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The transverse structure of coronal loops plays a key role in the physics but the small
transverse scales can be difficult to observe directly. For wider loops the density profile
may be estimated by forward modeling of the transverse intensity profile. The transverse
density profile may also be estimated seismologically using kink oscillations in coronal
loops. The strong damping of kink oscillations is attributed to resonant absorption and
the damping profile contains information about the transverse structure of the loop.
However, the analytical descriptions for damping by resonant absorption presently only
describe the behavior for thin inhomogeneous layers. Previous numerical studies have
demonstrated that this thin boundary approximation produces poor estimates of the
damping behavior in loops with wider inhomogeneous layers. Both the seismological and
forward modeling approaches suggest loops have a range of layer widths and so there is
a need for a description of the damping behavior that accurately describes such loops.
We perform a parametric study of the damping of standing kink oscillations by resonant
absorption for a wide range of inhomogeneous layer widths and density contrast ratios,
with a focus on the values most relevant to observational cases. We describe the
damping profile produced by our numerical simulations without prior assumption of
its shape and compile our results into a lookup table which may be used to produce
accurate seismological estimates for kink oscillation observations.

Keywords: magnetohydrodynamics (MHD), Sun: corona, Sun: magnetic fields, Sun: oscillations, waves and
instabilities

1. INTRODUCTION

Coronal loops are modeled as density structures in the solar atmosphere which act as waveguides
for several types of magnetohydrodynamic (MHD) modes. One of the most readily detectable
are standing kink oscillations, which causes periodic transverse perturbations of the loop axis.
These oscillations were first detected using the Transition Region And Coronal Explorer (TRACE;
Aschwanden et al., 1999, 2002; Nakariakov et al., 1999). The number of observations has greatly
increased since the launch of the Atmospheric Imaging Assembly (AIA; Lemen et al.,, 2012)
onboard the Solar Dynamics Observatory (SDO). Catalogs of observations have been produced
by Zimovets and Nakariakov (2015) and Goddard et al. (2016). Kink oscillations attract a lot of
attention due to their potential for seismological studies of the coronal plasma (e.g., reviews by
De Moortel and Nakariakov, 2012; Stepanov et al., 2012; Pascoe, 2014; De Moortel et al., 2016),
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in particular to estimate the strength of the coronal magnetic
field (e.g., Nakariakov et al., 1999; Nakariakov and Ofman, 2001;
Van Doorsselaere et al., 2007; White and Verwichte, 2012; Pascoe
et al., 2016; Sarkar et al., 2016).

Kink oscillations are observed to be strongly damped, only
having a detectable amplitude for a few cycles, which is
attributed to resonant absorption (e.g., Chen and Hasegawa,
1974). Coronal loops are modeled as having a higher density
than the surrounding plasma, and for resonant absorption to take
place only requires that the transition between the higher and
lower density plasma is smooth. Inside this inhomogeneous layer,
wave energy is transferred from kink to Alfvén modes where
the local Alfvén speed matches the kink speed Cy. The timescale
of this process is comparable to the period of oscillation (e.g.,
Hollweg and Yang, 1988; Goossens et al., 1992, 2002; Ruderman
and Roberts, 2002).

Resonant absorption is a robust mechanism which occurs
even in loops which are not cylindrically symmetric (Terradas
et al., 2008b; Pascoe et al., 2011). Furthermore, numerical
studies demonstrate that the Kelvin-Helmholtz instability (e.g.,
Terradas et al., 2008a; Antolin et al, 2015; Okamoto et al,
2015; Magyar and Van Doorsselaere, 2016; Hillier et al., 2019)
is most efficient in loops with thin inhomogeneous layers. This
instability leads to a mixing of plasma and effective widening of
the inhomogeneous layer (e.g., Goddard et al., 2018; Karampelas
and Van Doorsselaere, 2018) in addition to increased heating due
to phase mixing (e.g., Heyvaerts and Priest, 1983; Karampelas
et al., 2017; Pagano et al.,, 2018; Guo et al., 2019) which can
account for observations of broad differential emission measures
in coronal loops (Van Doorsselaere et al., 2018).

