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Abstract

Coronal holes are the darkest and least active regions of the Sun, as observed both on
the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding
open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews
measurements of the plasma properties in coronal holes and how these measurements are used
to reveal details about the physical processes that heat the solar corona and accelerate the solar
wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open
(and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the
mass and energy is input intermittently from closed loops into the open-field regions. Evidence
for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic
and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of
the plasma to be followed as the asymptotic conditions in interplanetary space are established
in the extended corona. For example, the importance of kinetic plasma physics and turbulence
in coronal holes has been affirmed by surprising measurements from the UVCS instrument on
SOHO that heavy ions are heated to hundreds of times the temperatures of protons and
electrons. These observations point to specific kinds of collisionless Alfvén wave damping
(i.e., ion cyclotron resonance), but complete theoretical models do not yet exist. Despite
our incomplete knowledge of the complex multi-scale plasma physics, however, much progress
has been made toward the goal of understanding the mechanisms ultimately responsible for
producing the observed properties of coronal holes.
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Coronal Holes 5

1 Introduction

Coronal holes are regions of low density plasma on the Sun that have magnetic fields opening freely
into the heliosphere. Because of their low density, coronal holes tend to be the regions of the outer
solar atmosphere that are most prone to behaving as a collisionless plasma. Ionized atoms and
electrons flow along the open magnetic fields to form the highest-speed components of the solar
wind.

The term “coronal hole” has come to denote several phenomena that may not always refer to
the same regions. First, the darkest patches on the solar surface, as measured in ultraviolet (UV)
and X-ray radiation, are called coronal holes. Second, the term also applies to the lowest-intensity
regions measured above the solar limb, seen either during a total solar eclipse or with an occulting
coronagraph. Third, there is a more theoretical usage that equates coronal holes with all open-field
footpoints of time-steady solar wind flows. There are good reasons why these three ideas should be
related to one another, but the overlap between them is not complete. To avoid possible confusion,
this paper will mainly use the first two observational definitions, with the third one being only
partly applicable.

During times of low solar activity, when the Sun’s magnetic field is dominated by a rotationally-
aligned dipole component, there are large coronal holes that cover the north and south polar caps
of the Sun. In more active periods of the solar cycle, coronal holes can exist at all solar lati-
tudes, but they may only persist for several solar rotations before evolving into different magnetic
configurations.

Despite not being as visually spectacular as active regions, solar flares, or coronal mass ejections
(CMEs), coronal holes are of abiding interest for (at least) three main reasons.

1. The extended corona and solar wind connected with coronal holes tends to exist in an ambient

time-steady state, at least in comparison with other regions. This makes coronal holes a
natural starting point for theoretical modeling, since it often makes sense to begin with the
simplest regions before attempting to understand more complex and variable structures.

2. Coronal hole plasma has the lowest density, which makes it an optimal testbed for studies of
collisionless kinetic processes that are the ultimate dissipation mechanisms in many theories
of coronal heating. Other regions tend to have higher densities and more rapid Coulomb
collisions, and thus the unique signatures of the kinetic processes (in their particle velocity
distributions) are not as straightforward to measure as in coronal holes.

3. Coronal holes and their associated high-speed wind streams are also responsible for a fraction
of major geomagnetic storms at 1 AU. Corotating interaction regions (CIRs) form when fast
and slow wind streams collide with one another, and the subsequent interaction between these
structures and the Earth’s magnetosphere can give rise to long-lasting fluxes of energetic
electrons.

This paper reviews measurements of the plasma properties of coronal holes and how these
measurements have been used to put constraints on theoretical models of coronal heating and
solar wind acceleration. There have been several earlier reviews that have focused mainly on the
topic of coronal holes, including Zirker (1977), Suess (1979), Harvey and Sheeley Jr (1979), Parker
(1991), Kohl and Cranmer (1999), Hudson (2002), Cranmer (2002a), Ofman (2005), de Toma and
Arge (2005), Jones (2005), and Wang (2009). Interested readers are urged to survey these other
reviews in order to fill in any gaps in topical coverage in the present paper.

The remainder of this paper is organized as follows. Section 2 gives a brief history of the
discovery and early years of research on coronal holes. Section 3 summarizes the observations
and derived plasma properties of “on-disk” coronal holes (i.e., primarily using the definition of
holes as dark patches on the solar surface at UV and X-ray wavelengths). Section 4 reviews
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6 Steven R. Cranmer

the measurements of “off-limb” coronal holes and describes our current knowledge of how these
structures are linked to various kinds of solar wind streams measured in situ. Section 5 discusses a
broad range of possible theoretical explanations for how the plasma in coronal holes is heated and
how the solar wind in these regions is accelerated. Section 6 concludes this paper with a few words
about how the study of coronal holes helps to improve our wider understanding of heliophysics,
astrophysics, and plasma physics.
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Coronal Holes 7

2 Historical Overview

Although the term “coronal hole” was not first used until the middle of the 20th century, people
have reported the existence of visible features associated with the Sun’s corona – seen during total
eclipses – for centuries (see, e.g., Wang and Siscoe, 1980; Vaquero, 2003). A popular astronomy
book from the first decade of the 20th century (Serviss, 1909) contained clear descriptions of coronal
streamers, eruptive prominences, and polar plumes in coronal holes. The following description of
the latter, from an eclipse in 1900, conveys that early speculation may sometimes be prescient:

“The sheaves of light emanating from the poles look precisely like the ‘lines of force’ surrounding

the poles of a magnet. It will be noticed in this photograph that the corona appears to consist of

two portions: one comprising the polar rays just spoken of, and the other consisting of the broader,

longer, and less-defined masses of light extending out from the equatorial and middle-latitude zones.

Yet even in this more diffuse part of the phenomenon one can detect the presence of submerged

curves bearing more or less resemblance to those about the poles. Just what part electricity or

electro-magnetism plays in the mechanism of solar radiation it is impossible to say, but on the

assumption that it is a very important part is based the hypothesis that there exists a direct solar

influence not only upon the magnetism, but upon the weather of the earth” (Serviss, 1909).

The first quantitative observations of coronal holes were made by Waldmeier (1956, 1957) at
the Swiss Federal Observatory in Zürich. These features were identified as long-lived regions of
negligible intensity in coronagraphic (off-limb) images of the 5303 Å green emission line (see also
Waldmeier, 1975, 1981). Waldmeier called the features that appeared more-or-less circular when
projected onto the solar disk Löcher (holes), and the more elongated features were called Kanal

(channels) or Rinne (grooves).

In off-limb eclipse and coronagraph images, the darkest coronal hole regions are surrounded by
brighter and more complex streamers. These wispy structures appear to be connected to closed
magnetic field lines at the solar surface, but they are often stretched upwards to an elongated
cusp-like point, with thin “stalks” of radial rays at the top. For this reason their appearance
was likened to a pointed German helmet (or a brush-topped Greek or Roman helmet), and the
common phrase helmet streamers is often seen. The earliest studies of coronal morphology tended
to concentrate more on streamers than coronal holes because the former are significantly easier
to see than the latter (see, e.g., Miller, 1908; Mitchell, 1932; Newkirk Jr, 1967; Pneuman, 1968).
Piddington (1972) outlined some early ideas about the global structure of the “quiet” (i.e., solar
minimum) corona. Figure 1 compares an adaptation of J. H. Piddington’s sketch of the quiet
corona to a more recent photograph from another eclipse around solar minimum.

As the quality of the observations improved, coronal holes became objects of study in their
own right. The largest coronal holes were observed to contain fine thread-like polar plumes that
appear to follow the superradially expanding open magnetic field lines above the solar limb (Saito,
1958; Stoddard et al., 1966; Newkirk Jr and Harvey, 1968). These elongated structures were found
to correlate with bright chromospheric faculae on the surface (e.g., Harvey, 1965) and with longer
extensions for the small jet-like spicules that continually rise and fall above the limb (Lippincott,
1957; Beckers, 1968).

Coronal holes were essentially re-discovered in the late 1960s and early 1970s as discrete dark
patches on the X-ray and ultraviolet solar disk. Newkirk Jr (1967) reviewed some of the earliest
rocket-based measurements in the extreme UV, and Tousey et al. (1968) discussed how the UV
emission was “usually weaker over the poles” in images from a series of rocket flights between
1963 and 1967 (around solar minimum). These regions on the solar disk came to be called coronal
holes in parallel with the earlier off-limb usage. Munro and Withbroe (1972) analyzed OSO–4

observations to conclude that both the density and electron temperature were lower in these dark
regions. In 1973 and 1974, solar instruments on the Apollo telescope mount (ATM) on Skylab

confirmed many earlier ideas about coronal holes with data significantly better in quantity and
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8 Steven R. Cranmer

Figure 1: Left: Adaptation of a sketch of the quiet solar corona made by Piddington (1972), based
on prior drawings (Waldmeier, 1955) and photographs (Gold, 1955) of the 30 June 1954 eclipse. Right:
Contrast-adjusted eclipse image taken with the POISE instrument on 26 February 1998, in Westpunt,
Curaçao. The original image was made available courtesy of the High Altitude Observatory (HAO),
University Corporation for Atmospheric Research (UCAR), Boulder, Colorado. UCAR is sponsored by
the National Science Foundation.

quality (Huber et al., 1974; Kahler, 2000).

In addition to the large north and south polar holes, there were also found to be smaller
coronal holes that exist at lower latitudes (often at times other than solar minimum). Sometimes
the largest coronal holes can exhibit thin “peninsulas” that jut out from the main regions. Harvey
and Recely (2002) called these regions “polar lobes.” Notable examples have been the so-called
“Boot of Italy” seen by Skylab in 1974 (e.g., Zirker, 1977) and the “Elephant’s Trunk” seen by
SOHO in 1996 (Del Zanna and Bromage, 1999). A third example, from December 2000, is shown
in Figure 2.

Additional insights came from the fusion of spectroscopy and coronagraphic occultation. In-
spired by rocket-borne UV observations of the extended corona during a solar eclipse in March
1970, Kohl et al. (1978) developed a UV coronagraph spectrometer to measure the profile shape
of the bright H i Lyα emission line at 1216 Å. This line is sensitive to several key properties of
the velocity distribution of coronal protons, and thus these observations could be used to begin
distinguishing proton temperatures from electron temperatures in the collisionless outer regions
of coronal holes (see Section 4.3). The rocket-borne UV coronagraph spectrometer was launched
three times (in 1979, 1980, and 1982), and the results included the first direct evidence for proton
heating and supersonic outflow in coronal holes (Kohl et al., 1980; Strachan et al., 1993; Kohl
et al., 2006).

The fact that coronal holes coincide with regions of open magnetic field that expands out
into interplanetary space was realized during the first decade of in situ solar wind observations
(e.g., Wilcox, 1968; Altschuler et al., 1972; Hundhausen, 1972). Noci (1973) made a theoretical
argument, on the basis of measured wave fluxes and heat conduction, that coronal holes should have
the largest solar wind kinetic energy fluxes (i.e., the highest speeds). Pneuman (1973) argued that
coronal holes need not have lower energy deposition than closed-field regions (as is suggested by the
lower intensities of coronal holes) if the solar wind carries away much of that energy. Krieger et al.
(1973) utilized X-ray sounding rocket images to identify a large coronal hole as the solar source
of a strong high-speed stream as measured by the Pioneer 6 and Vela spacecraft. Around this
time it was also realized that coronal holes and high-speed wind streams are also responsible for a
fraction of the geomagnetic storms seen at 1 AU (Bell and Noci, 1973; Neupert and Pizzo, 1974;
Bell and Noci, 1976; see also Tanskanen et al., 2005 and Zhang et al., 2007). Although there is
still no complete understanding of which types of solar wind flow are connected with which types
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Coronal Holes 9

Figure 2: X-ray corona (0.25 – 4.0 keV) observed by the Soft X-ray Telescope (SXT) on Yohkoh, on 6
December 2000. Yohkoh is a mission of the Institute of Space and Astronautical Sciences in Japan, with
participation from the U.S. and U.K.

of coronal structures, the causal link between the largest coronal holes and high-speed streams
remains firm (see also Section 4.1).
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3 Properties of On-Disk Coronal Holes

The traditional observational distinction between coronal holes and their surroundings (i.e., active
regions and “quiet Sun”) is that coronal holes have the lowest emission in the UV and X-ray. This
definition must be amended, however, to exclude filaments (which are often dark when projected
against the solar disk) that are cool magnetic structures and not part of the corona (see, e.g.,
Scholl and Habbal, 2008; Krista and Gallagher, 2009). Coronal hole magnetic fields are known to
be more uniform and unipolar than in other regions (see below). The boundaries between coronal
holes and surrounding regions are sometimes sharp, sometimes diffuse, and sometimes filled with
many small loops (Hudson, 2002).

Coronal holes are more or less indistinguishable from their surroundings in the photosphere and
low chromosphere, and usually one cannot see any significant intensity contrast between hole and
non-hole regions until the temperature exceeds about 105 K. Spectra, however, can help make the
distinction clearer. Teplitskaya et al. (2007) found that central self-reversals in the chromospheric
Ca ii H and K lines are noticeably different in coronal holes as opposed to surrounding quiet-
Sun regions. A frequently used observational diagnostic of coronal hole boundaries is the He i
10830 Å near-infrared absorption line triplet (Harvey et al., 1975; Harvey and Recely, 2002). At
these wavelengths, the absorption is weakest in coronal holes (i.e., the intensity is highest) and
spectroheliogram images show the coronal holes quite clearly. It is somewhat counterintuitive
that a spectral line of a neutral species (He0) should be sensitive to the properties of the hot
corona. However, the atomic level populations that determine the He i 10830 Å source function are
unusually responsive to photoionization from UV wavelengths shortward of 504 Å. The overlying
solar corona emits these wavelengths in abundance. In coronal hole regions, though, the corona
generally has a lower density and temperature, and thus there is less intense UV and X-ray emission
to populate the upper levels of the He0 triplet state (see, e.g., Zirin, 1975; Andretta and Jones,
1997; Centeno et al., 2008). This gives rise to reduced absorption. The He i 10830 Å lines are also
good probes of supersonic outflow velocities in distant stellar winds (see, e.g., Dupree et al., 2005;
Kwan et al., 2007; Sanz-Forcada and Dupree, 2008).

