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ABSTRACT

Context. The final performance of current and future instruments dedicated to exoplanet detection and characterization (such as
SPHERE on the European Very Large Telescope, GPI on Gemini North, or future instruments on Extremely Large Telescopes) is
limited by uncorrected quasi-static aberrations. These aberrations create long-lived speckles in the scientific image plane, which can
easily be mistaken for planets.
Aims. Common adaptive optics systems require dedicated components to perform wave-front analysis. The ultimate wave-front mea-
surement performance is thus limited by the unavoidable differential aberrations between the wave-front sensor and the scientific
camera. To reach the level of detectivity required by high-contrast imaging, these differential aberrations must be estimated and com-
pensated for. In this paper, we characterize and experimentally validate a wave-front sensing method that relies on focal-plane data.
Methods. Our method, called COFFEE (for COronagraphic Focal-plane wave-Front Estimation for Exoplanet detection), is based on
a Bayesian approach, and it consists in an extension of phase diversity to high-contrast imaging. It estimates the differential aberra-
tions using only two focal-plane coronagraphic images recorded from the scientific camera itself.
Results. We first present a thorough characterization of COFFEE’s performance by means of numerical simulations. This charac-
terization is then compared with an experimental validation of COFFEE using an in-house adaptive optics bench and an apodized
Roddier & Roddier phase mask coronagraph. An excellent match between experimental results and the theoretical study is found.
Lastly, we present a preliminary validation of COFFEE’s ability to compensate for the aberrations upstream of a coronagraph.

Key words. instrumentation: adaptive optics – instrumentation: high angular resolution – techniques: image processing –
methods: numerical – methods: laboratory – telescopes

1. Introduction

Exoplanet imaging is one of the main challenges in today’s as-
tronomy. A direct observation of these planets can provide infor-
mation on both the chemical composition of their atmospheres
and their temperatures. Such observations have recently been
made possible (Kalas et al. 2008; Marois et al. 2008; Lagrange
et al. 2009), but only thanks to their high mass or their wide
apparent distance from their host star.

Being able to image an object as faint as an extra-solar
planet very close to its parent star requires the use of extreme
AO (XAO) systems coupled to a high-contrast imaging tech-
nique, such as coronagraphy. Instruments dedicated to exoplanet
imaging using these two techniques (SPHERE on the VLT,
Beuzit et al. 2007; GPI on Gemini North, Macintosh et al. 2008)
are currently being integrated. The performance of such systems
is limited by residual speckles on the detector. These speck-
les, which originate in quasi-static non common path aberra-
tions (NCPA), strongly decrease the extinction provided by the
coronagraph and can be difficult to distinguish from an exo-
planet. To achieve the ultimate system performance, these aber-
rations must be measured and compensated for. The current-
generation instruments, SPHERE and GPI, respectively rely on

phase diversity (Gonsalvez 1982) and an interferometry ap-
proach (Wallace et al. 2010) to compensate for these NCPA.

Several techniques dedicated to high-contrast imaging sys-
tem optimization have been proposed for future systems. Some
of them rely on a dedicated wave-front sensing hardware (Guyon
et al. 2009), others use scientific focal plane data assuming small
aberrations. Speckle nulling iterative techniques (Bordé & Traub
2006; Give’on et al. 2007) estimate the electric field in the de-
tector plane using at least three images. The technique proposed
by Baudoz et al. (2006) relies on a modification of the imaging
system, but requires only one image. These techniques aim at
minimizing the energy in a chosen area (“dark hole”), leading
to a contrast optimization on the detector (Trauger et al. 2010;
Baudoz et al. 2012) in a closed loop process.

We have recently proposed a focal-plane wave-front sensor,
COFFEE (Sauvage et al. 2012), which is an extension of conven-
tional phase diversity (Mugnier et al. 2006) to a coronagraphic
system. Since COFFEE uses focal-plane images, it is possible
to characterize the whole bench without any differential aberra-
tion. This method requires only two focal-plane images to esti-
mate the aberrations upstream of the coronagraph without any
modification of the coronagraphic imaging system or assuming
small aberrations. COFFEE’s principle and its application to the
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Fig. 1. Coronagraphic imaging instrument: principle.

apodized Roddier & Roddier phase mask (ARPM) are described
in Sect. 2. In Sect. 3, we evaluate the quality of NCPA estimation
by realistic simulations. In Sect. 4, we present the experimental
results from the laboratory demonstration of COFFEE on an in-
house adaptive optics bench (BOA) with an ARPM. Section 5
concludes the paper.

2. COFFEE: principle

2.1. Extension of phase diversity to coronagraphic images

Figure 1 describes the coronagraphic imaging scheme consid-
ered in this paper. We consider four successive planes denoted A
(circular entrance pupil of diameter Du), B (coronagraphic fo-
cal plane), C (Lyot Stop), and D (detector plane). The optical
aberrations are considered as static and introduced in the pupil
planes A and C. The coronagraphic device is composed of a fo-
cal plane mask located in plane B and a Lyot Stop situated in
plane C. No particular assumption is made on the pupil shape
or intensity. Thus, the description of COFFEE is compatible
with several coronagraphic devices. COFFEE uses two images,
ifc and idc , recorded on the detector (plane D in Fig. 1) that, as
in phase diversity, differ from a known aberration, φdiv, to esti-
mate aberrations both upstream (φu) and downstream (φd) of the
coronagraph.

Considering the calibration of the instrument with an unre-
solved object, we use the following imaging model:

ifoc
c = α.hdet � hc(φu,φd) + nfoc + β

idiv
c = α.hdet � hc(φu + φdiv,φd) + ndiv + β

(1)

where α is the incoming flux, hc the coronagraphic “point spread
function” (PSF) of the instrument (i.e. the response of a coro-
nagraphic imaging system to a point source), hdet the known
detector PSF, nfoc and ndiv are the measurement noises, β is a
uniform background (offset), and � denotes the discrete convo-
lution operation. Such an imaging model can be used for any
coronagraphic PSF expression hc. The measurement noises nfoc

and ndiv comprise both photon and detector noises. Because cal-
ibration is assumed to be performed with high flux levels, we
adopt a non-stationary white Gaussian model, which is a good
approximation of a mix of photon and detector noises. Its vari-
ance is the sum of the photon and detector noise variances:
σ2

n[t] = σ2
ph[t] + σ2

det (Mugnier et al. 2004), with t the pixel
position in the detector plane. The former can be estimated as
the image itself thresholded to positive values, and the latter can
be calibrated prior to the observations.

