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Abstract. The observed coronal loop oscillations and their damping are often theoretically described by the use of a very

simple coronal loop model, viz. a straight, longitudinally invariant, axi-symmetric, and pressureless flux tube with a different

density inside and outside of the loop. In this paper we generalize the model by including longitudinal density stratification and

we examine how the longitudinal density stratification alters the linear eigenmodes of the system, their oscillation frequencies,

and the damping rates by resonant absorption.
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1. Motivation

In 1999, coronal loop oscillations were observed for the first

time by the TRACE spacecraft (Aschwanden et al. 1999). Since

then, several oscillating loops have been reported and thor-

oughly studied (Aschwanden et al. 2002; Schrijver et al. 2002;

Nakariakov et al. 1999). For a review on coronal oscillations

see e.g. Aschwanden (2004).

The observed coronal loop oscillations have been modelled

as fast kink oscillations of a straight longitudinally invariant

and axi-symmetric flux tube by e.g. Nakariakov et al. (1999),

Ruderman & Roberts (2002) and Goossens et al. (2002) and as

phase-mixed torsional Alfvén waves (Ofman & Aschwanden

2002). The rapid damping of the oscillations has been the sub-

ject of speculation. Nakariakov et al. (1999) concluded that

Reynolds numbers smaller by 8 to 9 orders of magnitude than

the classical value of 1014 are needed to explain the rapid damp-

ing. A similar conclusion was drawn by Ofman & Aschwanden

(2002) who compared several damping mechanisms and, based

on the observed periods and damping times, found phase mix-

ing of torsional Alfén waves to be most likely.

De Pontieu et al. (2001) computed damping rates of Alfvén

waves due to footpoint leakage. Under the assumption that their

analysis (for Alfvén waves, basically the analysis of Davila

(1991)) is also valid for fast waves, De Pontieu et al. (2001)

point out that the observed rapid damping can be explained by

⋆ Appendix A is only available in electronic form at

http://www.edpsciences.org

footpoint leakage within the uncertainties involved in the mea-

surements.

Resonant absorption with coupling to local Alfvén oscil-

lations offers an attractive explanation for the fast damping

without the need to invoke substantial changes in the mag-

netic Reynolds number. The damping of global oscillations by

resonant absorption was originally studied in the context of

the coronal heating problem (see e.g. Ionson 1978), but in the

present context it is rather the damping of the global oscilla-

tion that we are interested in. About a decade before coronal

loop oscillations were discovered, Hollweg & Yang (1988) pre-

dicted that oscillations in coronal loops will be damped in a few

oscillation periods due to resonant absorption. This prediction

was based on an analysis of quasi-perpendicularly propagating

oscillations in a 1D planar slab with a thin non-uniform tran-

sitional layer. The analytical result for the damping rate in the

original Cartesian geometry was reformulated for a 1D cylin-

drical loop by relating the Cartesian components of the wave

vector to corresponding cylindrical wave numbers. Goossens

et al. (1992) derived an analytical expression for the damp-

ing rate due to resonant absorption of oscillations in 1D cylin-

drical flux tubes. However, they did not relate their expres-

sion to that obtained by Hollweg & Yang. When the damped

coronal loop oscillations were discovered, resonant absorption

was suggested as a possible damping mechanism by Ruderman

& Roberts (2002). A strong case for resonant absorption was

made by Goossens et al. (2002). They used the observed pe-

riods and damping rates combined with analytic results for

thin loops with thin nonuniform layers to deduce the width of
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the nonuniform layer for 11 loops. They concluded that reso-

nant absorption had been ruled out by Ofman & Aschwanden

(2002), because the latter did not allow for a variation from

loop to loop of the radial length scales. However, most of the

values for the width of the nonuniform layers are too large

for the thin boundary assumption to be an accurate approx-

imation. Goossens et al. (2002) interpreted this as a motiva-

tion for an eigenvalue analysis for 1D nonuniform equilib-

rium states where the non-uniformity is not restricted to a thin

layer. Eigenmodes of such highly inhomogeneous loop mod-

els have been calculated recently by Van Doorsselaere et al.

(2004a). The results of those calculations have been compared

with measurements of the inhomogeneity length scales and of

the density contrast by Aschwanden et al. (2003). The inhomo-

geneity length scales are found to be of the order of the width

of the loop, and the observed density contrast of the oscillat-

ing loops seems to be much lower than that of loops in general.

This is in agreement with the computations that show that loops

with inhomogeneity length scales of the order of the width of

the loop but with a larger density contrast are damped in less

than a period and can therefore not be seen to oscillate.

The effect of the loop curvature on the frequencies and

damping times of the quasi-mode oscillations has recently been

investigated by Van Doorsselaere et al. (2004b)

The main aim of the present paper is to investigate the ef-

fect of longitudinal stratification in the equilibrium models on

the properties of the coronal loop oscillations. Observations in-

dicate that loops are stretching out into the atmosphere up to

heights comparable with the density scale height. Thus, there

is a considerable difference in the density at the footpoints and

at the loop tops. Together with an almost constant magnetic

field this results in a substantial change of the Alfvén veloc-

ity along the loop. This in turn, might be anticipated to have a

strong effect on the oscillation of the loop.

Our aim here is to use analytic theory to the largest extent

possible to understand the effects of longitudinal density varia-

tion on the loop oscillations. Part of the method that is used is

very similar to that described by Díaz et al. (2001, 2002). The

present method, however, is more general. Firstly, while Díaz

et al. used a discontinuous longitudinal density profile and were

thus able to determine the eigenmodes of the local Alfvén oper-

ator analytically, we allow a general longitudinal density profile

and therefore in general need to obtain the eigenmodes of the

Alfvén operator numerically. Secondly, we allow the inclusion

of a thin radial transition layer, which causes resonant coupling

with local Alfvén waves and hence the damping of the waves

by resonant absorption.