Another observational diagnostic of coronal holes is their elemental abundance signature (e.g.,
Feldman, 1998; Feldman and Widing, 2003). In the upper chromosphere, transition region, and
low corona, holes exhibit abundances very close to those measured in the photosphere. This stands
in contrast to other regions (quiet Sun and active regions), which show significant enhancements in
the abundances of elements with low first ionization potential (FIP). This selective fractionation is
believed to occur in the upper chromosphere, where low-FIP elements become ionized and high-FIP
elements remain more neutral. These patterns extend into the heliosphere, where high-speed flows
associated with coronal holes are often identifiable from their near-photospheric FIP abundances
(von Steiger et al., 1995; Zurbuchen et al., 2002). However, there is still no widespread agreement
about the exact physical processes that give rise to this preferential ionization.

The number, sizes, and heliographic locations of coronal holes vary as a function of the solar
activity cycle. Large polar holes exist for about 7 years around solar minimum, and are not present
for about 3 or 4 years around solar maximum. However, in the declining phase of activity soon
after the maximum, it is possible to see the gradual growth of the new-polarity polar coronal holes.
This occurs as a number of smaller high-latitude holes eventually collect together at the poles
(Timothy et al., 1975; Harvey and Recely, 2002). Taking this growth phase into account, there are
only about 1 or 2 years at solar maximum without any distinct high-latitude coronal hole presence.
Figure 3 illustrates the growth phase around the peak of solar cycle 23 in 2001. The growth and
full “reappearance” of polar coronal holes at this time was described by Miralles et al. (2001a) and
McComas et al. (2002). The post-maximum growth of new polar coronal holes lasts about twice
as long as their disappearance in the rising phase of the next maximum (Waldmeier, 1981; Fisher
and Sime, 1984).
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Figure 3: Polar view of the development of the north polar coronal hole from January to August 2001
(e.g., Carrington rotations 1972 to 1979), using reconstructed coronal hole boundaries from Kitt Peak He i
10830 Å maps. The maximum of solar activity occurred between late 2000 and early 2001. Data from the
National Solar Observatory/Kitt Peak were produced cooperatively by NSF/NOAO, NASA/GSFC, and
NOAA/SEL.

Many low-latitude coronal holes tend to be situated near the edges of magnetically complex
active regions. Sometimes active regions emerge within the coronal holes themselves; these have
been called “sea anemone” type regions from their spiky, flower-like appearance (Shibata et al.,
1994; Asai et al., 2008). Evolving magnetic interactions between active regions and coronal holes
have been studied both as a means of enhancing the mass flux of the associated solar wind on
nearby open flux tubes (e.g., Habbal et al., 2008; Wang et al., 2009) and as a possible explanation
for the nearly rigid rotation of coronal holes (Wang et al., 1996; Antiochos et al., 2007). A burst
of emerging magnetic flux in one of these active regions may give rise to new systems of loop
connections in the area bordering the coronal hole, and thus cause the coronal hole to decrease in
size. This kind of rapid topological evolution of the magnetic field may be relevant in explaining
extreme space weather events such as “the day the solar wind disappeared” (i.e., the dramatic
drop in the in situ density seen on 11 May 1999; see Janardhan et al., 2008).

Photospheric magnetograms show that coronal holes are more unipolar than other regions; i.e.,
they have a larger degree of magnetic flux imbalance between the two polarities (Levine, 1982;
Wang, 2009). For the large polar coronal holes, this appears to be the long-term outcome of the
decay of active-region magnetic fields and their eventual diffusion up to the poles. The unipolar
nature of coronal holes is likely to be related to their connection with open-field solar wind streams.
As described in Section 2, one reason why coronal holes are dark is that the solar wind carries
away both mass and energy, leaving a lower density and pressure. In addition, Abramenko et al.

(2006a) and Hagenaar et al. (2008) found that the local rate of emergence of small-scale magnetic
flux (mostly in the form of “ephemeral” small-scale bipoles) is substantially lower in unipolar
regions than in more mixed or balanced regions of positive and negative magnetic polarity. In
most theories of coronal heating of closed loops, the total flux and the overall complexity of the
field both drive the total heating rate. Thus, the lower emergence rate of new flux elements in
coronal holes may be another factor determining why they have lower densities and pressures (i.e.,
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Figure 4: Summary of the largely unipolar magnetic field structure of polar coronal holes, with the
fields of view successively widening from flux tubes in intergranular lanes (a), to a “funnel” rooted in a
supergranular network lane (b), and finally to the extended corona (c). Adapted from Figure 1 of Cranmer
and van Ballegooijen (2005).

less coronal heating; see, e.g., Rosner et al., 1978) and thus why they are dark.

Over the past few decades, the magnetic connection between coronal holes and the fast solar
wind has been traced down to ever smaller spatial scales. We now can say with some certainty
that much of the plasma that eventually becomes the time-steady solar wind seems to originate in
thin magnetic flux tubes (with observed sizes of order 50 – 200 km) observed mainly in the dark
lanes between the ∼ 1000 km size photospheric granulation cells. These strong-field (1 – 2 kG)
flux tubes have been called G-band bright points and network bright points, and groups of them
have been sometimes termed “solar filigree” (e.g., Dunn and Zirker, 1973; Spruit, 1984; Berger
and Title, 2001; Tsuneta et al., 2008). These flux tubes are concentrated most densely in the
supergranular network (i.e., the bright lanes between the larger ∼ 30,000 km size supergranulation
cells). Somewhere in the low chromosphere, the thin flux tubes expand laterally to the point where
they merge with one another into a more-or-less homogeneous network field distribution of order
∼ 100 G. This merged (mainly vertically oriented) field is associated mainly with the lanes and
vertices between supergranular cells. Because this field does not fill the entire coronal volume, it is
still susceptible to an additional stage of lateral expansion and weakening. Thus, at a larger height
in the chromosphere, these network flux bundles are believed to undergo further broadening into
so-called “funnels” (Gabriel, 1976; Dowdy et al., 1986). However, it is still unclear to what extent
the closed fields in the supergranular cell centers affect the canopy-like regions between funnels
(e.g., Schrijver and Title, 2003). Figure 4 illustrates the successive merging of unipolar field in
coronal holes.

Observations of blueward Doppler shifts in supergranular network lanes and vertices, especially
in large coronal holes, may be evidence for either the “launching” of the solar wind itself or for
upward-going waves that are linked to wind acceleration processes (e.g., Hassler et al., 1999; Peter
and Judge, 1999; Aiouaz et al., 2005; Tu et al., 2005). These measurements are consistent with
several models of the dynamic, multi-species solar wind in superradially expanding funnels (Byhring
et al., 2008; Marsch et al., 2008). However, this interpretation of the data is still not definitive,
because there are other observational diagnostics that have shown more of a blueshift in the
supergranular cell-centers between funnels (e.g., He i 10830 Å; Dupree et al., 1996; Malanushenko
and Jones, 2004). There may be subtle radiative transfer effects that preferentially brighten regions
of upflow or downflow (see, e.g., Chae et al., 1997; Avrett, 1999), and these may need to be taken
into account in order to understand the meaning of the measured Doppler shifts in these regions.

Lastly, it is important to mention the phenomenon of transient coronal holes (sometimes known
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as “coronal dimmings”). These are rapid reductions in the UV and X-ray intensity in discrete
patches that appear to be spatially and temporally correlated with the liftoff of CME plasma
(e.g., Rust, 1983; Thompson et al., 2000; Yang et al., 2008). Spectroscopically, these regions are
seen to exhibit similar characteristics as normal coronal holes, including Doppler blueshifts (Harra
et al., 2007) and large amplitudes of nonthermal wave broadening (McIntosh, 2009). UV coronal
dimmings are beginning to be used as diagnostics for the amount of plasma released – i.e., the
total mass – in the CME event (e.g., Aschwanden et al., 2009). It should be noted that transient
coronal holes represent just one kind of observed dimming that is associated with time-dependent
flare/CME activity; there are other types of dimmings that do not resemble coronal holes (Hudson,
2002).
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4 Properties of Off-Limb Coronal Holes

Coronal holes observed above the solar limb usually trace out the same regions that are identified
as dark coronal-hole “patches” directly on the solar disk. Thus, the lower plasma density that more
or less defines the off-limb coronal hole is directly related to the lower density measured on the disk.
Section 4.1 briefly discusses how these regions are believed to be connected magnetically with the
broader heliosphere. The observations of off-limb coronal holes made with visible-light imaging and
polarimetry (Section 4.2) and ultraviolet spectroscopy (Section 4.3) are also summarized below.

4.1 Magnetic connectivity with the solar wind

Although the magnetic field in the solar corona is generally too weak to be measured directly, the
overall morphology of the field lines can be extrapolated from magnetograms taken at the level of
the photosphere. One popular technique is the “potential field source surface” (PFSS) method,
which assumes the corona is current-free out to a spherical surface (set typically at a radius between
2.5 and 3.5 solar radii, or R⊙), above which the field is radial (e.g., Schatten et al., 1969; Altschuler
and Newkirk Jr, 1969; Hoeksema and Scherrer, 1986). The PFSS method has been shown to create
a relatively good mapping between the Sun and the heliosphere (Arge and Pizzo, 2000; Luhmann
et al., 2002; Wang and Sheeley Jr, 2006; Wang, 2009), although the results can be problematic for
regions dominated by stream-stream interactions (Poduval and Zhao, 2004).

By far, the strongest causal link between a specific type of coronal structure (measured via
remote sensing) and a particular type of quasi-steady solar wind flow (measured in situ) is the
connection between large coronal holes and high-speed streams (Wilcox, 1968; Krieger et al., 1973).
The general interpretation of this correlation – together with the results of magnetic extrapolation
models such as PFSS – is that coronal holes represent a bundle of open flux tubes that flare out
horizontally as distance increases. In other words, the coronal hole flux tubes expand superra-

dially. Although there are some observations that appear to support other interpretations (Woo
et al., 1999; Habbal et al., 2001; Woo, 2005; Woo and Druckmüllerová, 2008), the preponderance
of evidence seems clearly to support the idea that fast solar wind streams emerge mainly from
superradially expanding coronal holes (e.g., Guhathakurta et al., 1999b; Cranmer et al., 1999b;
Jones, 2005; Wang and Sheeley Jr, 2006; Wang et al., 2007).

In contrast to the rather definitive correlation between large coronal holes and the fast solar
wind, the coronal sources of the more chaotic slow-speed solar wind are not as well understood (see
Schwenn, 2006). Two regions that are frequently cited as sources of slow wind are: (1) boundaries
between coronal holes and streamers, and (2) narrow plasma sheets that extend out from the tops
of streamer cusps (Wang et al., 2000; Strachan et al., 2002; Susino et al., 2008). These regions
tend to dominate around solar minimum. Note that the former type of boundary region tends
to contain flux tubes that may be classified as coronal holes when using the theoretical definition
(i.e., footpoints of field lines that are open; see Section 1) but would not be defined as such when
using the observational definitions (i.e., low emission or low density).

During more active phases of the solar cycle, there is evidence that slow solar wind streams also
emanate from small coronal holes (e.g., Nolte et al., 1976; Neugebauer et al., 1998; Zhang et al.,
2003) and active regions (Hick et al., 1995; Liewer et al., 2004; Sakao et al., 2007). During the rising
phase of solar activity, there seems to be a relatively abrupt (< 6 month) change in the locations of
slow wind footpoints: from the high-latitude hole/streamer boundaries to the low-latitude active
region and small coronal hole regions (Luhmann et al., 2002). The ability of many of these kinds
of regions to produce slow wind was modeled by Cranmer et al. (2007) and Wang et al. (2009); see
also Section 5.
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4.2 Visible light observations

Measurements of the plasma properties in the extended corona (i.e., r ≈ 1.5 to 10R⊙, where the
main solar wind acceleration occurs) require the bright solar disk to be occulted. The coronal
emission is many orders of magnitude less bright than the emission from the solar disk, so even the
vast majority of “stray light” that diffracts around the occulting edge must be eliminated. Visible-
light coronagraphs that combine stray-light rejection with linear polarimetry have the ability to
measure the Thomson-scattered polarization brightness (pB) in the corona. The use of pB rather
than the total coronal brightness eliminates the contribution from the dust-scattered F-corona,
which is believed to be unpolarized up to distances of about 5R⊙. Because the coronal plasma is
optically thin to the Thomson-scattered photons, pB is proportional to the line-of-sight integral
of the electron density ne, multiplied by a known scattering function. Methods for inverting this
integral to derive ne as a function of position in various coronal structures have been developed and
improved over the years (e.g., van de Hulst, 1950; Altschuler and Perry, 1972; Munro and Jackson,
1977; Guhathakurta and Holzer, 1994; Frazin et al., 2007). For coronal holes, the LASCO (Large
Angle and Spectrometric Coronagraph) instrument on SOHO has also been used to probe the
superradial expansion of open magnetic flux tubes (DeForest et al., 1997, 2001) and the evolution
of transient polar jets (Wang et al., 1998; Wood et al., 1999). The White Light Coronagraphs
on Spartan 201 (Fisher and Guhathakurta, 1995) and on the UVCS (Ultraviolet Coronagraph
Spectrometer) instrument aboard SOHO (e.g., Kohl et al., 1995; Romoli et al., 2002) have provided
electron densities between 1.5 and 5R⊙ in coronal holes.

Figure 5 illustrates a selection of visible-light measurements of the electron density in coronal
holes and compares them to similar measurements of streamers and to a semi-empirical model of
the chromosphere, transition region, and low corona (Avrett and Loeser, 2008). The blue coronal
hole curves were adapted from the results of Fisher and Guhathakurta (1995) (dotted), Cranmer
et al. (1999b) (solid), Doyle et al. (1999) (dashed), and Guhathakurta et al. (1999a) (dot-dashed).
The red curves for equatorial helmet streamers were adapted from the results of Sittler Jr and
Guhathakurta (1999) (solid) and Gibson et al. (1999) (dashed).