We adopt a maximum a posteriori (MAP) approach and esti-
mate the aberrations φu and φd, the flux α, and the background β
that minimize the neg-log-likelihood of the data, potentially pe-
nalized by regularization terms on φu and φd designed to enforce
smoothness of the sought phases:

(α̂, β̂, φ̂u, φ̂d) = arg min
α,β,φu,φd

J(α, β,φu,φd) (2)

where

J(α, β,φu,φd) =
1
2

∥∥∥∥∥∥ ifoc
c − (α.hd � hc(φu,φd) + β)

σfoc
n

∥∥∥∥∥∥
2

+
1
2

∥∥∥∥∥∥ idiv
c − (α.hd � hc(φu + φdiv,φd) + β)

σdiv
n

∥∥∥∥∥∥
2

+R(φu) + R(φd) (3)

where ‖x‖2 denotes the sum of squared pixel values of map x,
σfoc

n , and σdiv
n are the noise standard deviation maps of each im-

age, and R is a regularization metric for the phase.
Any aberration φ is expanded on a basis {Zk} that is typi-

cally either Zernike polynomials or the pixel indicator functions
in the corresponding pupil plane: φ =

∑
k ak Zk where the sum-

mation is, in practice, limited to the number of coefficients con-
sidered sufficient to correctly describe the aberrations. In this
paper, the phase is expanded on a truncated Zernike basis. The
impact of using a regularization metric with such a basis is stud-
ied later in this paper. In the MAP framework, the regularization
metrics R(φu) and R(φd) are deduced from the assumed a pri-
ori statistics of φu and φd. Assuming these aberrations are zero-
mean, Gaussian, and neglecting a priori correlations between
Zernike modes, we obtain, for an estimation performed on N
Zernike modes:

R(φx) =
1
2

at
xR−1

ax
ax =

1
2

N∑
k=1

a2
xk

σ2
xk

, (4)

where σ2
xk

is the assumed phase variance per Zernike mode, Rak

the covariance matrix, and ax a N element vector containing the
estimated Zernike coefficients axk . Here x is either u (upstream)
or d (downstream).

The minimization of metric J(α, β,φu,φd) of Eq. (3) is per-
formed by means of a limited memory variable metric (BFGS)
method (Press et al. 2007; Thiébaut 2002), which is a fast quasi-
Newton type minimization method. It uses both gradients ∂J

∂φu

and ∂J
∂φd

. Flux α and offset β are analytically obtained using gra-

dients ∂J
∂α

and ∂J
∂β

(implementation details, including gradient ex-
pressions, can be found in Appendix A).

Sauvage et al. (2012) established that a suitable diversity
phase φdiv for COFFEE was a mix of defocus and astigmatism:
φdiv = adiv

4 Z4 + adiv
5 Z5 with adiv

4 = adiv
5 = 80 nm rms, intro-

duced upstream of the coronagraph. We therefore use this diver-
sity phase in the following.

2.2. Coronagraphic imaging model

The imaging model used by COFFEE in the criterion minimiza-
tion (Eq. (3)) requires a coronagraphic PSF expression. In this
paper, we use the analytical coronagraphic imaging model devel-
oped by Sauvage et al. (2010), whose formalism is developed in
this section, where r is the pupil plane position vector, r its mod-
ulus, and γ the focal plane position vector. The entrance pupil
function Pu(r) is such that:

Pu(r) = Π

(
2r
Du

)
Φ(r) (5)

with Π
(

2r
Du

)
= 1 for r ≤ Du

2 , pupil entrance diameter, 0 other-
wise, andΦ is an apodization function. In this paper, we consider
that the impact of amplitude aberrations is negligible, which is a
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reasonable assumption for a ground-based, high-contrast imag-
ing system such as SPHERE. Considering only static aberrations
(no residual turbulent aberrations), the electric field ΨA in the
entrance pupil plane can be written as

ΨA(r) = Pu(r)e jφu(r). (6)

The field amplitudeΨB(γ) in plane B can be calculated, follow-
ing Sauvage et al. (2010), using the analytical coronagraphic
imaging model (which is called “perfect coronagraph model”
hereafter):

ΨB(γ) = FT−1(ΨA(r)) − η0FT−1(Pu(r)), (7)

where η0 is the scalar that minimizes the outcoming energy from
focal plane B, whose analytical value is given by

η0 =
1
N
�

S
Ψ∗A(r)Pu(r)dr, (8)

where

N =
�

S
P∗u(r)Pu(r)dr. (9)

It is worthy mentioning that η0 is the exact definition of the in-
stantaneous Strehl ratio given by Born & Wolf (1989). One can
notice that η0 = 1 when there is no aberration upstream of the
coronagraph (φu(r) = 0), so thatΨB = 0 in such a case. No aber-
ration in the entrance pupil leads to no outcoming energy from
plane B, and thus to a perfect extinction in the detector plane D.

Propagating the wave from plane B (Eq. (7)) to plane D, we
can write the electric field ΨD(γ) in the detector plane:

ΨD(γ) = FT−1
{
Pd(r)e j(φu(r)+φd(r))

}
− η0FT−1

{
Pd(r)e jφd(r)

}
,

(10)

where Pd(r) is the Lyot stop pupil function: Pd(r) =

Π
(

2r
Dd

)
Pu(r), with Dd the Lyot stop pupil diameter (Dd ≤ Du).

For the sake of simplicity, we omit the spatial variables r and γ
in the following. The coronagraphic PSF of the instrument, de-
noted by hc, is the square modulus of ΨD:

hc(φu,φd) =
∣∣∣FT−1(Pde j(φu+φd))

− η0FT−1(Pde jφd )
∣∣∣2. (11)

In this paper, this expression of the coronagraphic PSF is the
one used by COFFEE for estimating φu and φd; i.e., Eq. (11) is
inserted into the imaging model (Eq. (1)) used in the criterion
minimization described in Eq. (3).

As described by Sauvage et al. (2010), this model, which an-
alytically describes the impact of a coronagraph in an imaging
system, considers that the coronagraph removes the projection
of the incoming electric field on an Airy pattern, represented
by the parameter η0 (Eq. (8)). Since it does not assume small
aberrations, it can be used for any wave-front error upstream of
the coronagraph. The quality of the fit of this analytical imag-
ing model with the ARPM coronagraph is discussed later in this
paper (Sect. 3.5).