The transverse density profile can be described by two
dimensionless parameters; the density contrast ratio being the
ratio of the density at the center of the loop to the density far
from it £ = po/pe, and the width of the inhomogeneous layer
normalized to the minor loop radius € = [/R. The damping rate
due to resonant absorption depends on both of these parameters.
For this reason the problem is underdetermined when trying
to infer ¢ and € from the (exponential) damping time alone
and some additional information is required (e.g., Goossens
et al,, 2008; Arregui and Asensio Ramos, 2014; Arregui and
Goossens, 2019). Pascoe et al. (2013) produced a more accurate
description of the damping profile due to resonant absorption,
which includes the initial Gaussian damping regime of kink
oscillations in addition to the later exponential damping regime.
This damping profile is characterized by two damping times
and so allows both ¢ and € to be estimated. This method
was first applied by Pascoe et al. (2016) and later extended by
Pascoe et al. (2017a,c) to include additional effects such as a
time-dependent period of oscillation, the presence of additional
parallel harmonics, and the use of Bayesian analysis (e.g.,
Arregui et al., 2013; Arregui, 2018) to improve the estimation
of uncertainties. This seismological method requires both the
Gaussian and exponential damping regimes to be accurately
detected in the data and so depends on the oscillation data having
a sufficiently high quality.

Another method for estimating € is by forward modeling the
appearance of the density profile for direct comparison with the

transverse EUV intensity profile of the loop (Goddard et al,
2017; Pascoe et al., 2017b). It is possible to apply both of these
methods simultaneously to observational data. This was recently
demonstrated by Pascoe et al. (2018) for a loop for which the
oscillation data alone was too noisy to allow strong constraint
of ¢ and €. However, the spatial information from the intensity
profile produced a strong constraint on €, such that the oscillation
data was only required to infer { when both methods were
applied simultaneously. On the other hand, the value of € ~ 0.9
for this observation is significantly outside the validity of the
thin boundary (TB) approximation. To correct for this effect,
Pascoe et al. (2018) performed a narrow parametric study using
the TB estimate as a starting point. The result of this study
was a change in the estimated value of ¢ from the TB value
of 2.3 to a value of 2.8 based on numerical simulations for
€ = 0.9. This case demonstrates the need for a seismological
method that can account for the behavior of kink oscillations
in loops with wide inhomogeneous layers without the need for
separate studies and corrections applied afterwards. The use of
a self-consistent seismological method is particularly important
for future development of techniques for data analysis where
multiple observational signatures are forward modeled and a
systematic error arising from the TB approximation would have a
deleterious influence on other observables. For example, the EUV
intensity is I o« p? and so a change in inferred density contrast
from 2.3 to 2.8 in the example above corresponds to an intensity
change by a factor of approximately 1.5.

In this paper we study the behavior of kink oscillations
of coronal loops for various transverse density profiles. Our
aim is to provide a simple method of estimating the damping
profile for a chosen profile which may be used for seismological
investigations. The damping profiles for resonant absorption
used in previous studies and this one are described in section 2.
The results of our parametric study and the generation of a
lookup table (LUT) are presented in section 3. In section 4 we
present examples of the application of our method to synthetic
test cases and observational data. Conclusions are presented in
section 5.

2. DAMPING PROFILE FOR KINK
OSCILLATIONS

Initial applications of resonant absorption to explain the strong
damping of kink oscillations (Goossens et al, 1992, 2002;
Ruderman and Roberts, 2002) considered only the asymptotic
state of the system. The damping profile was an exponential of
the form

D(t) = exp (—T—td> (1)
4P

4= —5 > (2)
TT°KE€E

where 74 is the exponential damping time, P is the period
of oscillation, k = (po — pe)/(po + pe) and the factor
4/7? corresponds to a linear transition between py and pe. In
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this paper we consider a linear profile for the density in the
inhomogeneous layer since it is the simplest smooth profile, can
describe the widest range of possible structures, and is the only
profile for which the analytical solution for all times is presently
known (see discussion section 6.2 of Pascoe et al., 2018).