Note that streamers are denser than coronal holes by about a factor of 10, but the hole mea-
surements themselves can often exhibit variations in the electron density by factors of the order of
2 – 3. Much of this spread is likely to be the result of different lines of sight passing through regions
that contain varying numbers of polar plumes (see, e.g., Cranmer et al., 1999b, 2008). Some of
the cited pB observations were optimized to avoid bright concentrations of plumes, and others
have been purposefully averaged over the full range of coronal hole substructure. It is also possible
that absolute calibration uncertainties may still exist between the different instruments used to
determine pB and ne, and this could compound the reported range of variation in coronal hole
electron densities.

For a steady-state solar wind outflow, the conservation of mass demands that the product
of density, flow speed, and cross-sectional area of the flux tube remain constant. Thus, if the
magnetic geometry and the electron density are known, mass conservation allows the solar wind
outflow speed to be computed. Kohl et al. (2006) used the representative values of ne shown in
Figure 5 together with a range of estimates for the superradial flux-tube expansion of coronal holes
to determine outflow speeds in coronal holes. Figure 41a of Kohl et al. (2006) illustrates the result
of this process, which shows a large range of values reflecting the uncertainties in both ne and
the flux-tube area factor. Despite these uncertainties, though, the electron densities that became
available in the 1990s demonstrated that the fast solar wind accelerates rapidly in coronal holes
– probably reaching half of its asymptotic terminal speed (u∞ ≈ 700 – 800 kms−1) by heights no
larger than 2 – 4R⊙.

The increased sensitivity of the LASCO instrument over earlier coronagraphs revealed a nearly
continual release of low-contrast density inhomogeneities, or “blobs,” from the cusps of helmet
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Figure 5: Comparison of empirically determined densities in the upper solar atmosphere. Avrett and
Loeser (2008) values of electron number density (solid black curve) and total hydrogen number density
(dot-dashed black curve) are compared with various visible-light pB electron number densities for coronal
holes (blue curves) and streamers (red curves); see text for details.

streamers (Sheeley Jr et al., 1997; Tappin et al., 1999; Wang et al., 2000; Chen et al., 2009). These
features were seen to accelerate up to speeds of order 300 – 400 km s–1 by the time they reached
the outer edge of the LASCO field of view (r ≈ 30R⊙); see also Figure 8 below. The blobs are
typically only about 10% to 15% brighter or dimmer than the surrounding streamer material.
Because of this low contrast, these features do not appear to comprise a large fraction of the mass
flux of the slow solar wind. However, it is still unclear whether blobs are passive “tracers” that
flow with the solar wind speed, or whether they are wavelike fluctuations that propagate relative
to the background solar wind reference frame. This diagnostic tool has been much more difficult
to apply in coronal holes than it has in the bright streamers, so no firm measurements of the fast
wind acceleration yet exist from this technique.

Visible light measurements have also revealed evidence for compressive magnetohydrodynamic
(MHD) waves that propagate along open field lines in coronal holes. Intensity oscillations measured
by the UVCS and EIT instruments on SOHO were found to have periodicities between about 10
and 30 minutes and are consistent with being upwardly propagating slow-mode magnetosonic
waves (DeForest and Gurman, 1998; Ofman et al., 1999, 2000). The relative amplitude of the
density fluctuations (δn/n0) for these waves was found to range between about 0.03 and 0.15
(see Cranmer, 2004a). This is consistent with measurements of the density fluctuation amplitudes
made at larger distances via radio scintillations (Spangler, 2002) and in situ instruments (Tu and
Marsch, 1994). There have also been claims that low-frequency oscillations have been measured in
H i Lyα emission (Morgan et al., 2004; Bemporad et al., 2008; Telloni et al., 2009). In these cases,
however, it is extremely important to take into account all of the relevant instrumental effects.
These measurements still appear to be provisional.

As seen in Section 2 above, coronal holes have long been observed as the sites of thin, ray-like
polar plumes. The earliest measurements of polar plume properties were made in broad-band
visible light, and these dense strands are often seen to stand out distinctly from the ambient
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interplume corona. It is not clear, though, to what extent off-limb observations (which integrate
over long optically thin lines of sight) ever capture only the “pure” plume or interplume plasmas.
Space-based observations from, e.g., Spartan 201 and SOHO improved our ability to measure
the physical properties in and between plumes (e.g., Fisher and Guhathakurta, 1995; DeForest
et al., 1997; Cranmer et al., 1999b; DeForest et al., 2001). Although the brightest plumes are still
discernible at the uppermost heights observed by LASCO (i.e., 30 – 40R⊙), the plume/interplume
density contrast becomes too low to measure clearly in interplanetary space (r > 60R⊙). However,
indirect and possibly plume-related signatures in the in situ data have been reported by Thieme
et al. (1990), Reisenfeld et al. (1999), and Yamauchi et al. (2002). The disappearance of plumes
probably is the result of some combination of transverse pressure balance (i.e., dense plumes
expanding to fill more of the available volume; see Del Zanna et al., 1998) and MHD instabilities
that can mix the two components (Parhi et al., 1999; Andries and Goossens, 2001).

4.3 Ultraviolet spectroscopy

Ultraviolet spectroscopy of the corona is a powerful tool for obtaining detailed empirical descrip-
tions of solar plasma conditions (see, e.g., Kohl andWithbroe, 1982; Withbroe et al., 1982). Coronal
holes, being the lowest density regions of the outer solar atmosphere, exhibit a complex array of
plasma parameters due to their nearly collisionless nature. As a result, every ion species tends to
have its own unique temperature, its own type of departure from a Maxwellian velocity distribu-
tion, and its own outflow speed. After a brief summary of near-limb measurements made with the
SUMER instrument on SOHO, this section mainly describes results at larger heights (in the more
clearly collisionless extended corona) from UVCS.

The un-occulted SUMER (Solar Ultraviolet Measurements of Emitted Radiation) spectrometer
has observed off-limb regions up to heights of approximately 1.3R⊙ in coronal holes (Wilhelm et al.,
1995, 2000, 2004, 2007). In polar regions at solar minimum, ion temperatures exceed electron
temperatures even at r ∼ 1.05R⊙, where densities were presumed to be so high as to ensure rapid
collisional coupling and thus equal temperatures for all species (Seely et al., 1997; Tu et al., 1998;
Landi and Cranmer, 2009). Spectroscopic evidence is also mounting for the presence of transverse
Alfvén waves propagating into the corona (Banerjee et al., 1998, 2009; Dolla and Solomon, 2008;
Landi and Cranmer, 2009).

Electron temperatures derived from line ratios (Habbal et al., 1993; David et al., 1998; Doschek
et al., 2001; Wilhelm, 2006; Landi, 2008) exhibit relatively low values in the off-limb coronal
holes (Te ∼ 800, 000 K) that are not in agreement with higher temperatures derived from “frozen-
in” in situ charge states (Ko et al., 1997). It is difficult to reconcile these observations with one
another in the absence of either non-Maxwellian electron velocity distributions or strong differential
flows between different ion species near the Sun (Esser and Edgar, 2000). However, some models
consistent with both the SUMER temperatures and the in situ charge states are being produced
(e.g., Laming and Lepri, 2007).

Figure 6 displays a range of temperatures measured in coronal holes and high-speed wind
streams, and it shows how the SUMER electron temperatures (Te) are noticeably lower than the
heavy ion temperatures (e.g., shown for the O+5 ions that correspond to the bright Ovi 1032,
1037 Å spectral lines) even in the low corona. The degree of agreement between the spectroscopic
measurements and one-fluid models of the low corona (i.e., the semi-empirical model of Avrett and
Loeser (2008) and the theoretical model of Cranmer et al. (2007)) depends on the height of the
sharp transition region between chromospheric (104 K) and coronal (106 K) temperatures.

The UVCS instrument on SOHO is a combination of an ultraviolet spectrometer and a lin-
early occulted coronagraph that observes a 2.5R⊙ long swath of the extended corona, oriented
tangentially to the radial direction at heliocentric distances ranging between about 1.5 and 10R⊙

(Kohl et al., 1995, 1997, 1998, 2006). In coronal holes, UVCS measurements have allowed many
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Figure 6: Radial dependence of empirical and model temperatures in polar coronal holes and fast wind
streams. Mean plasma temperatures from a semi-empirical model (dashed black curve; Avrett and Loeser,
2008) and from a turbulence-driven coronal heating model (solid black curve; Cranmer et al., 2007). Te

from off-limb SUMER measurements made by Wilhelm (2006) (dark blue bars) and Landi (2008) (light
blue bars), Tp from UVCS measurements assembled by Cranmer (2004b) (see text), and perpendicular O+5

ion temperatures from Landi and Cranmer (2009) (open green circles) and Cranmer et al. (2008) (filled
green circles). In situ proton and electron temperatures in the fast wind (r > 60R⊙) are from Cranmer
et al. (2009).

key details about the velocity distributions of H0, O+5, and Mg+9 to be derived. For the reso-
nantly scattered emission lines seen at large heights with UVCS, the most straightforward plasma
diagnostic is to use the Doppler-broadened line width as a sensitive probe of the overall variance of
random particle motions along the line of sight. In other words, measuring the line width provides
a constraint on the so-called “kinetic temperature” (i.e., a combination of microscopic stochastic
motions and macroscopic [but unresolved] motions due to waves or turbulence) along the direction
perpendicular to the (nearly radial) magnetic field lines.

In the ionized solar corona, a given hydrogen nucleus spends most of its time as a free proton,
and only a small fraction of time as a bound H0 atom. Thus, the measured plasma properties
of neutral hydrogen are considered to be valid proxies of the proton properties below about 3R⊙

(Allen et al., 2000). Spartan 201 and UVCS observations of the H i Lyα emission line in coronal
holes indicated rather large proton kinetic temperatures in the direction perpendicular to the
magnetic field (Tp⊥ ∼ 3 MK) and also the possibility of a mild temperature anisotropy (with
Tp⊥ > Tp‖) above heights of 2 – 3R⊙ (Kohl et al., 1997; Cranmer et al., 1999b; Antonucci et al.,
2004; Kohl et al., 2006).

UVCS observations indicated that the O+5 ions are much more strongly heated than protons in
coronal holes, with perpendicular temperatures in excess of 200 MK (see Figure 7). This exceeds the
temperature at the central core of the Sun by an order of magnitude! The UVCS measurements also
provided signatures of temperature anisotropies possibly greater than T⊥i/T‖i ≈ 10 (e.g., Cranmer
et al., 1999b, 2008). The measured kinetic temperatures of O+5 and Mg+9 are significantly greater
than mass-proportional when compared with protons, with Ti/Tp > mi/mp (see also Kohl et al.,
1999, 2006). The surprisingly “extreme” properties of heavy ions in coronal holes have led theorists
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Figure 7: Combined image of the solar corona from 17 August 1996, showing the solar disk in Fe XII
195 Å intensity from EIT (yellow inner image) and the extended corona in Ovi 1032 Å intensity from
UVCS (red outer image). Axisymmetric field lines are from the solar-minimum model of Banaszkiewicz
et al. (1998), and Ovi emission line profiles (bottom) are from SUMER (Warren et al., 1997, left) and
UVCS (Kohl et al., 1997, right).

to develop a number of new ideas regarding the heating and acceleration of the solar wind; these
are discussed further in Section 5.4.

Figure 6 shows UVCS perpendicular temperatures for protons and O+5 ions in coronal holes.
The O+5 data points were taken from the recent re-analysis of solar minimum data from 1996 –
1997 by Cranmer et al. (2008). The proton temperature data were assembled by Cranmer (2004b)
from a number of individual measurements of the H I Lyα profile at solar minimum. The sources of
these measurements are: Cranmer et al. (1999b) (squares), Esser et al. (1999) (diamonds), Zangrilli
et al. (1999) (asterisks), and Antonucci et al. (2000) (triangles). The kinetic proton temperatures
are of order 2 – 3.5 MK, but in Figure 6 we attempted to remove the contribution of nonthermal
wave broadening. The semi-empirical model of Cranmer and van Ballegooijen (2005) was used to
specify the amplitude of transverse Alfvén waves as a function of height, and their contribution
to the line widths was subtracted. The remaining “microscopic” T⊥p does not show as clear a
signal of “preferential” proton heating as would be apparent from the larger kinetic temperature.
Although one can still marginally see that Tp > Te, the existing measurements of Tp and Te do not
fully overlap with one another in radius. Improved measurements are needed in order to better
constrain the proton and electron heating rates in the corona.

The UVCS emission line data contain information about the Doppler motions of atoms and ions
along the magnetic field (i.e., transverse to the line of sight). The so-called “Doppler dimming”
diagnostic technique provides constraints on both the bulk outflow speed along the field and the
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Figure 8: Radial dependence of solar wind outflow speeds. UVCS Doppler dimming determinations for
protons (red; Kohl et al., 2006) and O+5 ions (green; Cranmer et al., 2008) are shown for polar coronal
holes, and are compared with theoretical models of the polar and equatorial solar wind at solar minimum
(black curves; Cranmer et al., 2007) and the speeds of “blobs” measured by LASCO above equatorial
streamers (open circles; Sheeley Jr et al., 1997).

parallel kinetic temperature (for more details, see Kohl and Withbroe, 1982; Noci et al., 1987;
Kohl et al., 2006). In coronal holes, Doppler-dimmed line intensities from UVCS are consistent
with the outflow velocity for O+5 being larger than the outflow velocity for protons by as much
as a factor of two at large heights (Kohl et al., 1998; Li et al., 1998; Cranmer et al., 1999b).
Figure 8 illustrates the outflow speeds measured by UVCS in coronal holes, and compares with
the theoretical model of the fast solar wind presented by Cranmer et al. (2007). Also shown for
comparison are observational and theoretical data for the slow solar wind associated with equatorial
helmet streamers at solar minimum.