In order to make analytical progress we use equilibrium

models in which the variation in the radial direction is con-

fined to a thin transitional layer. We are well aware that this

approximation is not a very good representation of reality as

we have argued in previous papers (Goossens et al. 2002;

Aschwanden et al. 2003). However, when variation of the den-

sity over the whole loop in both radial and longitudinal direc-

tions is included in the equilibrium models, we can only tackle

the problem of the damped coronal loop oscillations by numer-

ical means. Hence the emphasis is on analytical insight and we

are therefore restricted to models with thin boundaries.

2. Model and linearized equations

The classical model, in which a coronal loop is viewed as a

straight cylindrical 1-dimensional flux tube where the equilib-

rium values only vary with the radial coordinate r, is in this

paper extended to a 2-dimensional model where in addition

to the radial dependence, longitudinal variation of the density

can occur. Thus, in a system of cylindrical coordinates (r, ϕ, z)

with the z-axis coinciding with the axis of the cylinder (loop),

the equilibrium magnetic field B = (0, Bϕ(r), Bz(r)) and pres-

sure p(r) are functions of the radial distance only, just as in the

1-dimensional case. But for the density, longitudinal variation

is taken into account: ρ(r, z). The equilibrium condition is the

radial force balance equation

d

dr

(
p +

B2

2µ

)
= −

B2
ϕ

µr
· (1)

Just as in the 1-dimensional model the equilibrium condition

does not impose any restriction on the density profile. Hence,

inclusion of a 2-dimensional density profile in the equilibrium

is fairly simple as any density profile may be included. For ap-

plications in the lower corona the β = 0 approximation can

be used, which removes the gas pressure and hence the slow

waves form the analysis. In addition we assume a straight mag-

netic field aligned with the loop B = B(r)1z so that Eq. (1)

implies a constant magnetic field. The coronal loop is thus a

density enhancement in an almost homogeneous field. In addi-

tion to the density enhancement in the interior of the loop, the

longitudinal density stratification is taken into account in our

model.

The observed oscillations are modelled as linear oscilla-

tions because the observed velocities are small compared to the

local Alfvén speed. This is equivalent with the observation that

the displacement is small compared to the length of the loop.

As for the oscillation of a string, the fact that the displacement

is much larger than the thickness of the loop/string need not be

in disagreement with the assumption of linearity.

Since the equilibrium quantities are independent of ϕ, the

perturbed quantities can be set proportional to exp[ı(mϕ)] be-

cause no coupling between different Fourier modes can occur.

Here m (an integer) is the azimuthal wave number. Similarly,

we assume a time dependence exp[−ıωt]. For the quasi-modes

that are considered the frequency ω is complex, where ωr =

ℜ(ω) is the oscillation frequency and ωi = ℑ(ω) is the growth

rate. The damping is thus expressed by a negative imaginary

part of the frequency. The appropriate theory to justify the pro-

posed time dependence is by means of a Laplace transform

rather than a Fourier transform.

These assumptions reduce the governing linearized MHD

equations to the following set of partial differential equations

in the radial component of the Lagrangian displacement ξr and

the Eulerian perturbation of the total pressure pT:

LA

1

r

∂rξr

∂r
=

(
m2

r2
−
µ

B2
LA

)
pT

∂pT

∂r
= LAξr, (2)
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where we have defined the Alfvén operator:

LA = ρω
2 +

B2

µ

∂2

∂z2
= ρ

(
ω2 + v2A

∂2

∂z2

)
,

with v2
A
= B2/(ρµ) the square of the Alfvén speed. For the

azimuthal component of the displacement ξϕ we have the addi-

tional equation:

LAξϕ = ı
m

r
pT,

while the longitudinal component of the Lagrangian displace-

ment ξz vanishes due to the removal of the slow waves by the

β = 0 assumption.

3. Derivation of the dispersion relation

3.1. Eigenmodes of the Alfvén operator

At any radial location and for a fixed value of the frequency we

can search for the set of eigenmodes ψ(k)(z) of the local Alfvén

operator:

LAψ
(k)(z) = λkψ

(k)(z).

Notice that these eigenmodes of the Alfvén operator do not di-

rectly represent Alfvén waves. But for certain frequenciesωA,n

the Alfvén operator may have a vanishing eigenvalue. The lo-

cal Alfvén waves of a certain magnetic surface are described by

the set of frequencies ωA,n for which the Alfvén operator has

a vanishing eigenvalue λkn
= 0 (there are non-trivial elements

in the kernel) and by the corresponding set of eigenmodes (the

non-trivial elements of the kernel) φ(n)(z) = ψ(kn)(z) since:

ξ(r, z) = δ(r − r0)φ(n)(z)1ϕ

is indeed a solution because LA(r0, ωA,n)ξϕ = 0.

More generally, however, the eigenmodes ψ(k)(z) for a fixed

value of the frequency form a complete set of orthogonal func-

tions in the z direction in the sense:

〈
ψ(k) | ψ(l)

〉
≡

2

L

∫ L

0

ψ(k)(z)ψ(l)(z)dz = δk,l (3)

where the bar denotes the complex conjugation. Practically, all

functions in the z direction can be expressed as a sine series and

in particular:

ψ(k)(z) =

+∞∑

n=1

ψ(k)
n sin

(
nπ

L
z

)
.

Hence, we speak of the eigenmodes of the Alfvén operator in

terms of the infinite sine series coefficient vectors ψ
(k)
n . In that

formalism the scalar product defined in Eq. (3) reduces to the

classical complex scalar product for vectors (the factor 2 in

definition (3) is included so that the sine functions have unit

length). Likewise the Alfvén operator can be expressed as a ma-

trix operator. In order to determine the expression of the Alfvén

matrix operator, the stratified density profile is expressed as a

sine series plus a constant term taking into account the density

at the footpoints:

ρ(r, z) = ρ0(r)

1 +
+∞∑

n=1

αn(r) sin

(
nπ

L
z

) .

Notice that in principle the α parameters can depend on the

radial coordinate as the stratification is not necessarily the same

inside and outside the loop.

