informs the Failure

Manager when it does not receive an acknowledgment for a

particulw message from a destination. The Failure Manager

then informs the appropriate view manager to initiate a view

147



change that would exclude the particular destination from the

view of this process. A further function, failure notification,

is carried out on behalf of the View Manager. For instance,

suppose a principal in a group is detected to have failed. After

being notified of the failure, the View Manager provides the

Failure Manager with a list of active principals for that group.

The Failure Manager then sends a failure notification to all

active principals.

Message Delivery and Stability Manager

This component is responsible for delivering received mes-

sages to the application. It also buffers the message until it

knows that all of the other users in the group have received

it. It thus helps to ensure the various forms of reliability sup-

ported by the services. Ordering (such as FIFO) and other

delivery rules are applied to messages here.

Message Management Protocol Driver

This component interprets each incoming message and inter-

acts with the appropriate component (View Manager, Mes-

sage Multicast Manager, Failure Manager) to take further ac-

tions based on that message type and content.

Implementation Status

The initial implementation of Corona provides the pub-

lisher/subscriber and peer group client libraries that provide

the interfaces itemized in Tables 2 and 3. Support for view

maintenance, reliable UDP-based multicast, failure detec-

tion, and awareness notification is provided by the distributor.

This C++ implementation has been tested on UNIX platforms

including SunOS 4.2, Solaris, HP-UX and NeXT.

The development of the Java-based CBE [10], which has a

Web-browser-based applet architecture of a Session Manager

coordinating multiple applets, each being a node in an ap-

plet group (a distributed chatbox, data viewer, shared editor,

or other collaborative application), is motivating the Corona

Java implementation. Corona will provide applet group com-

munication and awareness services by allowing Java applets

to communicate over the Internet via Corona’s distributors.

The Java implementation of Corona that is under way to sup-

port the CBE consists of the client publish-subscribe inter-
face, client peer group interface, and reliable multicast trans-

port layer that enables Java applet clients to communicate

with existing C++ distributors.

In both the C++ and Java implementation, each compo-

nent consists of one or more self-contained classes with

well-defined interfaces. The Java implementation is be-

ing developed on Solaris, and will likely be used on other

platforms that support Java. For more information on

the Java implementation, see the Corona Web Page at
http:llwww.eecs.umich.edul-rhalllcorona.html.

RELATED WORK

Many communications services providing group member-

ship and multicast have been developed, including Isis [2],

Consul [12], Transis [1], Horus [15], and SRM [6]. Our

service, Corona, which is strongly motivated by the unique

needs of group collaboration systems, is different from these

services in a number of respects. Corona differentiates
amongst classes of users, and provides different users with

different levels of reliability and awareness information. In

earlier communication services, all users received the same

levels of reliability and awareness information. Further, in

Corona, reliability and awareness are traded-off with scala-

bility. So the peer group service in Corona provides strong

levels of reliability and awareness information in a non-

salable way, to be used in small, synchronized groups, and

the publisldsubscribe service provides weaker reliability and

awareness information, in a scalable way, to be used for

large-scale dissemination of data. Corona also supports dy-

namic transitions between the two classes of services.

CONCLUSIONS AND FUTURE WORK

In this paper, we have considered the problem of providing

communication protocol support for large-scale group col-

laboration systems for use in environments such as the Inter-

net which are subject to packet loss, wide variations in end-

to-end delays, and transient partitions. We identified a set

of requirements that are critical for the design of group col-

laboration systems. We presented a communication service,

Corona, that attempts to meet these requirements,

Corona supports two communication paradigms: the pub-

lisldsubscnbe paradigm and the peer group paradigm. In the

publish/subscribe paradigm one or more data sources orpub-

lishers send data to multiple subscribers. This paradigm is

characterized by the anonymous nature of communication,

where a publisher is aware of the service and the possibility of

a set of subscribers, but the subscribers are unaware of each

other and only aware about the service that they are receiv-

ing data from. In the peer group paradigm of communication

on the other hand, all the group members are aware of each

other, and can send and receive data to and from each other.

Wepresented the interfaces provided by Corona to group col-

laboration applications allowing them to utilize the above

communication paradigms. We described the semantics as-

sociated with each interface method and showed how it is

able to meet the requirements as identified. We described the

functionality of the components that provide these semantics

and their implementation status.

Future plans include integration with the CBE applets for

use by UARC’S scientists, exploration of further communi-
cation services, generalization of the two-level hierarchy to

n-levels, and exploration of various multicast semantics.
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