Numerical simulations by Pascoe et al. (2012) demonstrated
that the damping profile of strongly damped propagating kink
oscillations is more accurately described by a Gaussian damping
profile rather than an exponential one. The existence of these
two regimes was reconciled by the analytical description derived
by Hood et al. (2013) which described the damping profile
for all times and demonstrates that Gaussian and exponential
profile can be obtained in the limits of small and large time,
respectively. The derivation by Hood et al. (2013) was performed
for propagating kink waves with the damping rate expressed in
terms of damping length scales but we may consider the case
of standing kink waves with a damping time using the long
wavelength limit A = CP, giving

D (1) (3)

I
%
ae}
|
[N}
mﬁ.\,‘ ™
N———

Tg = m (4)
We note that the relationship between damping length
scales (propagating waves) and timescales (standing waves)
has been demonstrated explicitly for the exponential regime
(e.g., comparing the derivations of Goossens et al., 2002;
Terradas et al., 2010) but presently not the Gaussian regime.
Nonetheless we demonstrate the applicability of this relationship
(proposed by Pascoe et al, 2010) by comparison with our
numerical simulations. The applicability of this relationship has
also previously been demonstrated in numerical simulations
by Ruderman and Terradas (2013) and Magyar and Van
Doorsselaere (2016).

Pascoe et al. (2013) proposed a general damping profile (GDP)
that combined both of these damping regimes into a single
approximation. This is described in terms of a switch from
the Gaussian damping profile that applies at the start of the
oscillation to the exponential profile which applies later.

exp —iz t <t
2rg (5)

Ag exp (—t;—dts) t >t

, (6)

D(t) =

ty =

x|

where the switch from the Gaussian to exponential damping
regime occurs at t; and A; = D (t = £,).

The above damping profiles are also based on the thin tube
approximation. In this limit the period of the fundamental
standing kink mode is

Py = 2L/Cy (7)

where L is the loop length, and the kink speed for a low-S plasma
(uniform magnetic field) is

_ [ %
Cx = Cao i1 (8)

where Cypo is the internal Alfvén speed. The thin tube thin
boundary (TTTB) approximation for the period of oscillation of
kink modes therefore depends on ¢ but not € (Goossens et al.,
2008). However, the parametric studies by Van Doorsselaere et al.
(2004) and Soler et al. (2014) find that Py does depend on €
outside of the applicability of the TB approximation.

To illustrate the different damping profiles, Figure 1 shows the
results of our numerical simulations (described in section 3) for
three values of € with { = 2. For this value of density contrast
the GDP suggests a switch from the Gaussian to exponential
damping regime at t = 3P. For kink oscillations in low density
contrast loops such as these, the Gaussian damping profile (blue
curves) provides a much better description than the exponential
damping profile (red curves), and the general damping profile
(green curves) further improves the description for later times. As
expected, all three analytical profiles become poorer as € increases
and the TB approximation becomes less appropriate.

In this paper we wish to characterize the damping behavior
of kink oscillations as accurately as possible, and without prior
assumption of the form of the damping profile. The plus
symbols in Figure 1 represent the amplitudes A; which we use
to characterize the oscillation. These amplitudes are defined at
every half cycle of the oscillation. The LUT damping profile
(dashed lines) is constructed from these amplitudes by spline
interpolation. The dashed lines indicate that this method allows
us to accurately describe the damping of the kink oscillation,
albeit at a cost of requiring more information. The exponential
and Gaussian damping profiles can each be characterized by
a single parameter, ie, the damping time 74y or 7z The
GDP combines both the Gaussian and exponential damping
regimes and so is characterized by both these damping times
(with the switch time given in terms of these two parameters
in Equation 6). For the six cycles indicated in Figurel our
interpolation method uses 13 parameters, or more generally 2n+
1 parameters for n cycles. On the other hand, this number is
still sufficiently small that the results of hundreds of numerical
simulations can be compiled into a lookup table of minimal size.