The sine series expansion of the multiplication of two sine

functions is:

sin

(
nπ

L
z

)
sin

(
kπ

L
z

)
=

+∞∑

l=1

S n,k,l sin

(
lπ

L
z

)

where S n,k,l = 0 when n + k + l even, but for n + k + l odd:

S n,k,l =
2

L

∫ L

0

sin

(
nπ

L
z

)
sin

(
kπ

L
z

)
sin

(
lπ

L
z

)
dz

=
2n

π

[
1

n2 − (k − l)2
−

1

n2 − (k + l)2

]

=
2l

π

[
1

l2 − (k − n)2
−

1

l2 − (k + n)2

]

=
2k

π

[
1

k2 − (l − n)2
−

1

k2 − (l + n)2

]
·

Note that the ordering of the indices does not matter.

The density matrix operator thus becomes:

ρ = ρ0

I +

+∞∑

n=1

αnS n

 ≡ ρ0Ŝ

where I is the unity matrix, and the matrix S n =
(
S n,k,l

)
k,l. The

Alfvén matrix operator therefore becomes:

LA = ρ0ω
2Ŝ −

B2

µ
∂2

z = ρ0

(
ω2Ŝ − v2A0∂

2
z

)
(4)

with vA0 the Alfvén speed at the footpoints of the field lines and

∂2
z the diagonal matrix:

(∂2
z )k,l =

(
kπ

L

)2

δk,l.

The eigenmodes of the Alfvén operator can thus be found as

the eigenmodes of an infinite matrix problem. The structure of

the S matrices implies that symmetric stratification (αn = 0

for n even), which is approximately the case for loops, only

causes coupling within the symmetric modes and within the

antisymmetric modes but not between symmetric and anti-

symmetric modes, which could also be deduced directly from

the symmetry of the problem.

In the absence of longitudinal stratification, the matrix Ŝ is

simply the unity matrix and the Alfvén operator reduces to a

diagonal matrix. The eigenmodes are thus single sines with a

longitudinal wavenumber kz =
kπ
L

.

3.2. Fast eigenmodes of radially uniform loops

Since the eigenmodes of the Alfvén operator form a complete

set we can express the variables ξr(r, z) and pT(r, z) at any radial

location as a superposition of those eigenmodes:

ξr(r, z) =

+∞∑

k=1

X(k)(r)ψ(k)(z)

pT(r, z) =

+∞∑

k=1

P(k)(r)ψ(k)(z).
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When the density is radially independent, the Alfvén operator,

as well as its eigenmodes ψ(k)(z) and eigenvalues λk, are radi-

ally independent. Using the orthogonality of the eigenmodes,

it is straightforward to obtain that the set of partial differential

Eqs. (2) is translated to a set of two ordinary differential equa-

tions in the radial direction for X(k)(r) and P(k)(r) for each k

separately:

λk

1

r

∂rX(k)

∂r
=

(
m2

r2
−
µ

B2
λk

)
P(k)

∂P(k)

∂r
= λkX(k).

From these two equations one second order ordinary differen-

tial equation in P(k) can be deduced (Bessel’s equation):

d2P(k)

dr2
+

1

r

dP(k)

dr
−

(
m2

r2
+ κ2k

)
P(k) = 0 (5)

with:

κ2k = −
λk

B2/µ
·

If the coronal loop is modelled as an internal region and an

external region that are radially uniform and separated by a

boundary surface r = R, then solutions in both the internal

and external (radially) uniform regions can be obtained easily.

Inside the loop we have to impose regularity at the axis and we

thus find the solution:

p
(in)

T
(r, z) =

+∞∑

k=1

A(in,k)Im(κin,kr)ψ(in,k)(z)

ξ(in)
r (r, z) =

+∞∑

k=1

κin,k

λin,k

A(in,k)I′m(κin,kr)ψ(in,k)(z)

where Im is the modified Bessel function of the first kind of

order m and the prime denotes the derivative with respect to

its argument. The A(in,k) are arbitrary coefficients of each of the

Alfvén eigenmodes in the solution.

For the external (radially) homogeneous region we impose

that the solution should vanish at infinity so that:

p
(ex)

T
(r, z) =

+∞∑

k=1

A(ex,k)Km(κex,kr)ψ(ex,k)(z)

ξ(ex)
r (r, z) =

+∞∑

k=1

κex,k

λex,k

A(ex,k)K′m(κex,kr)ψ(ex,k)(z)

where Km is the modified Bessel function of the second kind

of order m and the prime denotes the derivative with respect to

its argument. The root κk has to be taken so that it has a pos-

itive real part in order to ensure that the solution vanishes at

infinity. If κ2
k

is negative the root has to be taken so that the

external wave is outgoing. In that case the solution is better

expressed in terms of Hankel functions. We will not go into de-

tails about this since in our applications κ2
k
> 0 in the external

medium. The A(ex,k) are again arbitrary coefficients of each of

the Alfvén eigenmodes in the solution. The merit of the split-

ting into eigenmodes of the Alfvén operator is thus that the

solution, in which the radial and longitudinal variables are not

separable, is now expressed as a sum of separable terms.

The dispersion relation is obtained by requiring that at the

boundary surface r = R both ξr and pT are continuous (in the

radial direction):

p
(ex)

T
(R, z) = p

(in)

T
(R, z)

ξ(ex)
r (R, z) = ξ(in)

r (R, z).

The variables ξr and pT can also be expressed as a sine series

expansion:

pT(r, z) =

+∞∑

n=1

Pn(r) sin

(
nπ

L
z

)

ξr(r, z) =

+∞∑

n=1

Xn(r) sin

(
nπ

L
z

)
.

Practically, the matching condition is then expressed as an infi-

nite set of matching conditions, one for each coefficient in the

sine series of pT(R, z) and one for each coefficient in the sine

series of ξr(R, z). Thus, an infinite set of equations for the vari-

ables A(in,k) and A(ex,k) is obtained:


Π
(ex,1)

1
−Π

(in,1)

1
Π

(ex,2)

1
−Π

(in,2)

1
. . .

Ξ
(ex,1)

1
−Ξ

(in,1)

1
Ξ

(ex,2)

1
−Ξ

(in,2)

1
. . .

Π
(ex,1)

2
−Π

(in,1)

2
Π

(ex,2)

2
−Π

(in,2)

2
. . .