Table 1. COFFEE: simulation parameters used for the performance as-
sessments of Sects. 3.1–3.3.

Simulation

Image size 93 × 93 λ
D (128 × 128 pixels,

oversampling factor: 1.38)
Light spectrum monochromatic (λ=635 nm)
Aberration upstream of the
coronagraph (φu)

WFE = 80 nm rms

Aberration downstream of
the coronagraph (φd)

WFE = 20 nm rms

Zernike basis used for φu
and φd simulation

36 Zernike polynomials

Phase estimation: COFFEE

Zernike basis used for φu
and φd reconstruction

36 Zernike polynomials

Regularization metric none

3. Performance assessment by numerical
simulation

The aim of this section is to quantify the impact of each er-
ror source on COFFEE’s aberration estimation. Such a study
will show COFFEE’s sensitivity to the classical error sources
that limit the phase retrieval in a real system (and thus the fi-
nal extinction of the coronagraph), which will be of high in-
terest in defining COFFEE’s upgrades. Likewise, it will allow
us to estimate the accuracy level expected on our AO bench.
In this section, we present the evolution of this reconstruction
error with respect to the incoming flux (Sect. 3.1), to the size
of the source (Sect. 3.2), to an error made on the assumed di-
versity phase used in the reconstruction (Sect. 3.3), and to the
number of Zernike modes used in the reconstruction (Sect. 3.4).
For each error source, coronagraphic images will be computed
using the imaging model presented in Eq. (1), using the per-
fect coronagraph model to calculate the coronagraphic PSF hc
whose expression is given Eq. (11). COFFEE will then perform
the phase estimation using these two images. The compatibility
of COFFEE with realistic coronagraphic images will be stud-
ied as well (Sect. 3.5) by computing coronagraphic images us-
ing a realistic coronagraph model and then running COFFEE to
estimate the aberrations both upstream and downstream of the
coronagraph.

Table 1 gathers the parameters used for these simulations.
The chosen wave-front error (WFE) values upstream and

downstream of the coronagraph for these simulations are typi-
cal of the aberrations that will be estimated on our AO bench
in Sect. 4 (so that experimental results can be compared to the
following simulations). Since these simulations are performed
with a small number of Zernike modes (36), there is no need of
regularization metrics in such simulations.

To simulate realistic aberrations, we have considered that the
variance per Zernike mode σ2

k was decreasing with the radial
order n(k) of the considered Zernike mode k (Noll 1976):

σ2
k ∝

1
n(k)2

· (12)

This corresponds to a decrease in the static aberration spatial
spectrum as 1

|ν|2 , where ν is the spatial frequency, which is a
common assumption for mirror fabrication errors. To evaluate
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Fig. 2. Aberrations upstream (φu (WFE = 80 nm), top) and downstream
(φd (WFE = 20 nm), bottom) of the coronagraph: reconstruction er-
ror (solid red line) as a function of the incoming flux α. For compar-
ison, 1

α
(cyan dashed line) and 1√

α
(magenta dashed line) theoretical

behaviours are plotted for detector noise only and photon noise only
(respectively).

COFFEE’s performance, we define the reconstruction error εx
(x stands for u (upstream) or d (downstream)) as

ε =

√√√
N−1∑
k=2

|ak − âk |2 (13)

with ak the Zernike coefficients (starting with k = 2 correspond-
ing to tilt) used for the simulation, âk the reconstructed Zernike
coefficients, and N the number of Zernike modes. In this section,
every reconstruction error value is an average value, computed
from ten independent simulated phases.

3.1. Noise propagation

The ultimate limitation of an instrument lies in the amount of
noise in the images. In Fig. 2, we present the reconstruction er-
ror for the aberrations upstream (φu) and downstream (φd) of
the coronagraph with respect to the total incoming flux. Photon
noise and detector noise (σdet = 6e−) are added in the corona-
graphic images for simulation.

The evolution of the reconstruction error presented in Fig. 2
is proportional to (1/α) for the detector noise limited regime
(low flux) and to (1/

√
α) for the photon noise limited regime

(high flux). In this figure, it can be seen that for an incoming

Fig. 3. Error reconstructions upstream (red line) and downstream (blue
line) of the coronagraph as functions of the size of the source on the
coronagraph.

flux α ≥ 106 photons, the reconstruction error εu for the phase
upstream of the coronagraph is smaller than 1 nm rms. Thus, in
a calibration process, where high values of flux (≥106 photons)
can be easily reached, COFFEE’s performance will not be sig-
nificantly affected by noise.

It is noteworthy that the results of many similar simulations
with various levels of upstream aberrations show that COFFEE’s
reconstruction error does not depend on the amplitude of the
aberrations upstream of the coronagraph, as long as the diver-
sity phase amplitude is larger than the WFE of the aberrations to
be estimated.

3.2. Impact of the source size on the reconstruction error

Our imaging model, presented in Sect. 2.1 (Eq. (1)), assumes
an unresolved object. Thus, the presence of a real source with a
given spatial extension will have an impact on the phase recon-
struction, which is quantified here. We consider here a Gaussian-
shaped laser source, emitted from a single-mode fiber. Because
of the incoming light coherence, it can be represented as a
Gaussian amplitude in the entrance pupil plane (where COFFEE
assumes a uniform amplitude). Knowing this, coronagraphic im-
ages are simulated by considering a small coherent Gaussian-
shaped beam (FWHM ≤ 0.5 λD ) on the coronagraph, and then
processed by COFFEE.

Since the imaging model assumes an unresolved object, both
reconstruction errors for the phases upstream and downstream
of the coronagraph increase with the FWHM of the coherent ob-
ject, as showed in Fig. 3, but remains low: for an FWHM smaller
than λ

3D , the reconstruction error is indeed sub-nanometric. The
size of the laser source will thus definitely not be a limitation
for COFFEE: if this error is not negligible in the total error bud-
get, it is possible to include it in the imaging model used by
COFFEE (Eq. (1)) as a non-uniform (Gaussian) entrance pupil
function Pu(r).