For each of the three simulations in Figure 1, and the
additional simulations presented in section 3, the amplitudes
A; used to describe the LUT damping profile were found by a
least-squares fit to the data using MPFIT (Markwardt, 2009).
Simulation data covered at least six cycles of the oscillation, with
a greater number for simulations with smaller values of ¢ or € for
which the damping is weaker and so there are a greater number
of cycles at an observable amplitude. This is also intended to
ensure that the exponential damping regime is present in the
data, which occurs later for smaller . This allows the damping
profile to be extrapolated beyond the number of simulated cycles
using an exponential profile with the last measured damping
time. We require that the LUT damping profile function is able
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FIGURE 1 | Comparison of kink oscillations calculated by numerical simulations (solid lines) with the analytical damping profiles (colored lines). The red, blue, and
green lines correspond to the exponential, Gaussian, and general damping profiles, respectively. The plus symbols represent the amplitudes used to characterize the
oscillation in our lookup table (LUT). The LUT damping profiles (dashed lines) are constructed from these amplitudes by spline interpolation. The left, middle, and

right panels show the results for e = 0.1, 0.5, and 1.0, with ¢ = 2 for all cases.

4 ) 6 0 1 2 3 4 5 6

3
t/ P

to return results for arbitrary values of time in order for it to
appropriately handle requests from the user or from a fitting
routine transparently i.e., without needing to take the details of
individual simulations into account.

3. PARAMETRIC STUDY

In this section we study the behavior of kink oscillations in
coronal loops for various combinations of { and €. Soler
et al. (2014) and Van Doorsselaere et al. (2004) performed
similar numerical studies investigating the damping time for
the exponential regime. These studies demonstrated that the
thin boundary approximation produces poor estimates of the
damping behavior in loops with wider inhomogeneous layers.
As in Soler et al. (2014), we consider L/R = 100 which
is typical for observations of standing kink oscillations. Weak
dependence of the damping on the longitudinal wavenumber
k; has been demonstrated by Van Doorsselaere et al. (2004).
Numerical simulations were performed using a Lax-Wendroff
code to solve the linear MHD equations in cylindrical coordinates
(r,0,z) for m = 1 symmetry corresponding to kink oscillations
(and the Alfvén waves generated by resonant absorption). The
magnetic field is constant and aligned with the z-direction.
This code was previously used in Pascoe et al. (2012, 2013,
2015) and Hood et al. (2013) to study the spatial damping of
propagating kink waves and here is applied to the case of the
temporal damping of standing kink waves by appropriate choice
of boundary and initial conditions. The boundary conditions
are line-tied to simulate the loop footpoints being fixed in the
photosphere, while the boundary in the r-direction is placed
sufficiently far away to not affect the results. The fundamental
longitudinal harmonic of the standing kink mode is excited by a
perturbation to the radial and azimuthal velocities of the form

v(r,0,z) = (v, vg,v;) = (& cos B, & sin®,0)sin (wz/L), (9)

&0 = 1Sk (10
& (1 = {Rz/_ﬁ R (an

In the following simulations, the numerical domain covers r =
[0, 10R] and z = [0, 100R], with a resolution of 1,000 x 1,000
grid points. Each of our 300+ simulations took approximately
1 h to run using 80 x 2.8 GHz processor cores. We study the
standing mode by considering the variation in the amplitude of
the transverse velocity measured at the loop apex z = L/2.