Ξ
(ex,1)

2
−Ξ

(in,1)

2
Ξ

(ex,2)

2
−Ξ

(in,2)

2
. . .

...
...

...
...

. . .





A(ex,1)

A(in,1)

A(ex,2)

A(in,2)

...



= 0 (6)

whereΠ
(k)

j
is due to the contribution of the jth sine series coeffi-

cient of the kth eigenmode in the pressure perturbation at r = R,

and Ξ
(k)

j
is due to the contribution of the jth sine series coeffi-

cient of the kth eigenmode in the Lagrangian displacement at

r = R. Thus:

Π
(in,k)

j
= Im(κin,kR)ψ

(in,k)

j

Ξ
(in,k)

j
=
κin,k

λin,k

I′m(κin,kR)ψ
(in,k)

j

Π
(ex,k)

j
= Km(κex,kR)ψ

(ex,k)

j

Ξ
(ex,k)

j
=
κex,k

λex,k

K′m(κex,kR)ψ
(ex,k)

j
.

The dispersion relation is then given by requiring that the sys-

tem (6) has non-trivial solutions i.e. its determinant is zero.

In the absence of longitudinal stratification, ψ
(k)

j
= δk

j
, so

that the matrix of the dispersion relation contains zeroes every-

where except for in 2× 2 blocks along the diagonal. The deter-

minant of such a block diagonal system can easily be reduced

so that the dispersion relation simplifies to:

∏

j

∣∣∣∣∣∣∣
Π

(ex, j)

j
−Π

(in, j)

j

Ξ
(ex, j)

j
−Ξ

(in, j)

j

∣∣∣∣∣∣∣
= 0

where each factor yields the dispersion relation for a wave with

a specific longitudinal wave number kz which simplifies to the

familiar impedance-matching expression:

Ξ
(ex,k)

k

Π
(ex,k)

k

=
Ξ

(in,k)

k

Π
(in,k)

k

·
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3.3. The thin boundary approximation for the fast

quasi-modes

When a transition layer of thickness d, in which the density

changes continuously in the radial direction, is included in be-

tween the radially uniform internal and the external region, the

set of Eqs. (2) should be integrated inside the non-uniform

layer. As the eigenmodes and eigenvalues of the Alfvén op-

erator are radially dependent in this region it does not help to

express the solutions as a superposition of eigenmodes of the

Alfvén operator. Instead, in this region we could immediately

express the solutions in a sine series. In this way the set of par-

tial differential Eqs. (2) is translated into an infinite set of cou-

pled ordinary differential equations in the radial direction in the

sine series coefficient vectors Pn and Xn. When cut down to fi-

nite dimensions these equations can be easily integrated numer-

ically. However, just like in the 1D problem, such an integration

method fails around certain radial positions in the boundary

layer where the equations are singular. This occurs at positions

where the Alfvén operator has non-trivial elements in its kernel

i.e. it has a vanishing eigenvalue. When expressed as an infinite

set of coupled ordinary differential equations the Alfvén oper-

ator is a matrix operator, which has a vanishing determinant at

resonant positions. The fast wave resonantly interacts with the

Alfvén wave corresponding to the non-trivial element of the

local Alfvén operator. At those resonant positions the solutions

become unbounded and thus cannot be tracked numerically. In

a thin layer where the solutions become large, dissipation be-

comes important and inclusion of dissipative terms in this layer

regularizes the solutions. However, the characteristic jump con-

ditions for the radial displacement ξr and the Eulerian perturba-

tion of the total pressure pT over the resonant (dissipative) layer

can in fact also be retrieved in ideal MHD by analytical contin-

uation of the Greens function. For the 2D problem, expressions

for the local ideal solutions around the resonances were ob-

tained by Thompson & Wright (1993). As in the 1-dimensional

case a jump in ξr occurs in the 2D problem, where, not surpris-

ingly, the jump is z-dependent and exactly proportional to the

non-trivial element in the kernel of the local Alfvén operator

φ(z):

[[ξr(z)]] = −ıπsign(ωr)
m2

r2

〈φ|pT〉

|〈φ|LA1φ〉|
φ(z),

where we have denoted the radial derivative of the Alfvén op-

erator as LA1:

LA1 =
∂LA

∂r
=
∂ρ0

∂r
ω2 [

1 + αS k,k

]
+ ρω2 ∂α

∂r
S k,k.

Notice that 〈φ|pT〉 = P(res)〈φ|φ〉 is proportional to P(res), the

coefficient of φ(z) when pT(z) is expressed as a superposition

of the eigenmodes of the local Alfvén operator. Just as in 1D

it can be shown that P(res) is approximately constant near the

resonant position.

These jumps around the resonances are the main contribu-

tions of the continuous boundary layer provided that it is thin,

i.e. its width d is much smaller than the radial length scale of

the solutions. The thin boundary approximation then consists

of including the jump contribution of the boundary layer into

the dispersion relation. Dispersion relation (6) then has to be

modified by replacing the internal contributions by the internal

contribution plus the jump contribution:

Ξ
(in,k)

j
−→ Ξ

(in,k)

j
+ [[ξr(z)]]

(k)

j

with:

[[ξr(z)]]
(k)

j
= −ıπsign(ωr)

m2

r2

(
φΠ(in)

)(k)

|〈φLA1φ〉|
φ j

where we have used and defined:
〈
φ|p

(in)

T

〉
=

∑

l

φlP
(in)

l

=
∑

l

∑

k

φlΠ
(in,k)

l
A(k)

=
∑

k


∑

l

φlΠ
(in,k)

l

 A(k)

≡
∑

k

(
φΠ(in)

)(k)
A(k).