3.3. Sensitivity to a diversity phase error

The diversity phase φdiv = adiv
4 Z4 + adiv

5 Z5 has been defined
in Sect. 2.1. This phase φdiv is one of the inputs that COFFEE
needs in order to perform phase retrieval, so it must be calibrated
as accurately as possible. To optimize the use of COFFEE, the
impact of an error on such a calibration is studied. In this sec-
tion, we consider that the diversity phase used to create the
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Fig. 4. Error reconstructions upstream (solid red line) and downstream
(solid blue line) of the coronagraph as functions of the error on the
diversity phase.

diversity image is not perfectly known. The coronagraphic sim-
ulated diversity image is computed with a diversity phase φ′div =
φdiv + φerr, with φerr a randomly generated phase of given rms
value, and COFFEE’s phase reconstruction is done considering
that the diversity phase is equal to φdiv. In Fig. 4, we see that the
reconstruction error increases linearly with the calibration error
on the diversity phase, with a slope of 0.5. Thus, the requirement
on the calibration precision for the diversity phase is typically
the precision wanted for the aberration measurement.

3.4. Impact of aliasing

The phase estimation is performed here on a truncated Zernike
basis. In real images (recorded from a bench), some speck-
les will originate in high-order aberrations. These aberrations,
which cannot be fitted by the truncated Zernike basis, will have
an impact on the phase estimation, called aliasing error hereafter.
Thus, it is necessary to study this aliasing error as a function of
the number of Zernike modes used in the phase reconstruction.
Here, we generate a phase on a large number of Zernike modes,
and compute the corresponding images using the perfect corona-
graph model. Aberrations both upstream and downstream of the
coronagraph are then estimated by COFFEE using an increasing
number of Zernike modes. Since one of the aims of this simula-
tion is to determine the size of the truncated Zernike basis to be
used with experimental data recorded on an in-house bench, the
noise level in the simulated images corresponds to the one we
have on this bench. The total incoming flux is 5 × 106 photons,
and the detector noise is σdet = 1 e− per pixel. Parameters used
for this simulation are gathered in Table 2. This simulation has
been done with and without a regularization metric, so that we
can demonstrate the relevance of this metric on phase estimation.

Figure 5 presents the evolution of the reconstruction errors
when the number of reconstructed Zernike modes increases.
Here, every reconstruction error (Eq. (13)) is calculated on a
basis of 350 Zernike modes; thus, the error originates both in
high-order aberrations, which are not considered by COFFEE
because of the Zernike basis finite size (modelling error), and
in the impact of these high-order aberrations on the estimated
ones (aliasing). The WFE corresponding to the aberrations that
are not estimated by COFFEE (from N to 350, where N varies
between 15 and 275 according to Table 2) is called “unmodelled
WFE” hereafter.

Table 2. COFFEE: simulation parameters for studying the aliasing
error.

Simulation
Image size 93 × 93 λ

D (128 × 128 pixels,
oversampling factor: 1.38)

Light spectrum monochromatic (λ = 635 nm)
Aberration upstream of the
coronagraph (φu)

WFE = 80 nm rms

Aberration downstream of
the coronagraph (φd)

WFE = 20 nm rms

Zernike basis used for φu
and φd simulation

350 Zernike polynomials

Incoming flux 5 × 106 photons
Noise photon noise, detector noise

(σdet = 1 e−)
COFFEE: phase estimation

Zernike basis used for φu
and φd reconstruction

from 15 to 275 Zernike
polynomials

Regularization metric With and without

Fig. 5. Error reconstructions upstream (top) and downstream (bottom)
of the coronagraph as functions of the number of reconstructed Zernike
modes, with a regularization metric (solid blue line) and without (solid
red line).

In the plot of the reconstruction error upstream of the coro-
nagraph evolution (Fig. 5, top), one can see that without a reg-
ularization metric, the reconstruction error increases for a large
number of Zernike modes. An interpretation of this behaviour
is the following: because high-order aberrations have a smaller
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Fig. 6. Error reconstruction upstream of the coronagraph with respect to
the WFE of the aberration upstream of the coronagraph.

variance, their associated speckle intensity is lower. Thus, ow-
ing to the photon and detector noise in the image, the SNR is
smaller for these aberrations. Such behaviour leads to a trade-off
between aliasing and noise amplification for the optimal number
of Zernike modes (Fig. 5). The best number of Zernike modes is
then a function of the aberrations level (WFE) and spectrum, as
well as of the level of noise. The use of a regularization metric al-
lows us to avoid this noise amplification (Fig. 5): the reconstruc-
tion error roughly reaches a saturation level (rather than growing
to very high values). Additionally, the use of regularization re-
duces the aliasing error, and avoids the need for the difficult and
somewhat ad hoc choice of number of Zernike modes for the
reconstruction.

According to the results presented in Fig. 5, we have cho-
sen to estimate the aberrations upstream and downstream of the
coronagraph on 170 Zernike modes with the regularization met-
ric of Eq. (4).

3.5. Model mismatch

We have already demonstrated that ARPM images are com-
patible with the perfect coronagraph model and therefore with
COFFEE estimation in Sauvage et al. (2012). The Roddier &
Roddier phase mask (RRPM; Roddier & Roddier 1997; Guyon
et al. 1999) consists in a π phase shifting mask slightly smaller
than the Airy disk. Additionally, the use of a circular prolate
function as entrance pupil apodization ΦP (ARPM), proposed
by Soummer et al. (2003), leads in a perfect case (no aberra-
tions upstream of the coronagraph) to a total suppression of sig-
nal in the detector plane. In the simulations presented hereafter,
realistic ARPM coronagraphic images are computed following
Soummer et al. (2007) to consider an accurate numerical repre-
sentation of Lyot-style coronagraphs. Then, we use COFFEE to
reconstruct both phases upstream and downstream of the coron-
agraph. Here, when using the formalism developed in Sect. 2.2,
the prolate apodization function ΦP is included in both simula-
tion and reconstruction imaging models.

Because the perfect coronagraph model is not exactly identi-
cal to an ARPM (although their responses to aberrations is very
close), there is a model mismatch in the estimation of aberrations
upstream of the coronagraph φu, which varies linearly with the
WFE of φu, as shown in Fig. 6. The model mismatch can thus be
quantified as 7.5% of the WFE rms value of φu, except for very
small WFE (≤1 nm rms), where the variation is non-linear, but
remains below 1 nm rms.