Figure 2 shows the simulations performed in our parametric
study which were used to generate the first version of our lookup
table. The solid, dashed, and dotted lines correspond to the
damping rates shown in the right panel. These damping profiles
are based on the TB approximation for the Gaussian damping
profile and so will not accurately describe the behavior for large
€ but serve as an indication of the range of parameters we are
interested in considering with respect to observational studies.
The curves demonstrate that we are not equally interested in all
regions of the {-€ parameter space. Large amplitude standing
kink oscillations are typically observed for fewer than 6 cycles
(e.g., Goddard and Nakariakov, 2016) and so we are mainly
interested in parameters which produce this level of damping.
The dotted, solid, and dashed lines correspond to 74/P = 1, 2,
and 5, respectively, and indicate the parameters we expect to be
relevant to observations. For large values of both ¢ and e, kink
oscillations would be very strongly damped and hence unlikely
to be reliably detected. The shorter time series available would
also generally limit the seismological information that could be
obtained. Unlike € which has the defined upper limit of 2, there is
no upper limit for . However, the damping rate is asymptotic in
this limit and so we can consider a reasonable upper limit, which
is taken to be 7 in this study but may be extended in the future
(e.g., high contrast filament threads considered by Arregui et al.,
2008). For small values of both ¢ and € the oscillations would
be weakly damped. Such oscillations are not typically observed,
although we are still interested in the behavior for small values
of € with regard to checking convergence of our results to the
analytical profiles based on the TB approximation.

The distribution of the simulations we have performed reflects
these areas of interest. When compiling the results of these
simulations into a lookup table, it is therefore not convenient
to use a 2D array to describe the ¢-€ plane. Instead, the results
are considered as a list of scattered positions in the parameter
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FIGURE 2 | The black circles denote the 300 numerical simulations that comprise version 1.0 of our LUT. The solid, dashed, and dotted lines correspond to the
damping rates shown in the right panel. These damping profiles are based on the TB approximation for the Gaussian damping profile but serve as an indication of the
range of parameters we are interested in considering with respect to observational studies.

space using the IDL routine GRIDDATA which can be used to
interpolate our simulation results to return the damping profile
for an arbitrary value of ¢ and €. Additional simulations were
performed for testing purposes, including generating synthetic
observational data used in section 4. These additional simulations
are not included version 1.0 LUT but may be in future
applications of the LUT to actual observational data. The use of
a LUT and interpolation methods for scattered data allows the
method to be improved over time by incorporating additional
results as they are obtained. Other examples of a LUT strategy for
solar applications include the CHIANTI emission database (Del
Zanna et al., 2015) used as part of EUV forward modeling codes
such as FOMO (Van Doorsselaere et al., 2016), and the CAISAR
code for inversions of solar Ca II spectra (Beck et al., 2015).

The LUT and the corresponding IDL code are available at
https://github.com/djpascoe/kinkLUT. The routine requires as
input the values of €, ¢, and the normalized times ¢, = t/P
at which the damping profile is desired. The value of each
amplitude A; is determined by 2D interpolation of the simulation
results using the IDL routine GRIDDATA. (In this paper we
use the linear method, chosen as the simplest method with
fewest assumptions, for which requested grid points are linearly
interpolated from triangles formed by Delaunay triangulation.
These triangles were constructed with the TRIANGULATE
routine and are included in the LUT save file). The damping
profile is then returned by spline interpolation of these
amplitudes A; for the user-requested times f,,. This procedure can
be used within a forward modeling function used for comparing
a model with data. For example, a simple model for an oscillation
with a single harmonic and no background trend, as considered
in this paper, is

. 2wt
)’(t) = AO s <7 + ¢) DLUT (tn’ 6,{) > (12)

where Ay is the initial amplitude of a sinusoidal oscillation with
period P and phase shift ¢, and the damping profile Dy is based
on our lookup table. We demonstrate the results of such a method
in section 4.

3.1. Dependence of Period of Oscillation
and Damping Rate on Transverse Density

Profile

Here we compare the results of our parametric study with the
analytical profiles discussed in section 2 and previous numerical
studies.