Notice that in absence of longitudinal stratification, [[ξr(z)]]
(k)

j
=

0 except for k = j. As the eigenmodes of the Alfvén operator

are single sine contributions, the factor
(
φΠ(in)

)(k)
vanishes ex-

cept for local Alfvén waves and global fast waves with the same

longitudinal wave number. Thus, as before, the dispersion rela-

tion reduces to the familiar impedance-matching condition of

the 1D case with the jump contribution in the right hand side:

Ξ
(ex,k)

k

Π
(ex,k)

k

−
Ξ

(in,k)

k

Π
(in,k)

k

= −ıπsign(ωr)
m2

r2

(
φΠ(in)

)(k)
/
Π

(in,k)

k

|〈φLA1φ〉|
φk. (7)

4. Linear expansion in αn

Although the application to coronal loops involves strong lon-

gitudinal stratification and therefore requires values of αn of

order unity, we study in this section the linear expansion of

the dispersion relation in αn and thus impose αn ≪ 1 since

this limit can be tracked analytically. In a linear approximation

in αn, inclusion of several αn just leads to a sum of the contri-

butions. The subscript on αn and S n is dropped for notational

convenience.

We start by determining the first order effect on the eigen-

modes of the local Alfvén operator. In terms of the sine series

coefficient vectors ψ
(k,0)

j
the zeroth order eigenmodes ψ(k,0) and

eigenvalues are clearly:

ψ
(k,0)

j
= δk, j

λk0 = ρ0

ω2 − v2A0

(
kπ

L

)2
 ·

In order to find the first order effect on the eigenvalues, i.e. the

roots λk of the determinant of the matrix LA − λkI with LA the

matrix operator as expressed in Eq. (4), we express the eigen-

value as λk = λk,0 + αλk,1. All off-diagonal terms of (LA − λkI)

are now proportional to α and the kth diagonal term is also
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proportional to α. Therefore, the linear part (in α) of the deter-

minant is given by:

(ρ0ω
2αS k,k − αλk,1)

∏

j�k

(λ j,0 − λk,0)

which makes it possible to calculate λk1 = ρ0ω
2S k,k.

Analogously, we express ψ(k) = ψ(k,0) + αψ(k,1), and find that

the first order (in α) part of (LA − λk)ψ(k) is:

α(λ j,0 − λk,0)ψ
(k,1)

j
+ ρ0ω

2α(S k, j − S k,kδk j).

Notice that for j = k both terms vanish. Thus we are only ca-

pable of determining ψ
(k,1)

j
for j � k. This is, however, not a

problem as a first order shift parallel to the zeroth order result

is indeed meaningless. We obtain:

ψ
(k,1)

j
= −
ρ0ω

2S k, j

λ j,0 − λk,0

∀ j � k.

We thus conclude that to first order in α

λk = ρ0

ω2(1 + αS k,k) − v2A0

(
kπ

L

)2


ψ
(k)

k
= 1

ψ
(k)

j
= −
ρ0ω

2αS k, j

λ j,0 − λk,0

∀ j � k.

The eigenmodes are not normalized, and they need not be for

dispersion relation (7) to remain valid.

We should, however, be aware that α may be different in-

side and outside. Therefore we replace α with εσ(r), where ε

is the new small parameter independent of radial position,

while σ(r) is of order unity and σ(in)/σ(ex) indicates the rela-

tive strength of the longitudinal stratification inside compared

to outside the loop. We are looking for solutions to the disper-

sion relation in the neighborhood of the zeroth order solution

of the kth quasi-mode so that we propose ω = ω0 + εω1. Note

that the zeroth order terms (in ε) in the dispersion matrix only

appear in 2 × 2 blocks along the diagonal. It is not hard to ver-

ify that first order (in ε) contributions can then only arise from

the product of the determinants of the 2 × 2 block matrices.

Since ω0 is the zeroth order frequency of the kth quasi-mode,

the determinant of the kth 2 × 2 block is proportional to ε so

that the linear part (in ε) of the dispersion relation is just:

∣∣∣∣∣∣
Π

(ex,k)

k
−Π

(in,k)

k

Ξ
(ex,k)

k
−Ξ

(in,k)

k
− [[ξr]]

(k)

k

∣∣∣∣∣∣
1

∏

j�k

∣∣∣∣∣∣∣
Π

(ex, j)

j
−Π

(in, j)

j

Ξ
(ex, j)

j
−Ξ

(in, j)

j
− [[ξr]]

( j)

j

∣∣∣∣∣∣∣
0

.

Thus, the familiar impedance-matching expressions (7) for

the dispersion relation remain true to first order in ε. In

Appendix (A) we derive the first order (in ε) expansions of

those impedances and of the jump contribution. This expansion

leads to the following frequency shift:

ω1 = −
1

2
ω0S k,k

×
µ(in)σ(in) + µ(ex)σ(ex) + ı µ(res)σ(res) + ı ν(res)

(
∂σ
∂r

)
(res)

µ(in) + µ(ex) + ı µ(res)

= −
1

2
ω0S k,kσ (8)

with µ(in), µ(ex), µ(res) and ν(res) as defined in Appendix A. Apart

from the term with ν(res) (which is due to the radial derivative

of the stratification parameter at the resonance) the last factor

in expression (8) is a weighted mean of the values of the strat-

ification parameter at the internal and the external region and

at the resonance with complex weighting coefficients µ(in), µ(ex)

and µ(res). Thus when the stratification is constant we simply

have:

ω1 = −
1

2
ω0σS k,k

and thus to first order the effect on the oscillation frequency and

on the damping is the same so that the observational parameter

τdamping/Period does not change to first order. This result can

however be dramatically changed when the stratification pa-

rameter is not constant. As the weighting coefficients are com-

plex, the mean value of the stratification parameter is complex

as well and thus the effect of stratification may act differently

on the oscillation frequency and on the damping rhythm. It is

not hard to show that for small damping µ is approximately real

and µ(res) ≪ µ(in,ex). Let us denote (the subscript disc refers to

the fact that it represents the values in a discontinuous model):

µ(disc) = µ(in) + µ(ex)

σ(disc) =
µ(in)σ(in) + µ(ex)σ(ex)

µ(in) + µ(ex)

and find that to first order in µ(res)/µ(disc):

σ ≈ σ(disc) + ı
µ(res)

µ(disc)

(σ(res) − σ(disc)).

The dominant part in the shift of the oscillation frequency be-

comes clearly:

ωr1 ≈ −
1

2
S k,kωr0σ(disc).

But for the dominant part of the imaginary part of the frequency

we obtain:

ωi1 ≈ −
1

2
S k,k

(
ωi0σ(disc) + ωr0

µ(res)

µ(disc)

(σ(res) − σ(disc))

)
.