In contrast to many prior analyses of UVCS data, which concluded that there must be both
intense preferential heating of the O+5 ions and a strong field-aligned anisotropy, Raouafi and
Solanki (2004), Raouafi and Solanki (2006), and Raouafi et al. (2007) reported that there may
not be a compelling need for O+5 anisotropy depending on the assumptions made about the
other plasma properties of the coronal hole (e.g., electron density). However, Cranmer et al.

(2008) performed a detailed re-analysis of these observations and concluded that there remains
strong evidence in favor of both preferential O+5 heating and acceleration and significant O+5

ion anisotropy (in the sense T⊥i > T‖i) above r ≈ 2.1R⊙ in coronal holes. In determining these
properties, it was found to be important to search the full range of possible ion temperatures and
flow speeds, and not to make arbitrary assumptions about any given subset of the parameters.

The UVCS results discussed above are similar in character to in situ measurements made in
the fast solar wind, but they imply more extreme departures from thermodynamic equilibrium
in the extended corona. For example, proton velocity distributions measured in the fast solar
wind between 0.3 and 1 AU have anisotropic cores with Tp⊥ > Tp‖, and their magnetic moments
increase with increasing distance; this implies net input of perpendicular energy on kinetic scales
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(e.g., Marsch et al., 1982; Marsch, 2006). Many heavy ions appear to flow faster than the protons
by about the local Alfvén speed (Hefti et al., 1998; Reisenfeld et al., 2001), and in the fastest solar
wind streams they are also heated preferentially in the same sense as in the corona (Collier et al.,
1996).

In the years since the solar minimum of 1996 – 1997, UVCS observed a large number of other
coronal holes that appeared throughout the maximum of solar cycle 23 and the new-millennium
solar minimum of 2007 – 2009. UVCS tends to observe only the largest coronal holes, since when
the smallest holes rotate to the solar limb their UV line profiles tend to be contaminated by
emission from streamers in the foreground and background. This selection effect naturally screens
out small coronal holes that have been correlated with slow solar wind streams at 1 AU (Nolte
et al., 1976; Neugebauer et al., 1998). In the cases where UVCS and in situ measurements were
made for the same regions associated with large coronal holes, high speeds in excess of 600 km s–1

were inevitably seen in interplanetary space (Miralles et al., 2004, 2006). However, the O+5 outflow
speeds measured in the extended corona via Doppler dimming have showed a substantial range
of variation. For example, Miralles et al. (2001b) found that the outflow speeds at 2 – 3R⊙ in an
equatorial coronal hole were approximately three times lower than those measured in the polar
coronal holes from 1996 – 1997 at similar heights (see also Poletto et al., 2002). This implies that
the range of coronal heights over which the acceleration of the solar wind occurs can vary greatly,
even when the wind at 1 AU ends up similarly fast.

UVCS also has measured the plasma properties in bright polar plumes. The densest concen-
trations of polar plumes along the line of sight are seen to exhibit narrower line widths – i.e.,
lower kinetic temperatures – than the lower-density interplume regions (Kohl et al., 1997; Noci
et al., 1997; Kohl et al., 2006). Similarly, plumes are seen to have lower outflow speeds than the
interplume regions (Giordano et al., 2000; Teriaca et al., 2003; Raouafi et al., 2007), although at
low heights the data are not as clear-cut (e.g., Gabriel et al., 2003). UVCS also has put constraints
on the plume/interplume density contrast and the filling factor of polar plumes in coronal holes.
Cranmer et al. (1999b) used a large number of UVCS synoptic measurements to determine statisti-
cally that, at heights around r ≈ 2R⊙, the plume/interplume density ratio is approximately 2, and
polar coronal holes are comprised of about 25% plume and 75% interplume plasma (corresponding
to ∼ 40 individual plumes distributed throughout the coronal hole). Earlier measurements made
closer to the limb showed a higher density contrast and a smaller filling factor, so the UVCS data
are generally consistent with lateral expansion of polar plumes with increasing distance.

It is still relatively unknown how much of the mass, momentum, and energy flux of the fast
solar wind comes from polar plumes. Despite that uncertainty, though, there have been several
reasonably successful models of polar plume formation. Wang (1994, 1998) presented models of
polar plumes as the extensions of flux tubes with concentrated bursts of added coronal heating
at the base – presumably via nanoflare-like reconnection events in X-ray bright points (see also
DeForest et al., 2001). In these models, the extra basal heat input is balanced by conductive losses
to produce the larger plume density. The heating rate in the extended corona is not affected by
the basal burst, but the larger density in the flux tube gives rise to less heating per particle at all
heights, which leads to lower temperatures in the extended corona and a smaller gas pressure force
for solar wind acceleration. This model is consistent with the smaller temperatures and outflow
speeds measured in plumes with UV spectroscopy.

UVCS made the first spectroscopic measurements of polar jets in coronal holes (Dobrzycka
et al., 2000, 2006). The events observed by EIT, LASCO, and UVCS during the 1996–1997 solar
minimum tended to be “cool jets” with higher densities, lower temperatures, and faster outflows
than the surrounding coronal holes (see also Wang et al., 1998). More recently, Hinode has observed
a new population of “hot” X-ray jets in coronal holes (Culhane et al., 2007; Cirtain et al., 2007;
Shimojo et al., 2007; Filippov et al., 2009). UVCS found that some of these events persist up to
heights of at least 1.7R⊙ and that the jet protons remain hotter than the surrounding coronal hole
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(Miralles et al., 2007). Thus, there appear to exist two distinct kinds of polar jets (cool and hot),
with differences possibly related to the relative degrees of heating and adiabatic expansion of the jet
parcels. Jets and plumes have roughly similar angular sizes and intensity contrasts near the solar
limb, and there is growing evidence that they share a common origin (e.g., Raouafi et al., 2008).
It is possible that the only substantial difference between the two phenomena is the duration of
the bursts of basal heating; i.e., jets seem to be the result of short-lived bursts of heating, whereas
plumes may be the product of base-heating events that last longer than several hours.
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5 Coronal Heating and Solar Wind Acceleration

Despite more than a half-century of study, the basic physical processes that are responsible for
heating the million-degree corona and accelerating the supersonic solar wind are not known. This
section broadens the topic of this paper a bit beyond just coronal holes, since an understanding
of solar wind acceleration naturally encompasses not only the question of why fast solar wind
streams are fast, but also why (various kinds of) slow solar wind streams are slow. Section 5.1
summarizes some of the major issues regarding coronal energy deposition. The next two subsections
describe two alternate views of solar wind acceleration via waves and turbulence in open flux
tubes (Section 5.2) and reconnection between open and closed flux tubes (Section 5.3). Lastly,
Section 5.4 reviews how collisionless kinetic effects in coronal holes (i.e., preferential ion heating
and temperature anisotropies) can be used to more conclusively identify the detailed physical
processes that produce the solar wind.

5.1 Sources of energy

Different physical mechanisms for heating the corona probably govern active regions, closed loops
in the quiet corona, and the open field lines that give rise to the solar wind (see other reviews by
Marsch, 1999; Hollweg and Isenberg, 2002; Longcope, 2004; Gudiksen, 2005; Aschwanden, 2006;
Klimchuk, 2006). The ultimate source of the energy is the solar convection zone (e.g., Abramenko
et al., 2006b; McIntosh et al., 2007). A key aspect of solving the “coronal heating problem” is
thus to determine how a small fraction of that mechanical energy is transformed into magnetic
free energy and thermal energy above the photosphere. It seems increasingly clear that loops in
the low corona are heated by small-scale, intermittent magnetic reconnection that is driven by
the continual stressing of their magnetic footpoints. However, the extent to which this kind of
impulsive energy addition influences the acceleration of the solar wind is not yet known.

Intertwined with the coronal heating problem is the heliophysical goal of being able to make
accurate predictions of how both fast and slow solar wind streams are accelerated. Empirical
correlation techniques have become more sophisticated and predictively powerful (e.g., Wang and
Sheeley Jr, 1990, 2006; Arge and Pizzo, 2000; Leamon and McIntosh, 2007; Cohen et al., 2007;
Vršnak et al., 2007) but they are limited because they do not identify or utilize the physical
processes actually responsible for solar wind acceleration. There seem to be two broad classes of
physics-based models that attempt to self-consistently answer the question: “How are fast and

slow wind streams heated and accelerated?”

1. In wave/turbulence-driven (WTD) models, it is generally assumed that the convection-
driven jostling of magnetic flux tubes in the photosphere drives wave-like fluctuations that
propagate up into the extended corona. These waves (usually Alfvén waves) are often pro-
posed to partially reflect back down toward the Sun, develop into strong MHD turbulence,
and dissipate over a range of heights. These models also tend to explain the differences be-
tween fast and slow solar wind not by any major differences in the lower boundary conditions,
but instead as an outcome of different rates of lateral flux-tube expansion over several solar
radii as the wind accelerates (see, e.g., Hollweg, 1986; Wang and Sheeley Jr, 1991; Matthaeus
et al., 1999; Cranmer, 2005; Suzuki, 2006; Suzuki and Inutsuka, 2006; Cranmer et al., 2007;
Verdini and Velli, 2007; Verdini et al., 2009).

2. In reconnection/loop-opening (RLO) models, the flux tubes feeding the solar wind are
assumed to be influenced by impulsive bursts of mass, momentum, and energy addition in
the lower atmosphere. This energy is usually assumed to come from magnetic reconnection
between closed, loop-like magnetic flux systems (that are in the process of emerging, frag-
menting, and being otherwise jostled by convection) and the open flux tubes that connect
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to the solar wind. These models tend to explain the differences between fast and slow solar
wind as a result of qualitatively different rates of flux emergence, reconnection, and coronal
heating at the basal footpoints of different regions on the Sun (see, e.g., Axford and McKen-
zie, 1992, 1997; Fisk et al., 1999; Ryutova et al., 2001; Markovskii and Hollweg, 2002, 2004;
Fisk, 2003; Schwadron and McComas, 2003; Woo et al., 2004; Fisk and Zurbuchen, 2006).

It is notable that both the WTD and RLO models have recently passed some basic “tests”
of comparison with observations. Both kinds of model have been shown to be able to produce
fast (v > 600 km/s), low-density wind from coronal holes and slow (v < 400 km/s), high-density
wind from streamers rooted in quiet regions. Both kinds of model also seem able to reproduce the
observed in situ trends of how frozen-in charge states and the FIP effect vary between fast and
slow wind streams.

The fact that both sets of ideas described above seem to mutually succeed at explaining the
fast/slow solar wind could imply that a combination of both ideas would work best. However, it
may also imply that the existing models do not yet contain the full range of physical processes –
and that once these are included, one or the other may perform noticeably better than the other.
It also may imply that the comparisons with observations have not yet been comprehensive enough
to allow the true differences between the WTD and RLO ideas to be revealed.

Several recent observations have pointed to the importance of understanding the relationships
and distinctions between the WTD and RLO models. The impulsive polar jets discussed in Sec-
tion 4 may be evidence that that magnetic reconnection drives some fraction of the fast solar wind
(see also Fisk, 2005; Moreno-Insertis et al., 2008; Pariat et al., 2009). Also, direct observations of
Alfvén waves above the solar limb indicate the highly intermittent nature of how kinetic energy is
distributed in spicules, loops, and the open-field corona (De Pontieu et al., 2007; Tomczyk et al.,
2007; Tomczyk and McIntosh, 2009). Spectroscopic observations of blueshifts in the chromospheric
network have long been interpreted as the launching points of solar wind streams, but it remains
unclear how nanoflare-like events or loop-openings contribute to the interpretation of these diag-
nostics (He et al., 2007; Aschwanden et al., 2007; McIntosh et al., 2007). Even out in the in situ

solar wind – far above the roiling “furnace” of flux emergence at the Sun – there remains evidence
for ongoing reconnection (Gosling et al., 2005; Gosling and Szabo, 2008). There is also evidence
that the dominant range of turbulence timescales measured in interplanetary space (i.e., tens of
minutes to hours) is related to the timescale of flux cancellation in the low corona (Hollweg, 1990,
2006).

Determining whether the WTD or RLO paradigm – or some combination of the two – is
the dominant cause of global solar wind variability is a key prerequisite to building physically
realistic predictive models of the heliosphere. Many of the widely-applied global modeling codes
(e.g., Riley et al., 2001; Roussev et al., 2003; Tóth et al., 2005; Usmanov and Goldstein, 2006;
Feng et al., 2007) continue to utilize relatively simple empirical prescriptions for coronal heating
in the energy conservation equation. Improving the identification and characterization of the
key physical processes will provide a clear pathway for inserting more physically realistic coronal
heating “modules” into three-dimensional MHD codes.

5.2 The Wave/Turbulence-Driven (WTD) solar wind idea

There has been substantial work over the past few decades devoted to exploring the idea that the
plasma heating and wind acceleration along open flux tubes may be explained as a result of wave
damping and turbulent cascade. No matter the relative importance of reconnections and loop-
openings in the low corona, we do know that waves and turbulent motions are present everywhere
from the photosphere to the heliosphere, and it is important to determine how they affect the
mean state of the plasma. A review of the observational evidence for waves and turbulence in the
solar wind is beyond the scope of this paper, but several recent reviews of the remote-sensing and
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in situ data include Tu and Marsch (1995), Mullan and Yakovlev (1995), Goldstein et al. (1997),
Roberts (2000), Bastian (2001), and Cranmer (2002a, 2004a, 2007). Although this subsection
mainly describes recent work by the author, these results would not have been possible without
earlier work on wave/turbulent heating by, e.g., Coleman (1968), Hollweg (1986), Hollweg and
Johnson (1988), Isenberg (1990), Li et al. (1999), Matthaeus et al. (1999), Dmitruk et al. (2001,
2002), and many others.

Cranmer et al. (2007) described a set of models in which the time-steady plasma properties
along a one-dimensional magnetic flux tube are determined. These model flux tubes are rooted in
the solar photosphere and are extended into interplanetary space. The numerical code developed in
that work, called ZEPHYR, solves the one-fluid equations of mass, momentum, and energy conser-
vation simultaneously with transport equations for Alfvénic and acoustic wave energy. ZEPHYR
is the first code capable of producing self-consistent solutions for the photosphere, chromosphere,
corona, and solar wind that combine: (1) shock heating driven by an empirically guided acoustic
wave spectrum, (2) extended heating from Alfvén waves that have been partially reflected, then
damped by anisotropic turbulent cascade, and (3) wind acceleration from gradients of gas pressure,
acoustic wave pressure, and Alfvén wave pressure.