CameraWFS

Fibered source, 635 nmL1L2

L3

L4 L5

M2

M5

M1

M4

MP1

MP2

Pd

RRPM

DM

TT M

M3

Pu

BS

Φ

Fig. 7. Adaptive optics testbed schematic representation. Mi: fold mir-
rors; MPi: parabolic mirrors; Li: lenses (doublets); BS: beam splitter;
TTM: Tip-Tilt mirror; DM: deformable mirror; RRPM: coronagraphic
focal plane mask; Φ: prolate apodizer; WFS: AO wave-front sensor

Since the variation in this model mismatch varies linearly
with the WFE of φu, it should not limit the ability to compensate
for the aberration upstream of an ARPM using COFFEE as focal
plane wave-front sensor (WFS).

4. Laboratory demonstration

In this section we present experimental validations in the corona-
graphic phase diversity. These validations are done on the bench
BOA, described in Sect. 4.1. Section 4.2 describes a carefully
designed method developed to introduce calibrated static aberra-
tions on the AO bench to be measured with COFFEE. The error
made on the measurements of aberrations upstream of the coron-
agraph (NCPA) is quantified in Sect. 4.3. Section 4.4 presents the
static aberration measurement performance, and Sect. 4.5 details
the procedure for compensating for the measured aberrations.

4.1. Experimental setup

Figure 7 shows the design of our in-house bench. The input
beam, emitted from a fibered laser source (λ = 635 nm) comes
through the prolate apodizer Φ, which is in the entrance pupil
plane (Pu). The beam is reflected by the tip-tilt mirror (TTM)
and then by the deformable mirror (DM, entrance pupil, Du =
40 mm, 6 × 6 actuators). The beam-splitter sends a fraction
of the beam to the AO wave-front sensor (Shack-Hartmann,
5 × 5 sub-apertures). On the other channel, the light is focused
onto a RRPM, whose diameter is dc = 18.1 μm (angular di-
ameter is 1.06 λDu

). After going through the Lyot stop plane
(Pd, with Dd = 0.99Du), the beam is focused onto the camera
(256 × 256 pixels images with an oversampling of 2.75, detec-
tor noise σdet = 1 e−). For faster computations, recorded images
are re-binned to 128 × 128 pixels images with an oversampling
of 1.38.

4.2. Introduction of calibrated aberrations

To evaluate COFFEE’s performance, we introduce calibrated
aberrations on the bench using a process described in this sec-
tion. We consider an aberration phase φcal to be introduced on
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Fig. 8. Introduction of calibrated aberration on BOA: case of a pure
spherical aberration. Left: theoretical wave-front (top) and DM intro-
duced wave-front (bottom). Right: corresponding Zernike modes for the
theoretical introduced aberration (solid red line) and the DM introduced
aberration (dashed blue line).

BOA. First, since the phase is represented by the DM with a fi-
nite number of actuators (6 × 6), the introduced aberration will
not match the aberration φcal perfectly, as illustrated in Fig. 8 in
the case of a pure spherical aberration.

Our aim is here to introduce, using the DM, the closest aber-
ration to the aberrationφcal. We let F be the DM influence matrix
(obtained by calibration); any DM introduced aberration φDM

can be described as a set of actuator voltages u (φDM = Fu). We
are thus looking for the set ucal which solves the least-squares
problem:

ucal = arg min
u

∥∥∥Fu − φcal

∥∥∥2
. (14)

The solution of this problem can be written as

ucal = Tφcal, (15)

with T the generalized inverse of matrix F. Using the interaction
matrix D (resulting from calibration), we can compute the cor-
responding set of slopes scal (scal = Ducal), which can then be
used to modify the AO loop reference slopes sref. Thus, closing
the AO loop with the reference slopes sref + scal, we introduce
an aberration φDM

cal = Fucal = FTφcal on the bench, which is the
best fit of φcal in the least squares sense.

We also have to consider that the bench BOA presents its
own unknown static aberrations φBOA

u and φBOA
d upstream and

downstream of the coronagraph (respectively). Thus, if a cali-
brated aberration φcal is introduced in the entrance pupil, aberra-
tions φu upstream of the coronagraph will be

φu = φcal + φ
BOA
u . (16)

To get rid of the unknown aberration φBOA
u , we perform a differ-

ential phase estimation:

1. We introduce the aberration φDM
cal on the bench. A phase φ̂

+

u =

φ̂
DM
cal + φ̂

BOA
u is estimated using focused and diverse images

recorded on the camera.
2. The opposite aberration −φDM

cal is then introduced. A phase

φ̂
−
u = −φ̂DM

cal + φ̂
BOA
u is estimated.

3. The half difference φ̂
DM
cal =

φ̂
+

u−φ̂−u
2 is our estimate of φcal.

The first use of this process is to calibrate the diversity phase
itself. Since this phase will be introduced using the AO system,
the actually introduced diversity phase will not exactly match

the theoretical mix of defocus and astigmatism. We introduce
the aberrations φdiv and −φdiv on the bench using the AO sys-
tem. These two aberrations are then estimated using classical
phase diversity (no coronagraph), with a pure defocus of diver-
sity phase introduced using a flat glass plate of known thick-
ness e in a focused beam.

Such a process gives us an accurate estimation of the diver-
sity phase really introduced on the bench, with an estimated ac-
curacy of 4 nm rms on the introduced aberration. This calibration
is then used in COFFEE’s estimations performed on experimen-
tal images.

4.3. Performance assessment: error budget

From simulations presented in Sect. 3, we establish an error bud-
get for estimating aberrations upstream of the coronagraph using
experimental data:


 Photon and detector noise error: on the BOA bench, the typ-
ical incoming flux is fBOA = 5 × 106 photons. Knowing that
we have photon noise and a detector noise with σdet = 1 e−,
we can evaluate the noise error: εnoise = 0.9 nm rms.


 The diversity phase φdiv has been calibrated using classi-
cal phase diversity, using the process presented in Sect. 4.2.
Such an estimation has been performed with an error
of 4.0 nm rms (value calculated from an error budget evalu-
ated for a classical phase diversity estimation on the BOA
bench. Such accuracy has already been obtained on this
bench by Sauvage et al. 2007). According to Sect. 3.3,
this error on the diversity phase leads to an error εmodel =
2.0 nm rms.


 The source is a coherent Gaussian-shaped beam whose
FWHM is 0.27 λD on the coronagraph. According to the sim-
ulations of Sect. 3.2, this leads to a reconstruction error:
εobj = 0.7 nm rms.