Because ωi0 ≪ ωr0 the second term may be of the same or-

der as the first term even though µ(res) ≪ µ(disc). When look-

ing at kink modes that are trapped in the loop structure, µ(disc)

and σ(disc) are dominated by the internal contribution so that

when the stratification in the boundary layer is more or less the

same as in the internal region the second term vanishes and

the influence of longitudinal stratification is again the same

on the oscillation frequency and on the damping. However,

when the stratification in the boundary layer is more like that in

the external region the second term comes to play an important

role and may dramatically change the observational parameter

τdamping/Period.

5. Numerical results for loop parameters

In order to implement the procedure outlined in Sects. 3 and

4 into a numerical code we need to cut down the infinite ma-

trix problem to finite dimensions. It is not hard to see that the
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Fig. 1. Oscillation frequency ωr (panel a)), damping rate ωi (panel b)), and normalized damping rate −ωi/ωr (panel c)) as a function of the

stratification parameter α. The straight line is the prediction from the linear analysis, the curved line is the non-linear numerical result. When α

is varied, ρ0 is kept constant.

S n matrix is dominant along its ±nth off diagonal, thereby cou-

pling the jth sine contribution mainly with the j±nth sine con-

tributions. It can thus be estimated that the results obtained by

reducing the system to finite dimensions (2l) are only accurate

for the computation of eigenmodes (both of the Alfvén operator

and of the full fast wave dispersion relation) that are dominant

in the jth sine contribution provided that l ≫ j + n, where n is

the order of the highest sine contribution in the density.

As we have the application to coronal loop oscillations in

mind we will study the effect of the stratification on the m = 1

kink mode and look for solutions that have a dominant funda-

mental sine contribution ( j = 1). The stratification parameters

that are appropriate for coronal loops can be estimated by as-

suming a semicircular coronal loop and an exponentially strat-

ified atmosphere. For a coronal loop of typical length 200 Mm

(thus extending to a height 200/πMm ≈ 64 Mm) and a density

scale height of typically 50 Mm we obtain:

α1 = −0.78 α3 = −0.076 α5 = −0.017 . . .

The effect of the longitudinal stratification will therefore be

dominated by the fundamental component of the stratification.

In our calculations we therefore only impose fundamental strat-

ification and thus we set αi = 0 for i � 1. Notice that α1 is

negative because the density is higher at the tops than at the

footpoints. Our computations show that inclusion of more than

7 sine contributions hardly changes the results which is in ac-

cordance to the estimate mentioned above.

In the following presentation of the results we use non-

dimensional parameters. Lengths (length of the loop L and

thickness of the boundary layer l) are scaled with respect to

the inner loop radius. ρ0 is scaled with respect to its values

in the surrounding plasma. The magnetic field is constant and

thus set to 1. Times (and thus frequencies) are therefore ex-

pressed in terms of Alfvén crossing times (using the loop ra-

dius and the external Alfvén speed). Figure 1 shows the fre-

quencies and damping rates as a function of α with parameters

ρ
(in)

0
= 2, L = 100 and l = 0.01. In all three panels it can be

seen clearly that the analytical linear prediction is indeed cor-

rect as the curves are tangent for α = 0. However, very strong

deviations between the two curves are present for higher val-

ues of α. For the loop value of α (−0.78) the frequency and

damping rate is about 70% larger than for the unstratified case

and about 30% larger than the linear prediction. The right hand

panel shows minus the ratio of the imaginary and real part of

Fig. 2. Oscillation frequency ωr (panel a)) and damping rate ωi

(panel b)) as a function of the stratification parameter α. The straight

line is the prediction from the linear analysis, the curved line is the

non-linear numerical result. When α is varied, ρ0 is adjusted so as to

keep the top density constant.

the frequency. This quantity is linked with the ratio of the ob-

servational damping time and period. The curves are horizontal

lines and thus this quantity is independent of the stratification

even for non-linear values of the stratification parameter α. It

must be stressed that this could change drastically if the stratifi-

cation parameter is allowed to vary with radial position. As we

have no indication that this may be the case in loops, and have

no estimate of σin/σout, we did not carry out any calculations

for such cases.

The above plots were obtained for varying α and the den-

sity at the footpoints kept constant. The density at for example

the top of the loop is thus decreased for increasing values of

α. From an observational point of view, the density is probably

easiest to determine at the loop tops and thus it would be better

to compare results for different α while keeping the top den-

sity constant. Such a plot is shown in Fig. 2. Notice that now

the frequency decreases with α contrary to Fig. 1. The linear
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prediction is modified as a term
∂ρ0

∂ε
needs to be included. After

some algebra it turns out that in Eq. (8) S kk needs to be replaced

with S kk − 1.

More generally we could keep constant a sort of weighted

mean of the density along the loop. The two previous plots then

correspond to a weight function represented by a delta function

at the footpoints and at the top respectively. It is clear that these

two situations are the two extremes: any other weight function

will lead to a result in between. As for constant footpoint den-

sity the frequency increases with α while it decreases when the

top density is kept constant, we may want to search for a weight

function so that increasing α while the weighted density is kept

constant leaves the frequency invariant (at least linearly). It

fact, the search for such a weight function may be inspired by

trying to simulate the 2D results by using a mean density as

the density in the 1D calculations. Naively, one could try to ap-

proximate the 2D result by using the mean density along the

loop as the density in the 1D model. As we will show, this can

indeed be done, but not simply by using the mean density, but

by using a weighted mean density with an appropriate weight

function attributing more importance to the loop tops than to

the loop footpoints.