The only input “free parameters” to ZEPHYR are the photospheric lower boundary conditions
for the waves and the radial dependence of the background magnetic field along the flux tube.
The majority of heating in these models comes from the turbulent dissipation of partially reflected
Alfvén waves (see also Matthaeus et al., 1999; Dmitruk et al., 2002; Verdini and Velli, 2007;
Chandran et al., 2009a). Photospheric measurements of the horizontal motions of strong-field
intergranular flux concentrations (i.e., G-band bright points) were used to constrain the Alfvén
wave power spectrum at the lower boundary. This empirically determined power spectrum is
dominated by wave periods of order 5 –10 minutes. It is important to note, however, that radio
and in situ measurements find that most of the fluctuation power in the solar wind is at lower
frequencies (i.e., periods of hours). We still do not yet know (1) if the shape of the power spectrum
evolves significantly between the lower solar atmosphere and interplanetary space, or (2) if some
low-frequency power is missed by the existing measurements of G-band bright point motions. In
any case, as seen below, the resulting wave reflection and turbulent dissipation that comes from
just the 5 – 10 minute periods appear to be sufficient to explain the observed levels of coronal
heating and solar wind acceleration.

Non-WKB wave transport equations were solved to determine the degree of linear reflection
at heights above the photospheric base (see Cranmer and van Ballegooijen, 2005). The resulting
values of the Elsasser amplitudes Z±, which denote the energy contained in upward (Z−) and
downward (Z+) propagating waves, were then used to constrain the energy flux in the cascade.
Cranmer et al. (2007) used a phenomenological form for the damping rate that has evolved from
studies of Reduced MHD and comparisons with numerical simulations. The resulting heating rate
(in units of erg s–1 cm–3) is given by

Q = ρ

(

1

1 + [teddy/tref ]n

)

Z2
−Z+ + Z2

+Z−

4L⊥
(1)

where ρ is the mass density and L⊥ is an effective perpendicular correlation length of the tur-
bulence (see, e.g., Hossain et al., 1995; Zhou and Matthaeus, 1990; Breech et al., 2008; Podesta
and Bhattacharjee, 2009; Beresnyak and Lazarian, 2009). Cranmer et al. (2007) used a standard
assumption that L⊥ scales with the cross-sectional width of the flux tube (Hollweg, 1986). The
term in parentheses above is an efficiency factor that accounts for situations in which the cascade
does not have time to develop before the waves or the wind carry away the energy (Dmitruk and
Matthaeus, 2003). In open field regions, the cascade is “quenched” when the nonlinear eddy time
scale teddy becomes much longer than the macroscopic wave reflection time scale tref . In closed
field regions, the correction factor may behave in an opposite sense as it does for open field regions
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Figure 9: Summary of Cranmer et al. (2007) models: (a) The adopted solar-minimum field geometry of
Banaszkiewicz et al. (1998), with radii of wave-modified critical points marked by symbols. (b) Latitudinal
dependence of wind speed at ∼ 2 AU for models with n = 1 (multi-color curve) and n = 2 (brown curve),
compared with data from the first Ulysses polar pass in 1994 – 1995 (black curve; Goldstein et al., 1996).
(c) T (r) for polar coronal hole (red solid curve), streamer edge (blue dashed curve), and strong-field active
region (black dotted curve) models.

(see, e.g., Gómez et al., 2000; Rappazzo et al., 2008). In most of the solar wind models, though,
Cranmer et al. (2007) used n = 1 in Equation (1) based on analytic and numerical results (Do-
browolny et al., 1980; Oughton et al., 2006), but they also tried n = 2 to explore a stronger form
of the quenching effect.

Figure 9 summarizes the results of varying the magnetic field properties while keeping the lower
boundary conditions fixed. For a single choice for the photospheric wave properties, the models
produced a realistic range of slow and fast solar wind conditions. A two-dimensional model of
coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and
fast streams seen by Ulysses. An active-region-like enhancement of the magnetic field strength in
the low corona generates a high mass flux and a slow wind speed, in agreement with observations
of open field lines connected with active regions (see also Wang et al., 2009). As predicted by
earlier studies, a larger coronal “expansion factor” naturally gives rise to a slower and denser wind,
higher temperature at the coronal base, and lower-amplitude Alfvén waves at 1 AU.

In these models, the radial gradient of the Alfvén speed affects where the waves are reflected
and damped, and thus whether energy is deposited below or above the Parker (1958a) critical
point. Early studies of solar wind energetics (e.g., Leer and Holzer, 1980; Pneuman, 1980; Leer
et al., 1982) showed that if there is substantial heating below the critical point, its primary impact
is to “puff up” the hydrostatic scale height, drawing more particles into the accelerating wind and
thus producing a slower and more massive wind. If most of the heating occurs at or above the
critical point, the subsonic atmosphere is relatively unaffected, and the local increase in energy
flux has nowhere else to go but into the kinetic energy of the wind (leading to a faster and less
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dense outflow). The ZEPHYR results shown in Figure 9 display this kind of dichotomy because
the superradial expansion creates a much higher critical point over the equatorial regions than
over the poles. Additional studies of how and where the mass flux and wind speed are determined
include Withbroe (1988), Hansteen and Leer (1995), Hansteen et al. (1997), Janse et al. (2007),
and Wang et al. (2009).

Perhaps more surprisingly, varying the coronal expansion factor in the models shown in Figure 9
also produces correlative trends that are in good agreement with in situ measurements of commonly
measured ion charge state ratios (e.g., O7+/O6+) and FIP-sensitive abundance ratios (e.g., Fe/O).
Cranmer et al. (2007) showed that the slowest solar wind streams – associated with active-region
fields at the base – can produce a factor of ∼ 30 larger frozen-in ionization-state ratio of O7+/O6+

than high-speed streams from polar coronal holes, despite the fact that the temperature at 1 AU is
lower in slow streams than in fast streams. Furthermore, when elemental fractionation is modeled
using a theory based on preferential wave-pressure acceleration (Laming, 2004, 2009; Bryans et al.,
2009), the slow wind streams exhibit a substantial relative buildup of elements with low FIP
with respect to the high-speed streams. Although the WTD models utilize identical photospheric
lower boundary conditions for all of the flux tubes, the self-consistent solutions for the upper
chromosphere, transition region, and low corona are qualitatively different. Feedback from larger
heights (i.e., from variations in the flux tube expansion rate and the resulting heating rate) extends
downward to create these differences.

Another empirical “marker” of heliospheric stream structure is the proton specific entropy,
or entropy per proton, which is often approximated as being proportional to ln(Tp/n

γ−1
p ), where

γ ≈ 1.5 is an empirical adiabatic index for solar wind protons (e.g., Burlaga et al., 1990; Pagel
et al., 2004). When measured in regions of the (non-CME) heliosphere where corotating interaction
regions have not yet formed shocks, this quantity is seen to clearly distinguish slow wind streams
from fast wind streams. Figure 10 shows how the specific entropy is positively correlated with wind
speed, both in measurements made by the Solar Wind Electron Proton Alpha Monitor (SWEPAM)
instrument on ACE (McComas et al., 1998) and in the Cranmer et al. (2007) ZEPHYR models
discussed above. Each model data point was computed independently of the others. The models
had identical lower boundary conditions at the photosphere, and they differed from one another
only by having a different radial dependence of the magnetic field. Because entropy should be
conserved in the absence of significant small-scale dissipation, the quantity that is measured at
1 AU may be a long-distance proxy for the near-Sun locations of strong coronal heating. In other
words, the comparison of measured and modeled solar wind entropy variations may be a key way
to discriminate between competing explanations of solar wind acceleration.

Although Equation (1) describes the plasma heating rate in terms of the local properties of
MHD turbulence, it is also possible to see that this expression gives a heating rate proportional
to the mean magnetic flux density at the coronal base. As illustrated above in Figure 4, the
mean field strength in the low corona is determined by both the photospheric field strength in the
intergranular bright points and the total number of bright points that eventually merge their fields
together in the low corona. The field strength at this merging height can thus be estimated as
B ≈ f*B*, where B* ≈ 1500 G is the (nearly universal) photospheric bright-point field strength
and f* is the area filling factor of bright points in the photosphere. The latter quantity appears to
vary by more than an order of magnitude in different regions on the Sun, from about 0.002 (at low
latitudes at solar minimum) to ∼ 0.1 (in active regions). If the regions below the merging height
can be treated using approximations from “thin flux tube theory” (e.g., Spruit, 1981; Cranmer
and van Ballegooijen, 2005), then it is possible to express each term in Equation (1) as a function
of f* and the photospheric properties. For example, B ∝ ρ1/2 applies to thin flux tubes in
pressure equilibrium, and thus ρ at the merging height can be estimated as f2

*ρ* (where ρ* is the
photospheric density). For Alfvén waves at low heights, Z± ∝ ρ−1/4, and so Z± at the merging

height scales like Z±*/f
1/2
* . Also, we assumed that L⊥ ∝ B−1/2. If the quenching factor in
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Figure 10: Solar wind specific entropy plotted as a function of solar wind speed, computed for both the
ZEPHYR models at 1 AU (black symbols, curve) and from ACE/SWEPAM data (blue points).

parentheses in Equation (1) is neglected, then

Q ≈
ρZ3

L⊥
≈

(

ρ*Z
3
*

L⊥*

)

f2
* f

−3/2
*

f
−1/2
*

≈ Q*f* . (2)

Equivalently, Equation (2) implies that Q/Q* ≈ B/B*, and thus that the heating in the low corona
scales directly with the mean magnetic field strength there. In a more highly structured field, the
latter is equivalent to the magnetic “flux density” averaged over a given region. Observational
evidence for such a linear scaling has been found for both a variety of solar regions and other stars
as well (see, e.g., Pevtsov et al., 2003; Schwadron et al., 2006; Suzuki, 2006; Kojima et al., 2007;
Pinto et al., 2009).

5.3 The Reconnection/Loop-Opening (RLO) solar wind idea

It is clear from observations of the Sun’s highly dynamical “magnetic carpet” (Schrijver et al., 1997;
Title and Schrijver, 1998; Hagenaar et al., 1999) that much of coronal heating is driven by the
continuous interplay between the emergence, separation, merging, and cancellation of small-scale
magnetic elements. Reconnection seems to be the most likely channel for the injected magnetic
energy to be converted to heat (e.g., Priest and Forbes, 2000). Only a small fraction of the
photospheric magnetic flux is in the form of open flux tubes connected to the heliosphere (Close
et al., 2003). Thus, the idea has arisen that the dominant source of energy for open flux tubes is a
series of stochastic reconnection events between the open and closed fields (e.g., Fisk et al., 1999;
Ryutova et al., 2001; Fisk, 2003; Schwadron and McComas, 2003; Feldman et al., 2005; Schwadron
et al., 2006; Schwadron and McComas, 2008; Fisk and Zhao, 2009).

The natural appeal of the RLO idea is evident from the fact that open flux tubes are always
rooted in the vicinity of closed loops (e.g., Dowdy et al., 1986) and that all layers of the solar
atmosphere seem to be in continual motion with a wide range of timescales. In fact, observed
correlations between the lengths of closed loops in various regions, the electron temperature in
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the low corona, and the wind speed at 1 AU (Feldman et al., 1999; Gloeckler et al., 2003) are
highly suggestive of a net transfer of Poynting flux from the loops to the open-field regions that
may be key to understanding the macroscopic structure of the solar wind. The proposed RLO
reconnection events may also be useful in generating energetic particles and cross-field diffusive
transport throughout the heliosphere (e.g., Fisk and Schwadron, 2001).

Testing the RLO idea using theoretical models seems to be more difficult than testing the WTD
idea because of the complex multi-scale nature of magnetic reconnection. It can be argued that one
needs to create fully three-dimensional models of the coronal magnetic field (arising from multiple
magnetic elements on the surface) to truly assess the full range of closed/open flux interactions.
The idea of modeling the coronal field via a collection of discrete magnetic sources (referred to in
various contexts as “magneto-chemistry,” “tectonics,” or “magnetic charge topology”) has been
used extensively to study the evolution of the closed-field corona (e.g., Longcope, 1996; Schrijver
et al., 1997; Longcope and Kankelborg, 1999; Sturrock et al., 1999; Priest et al., 2002; Beveridge
et al., 2003; Barnes et al., 2005; Parnell, 2007; Ng and Bhattacharjee, 2008), but applications to
open fields and the solar wind have been rarer (see, however, Fisk, 2005; Tu et al., 2005).

In order to develop the RLO paradigm to the point where it can be tested more quantitatively,
several key questions remain to be answered. For example, how much magnetic flux actually opens

up in the magnetic carpet? Also, what is the time and space distribution of reconnection-driven
energy addition into the (transiently) open flux tubes? Lastly, how is the reconnection energy
distributed into various forms (e.g., bulk kinetic energy in “jets,” thermal energy, waves, turbulence,
and energetic particles) that each affect the accelerating solar wind in different ways? Combinations
of simulations, analytic scaling relations, and observations are needed to make further progress.

5.4 Kinetic microphysics

The theoretical models discussed in the previous two subsections mainly involved a “one-fluid” or
MHD approach to the coronal heating and solar wind acceleration. However, at large heights in
coronal holes, the collisionless divergence of plasma parameters for protons, electrons, and heavy
ions allows the multi-fluid kinetic processes to be distinguished in a more definitive way. The
UVCS measurements of strong O+5 preferential heating, preferential acceleration, and temperature
anisotropy have spurred a great deal of theoretical work in this direction (see reviews by Hollweg
and Isenberg, 2002; Cranmer, 2002a; Marsch, 2005, 2006; Kohl et al., 2006). Specifically, the
observed ordering of Ti ≫ Tp > Te and the existence of anisotropies of the form T⊥ > T‖ in
coronal holes led to a resurgence of interest in models of ion cyclotron resonance.