 Residual turbulent speckles, which originate in uncorrected
turbulent aberrations, are not included in the imaging model.
To measure the impact of these speckle on the reconstruc-
tion, several wave-fronts have been successively recorded
using a commercial Shack-Hartmann wave-front sensor.
From these acquisitions, we calculate the WFE of the resid-
ual turbulent phase: σφturb = 1.2 nm rms. This residual tur-
bulence will create speckles on the detector, which will be
considered by COFFEE as originating in NCPA. Thus, the
residual turbulence error εturb made by COFFEE is estimated
to εturb = σφturb = 1.2 nm rms.


 Aliasing error, which originates in high-order aberrations,
has been studied in Sect. 3.4. For a phase upstream of the
coronagraph estimated on N = 170 Zernike modes, we
have εaliasing = 18.3 nm rms.


 From simulations, we know that the model mismatch is 7.5%
of WFE. For this study, we will not estimate aberrations with
a WFE stronger than 80 nm rms. For such a WFE, the model
error is εmodel = 6.0 nm rms.

As one can see in Table 3, the error budget is mainly driven by
the aliasing error. The second most important term is the model
mismatch (even though it goes to zero with the WFE).

4.4. Measurement of aberrations upstream
of the coronagraph

In this section, we introduce calibrated aberrations on the BOA
bench upstream of the coronagraph, and then estimate them with
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Table 3. COFFEE: error budget for the estimation of an aberration up-
stream of the coronagraph on BOA.

Error budget
Noise εnoise = 0.9 nm rms
Model mismatch εmodel = 6.0 nm rms
Error on diversity εdiv = 2.0 nm rms
Resolved object εobj = 0.7 nm rms
Residual turbulence εturb = 1.2 nm rms
Aliasing εaliasing = 18.3 nm rms

Total error ε =
√∑

i ε
2
i = 20.6 nm rms

Total error per Zernike
mode

ε′ = 1.6 nm rms per estimated
Zernike mode

Fig. 9. Estimation of a tilt aberration on BOA: calibration (solid blue
line) and COFFEE’s estimation with bound on the tip-tilt downstream
of the coronagraph (dashed crossed red line) and without boundaries
(dashed diamond green line).

COFFEE in order to evaluate its performance. In the course of
this study, we realized that the position of the coronagraphic im-
age on the detector (quantified by the tip-tilt downstream of the
coronagraph) is a critical issue. Indeed, it occurred that COFFEE
was able to perform phase retrieval only for downstream tip-
tilt [a2, a3] values within the range [−100 nm rms; 100 nm rms]
([− λ6D ; λ6D ]). To get rid of this constraint, we have developed a
method to perform a preliminary estimation of the tip-tilt down-
stream of the coronagraph. This method, which uses the diversity
image, is fully described in Appendix B.

4.4.1. Measurement of tip-tilt upstream of the coronagraph

We present the estimation of a tilt aberration upstream of
the coronagraph using COFFEE in this section. Using the
AO system, we introduce a tilt aberration by adding a constant
value δsTT to the AO wave-front sensor references slopes sref,
and then closing the AO loop on the slopes sref + δsTT. To ac-
curately calibrate the introduced tilt, for each position, we first
estimate the aberrations using classical phase diversity (no coro-
nagraph). Then, the RRPM is put in the focal plane, and the same
operation is repeated: for each position, we record two images,
and then estimate the aberrations using COFFEE.

From the upstream tilt reconstruction performed by
COFFEE (Fig. 9), we calculate an average reconstruction error:
εtilt = 2.1 nm. Part of this error is due to an error on the esti-
mation of tip-tilt downstream of the coronagraph. An improved

estimation has been performed by setting boundaries on the
downstream tip-tilt. Its value is evaluated before COFFEE’s es-
timation using the method described in Appendix B with the
diversity coronagraphic image recorded for a tip-tilt upstream
the coronagraph value close to 0 nm rms (centered corona-
graph). Such an estimation process gives us an estimation of
tip-tilt downstream of the coronagraph {ado

2 , a
do
3 } with an ac-

curacy of ±1.5 nm rms. Using this estimation as the starting
value for the minimization, and setting bounds of ±1.5 nm rms
on it, we processed the same experimental data. This, in turn,
results in a better estimation of tilt upstream of the corona-
graph (Fig. 9), with an average error εtilt = 1.5 nm, which is
close to the expected error per Zernike mode given in Sect. 4.3
(ε′ = 1.6 nm rms).

4.4.2. NCPA measurements

In this section, we introduce aberrations upstream of the corona-
graph. The aberration φcal is expanded on the first 15 Zernike
modes (which is the largest number of modes we can prop-
erly describe with our 6 × 6 DM), and then we estimate these
aberrations using COFFEE, following the process described in
Sect. 4.2. To take the DM action into account on the introduced
phase (illustrated in Fig. 8), aberrations φcal are first estimated
with classical phase diversity (no phase mask in the corona-
graphic focal plane, Sauvage et al. 2007). This estimation gives
us a calibration of the introduced aberration, which is then used
to evaluate the accuracy of COFFEE’s estimation.

At convergence of the reconstruction, a very good match can
be observed between the experimental images and the ones com-
puted for the estimated aberrations (Fig. 10, top and middle).
This, in turn, results in a very good match between the aberra-
tions measured by COFFEE (Fig. 10, right) and the introduced
ones (Fig. 10, left).

From the experimental phase estimation presented in Fig. 10,
we compute a reconstruction error between the classical diver-
sity phase calibrated aberration and COFFEE’s estimation:

εexp = 22.5 nm rms. (17)

One can notice that this error is close to the expected error bud-
get, i.e. that there is a good match between the performance as-
sessment study carried out in Sect. 3 and the experimental results
presented in this section.

4.5. Low-order NCPA compensation

Lastly, the ability of COFFEE to compensate for the aberra-
tions upstream of the coronagraph is experimented on BOA. In
Sect. 4.4, the aberrations upstream of the coronagraph are ex-
panded on 170 Zernike modes, in order to have the smallest re-
construction error (according to Sect. 3.4).

As previously mentioned, the compensation on BOA is lim-
ited to the 15th Zernike mode. Thus, what is required in a closed
loop process is the most accurate estimation of 15 Zernike modes
rather than an accurate measurement of every estimated Zernike
mode. Using a basis of 36 Zernike modes for the reconstruction
is sufficient to give an accurate estimation of the first 15 Zernike
modes: the aliasing error, which is the most important error
source, will mainly degrade the estimation accuracy of the re-
constructed high orders (close to Z36).