For any weight function the weighted density can be ex-

pressed as:

ρw = ρ0 f (αn)

where f is a different function of α depending on the weight

function ( f = 1 for constant footpoint density, f = 1+
∑
αn for

constant top density, f = 1+ 2
π

∑
oddn

αn

n
for constant mean den-

sity). For the linear prediction we then find in general that in

formula (8) S nkk needs to be replaced with S nkk −
∂ f

∂αn
. A weight

function that would lead to a linearly invariant frequency thus

requires that
∂ f

∂αn
= S nkk. The definition of S nkk is exactly the

mean of sin nπ
L

z weighted with sin2 kπ
L

z so that it is clear that

sin2 kπ
L

z is the weight function we are looking for. Figure 3

shows the frequencies and damping rates as a function of α

while keeping that weighted mean of the density constant. The

invariance of the frequency with α seems to extend well out-

side the linear α domain. Even for α = −1 the deviation is only

10% and for the loop value of α = −0.78 the deviation is just a

few percent at most.

We thus conclude that the frequencies and damping times

of a stratified loop are more or less the same as those of

an unstratified loop with the same weighted mean density

(weighted with sin2 kπ
L

z). The appearance of the weighting

function sin2 kπ
L

z may not come as a surprise as it represents

the wave energy density distribution along the loop of the

fundamental mode.

The quasi-solutions are clearly influenced by the longitu-

dinal stratification. Figures 4 and 5 show the pressure pertur-

bation and the radial and azimuthal displacement (the longitu-

dinal displacement vanishes as p = 0) for a quasi-mode in an

equilibrium with α = −0.5 and for α = −0.78. The jump of ξr
around the radial boundary position is due to the resonance.

The jump in ξϕ is also present in discontinuous models and is

just due to the different internal and external media.

Fig. 3. Oscillation frequency ωr (panel a)) and damping rate ωi

(panel b)) as a function of the stratification parameter α. The straight

line is the prediction from the linear analysis, the curved line is the

non-linear numerical result. When α is varied, ρ0 is adjusted so as to

keep the weighted mean density constant.

It is intriguing that in the plots of the radial and azimuthal

displacement no higher order longitudinal harmonics are vis-

ible. In the pressure perturbation, however, the higher order

sines are visible through the more flattened longitudinal pro-

file for α = 0.5 and even through the additional bumps for

α = −0.78.

As the total pressure perturbation is related to compres-

sion, these results suggest that the observations should show

intensity oscillations somewhere halfway along the loop legs.

However, as the oscillations are linear these intensity oscilla-

tions are very small and maybe not detectable. The clear detec-

tions of loop oscillations (including their period and damping

times) are not based on the intensity oscillations due to com-

pression but simply on the displacement of the more intense

loop structure. However, in the displacement vector no visible

signatures of higher order components are present. This may

explain why no higher order harmonic components are visible

in the observations although they may be present. In that re-

spect it may be interesting to search for the associated intensity

oscillations due to compression in the observations, as those

should show signatures of higher order harmonics.

6. Summary and conclusions

The straight cylindrically symmetrical flux tube model of a

coronal loop is extended by including longitudinal density

stratification. In the internal and external regions where the

equilibrium quantities are radially invariant, the longitudinal

variation of the fast linear motions is decomposed into a lin-

ear combination of eigenmodes of the local Alfvén operator,

which enables us to write the solution as a sum of separable

terms. The matching condition of the pressure perturbation and
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Fig. 4. Quasi-solution for α = −0.5. Radial domain: [0.10] with loop radius at 1, longitudinal domain: [0,100] with L = 100. Left panels: pT,

middle panels: ξr, right panels: ξϕ. Upper panels: real part, lower panels: imaginary part.

Fig. 5. Quasi-solution for α = −0.78. Radial domain: [0.10] with loop radius at 1, longitudinal domain: [0,100] with L = 100. Left panels: pT,

middle panels: ξr, right panels: ξϕ. Upper panels: real part, lower panels: imaginary part.

the radial displacement then yields the dispersion relation in

the form of the determinant of an infinite set of linear equa-

tions. The dispersion relation is shown to reduce to the familiar

impedance-matching expressions when there is no longitudinal

stratification.

In the thin boundary approximation the effect of the res-

onant absorption in the boundary layer can be summarized

by means of a connection formula. This jump condition for

the boundary layer is easily included in the dispersion rela-

tion. Again, the driven impedance-matching expressions are

retrieved when there is no longitudinal density stratification.

A linear expansion in the longitudinal stratification param-

eter is performed. This revealed that the simple impedance-

matching expressions remain valid to first order in the
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stratification. A linear expression for the frequency shift due

to longitudinal stratification is obtained. It is found that both

period and damping time are affected in the same way so that

the ratio of the two (which is the most important observational

parameter) remains unaffected. It is pointed out that this does

not remain true when the stratification inside and outside the

loop is different.

For coronal loops the longitudinal stratification is out of the

linear domain and the dispersion relation is solved numerically

by cutting down the infinite matrix problem to finite dimen-

sions. When varying the stratification parameter it is impor-

tant to state whether the footpoint density or the top density or

some other weighted mean density is taken to be constant. It

is found that the frequency is largely unaffected by the strat-

ification even in the non-linear domain, when the mean den-

sity, weighted with sin2( kπ
L

z) (k is the harmonic number, k = 1

for fundamental loop oscillations), is held constant. Hence, the

2D results for frequencies and damping times may be approx-

imated to a certain level of confidence by using the weighted

mean density as the density in 1D computations.

The fast quasi-modes for large values of the stratification

parameter show clear signatures of higher order harmonic com-

ponents. However, these signatures are only visible in the pres-

sure perturbation and not in the radial or azimuthal displace-

ment. This might explain why these components are not visible

in the loop motions although they might be present.
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Appendix A: Linear expansions of the impedances

and the jump contribution

The dispersion relation can be summarized as:

Z(ex) − Z(in) = ıI.

Where:

Z(ex) =
Ξ

(ex,k)

k

Π
(ex,k)

k

=
κex,k

λex,k

K′m(κex,kR)

Km(κex,kR)

Z(in) =
Ξ

(in,k)

k

Π
(in,k)

k

=
κin,k

λin,k

I′m(κin,kR)

Im(κin,kR)

I = πsign(ωr)
m2

r2

(
φΠ(in)

)(k)
/
Π

(in,k)

k

|〈φLA1φ〉|
φk.