The ion cyclotron heating mechanism is a classical resonance between left-hand polarized Alfvén
waves and the Larmor gyrations of positive ions around the background magnetic field. If the
wave frequency and the natural ion gyrofrequency are equal, then in the rest frame of the ion the
oscillating electric and magnetic fields of the wave are no longer felt by the ion to be oscillating.
The ion in such a frame senses a constant DC electric field, and it can secularly gain or lose energy
depending on the relative phase between the ion’s velocity vector and the electric field direction.
In a wave field with random phases, an ion will undergo a random walk in energy. Thus, on
average the ions can be considered to “diffuse” into faster (i.e., wider) Larmor orbits with larger
perpendicular energy (see Rowlands et al., 1966; Galinsky and Shevchenko, 2000; Isenberg, 2001;
Cranmer, 2001; Isenberg and Vasquez, 2009).

In the actual solar corona, however, it is not likely that the situation is as straightforward
as summarized above. Instead of a population of pre-existing, linear cyclotron waves that are
dissipated, there may be a rich variety of nonlinear plasma mechanisms at play. The observed
ion heating is likely to be just the final stage of a multi-step process of energy conversion between
waves, turbulent motions, reconnection structures, and various kinds of distortions in the particle
velocity distributions. Table 1 surveys the field of suggested possibilities, and the remainder of

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2009-3

http://www.livingreviews.org/lrsp-2009-3


30 Steven R. Cranmer

Table 1: Tabular outline of suggested physical processes for preferentially heating and accelerating minor
ions in coronal holes.

Reconnection events in the low corona generate:
Ion cyclotron resonant Alfvén waves . . . . . . . . . . . . . . . . . Tu and Marsch (1997); Cranmer (2000, 2001)
Electron beams → ion cyclotron waves . . . . . . . . . . . . . . . . . . . . . . .Markovskii and Hollweg (2002, 2004)
Fast collisionless shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lee and Wu (2000)

MHD turbulence in the extended corona generates:
Ion cyclotron waves (“parallel cascade?”), with:
≫ Alfvén and fast-mode nonlinear coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Chandran (2005)
≫ Three-wave (ion-sound/parametric) coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . Yoon and Fang (2008)
≫ Fermi-like diffusion between inward/outward wave resonances . . . . . . . . . . . . . . . . . Isenberg (2001)
Kinetic Alfvén waves (“perpendicular cascade”), with:
≫ Shear instabilities → ion cyclotron waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Markovskii et al. (2006)
≫ Nonlinear wave-particle resonances . . . . . . . . . . . . . . . . . . . . . . . Voitenko and Goossens (2003, 2004)
≫ Debye-scale electron holes . . . . . . Matthaeus et al. (2003); Cranmer and van Ballegooijen (2003)
Oblique MHD waves (high k‖, high k⊥) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Li and Habbal (2001)
Current sheets → coherent Fermi acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dmitruk et al. (2004)
Transverse density gradients → drift currents . . . . . . . . . . . . . . . . . . . . Markovskii (2001); Zhang (2003)

Low-frequency Alfvén waves in the corona directly undergo:
Polarization drift → lower-hybrid waves . .Singh and Khazanov (2004); Khazanov and Singh (2007)
Nonresonant stochastic heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lu and Li (2007); Wu and Yoon (2007)
Stochastic heating at fractional cyc. resonance . . . . . . . . . . . . . . . Chen et al. (2001); Guo et al. (2008)

Heavy ion velocity filtration . . . . . . . . . . . . . . . . . . . Pierrard and Lamy (2003); Pierrard et al. (2004)

this section discusses these ideas in more detail.
One potential obstacle to the idea of ion cyclotron heating is that the required gyroresonant

wave frequencies in the corona are of order 102 to 104 Hz, whereas the dominant frequencies of
Alfvén waves believed to be emitted by the Sun are thought to be much lower (i.e., less than
0.01 Hz, corresponding to periods of minutes to hours). Axford and McKenzie (1992) suggested
that the right kinds of high-frequency waves may be generated in small-scale reconnection events
in the chaotic “furnace” of the supergranular network. These waves could propagate upwards in
height – and downwards in magnetic field strength – until they reached a location where they
became cyclotron resonant with the local ions, and thus would damp rapidly to provide the ion
heating (see also Schwartz et al., 1981; Tu and Marsch, 1997).

The above scenario of “basal generation” of ion cyclotron waves has been called into question
for several reasons. Cranmer (2000, 2001) argued that the passive sweeping of a pre-existing
fluctuation spectrum would involve ions with low gyrofrequencies (i.e., small ratios of charge to
mass; qi/mi ≈ 0.1 to 0.2 in proton units) encountering waves of a given frequency at lower heights
than the ions that have been observed to exhibit preferential heating, like O+5 (qi/mi = 0.31) and
Mg+9 (qi/mi = 0.37). Thus, the resonances of many minor ion species may be strong enough to
damp out a base-generated spectrum of waves before they can become resonant with the observed
species. Furthermore, Hollweg (2000) found that a base-generated spectrum of ion cyclotron waves
would exhibit a very different appearance in interplanetary radio scintillations than the observed
radio data. There remains some uncertainty about these criticisms of a basal spectrum of ion
cyclotron waves, and definitive conclusions cannot yet be made (see discussions in Tu and Marsch,
2001; Hollweg and Isenberg, 2002).

There are several other interesting consequences of the Axford and McKenzie (1992) idea of
rapid reconnection events at the coronal base. It is possible, for example, that such microflaring
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activity would give rise to intermittent bursts of parallel electron beams that propagate up into
the extended corona. Sufficiently strong beams may be unstable to the growth of wave power at
the ion cyclotron frequencies (Markovskii and Hollweg, 2002, 2004; Voitenko and Goossens, 2002),
and these waves would then go on to heat the ions. Also, Lee and Wu (2000) suggested that
small-scale reconnection events could produce fast collisionless shocks in the extended corona. For
shocks sufficiently thin and strong (i.e., with a bulk velocity jump of at least ∼ 0.3 times the Alfvén
speed), ions that cross from one side of the shock to the other remain “nondeflected” by the rapid
change in direction of the magnetic field. Thus, they can convert some of their parallel motion
into perpendicular gyration. Mancuso et al. (2002) suggested this mechanism may be applied to
understanding UVCS measurements of ion heating in shocks associated with CMEs. However, it is
unclear to what extent the open magnetic regions in coronal holes are filled with sufficiently strong
shocks to enable this process to occur (see also Hollweg and Isenberg, 2002).

In contrast to the ideas of base-generation of ion cyclotron waves, there have been several pro-
posed mechanisms for “gradual generation” of these waves over a range of distances in the corona
and solar wind. A natural way to produce such an extended source of fluctuations is MHD turbu-

lent cascade, which continually transports power at large scales to small scales via the stochastic
shredding of transient eddies. A strong turbulent cascade is certainly present in interplanetary
space (see reviews by Tu and Marsch, 1995; Goldstein et al., 1997). It is well known, though, that
in both numerical simulations and analytic descriptions of Alfvén-wave turbulence (with a strong
background “guide field” like in the corona) the cascade from large to small length scales (i.e., from
small to large wavenumbers) occurs most efficiently for modes that do not increase in frequency.
In other words, the cascade acts most rapidly to increase the perpendicular wavenumber k⊥ while
leaving the parallel wavenumber k‖ largely unchanged (e.g., Strauss, 1976; Shebalin et al., 1983;
Goldreich and Sridhar, 1995; Cho et al., 2002; Oughton et al., 2004). This type of cascade is
expected to generate so-called kinetic Alfvén waves (KAWs) with k⊥ ≫ k‖, but not ion cyclotron
waves.

Under typical “low plasma beta” conditions in the corona and fast solar wind, the linear
dissipation of KAWs would lead to the preferential parallel heating of electrons (Leamon et al.,
1999; Cranmer and van Ballegooijen, 2003; Gary and Borovsky, 2008). This is essentially the
opposite of what has been observed with UVCS. However, there have been several suggestions
for more complex (nonlinear or multi-step) processes that may be responsible for ions to receive
perpendicular heating from KAW-type fluctuations.

1. Markovskii et al. (2006) discussed how a perpendicular turbulent cascade produces increas-
ingly strong shear motions transverse to the magnetic field, and that this shear may eventually
be unstable to the generation of cyclotron resonant waves that can in turn heat protons and
ions (see also Mikhailenko et al., 2008). This effect may also produce a steepening in the
power spectrum of the magnetic field fluctuations that agrees with the observed “dissipation
range” (Smith et al., 2006).

2. Voitenko and Goossens (2003, 2004) suggested that high-k⊥ KAWs with sufficiently large
amplitudes could begin to exhibit nonlinear resonance effects (“demagnetized wave phases”)
leading to rapid ion perpendicular heating. There are definite thresholds in the KAW ampli-
tude that must be exceeded for these mechanisms to be initiated, and it is unclear whether the
actual coronal turbulent spectrum has enough power in the relevant regions of wavenumber
space (see also Wu and Yang, 2006, 2007).

3. The damping of low-frequency KAWs may give rise to substantial parallel electron accel-
eration. If the resulting electron velocity distributions were sufficiently beamed, they could
become unstable to the generation of parallel Langmuir waves. In turn, the evolved Lang-
muir wave trains may exhibit a periodic electric potential-well structure in which some of
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the beam electrons can become trapped. Adjacent potential wells can then merge with one
another to form isolated “electron phase space holes” of saturated potential. Ergun et al.

(1999), Matthaeus et al. (2003), and Cranmer and van Ballegooijen (2003) described how
these tiny (Debye-scale) electrostatic structures can heat ions perpendicularly via Coulomb-
like quasi-collisions.

4. Obliquely propagating MHD waves with large perpendicular and parallel wavenumbers –
including KAWs and fast-mode waves – can interact resonantly with positive ions via channels
that are not available when either k‖ or k⊥ are small. Li and Habbal (2001) found that
oblique fast-mode waves with large wavenumbers may be even more efficient than Alfvén
waves at heating ions under coronal conditions. Hollweg and Markovskii (2002) discussed
how the higher-order cyclotron resonances become available to obliquely propagating waves
with large wavenumbers, and how these can lead to stochastic velocity-space diffusion for
ions.

5. On the smallest spatial scales, the plasma in numerical simulations of MHD turbulence is
seen to develop into a collection of narrow current sheets undergoing oblique magnetic recon-
nection (i.e., with the strong “guide field” remaining relatively unchanged). Dmitruk et al.

(2004) performed test-particle simulations in a turbulent plasma and found that protons can
become perpendicularly accelerated around the guide field because of coherent forcing from
the perturbed fields associated with the current sheets (see also Parashar et al., 2009). It re-
mains to be seen whether this process could lead to more than mass-proportional energization
for minor ions.

6. If the plasma contains sufficiently small-scale density gradients transverse to the magnetic
field (∇⊥ρ), then drift currents can be excited that are unstable to the generation of high-
frequency waves (Markovskii, 2001; Zhang, 2003; Vranjes and Poedts, 2008; Mecheri and
Marsch, 2008). These instabilities depend on both the amplitudes and scale lengths of ∇⊥ρ.
To measure the latter, it is important to take into account both remote-sensing measurements
of coronal density inhomogeneities (e.g., Woo, 2006; Pasachoff et al., 2007) and constraints
from radio scintillation power spectra at larger distances (Bastian, 2001; Spangler, 2002;
Harmon and Coles, 2005).

Despite the fact that theory predicts a predominantly perpendicular cascade, there is some
evidence that the turbulent fluctuations in the solar wind have some energy that extends up to
large k‖ values in a power-law tail (see, e.g., Bieber et al., 1996; Dasso et al., 2005; MacBride et al.,
2008). Whether or not this means that true “parallel cascade” occurs in the corona and solar wind
is still not known. However, some progress has been made using a phenomenological approach to
modeling the cascade as a combination of advection and diffusion in wavenumber space. In the
model of Cranmer and van Ballegooijen (2003), the relative strengths of perpendicular advection
and diffusion determine the slope of the power-law spectrum in k‖, and thus they specify the
amount of wave energy that is available at the ion cyclotron frequencies (see also Cranmer et al.,
1999a; Landi and Cranmer, 2009; Jiang et al., 2009).

There have also been proposals for additional mechanisms that could allow a parallel cascade
to occur in the corona and solar wind. Nonlinear couplings between the dominant Alfvén waves
and other modes such as fast magnetosonic waves (Chandran, 2005; Luo and Melrose, 2006) and
ion-acoustic waves (Yoon and Fang, 2008) have the potential to enhance the wave power at high
frequencies. It has also been known for some time that nonlinear coupling between Alfvén and
fast-mode waves may help explain why the measured in situ magnetic field magnitude |B| re-
mains roughly constant while its direction varies strongly (Barnes and Hollweg, 1974; Vasquez and
Hollweg, 1996, 1998).
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If MHD waves have sufficiently large amplitudes, they may undergo nonlinear wave steepening,
which leads to density variations as well as oscillations in the parallel components of the velocity
and magnetic field. These may generate progressively smaller scales along the magnetic field (e.g.,
Medvedev, 2000; Suzuki et al., 2007). There is also a “bootstrap” kind of effect for ion cyclotron
wave generation that was discussed by Isenberg et al. (2001). If some outward-propagating cy-
clotron waves exist, the resonant diffusion may act to produce proton velocity distributions that
are unstable to the generation of inward-propagating cyclotron waves. In response, the proton dis-
tributions would become further deformed and thus could become unstable to the growth of both
inward and outward waves. It is not yet known if this process could reach the point of becoming
self-sustaining, but if so, it may also serve as an extended generation mechanism for high-k‖ waves.

In addition to the above ideas that involve large wavenumbers and kinetic effects, there have
been other suggested physical processes that do not require high-k resonances to be initially present
in order to heat the ions.