Figure 3 shows the dependence of the kink mode behavior
on ¢. For an exponential or Gaussian damping profile it is
convenient to characterize the damping with the damping time
(or length scale for propagating waves). However, in this study we
make no assumption about the shape of the damping profile and
so we consider the damping which has occurred after a certain
time, or a certain number of oscillation cycles since the period of
oscillation also depends on ¢. The colored lines correspond to the
theoretical damping rates based on the TB approximation and an
exponential (red), Gaussian (blue), or general (green) damping
profile.

The top panels of Figure 3 demonstrate the case of a thin
inhomogeneous layer (¢ = 0.1) where the TB approximation
is appropriate. The top left panel reproduces the known
dependence of the shape of the damping profile on ¢. For
lower density contrasts the Gaussian profile better describes the
damping. The GDP which combines both profiles, with a switch
from Gaussian to exponential that depends on ¢, provides a
significantly better approximation for all values of ¢. The switch
time occurs at 5P for ¢ = 1.5 and so the general and Gaussian
damping profiles are identical for { < 1.5.

The bottom panels of Figure 3 demonstrate the case of a finite
inhomogeneous layer (¢ = 0.5) where the TB approximation
is less appropriate. The estimated period of oscillation is still
reasonable but the damping is being significantly overestimated.
The amplitude is taken at the earlier time of 2.5P since the
damping is stronger for the larger value of €. At this earlier time,
the Gaussian damping profile is always a better approximation
than the exponential profile for the range of { < 7 considered.
The switch time occurs at 2.5P for ¢ 2.3, and so it is
expected that the Gaussian estimate is better than the exponential
estimate for density contrasts lower than this value. However,
it also remains a better overall estimate for contrasts not too
much above this value due to the exponential estimate being

o
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FIGURE 3 | Dependence of the damping of the kink oscillation on the density contrast ratio ¢. The top panels show results for e = 0.1 and the bottom panels for
e = 0.5. The left panels show the kink oscillation amplitude (plus symbols) taken at a fixed time (t = 5P or 2.5P) The colored lines show the estimates based on the
general damping profile (green), Gaussian damping profile (blue), and exponential damping profile (red). The right panels show the variation of the period of oscillation
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so poor during the first cycle or so. The Gaussian estimate
therefore does not become poorer than the exponential estimate
by the time of 2.5P considered in the bottom panel of Figure 3,
whereas it does in the top panel. Whether the Gaussian or
exponential estimate is better therefore depends on not only
when the switch occurs but also how much data is considered
after that switch. The general damping profile provides the best
approximation for all parameters and times, but is also inaccurate
when there is significant damping due to the limitations of the TB
approximation it is based upon.

The right panels of Figure 3 show the fractional error in
the period of oscillation estimated as Py by Equation (7). The
errors are typically very small since the thin tube approximation
(w/k; = Cy) is appropriate for our simulations with L/R = 100.
The error increases with £ due to the stronger dispersion present
in higher contrast loops, and is also found to increase with € (see
also Figures 4, 6).

Figure 4 shows the dependence of the kink mode behavior on
€. The top panels show results for ¢ = 2 att = 2.5P, i.e., the
behavior at an early time for a low density contrast ratio. For
¢ = 2 the switch for Gaussian to exponential occurs at t = 3P and
so the Gaussian and general damping profiles are identical before
this time, and are a significantly better approximation than the
exponential profile. The bottom panels show results for { = 7 at
t = 5P, i.e,, having both a sufficiently high density contrast and a
sufficiently large number of cycles for the exponential damping

profile to always be a better approximation than the Gaussian
profile, though the GDP remains an improvement over both.

Figure 5 shows 2D contours for the amplitude of the kink
oscillation at t = 3P (top left panel) and the fractional errors
of the corresponding estimates based on the TB approximation.
The errors tend to zero in the appropriate limit € — 0, otherwise
each approximation underestimates the amplitude. The Gaussian
and GDP estimates are also accurate in the limit ¢ — 1 since
they describe the initial stage of resonant absorption, whereas the
exponential estimates remain poor in this limit when € > 0.