To demonstrate the ability of COFFEE to be used in a closed
loop, we introduce a set of aberrations on the DM by modi-
fying the reference slopes, as described in Sect. 4.2. Then, we
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Fig. 10. COFFEE: NCPA estimation of an introduced phase φcal on
BOA. Top: for an aberration +φcal, recorded coronagraphic image from
the bench (left) and computed image using the reconstructed aberra-
tion φ̂

+

u (right) (log. scale, same range for both images). Middle: same
images for an aberration −φcal introduced and a reconstructed aberra-
tion φ̂

−
u (log. scale, same range for both images). Bottom: calibrated

introduced aberration (left) and COFFEE estimated aberration (right).

use the pseudo-closed loop (PCL) method described in Sauvage
et al. (2007). This iterative process has two stages: for the PCL
iteration i:

1. acquisition of the focused i f
c and diverse i f

d images;

2. estimation of the aberration φ̂
i
u upstream of the coronagraph;

3. computation of the corresponding reference slopes correc-

tion δs = gDTφ̂
i
u, where D and T are the interaction and

influence matrices defined in Sect. 4.2 and g is the PCL gain;
4. the AO loop is closed on the modified reference slopes.

The computation time (step 2) varies from 1 min to 2.5 min, al-
lowing us to compensate for quasi-static aberrations upstream of
the coronagraph. This compensation process is limited by the
estimation accuracy of the first 15 Zernike modes performed
by COFFEE, which corresponds to the error budget established
in Sect. 4.3), and by the ability of the DM to reproduce a
given wave-front. Indeed, the correction introduced on the bench
(step 2 of the PCL process) is the best fit of the estimated
phase φ̂

i
u in the least-square sense (as presented in Sect. 4.2). The

difference between the estimated aberration and the actual intro-
duced correction will thus limit the compensation performance
of the PCL process. Considering these two limitations, one can
compute the variance σ2

BOA (for the first 15 Zernike modes) that
can be reached on the BOA bench:

σ2
BOA = 4.4 × 10−2 rad rms2. (18)

Fig. 11. PCL on the bench BOA (gPCL = 0.5): variance of the residual
static aberrations upstream of the coronagraph for the 36 COFFEE esti-
mated Zernike modes (solid red line) and the 15 corrected modes (solid
blue line). The magenta dashed line represents the ultimate performance
one can reach according to the error budget detailed in 4.3.

The correction and stabilization of the NCPA variance can be
seen in Fig. 11. One can see that the variance of the 15 corrected
Zernike modes reaches the expected asymptotic value σ2

BOA.
This result is the very first demonstration of COFFEE’s abil-
ity to compensate for aberrations upstream of the coronagraph.
A compensation at levels compatible with SPHERE or GPI-like
instruments will require using a DM with many more actuators,
and working on the reduction of the dominant term of the error
budget, which is aliasing.

5. Conclusion

In this paper, we have presented a thorough simulation study
(Sect. 3) and a first experimental validation (Sect. 4) of the
coronagraphic wave-front sensor called COFFEE, which con-
sists mainly in the extension of the phase diversity concept to a
coronagraphic imaging system. From the validation and careful
performance assessment of COFFEE, we showed that COFFEE
is currently limited by the aliasing error, due to high-order aber-
rations, which are difficult to model with a Zernike basis.

In Sect. 4, we presented a first experimental validation of
COFFEE using an ARPM. We introduced calibrated aberrations
upstream of the coronagraph (NCPA), using the AO sub-system,
and estimated them with COFFEE. The accuracy we obtained on
these estimation shows a very good match with our error budget.
Lastly, we used COFFEE in an iterative process to perform a
preliminary validation of COFFEE’s ability to compensate for
the aberrations upstream of the coronagraph.

Several perspectives are currently considered to optimize
COFFEE: firstly, in order to minimize the impact of the alias-
ing error on the phase reconstruction, we plan to perform the
phase reconstruction on a pixel-wise map, which is more suit-
able than a truncated Zernike basis. Secondly, we would like to
improve the imaging model, both to make COFFEE work with
other coronagraph than the ARPM and to reduce the model error,
which is currently the second most important one, even though
it goes to zero with the WFE. Two solutions are considered. In
the absence of residual turbulence, an accurate imaging model is
obtained by propagating the electric field through each plane of
the coronagraphic imaging system (Fig. 1) for an arbitrary focal
plane coronagraphic mask. Such a method, where no model error
needs to be considered, can be used for a laboratory calibration.
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Alternatively, a more accurate analytical imaging model, which
could include a residual turbulent aberration, can be developed.
Such a model, which could include a residual turbulent aberra-
tion, will ultimately allow us to perform NCPA estimation on
images from the sky. These improvements should allow us to es-
timate and compensate for the aberrations upstream of the coro-
nagraph using COFFEE with a nanometric precision in a closed
loop process.

A further perspective is to extend COFFEE to phase and am-
plitude aberration estimation, in order to create a dark hole re-
gion in the coronagraphic image.
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Appendix A: Implementation details

COFFEE performs a phase estimation by minimizing a criterion
J whose expression is given by Eq. (3). To estimate φu and φd
(expanded on a truncated Zernike basis), we need both gradients
∂J
∂au

and ∂J
∂ad

, where ax = {ax1 , ax2 , ..., axN } is a vector that con-
tains the Zernike coefficients, for an aberration expanded on N
Zernike modes (x is for u (upstream) or d (downstream)).

Let us write the numerical expression of Jfoc, using the nota-
tions defined in Sect. 2.1:

J =
1
2

∑
t

∣∣∣∣∣∣ i
foc
c [t] − α.hdet[t] � hfoc

c [t] − β
σfoc

n [t]

∣∣∣∣∣∣
2

+
1
2

∑
t

∣∣∣∣∣∣ i
div
c [t] − α.hdet[t] � hdiv

c [t] − β
σdiv

n [t]

∣∣∣∣∣∣
2

+ Rφu
+ Rφd

= Jfoc + Jdiv + Rφu
+ Rφd

.