1. Particles in large-amplitude Alfvén waves exhibit bothE×B drift motions (i.e., their standard
velocity amplitude) and a polarization drift velocity Vpol that is smaller than the former by the
ratio ω/Ωi, where ω is the wave frequency and Ωi is the ion cyclotron frequency. A sufficiently
large Vpol can lead to cross-field currents unstable to the generation of high-frequency waves,
and to eventual equipartition between Vpol and the ion thermal speed (Singh and Khazanov,
2004; Singh et al., 2007; Khazanov and Singh, 2007). It is not yet known whether the effective
Vpol for the coronal fluctuation spectrum is large enough to provide a significant fraction of
the ion thermal speeds.

2. Recently there have been suggested some completely nonresonant mechanisms that depend
on the stochasticity of MHD turbulence to produce an effective increase in random ion mo-
tions (Lu and Li, 2007; Wu and Yoon, 2007; Bourouaine et al., 2008). Questions still remain,
though, concerning the spatial scales over which one should refer to particle motions as “heat-
ing” versus “wave sloshing.” This energization mechanism may be just a more chaotic form
of the standard velocity amplitude that an ion feels when in the presence of a spectrum of
Alfvén waves (see, e.g., Wang and Wu, 2009). In this case, the maximum amount of heating
from this process would provide mass-proportional heating for minor ions and protons (i.e.,
Ti/Tp = mi/mp), and it is clear that the UVCS measurements for O+5 show heating in excess
of this amount (see Section 4.3).

3. Both numerical and analytic studies of Alfvén waves show that, at sufficiently large am-
plitudes, there can be gyroresonance-like ion energization for sets of frequencies at specific
fractions of the local ion cyclotron resonance frequency (e.g., Chen et al., 2001; Guo et al.,
2008). Like several other processes listed above, this effect becomes active only above certain
thresholds of wave amplitude. Also, Markovskii et al. (2009) showed that mildly nonlinear
Alfvén waves – with frequencies slightly below the local proton gyrofrequency and power in
both the upward and downward directions along the field – can also undergo additional modes
of dissipation and proton heating that are not anticipated in linear ion cyclotron resonance
theories.

Finally, there has been some development of the so-called velocity filtration theory, which re-
quires neither direct heating nor wave damping in order to energize coronal ions. Spacecraft
measurements of plasma velocity distributions, both in the solar wind and in planetary magneto-
spheres and magnetosheaths, have revealed that “suprathermal” power-law tails are quite common.
These observations led to the suggestion by Scudder (1992a, 1994) of an an alternative to theories
that demand explicit energy deposition in the low corona (see also Parker, 1958b; Levine, 1974).
A velocity distribution having a suprathermal tail will become increasingly dominated by its high-
energy particles at larger distances from the solar gravity well. Thus an effective “heating” occurs
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as a result of particle-by-particle conservation of energy. The major unresolved issue is whether
suprathermal tails of the required strength can be produced and maintained in the upper chro-
mosphere and transition region – where Coulomb collisions are traditionally believed to be strong
enough to rapidly drive velocity distributions toward Maxwellians. Whether the solar atmosphere
actually plays host to strong nonthermal tails is still under debate, with some evidence existing
in favor of their presence (e.g., Esser and Edgar, 2000; Ralchenko et al., 2007) and other evidence
against them (Anderson et al., 1996; Ko et al., 1996; Feldman et al., 2007).

The original (Scudder, 1992a,b) ideas about suprathermal velocity filtration were applied only
to the primary (proton and electron) coronal plasma. More recently, Pierrard and Lamy (2003) and
Pierrard et al. (2004) have shown that this mechanism can produce extremely high temperatures
for heavy ions in the corona – providing they had suprathermal tails in the chromosphere. The
primary quantities presented in these papers, however, were integrated isotropic temperatures T .
No information was given about the predicted sense of the temperature anisotropy for the minor
ions. For a collisionless exospheric model, there is a suspicion that a combination of several effects
(e.g., the initial velocity filtration and subsequent magnetic moment conservation) would result in
velocity distributions with T‖ ≫ T⊥, which is not what is observed.

Since it is obvious that not all of the proposed mechanisms described above (and shown in
Table 1) can be the dominant cause of the collisionless ion energization in coronal holes, there
is a great need to “cut through the jungle” and assess the validity of each of these processes.
For many of these suggested ideas, further theoretical development is required so that specific
observational predictions can be made. However, there are also several types of measurement that
have not been widely recognized or utilized as constraints on theoretical models. A prime example
is the use of radio sounding (i.e., interplanetary scintillations and Faraday rotation) to measure
the fine structure of the corona and solar wind in density, velocity, and magnetic field strength
(see, however, Hollweg and Isenberg, 2002; Spangler, 2002; Harmon and Coles, 2005; Chandran
et al., 2009b). Another example is the use of high-resolution UV spectral line profiles to probe
departures from Maxwellian or bi-Maxwellian ion velocity distributions (e.g., Cranmer, 2001).
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6 Summary and Conclusions

The last decade has seen significant progress toward identifying and characterizing the processes
that produce coronal holes. As remote-sensing plasma measurements have become possible in the
extended solar corona (i.e., the region of primary acceleration of the solar wind), the traditional
gap between solar physics and in situ space physics has become narrower. However, there are still
many unanswered questions: How and where in the solar atmosphere are the relevant waves and
turbulent motions generated? Which kinds of fluctuation modes (i.e., linear or nonlinear; Alfvén,
fast, or slow; high k‖ or high k⊥) are most important? What frequencies dominate the radially
evolving power spectrum? What fraction of the interplanetary solar wind comes from filamentary
structures such as polar plumes and polar jets? Are there relatively simple “scaling laws” that will
allow us to use only the measured properties at the solar surface to predict the resulting amount
of coronal heating and solar wind acceleration?

Answering the above questions involves moving forward in both the theoretical and observa-
tional directions. Section 5 described the large number of suggested physical processes for energiz-
ing the plasma in coronal holes. The validity of many of these processes still needs to be assessed,
and their relative contributions to the heating and acceleration of the actual solar corona need
to be quantified. If, at the end of this process, there are still a number of mutually inconsistent
theories that are still viable, the only way forward is to determine what future measurements would
best put the remaining models to the test. These activities are ongoing with the planning of inner
heliospheric missions such as Solar Probe (McComas et al., 2007) and Solar Orbiter (Marsden and
Fleck, 2007), as well as next-generation ultraviolet coronagraph spectroscopy missions that would
follow up on the successes of UVCS/SOHO (see, e.g., Cranmer, 2002b; Gardner et al., 2003; Kohl
et al., 2006).

The development of more physically sound models of the solar wind feeds back in many ways
to a wider understanding of stellar outflows and star/planet evolution. Figure 11 shows some
of the the early stages of evolution for a representative solar-type star. At all ages, cool stars
are inferred to exhibit some kind of wind or jet-like outflow (Lamers and Cassinelli, 1999; Wood,
2004; Güdel, 2007; Cranmer, 2008a). Young stars first become visible as dust-obscured cloud
cores and protostars (e.g., Lada, 1985; Hartmann, 2000), and these objects are often associated
with bipolar, collimated jets. These outflows indicate some kind of transfer of energy from the
accretion disk’s orbital motion to torqued magnetic fields (rooted on the stellar surface) that
relieve the buildup of angular momentum and eject plasma out the poles (e.g., Blandford and
Payne, 1982; van Ballegooijen, 1994). As the accretion rates decrease over time, protostars become
visible as classical T Tauri stars (CTTS), and there remains ample evidence for polar outflows in
the form of both “disk winds” and true stellar winds (Hartigan et al., 1995; Ferreira et al., 2006;
Cranmer, 2008b). The primordial accretion disk is dissipated gradually as the star enters the weak-
lined T Tauri star (WTTS) phase, with a likely transition to a protoplanetary dust/debris disk.
Strong stellar magnetic activity remains evident during these stages from, e.g., X-rays (Feigelson
and Montmerle, 1999). Many “post T Tauri” stars, once they reach the zero-age main sequence
(ZAMS), remain rapidly rotating, and for young ZAMS stars such as AB Dor there is evidence
for a range of X-ray emitting plasma from dark polar spots (which probably do not correspond
to open magnetic field regions like coronal holes) to huge “slingshot prominences” extending over
several stellar radii (e.g., Güdel et al., 2001, 2003; Jardine and van Ballegooijen, 2005).

Learning about the fundamental physics responsible for solar coronal holes has relevance that
reaches into other areas of study besides astrophysics, including plasma physics, space physics,
and astronautical engineering. The practical benefits of improving long-term predictions for the
conditions of the Earth’s local space environment are manifold (see, e.g., Feynman and Gabriel,
2000; Eastwood, 2008). In addition, parallel research into the expansion of the polar wind from
the Earth’s ionosphere has led to an improved understanding of kinetic processes in plasmas on
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Protostar CTTS WTTS ZAMS Present-day

(∼105 yr) (∼106 yr) (∼107 yr) (∼108 yr) Sun (∼109 yr)

Figure 11: Illustration of the evolving circumstellar environment of a solar-mass star (see text), showing
various kinds of open-field structures that may be analogous to present-day coronal holes.

the boundary between collisional and collisionless conditions (Lemaire and Pierrard, 2001; Barakat
and Schunk, 2006). Finally, a growing realization that strict topical compartmentalization is often
a hindrance to making progress has given rise to greater interest in interdisciplinary studies of
“universal processes in heliophysics” (Crooker, 2004; Davila et al., 2009).
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dominated Accretion Flows”, Astrophys. J., 541, 811–820. [ADS] (Cited on page 33.)

Mikhailenko, V.S., Mikhailenko, V.V. and Stepanov, K.N., 2008, “Ion cyclotron instabilities of
parallel shear flow of collisional plasma”, Phys. Plasmas, 15, 092901. [ADS] (Cited on page 31.)

Miller, J.A., 1908, “The Determination of the Heliocentric Position of a Certain Class of Coronal
Streamers”, Astrophys. J., 27, 286–295. [ADS] (Cited on page 7.)

Miralles, M.P., Cranmer, S.R. and Kohl, J.L., 2001a, “Ultraviolet Coronagraph Spectrometer
Observations of a High-Latitude Coronal Hole with High Oxygen Temperatures and the Next
Solar Cycle Polarity”, Astrophys. J. Lett., 560, L193–L196. [ADS] (Cited on page 10.)

Miralles, M.P., Cranmer, S.R., Panasyuk, A.V., Romoli, M. and Kohl, J.L., 2001b, “Comparison
of empirical models for polar and equatorial coronal holes”, Astrophys. J. Lett., 549, L257–L260.
[ADS] (Cited on page 21.)

Miralles, M.P., Cranmer, S.R. and Kohl, J.L., 2004, “Low-latitude coronal holes during solar
maximum”, Adv. Space Res., 33(5), 696–700. [ADS] (Cited on page 21.)

Miralles, M.P., Cranmer, S.R. and Kohl, J.L., 2006, “Coronal Hole Properties During the First
Decade of UVCS/SOHO”, in SOHO-17: 10 Years of SOHO and Beyond , Proceedings of the
conference held 7 – 12 May 2006 at Giardini Naxos, Sicily, Italy, (Eds.) Lacoste, H., Ouwehand,
L., vol. SP-617 of ESA Conference Proceedings, pp. 15.1–15.4, ESA Publications Division, No-
ordwijk. [ADS] (Cited on page 21.)

Miralles, M.P., Cranmer, S.R., Raymond, J.C. and Kohl, J.L., 2007, “Multi-Instrument Searches
for Polar Jets: Characterizing Jet Heating and Cooling”, 24th IUGG General Assembly, IAGA
Symposium ASIV030, conference paper. [ADS] (Cited on page 22.)

Mitchell, S.A., 1932, “The Spectrum of the Corona”, Astrophys. J., 75, 1–33. [ADS] (Cited on
page 7.)

Moreno-Insertis, F., Galsgaard, K. and Ugarte-Urra, I., 2008, “Jets in Coronal Holes: Hinode
Observations and Three-dimensional Computer Modeling”, Astrophys. J. Lett., 673, L211–L214.
[ADS] (Cited on page 24.)

Morgan, H., Habbal, S.R., Rifai, S. and Li, X., 2004, “Hydrogen Lyα Intensity Oscillations Ob-
served by the Solar and Heliospheric Observatory Ultraviolet Coronagraph Spectrometer”, As-
trophys. J., 605, 521–527. [ADS] (Cited on page 16.)

Mullan, D.J. and Yakovlev, O.I., 1995, “Remote Sensing of the Solar Wind Using Radio Waves:
Part I”, Irish Astron. J., 22, 119–136. [ADS] (Cited on page 25.)

Munro, R.H. and Jackson, B.V., 1977, “Physical properties of a polar coronal hole from 2 to 5
solar radii”, Astrophys. J., 213, 874–886. [ADS] (Cited on page 15.)

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2009-3

http://adsabs.harvard.edu/abs/2009ApJ...693.1306M
http://adsabs.harvard.edu/abs/2007ApJ...654..650M
http://adsabs.harvard.edu/abs/2008A&A...481..853M
http://adsabs.harvard.edu/abs/2000ApJ...541..811M
http://adsabs.harvard.edu/abs/2008PhPl...15i2901M
http://adsabs.harvard.edu/abs/1908ApJ....27..286M
http://adsabs.harvard.edu/abs/2001ApJ...560L.193M
http://adsabs.harvard.edu/abs/2001ApJ...549L.257M
http://adsabs.harvard.edu/abs/2004AdSpR..33..696M
http://adsabs.harvard.edu/abs/2006ESASP.617E..15M
http://adsabs.harvard.edu/abs/2007IUGG...24..691M
http://adsabs.harvard.edu/abs/1932ApJ....75....1M
http://adsabs.harvard.edu/abs/2008ApJ...673L.211M
http://adsabs.harvard.edu/abs/2004ApJ...605..521M
http://adsabs.harvard.edu/abs/1995IrAJ...22..119M
http://adsabs.harvard.edu/abs/1977ApJ...213..874M
http://www.livingreviews.org/lrsp-2009-3


56 Steven R. Cranmer

Munro, R.H. and Withbroe, G.L., 1972, “Properties of a Coronal ‘hole’ Derived from Extreme-
Ultraviolet Observations”, Astrophys. J., 176, 511–520. [ADS] (Cited on page 7.)