Figure 6 shows the fractional error in the period of oscillation
estimated using the TB approximation (Equation 7). The TB
approximation underestimates the period of oscillation. The
dependence of the error on ¢ and € is similar to that found
by Soler et al. (2014) (i.e., being proportional to the strength
of the damping due to resonant absorption) but the magnitude
is smaller, remaining less than 6%. Soler et al. (2014) report an
error of up to 45% in their study which considers ¢ up to 20,
whereas we restrict our attention to the parameter range most
relevant to observations (e.g., { < 3.5 for the largest values of €
in Figure 2). However, even accounting for this there remains a
discrepancy and Soler et al. (2014) find errors greater than 30%
for a comparable parameter range.

Figure 7 shows the difference in fractional error using the
exponential damping profile alone compared with the GDP
based on Figure 5. It indicates the GDP analysis is always an
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FIGURE 4 | Dependence of the damping of the kink oscillation on the inhomogeneous layer width €. The top panels show results for ¢ = 2 and the bottom panels
for ¢ = 7. The left panels show the kink oscillation amplitude (plus symbols) taken at a fixed time (t = 5P or 2.5P) The colored lines show the estimates based on the
general damping profile (green), Gaussian damping profile (blue), and exponential damping profile (red). The right panels show the variation of the period of oscillation
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improvement over the exponential profile, and the difference is
largest for lower ¢, typically ~ 60% for { < 2 and ~ 30% for
¢ > 2. The right panel of Figure 7 shows how the fractional error
(averaged over 300 numerical simulations) varies as a function
of time for each of the profiles based on the TB approximation.
Each of the errors increase in time due to the cumulative effect
of overestimating the damping rate, however the GDP remains
at all times a significantly better estimate of the kink oscillation
amplitude. The GDP (Equation 6) is a simple modification of the
exponential damping profile with no additional parameters and
so this improved estimate comes at effectively no computational
cost. Our LUT method is based on several interpolation routines
and so is slower to calculate than the GDP but remains practical.

The larger errors for analysis based on the exponential profile
arise because it provides a very poor description for the initial
behavior of kink oscillations. Pascoe et al. (2013) demonstrate
that the seismological estimate based on the exponential profile
is significantly improved by ignoring the first two cycles of the
oscillation and only analysing the remaining data. However, this
is not a practical solution for detailed analysis of oscillations
since it means the initial amplitude cannot be estimated, which
is important for nonlinear effects. It would also hinder the
potential to detect higher harmonic oscillations which have a
shorter period and so typically only exist for the first few cycles of
the fundamental mode (e.g., Pascoe et al., 2017a). For example,
if the fundamental mode is observable for six cycles then the
third harmonic with P3 P /3 but the same damping per

~
~

period would only be detectable during the first two cycles of the
fundamental mode.

4. SEISMOLOGICAL APPLICATION

In this section we demonstrate the application of our LUT as
a seismological tool to use the observed damping of a kink
oscillation to infer information about the transverse density
profile of the oscillating loop.

Figure 8 shows the results of a test of our method for a kink
oscillation simulated in a loop with { = 2.15 and € = 0.75.
This data point is not included in version 1.0 of our LUT used
in the following analysis. The top panel shows the analyzed
oscillation which includes uniformly distributed random noise
with a maximum amplitude of 5% of the initial kink oscillation
amplitude. The middle and bottom panels show 2D histograms
approximating the marginalized posterior probability density
function for ¢ and € based on 10° Markov chain Monte Carlo
(MCMC) samples of the GDP and LUT models, respectively
(see also Pascoe et al., 2017a, 2018). This data comes from a
simulation with an inhomogeneous layer width that is sufficiently
large for the TB approximation to produce inaccurate results. The
GDP approach overestimates the value of €, and correspondingly
underestimates the value of ¢.

The seismological estimates in Figure 8 demonstrate that it
is important to consider the dependence of the damping on ¢
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