The dispersion relation can now be developed to first order in

the stratification by requiring:

dZ(ex)

dε
−

dZ(in)

dε
= ı

dI

dε
· (A.1)

For the impedance terms there are two reasons why the

impedance changes as a result of the stratification. Firstly, be-

cause the stratification parameter ε is explicitly present in the

expressions, secondly because the frequency of the quasi-mode

changes as a result of the change in the stratification:

d

dε
=
∂

∂ε
+
∂ω

∂ε

∂

∂ω
·

Moreover, it is interesting to see that the impedances are struc-

tured in the same way viz.:

Z =
κ

λ
G(κR)

where G is a different function depending on the boundary con-

dition. As κ is a simple expression involving, except for λ, only

constants, the impedances only change through the changes

in λ:

dZ

dε
=

dλ

dε

dZ

dλ
·

We straightforwardly obtain:

dλ

dε
= ρ0

(
ω2σS k,k + 2ω

∂ω

∂ε

)

and (using the shorthand w = κR):

dZ

dλ
= −

κ

λ2
G(w) +

1

λ

dκ

dλ
G(w) +

κ

λ
G′(w)wR

dκ

dλ

=
κ

λ
G(w)

[
−

1

λ
+

dκ

dλ

(
1

κ
+ R

G′(w)

G(w)

)]

= Z

[
−

1

λ
+

1

κ

dκ

dλ

(
1 +
wG′(w)

G(w)

)]

= Z

[
−

1

λ
+

1

2λ

(
1 +
wG′(w)

G(w)

)]

= Z
1

2λ

(
wG′(w)

G(w)
− 1

)
.

For the change of the resonance contribution I due to the strat-

ification some more care needs to be taken. The resonant posi-

tion may shift due to the stratification. This shift may be calcu-

lated by requiring that the eigenvalue λ vanishes at the resonant

position:

dλ

dε
=
∂λ

∂ε
+
∂ω

∂ε

∂λ

∂ω
+
∂r

∂ε

∂λ

∂r
= 0

so that:

∂r

∂ε
= −

∂λ
∂ε
+ ∂ω
∂ε
∂λ
∂ω

∂λ
∂r

= −
ρ0

∂ρ0

∂r
ω2

(
ω2σS k,k + 2ω

∂ω

∂ε

)
· (A.2)

Now let us investigate which factors in I may contribute to a

linear change with the stratification parameter. First of all it

must be noticed that when one considers the resonant mode

that is already interacting in zeroth order the following factor

does not yield first order contributions:

(
φΠ(in)

)(k)

Π
(in,k)

k

φk =
φkΠ

(in,k)

k
+

∑
j�k φ jΠ

(in,k)

j

Π
(in,k)

k

φk

= 1 +
∑

j�k

φ jΠ
(in,k)

j

Π
(in,k)

k︸���︷︷���︸
second order

where we have used φk = 1 and for j � k, both Π
(in,k)

j
∼ ε

and φ j ∼ ε. The same factor does not cause any first order

contributions for additional resonances either. To see this, con-

sider such an additional resonant mode dominant in the lth sine

component (l � k). Then:

(
φΠ(in)

)(k)

Π
(in,k)

k

φk =
φlΠ

(in,k)

l
+

∑
j�l φ jΠ

(in,k)

j

Π
(in,k)

k

φk

=


Π

(in,k)

l

Π
(in,k)

k

+
∑

j�k

φ jΠ
(in,k)

j

Π
(in,k)

k


︸������������������������︷︷������������������������︸

first order

φk

︸����������������������������︷︷����������������������������︸
second order

where we have now used φl = 1, Π
(in,k)

l
∼ ε and φ j ∼ ε for

j � l.

Therefore the linear changes in I can only result from the

factor 1/r2 and 1/|〈〉| (where we have used the shorthand nota-

tion 〈〉 = 〈φLA1φ〉):

dI

dε
=
∂r

∂ε

∂I

∂r
+

d|〈〉|

dε

∂I

∂|〈〉|

= −2
I

r

∂r

∂ε
−

I

|〈〉|

d|〈〉|

dε

= −2
I

r

∂r

∂ε
−

I

〈〉

d〈〉

dε
· (A.3)

For determining d〈〉/dε it must be noticed that LA1 is diagonal

for ε = 0 and that 〈φdφ/dε〉 = 0 so that:

d〈〉

dε
=

d (LA1)
(k)

k

dε
·
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Remember that we have to take into account the possibility of

a shift in the resonant position and thus:

d

dε
=
∂

∂ε
+
∂ω

∂ε

∂

∂ω
+
∂r

∂ε

∂

∂r
·

It is obtained straightforwardly that:

d (LA1)
(k)

k

dε
=
∂ρ0

∂r

(
ω2σS k,k + 2ω

∂ω

∂ε

)

+ρ0ω
2 ∂σ

∂r
S k,k +

∂2ρ0

∂r2
ω2 ∂r

∂ε
·

Inserting this result in Eq. (A.3) and by using expression (A.2)

for ∂r/∂ε we obtain:

dI

dε
=

(
ω2σS kk + 2ω

∂ω

∂ε

)

×


ρ0

∂ρ0

∂r
ω2

(
∂2ρ0

∂r2

ω2

〈〉
+

2

r

)
−

∂ρ0

∂r

〈〉

 I

−
ρ0ω

2

〈〉

∂σ

∂r
S kkI

Eq. (A.1) can now be solved with respect to ∂ω
∂ε

and yields re-

sult (8) with the following definitions:

µ(in) = −ρ0(in)

dZ(in)

dλ(in)

= −ρ0(in)

Z(in)

2λ(in)

[
w

(
I′′(w)

I′(w)
−

I′(w)

I(w)

)
− 1

]

µ(ex) = ρ0(ex)

dZ(ex)

dλ(ex)

= ρ0(ex)

Z(ex)

2λ(ex)

[
w

(
K′′(w)

K′(w)
−

K′(w)

K(w)

)
− 1

]

µ(res) = −I


ρ0

ω2 ∂ρ0

∂r

(
∂2ρ0

∂r2

ω2

〈〉
+

2

r

)
−

∂ρ0

∂r

〈〉



ν(res) = I
ρ0

〈〉
·