Neugebauer, M., Forsyth, R.J., Galvin, A.B., Harvey, K.L., Hoeksema, J.T., Lazarus, A.J., Lep-
ping, R.P., Linker, J.A., Mikic, Z., Steinberg, J.T., von Steiger, R., Wang, Y.-M. and Wimmer-
Schweingruber, R.F., 1998, “Spatial structure of the solar wind and comparisons with solar data
and models”, J. Geophys. Res., 103, 14 587–14 600. [ADS] (Cited on pages 14 and 21.)

Neupert, W.M. and Pizzo, V., 1974, “Solar coronal holes as sources of recurrent geomagnetic
disturbances”, J. Geophys. Res., 79, 3701–3709. [ADS] (Cited on page 8.)

Newkirk Jr, G., 1967, “Structure of the Solar Corona”, Annu. Rev. Astron. Astrophys., 5, 213–266.
[ADS] (Cited on page 7.)

Newkirk Jr, G. and Harvey, J., 1968, “Coronal Polar Plumes”, Solar Phys., 3, 321–343. [ADS]

(Cited on page 7.)

Ng, C.S. and Bhattacharjee, A., 2008, “A Constrained Tectonics Model for Coronal Heating”,
Astrophys. J., 675, 899–905. [ADS] (Cited on page 29.)

Noci, G., 1973, “Energy Budget in Coronal Holes”, Solar Phys., 28, 403–407. [ADS] (Cited on
page 8.)

Noci, G., Kohl, J.L. and Withbroe, G.L., 1987, “Solar wind diagnostics from Doppler-enhanced
scattering”, Astrophys. J., 315, 706–715. [ADS] (Cited on page 20.)

Noci, G., Kohl, J.L., Antonucci, E., Tondello, G., Huber, M.C.E., Fineschi, S., Gardner, L.D.,
Naletto, G., Nicolosi, P., Raymond, J.C., Romoli, M., Spadaro, D., Siegmund, O.H.W., Benna,
C., Ciaravella, A., Giordano, S., Michels, J., Modigliani, A., Panasyuk, A., Pernechele, C.,
Poletto, G., Smith, P.L. and Strachan, L., 1997, “First results from UVCS/SOHO”, Adv. Space
Res., 20(12), 2219–2230. [ADS] (Cited on page 21.)

Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J.,
Sullivan, J.D. and McIntosh, P.S., 1976, “Coronal holes as sources of solar wind”, Solar Phys.,
46, 303–322. [ADS] (Cited on pages 14 and 21.)

Ofman, L., 2005, “MHD Waves and Heating in Coronal Holes”, Space Sci. Rev., 120, 67–94. [ADS]

(Cited on page 5.)

Ofman, L., Nakariakov, V.M. and DeForest, C.E., 1999, “Slow Magnetosonic Waves in Coronal
Plumes”, Astrophys. J., 514, 441–447. [DOI], [ADS] (Cited on page 16.)

Ofman, L., Romoli, M., Poletto, G., Noci, G. and Kohl, J.L., 2000, “UVCS WLC Observations
of Compressional Waves in the South Polar Coronal Hole”, Astrophys. J., 529, 592–598. [DOI],
[ADS] (Cited on page 16.)

Oughton, S., Dmitruk, P. and Matthaeus, W.H., 2004, “Reduced magnetohydrodynamics and
parallel spectral transfer”, Phys. Plasmas, 11, 2214–2225. [ADS] (Cited on page 31.)

Oughton, S., Dmitruk, P. and Matthaeus, W.H., 2006, “A two-component phenomenology for
homogeneous magnetohydrodynamic turbulence”, Phys. Rev. Lett., 13, 042306. [ADS] (Cited
on page 26.)

Pagel, A.C., Crooker, N.U., Zurbuchen, T.H. and Gosling, J.T., 2004, “Correlation of solar wind
entropy and oxygen ion charge state ratio”, J. Geophys. Res., 109, A01113. [DOI], [ADS] (Cited
on page 27.)

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2009-3

http://adsabs.harvard.edu/abs/1972ApJ...176..511M
http://adsabs.harvard.edu/abs/1998JGR...10314587N
http://adsabs.harvard.edu/abs/1974JGR....79.3701N
http://adsabs.harvard.edu/abs/1967ARA&A...5..213N
http://adsabs.harvard.edu/abs/1968SoPh....3..321N
http://adsabs.harvard.edu/abs/2008ApJ...675..899N
http://adsabs.harvard.edu/abs/1973SoPh...28..403N
http://adsabs.harvard.edu/abs/1987ApJ...315..706N
http://adsabs.harvard.edu/abs/1997AdSpR..20.2219N
http://adsabs.harvard.edu/abs/1976SoPh...46..303N
http://adsabs.harvard.edu/abs/2005SSRv..120...67O
http://dx.doi.org/10.1086/306944
http://adsabs.harvard.edu/abs/1999ApJ...514..441O
http://dx.doi.org/10.1086/308252
http://adsabs.harvard.edu/abs/2000ApJ...529..592O
http://adsabs.harvard.edu/abs/2004PhPl...11.2214O
http://adsabs.harvard.edu/abs/2006PhPl...13d2306O
http://dx.doi.org/10.1029/2003JA010010
http://adsabs.harvard.edu/abs/2004JGRA..10901113P
http://www.livingreviews.org/lrsp-2009-3


Coronal Holes 57

Parashar, T.N., Shay, M.A., Cassak, P.A. and Matthaeus, W.H., 2009, “Kinetic dissipation and
anisotropic heating in a turbulent collisionless plasma”, Phys. Plasmas, 16, 032310. [ADS] (Cited
on page 32.)

Parhi, S., Suess, S.T. and Sulkanen, M., 1999, “Can Kelvin-Helmholtz instabilities of jet-like
structures and plumes cause solar wind fluctuations at 1 AU?”, J. Geophys. Res., 104, 14 781–
14 788. [ADS] (Cited on page 17.)

Pariat, E., Antiochos, S.K. and DeVore, C.R., 2009, “A model for solar polar jets”, Astrophys. J.,
691, 61–74. [ADS] (Cited on page 24.)

Parker, E.N., 1958a, “Dynamics of the Interplanetary Gas and Magnetic Fields”, Astrophys. J.,
128, 664–676. [DOI], [ADS] (Cited on page 26.)

Parker, E.N., 1958b, “Suprathermal particle generation in the solar corona”, Astrophys. J., 128,
677–685. [ADS] (Cited on page 33.)

Parker, E.N., 1991, “Heating solar coronal holes”, Astrophys. J., 372, 719–727. [ADS] (Cited on
page 5.)

Parnell, C.E., 2007, “3D magnetic reconnection, flares and coronal heating”, Mem. Soc. Astron.

Ital., 78, 229–235. [ADS] (Cited on page 29.)
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Phys. Plasmas, 16, 020703. [DOI], [ADS] (Cited on page 33.)

Wang, P.K. and Siscoe, G.L., 1980, “Ancient Chinese Observations of Physical Phenomena At-
tending Solar Eclipses”, Solar Phys., 66, 187–193. [ADS] (Cited on page 7.)

Wang, Y.-M., 1994, “Polar plumes and the solar wind”, Astrophys. J. Lett., 435, L153–L156. [ADS]

(Cited on page 21.)

Wang, Y.-M., 1998, “Network Activity and the Evaporative Formation of Polar Plumes”, Astro-
phys. J. Lett., 501, L145–L148. [ADS] (Cited on page 21.)

Wang, Y.-M., 2009, “Coronal holes and open magnetic flux”, Space Sci. Rev., 144, 383–399. [ADS]

(Cited on pages 5, 11, and 14.)

Wang, Y.-M. and Sheeley Jr, N.R., 1990, “Solar wind speed and coronal flux-tube expansion”,
Astrophys. J., 355, 726–732. [DOI], [ADS] (Cited on page 23.)

Wang, Y.-M. and Sheeley Jr, N.R., 1991, “Why fast solar wind originates from slowly expanding
coronal flux tubes”, Astrophys. J. Lett., 372, L45–L48. [ADS] (Cited on page 23.)

Wang, Y.-M. and Sheeley Jr, N.R., 2006, “Sources of the Solar Wind at Ulysses during 1990–2006”,
Astrophys. J., 653, 708–718. [ADS] (Cited on pages 14 and 23.)

Wang, Y.-M., Hawley, S.H. and Sheeley Jr, N.R., 1996, “The magnetic nature of coronal holes”,
Science, 271(5248), 464–469. [DOI], [ADS] (Cited on page 11.)

Wang, Y.-M., Sheeley Jr, N.R., Socker, D.G., Howard, R.A., Brueckner, G.E., Michels, D.J., Moses,
D., St Cyr, O.C., Llebaria, A. and Delaboudinière, J.-P., 1998, “Observations of Correlated
White-Light and Extreme-Ultraviolet Jets from Polar Coronal Holes”, Astrophys. J., 508, 899–
907. [ADS] (Cited on pages 15 and 21.)

Wang, Y.-M., Sheeley Jr, N.R., Socker, D.G., Howard, R.A. and Rich, N.B., 2000, “The dynamical
nature of coronal streamers”, J. Geophys. Res., 105, 25 133–25 142. [ADS] (Cited on pages 14
and 16.)

Wang, Y.-M., Biersteker, J.B., Sheeley Jr, N.R., Koutchmy, S., Mouette, J. and Druckmüller, M.,
2007, “The Solar Eclipse of 2006 and the Origin of Raylike Features in the White-Light Corona”,
Astrophys. J., 660, 882–892. [ADS] (Cited on page 14.)

Wang, Y.-M., Ko, Y.-K. and Grappin, R., 2009, “Slow Solar Wind from Open Regions with Strong
Low-Coronal Heating”, Astrophys. J., 691, 760–769. [ADS] (Cited on pages 11, 14, 26, and 27.)

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2009-3

http://adsabs.harvard.edu/abs/1955ZA.....36..275W
http://adsabs.harvard.edu/abs/1956ZA.....38..219W
http://adsabs.harvard.edu/abs/1975SoPh...40..351W
http://adsabs.harvard.edu/abs/1981SoPh...70..251W
http://dx.doi.org/10.1063/1.3068472
http://adsabs.harvard.edu/abs/2009PhPl...16b0703W
http://adsabs.harvard.edu/abs/1980SoPh...66..187W
http://adsabs.harvard.edu/abs/1994ApJ...435L.153W
http://adsabs.harvard.edu/abs/1998ApJ...501L.145W
http://adsabs.harvard.edu/abs/2009SSRv..144..383W
http://dx.doi.org/10.1086/168805
http://adsabs.harvard.edu/abs/1990ApJ...355..726W
http://adsabs.harvard.edu/abs/1991ApJ...372L..45W
http://adsabs.harvard.edu/abs/2006ApJ...653..708W
http://dx.doi.org/10.1126/science.271.5248.464
http://adsabs.harvard.edu/abs/1996Sci...271..464W
http://adsabs.harvard.edu/abs/1998ApJ...508..899W
http://adsabs.harvard.edu/abs/2000JGR...10525133W
http://adsabs.harvard.edu/abs/2007ApJ...660..882W
http://adsabs.harvard.edu/abs/2009ApJ...691..760W
http://www.livingreviews.org/lrsp-2009-3


Coronal Holes 65

Warren, H.P., Mariska, J.T., Wilhelm, K. and Lemaire, P., 1997, “Doppler Shifts and Nonthermal
Broadening in the Quiet Solar Transition Region: O VI”, Astrophys. J. Lett., 484, L91–L94.
[ADS] (Cited on page 19.)

Wilcox, J.M., 1968, “The Interplanetary Magnetic Field. Solar Origin and Terrestrial Effects”,
Space Sci. Rev., 8, 258–328. [ADS] (Cited on pages 8 and 14.)

Wilhelm, K., 2006, “Solar coronal-hole plasma densities and temperatures”, Astron. Astrophys.,
455, 697–708. [ADS] (Cited on pages 17 and 18.)

Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., Gabriel, A., Vial, J.-C., Grewing,
M., Huber, M.C.E., Jordan, S.D., Poland, A.I., Thomas, R.J., Kühne, M., Timothy, J.G., Has-
sler, D.M. and Siegmund, O.H.W., 1995, “SUMER: Solar Ultraviolet Measurements of Emitted
Radiation”, Solar Phys., 162, 189–231. [ADS] (Cited on page 17.)

Wilhelm, K., Dammasch, I.E., Marsch, E. and Hassler, D.M., 2000, “On the source regions of
the fast solar wind in polar coronal holes”, Astron. Astrophys., 353, 749–756. [ADS] (Cited on
page 17.)

Wilhelm, K., Dwivedi, B.N., Marsch, E. and Feldman, U., 2004, “Observations of the Sun at
Vacuum-Ultraviolet Wavelengths from Space, I: Concepts and Instrumentation”, Space Sci. Rev.,
111, 415–480. [ADS] (Cited on page 17.)

Wilhelm, K., Marsch, E., Dwivedi, B.N. and Feldman, U., 2007, “Observations of the Sun at
Vacuum-Ultraviolet Wavelengths from Space, II: Results and Interpretations”, Space Sci. Rev.,
133, 103–179. [ADS] (Cited on page 17.)

Withbroe, G.L., 1988, “The temperature structure, mass, and energy flow in the corona and inner
solar wind”, Astrophys. J., 325, 442–467. [ADS] (Cited on page 27.)

Withbroe, G.L., Kohl, J.L., Weiser, H. and Munro, R.H., 1982, “Probing the solar wind acceleration
region using spectroscopic techniques”, Space Sci. Rev., 33, 17–52. [ADS] (Cited on page 17.)

Woo, R., 2005, “Relating White-Light Coronal Images to Magnetic Fields and Plasma Flow”, Solar
Phys., 231, 71–85. [ADS] (Cited on page 14.)

Woo, R., 2006, “Ultra-fine-Scale Filamentary Structures in the Outer Corona and the Solar Mag-
netic Field”, Astrophys. J. Lett., 639, L95–L98. [ADS] (Cited on page 32.)
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