(A.1)

With t the pixel position in the detector plane. σfoc
n and σdiv

n are
the noise variance maps. Considering the expression of J, we
derive Jfoc, and then deduce the gradients expressions of Jdiv us-
ing a trivial substitution. Expressions of the regularization terms
gradients

∂Rφx
∂ax

are given by

∂Rφx

∂ax
= R−1

ax
ax. (A.2)

The calculation of gradients ∂J
∂φu

and ∂J
∂φd

is done following

Mugnier et al. (2001): first, we calculate the gradient of Jf with
respect to the PSF hc:

∂Jfoc

∂hfoc
c

=
1

σfoc
n

2

[
αhdet

(
α.hdet � hfoc

c − ifoc
c

)]
. (A.3)

Then, the calculation consists in derivating the gradient of the
PSF hc with respect to phases φu[k] and φd[l] at pixels k, l
in pupils upstream and downstream of the coronagraph, re-
spectively, and applying the chain rule, as already done in a

non-coronagraphic case, e.g. in Thiébaut & Conan (1995). The
calculation of both gradients ∂Jfoc

∂φu[k] and ∂Jfoc

∂φd[l] gives

∂Jfoc

∂φu[k]
= 2�

{
ψ∗[k]

[
FT

(
∂Jfoc

∂ hfoc
c

(Ψ − η0Ψd)

)]}
[k]

− 2�
⎛⎜⎜⎜⎜⎜⎝ ∂η0

∂φu[k]

∑
t

∂Jf

∂ hfoc
c

Ψ∗Ψd

⎞⎟⎟⎟⎟⎟⎠
+
∂|η0|2
∂φu[k]

∑
t

∂Jf

∂ hfoc
c

|Ψd|2

(A.4)

∂Jfoc

∂φd[l]
= 2�

(
(ψ∗[l] − η∗0ψ∗d[l])

×
{

FT

[
∂Jf

∂ hfoc
c

(Ψ − η0Ψd)

]}
[l]

)
.

(A.5)

With � and� the imaginary and real part (respectively), and

∂η0

∂φu
= jP2

ue jφu

ψ(φu,φd) = Pde j(φu+φd) Ψ(φu,φd) = FT−1(ψ)

ψd(φd) = Pde jφd Ψd(φd) = FT−1(ψd). (A.6)

Since the phases are expanded on a Zernike basis, we need the
gradients of Jfoc with respect to the Zernike coefficients axi of
phase φx. These gradients are given by the expression (Mugnier
et al. 2001):

∂Jfoc

∂axi

=
∑

k

∂Jfoc

∂φx[k]
Zi[k]. (A.7)

Flux α and constant background β are also analytically estimated
during the minimization, considering that

Jp[t] =
1
2

∑
t

∣∣∣∣∣∣−ipc[t] + α.hdet[t] � hp
c[t] + β

σp
n[t]

∣∣∣∣∣∣
2

(A.8)

where p is for “foc” (focused) or “div” (diverse). For the sake of
simplicity, we shall omit the variable t. We have

∂Jp

∂α
=α

∑ (hdet � hp
c)2

σp
n

2
+ β

∑ hdet � hp
c

σp
n

2

−
∑ (hdet � hp

c)ipc

σp
n

2

∂Jp

∂β
=α

∑ hdet � hp
c

σp
n

2
+ β

∑ 1

σp
n

2
−

∑ ipc

σp
n

2
·

(A.9)

Which gives us, in a matricial form:

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑ (hdet�hp

c)2

σp
n

2

∑ hdet�hp
c

σp
n

2∑ hdet�hp
c

σ
p
n

2

∑ 1
σ

p
n

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(
α
β

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑ (hdet�hp

c )ip
c

σp
n

2∑ ipc
σ

p
n

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (A.10)

A simple matrix inversion gives us the analytical estimation of
the flux α and the background β for each iteration.
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Fig. B.1. Coronagraphic diversity images computed for an aberra-
tion φu + φdiv upstream, φd downstream of (left) and the only diversity
aberration φdiv (right). The shape of both images is mainly driven by
diversity aberration.

Appendix B: Tip-tilt estimation downstream
of the coronagraph

The tip-tilt downstream of the coronagraph (which represents the
image position on the detector) strongly limits COFFEE’s per-
formance. Indeed, we determine that the phase estimation was
accurate when −100 nm rms ≤ ai ≤ 100 nm rms, with ai the
Zernike coefficient for tip or tilt (i ∈ {2, 3}). Beyond this range,
COFFEE is unable to properly estimate both phases φu and φd.
Such a phenomenon strongly limits COFFEE’s performance on
a bench, since its utilization requires a restrictive location of the
PSF on the detector.

To get rid of this limitation, we have developed a simple
and fast method of estimating the tip-tilt downstream of the
coronagraph before COFFEE’s estimation, based on the diver-
sity image. This image is created by adding a known aberra-
tion φdiv = adiv

4 Z4 + adiv
5 Z5 (adiv

4 = adiv
5 = 80 nm rms) to φu. Since

the amplitude of this aberration is important (σφdiv = 113 nm
rms), the speckles we have in the coronagraphic diversity image
mainly originate in this diversity aberration. This is illustrated
in Fig. B.1, where we show two diversity images: one com-
puted with randomly generated phases φu (WFE 30 nm rms), φd
(WFE 10 nm rms), and another computed with no aberrations
other than the diversity ones.

As one can see in Fig. B.1, we can clearly identify the aber-
rations which originate in the diversity φdiv. The principle of
our method lies in the research of these well-known aberrations
(since we know the phase φdiv we introduce) in the diversity im-
age idc by comparing it with a theoretical diversity image idcth

,
calculated with no other aberrations than the diversity ones:

idcth
= hdet � hc(φdiv,φd = 0). (B.1)

The comparison of idcth
with idc is performed using the method de-

veloped by Gratadour et al. (2005), which consists in minimizing
the following criterion JTT

JTT(x, y) =

∥∥∥∥∥∥∥
idiv
c (xo, yo) − idiv

cth
(xo, yo) � δ(xo − x, yo − y)
σdiv

n

∥∥∥∥∥∥∥
2

,

(B.2)

where δ is the dirac function. Minimization of JTT gives us the
shift [xM , yM]between both images. It is then possible to calcu-
late the corresponding tip (a2) and tilt (a3) downstream of the
coronagraph knowing the image sampling s:

a2 =
π

2s
xM a3 =

π

2s
yM· (B.3)

Finally, these estimated tip-tilt values are given to COFFEE as
an input of the minimization, and are used as initial values to be-
gin phase reconstruction. This method performs, on our experi-
mental images, a fast preliminary estimation (∼1 s for a 256 ×
256 image) of the tip-tilt downstream of the coronagraph with
an accuracy of 1.5 nm rms, which is far enough, compared to
the level of accuracy (±100 nm rms) required by COFFEE.
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