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Abstract The detection of overtones of coronal loop kink oscillations has been an important
advance in the development of coronal seismology. It has significantly increased the poten-
tial of coronal seismology and has thus initiated important theoretical and observational
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improvements. New detections of overtones have been made and a reduction of the error
bars has been obtained. The efforts of theoreticians to extend eigenmode studies to more
general coronal loop models is no longer a matter of checking the robustness of the model
but now also allows for the estimation of certain equilibrium parameters. The frequencies of
the detected (longitudinal) overtones are in particular sensitive to changes in the equilibrium
properties along the loop, especially the density and the magnetic field expansion. Also, at-
tempts have been made to use the limited longitudinal resolution in combination with the
theoretical eigenmodes as an additional seismological tool.

Keywords Magnetohydrodynamics (MHD) · Waves · Sun-corona · Sun-magnetic fields ·
Sun-oscillations

1 Introduction

The suggestion that observed coronal oscillations could be used to determine the properties
of localised structures in the coronal plasma such as loops or prominences is due to Roberts
et al. (1984). They related observed quasi-periodic oscillations to the fundamental modes of
oscillation of magnetic tubes as derived by Edwin and Roberts (1983) (see also Zaitsev and
Stepanov 1975; Ryutov and Ryutova 1976; Wentzel 1979; Roberts and Webb 1978, 1979;
Wilson 1979, 1980; Spruit 1982; Cally 1986). At that time observations of oscillations in the
corona were not spatially resolved, so the identification of the observed modes was largely
speculative. However, even at that stage the observed oscillation periods were related to the
magnetic field strength by means of the period of the kink oscillation.

Decades later, kink oscillations of coronal loops were first observed very accurately by
the TRACE spacecraft (Transition Region And Coronal Explorer) (Schrijver et al. 1999,
2002; Aschwanden et al. 1999; Nakariakov et al. 1999; Aschwanden et al. 2002) (or As-
chwanden et al. 2003, for an observational review). By the excellent spatial resolution of
the images, there seems to be no doubt about the identification as kink mode oscillations,
as these are theoretically the only modes that displace the tube axis. Hence Nakariakov and
Ofman (2001) used the observed frequency to determine the strength of the local coronal
magnetic field, in a similar way as suggested earlier by Roberts et al. (1984).

Seismology in general refers to the process of deducing properties of a medium by
analysing properties of the oscillations or the waves travelling through the medium. It can
be used to deduce properties of the sources as well, but when the aim is to learn about
the medium, seismology generally compares the observed dispersion with the theoretically
predicted dispersion relations (as e.g. in helioseismology). Ultimately the inversion of the
observed dispersion is aimed for. With only detections of single discrete oscillation events,
that kind of analysis could simply not be developed when the first loop oscillations were
reported. This situation changed upon the first detection of overtones of coronal loop kink
oscillations by Verwichte et al. (2004). The overtones were interpreted as longitudinal over-
tones and the ratio between the two frequencies was found to depart from the canonical
value of 2. Thus, the observed overtones showed signatures of dispersion and hence, could
be used as a seismological tool.

A word of caution on the terminology to refer to the respective overtones is appropriate
here, as it seems to differ between authors. If the modes are ordered according to the number
of nodes in the longitudinal direction we can in general refer to them successively as the
fundamental, the first overtone, second overtone, etc. Often the word harmonic is used and
this is a source of confusion. Strictly speaking ‘harmonic’ should only be used when the
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frequency spectrum is equidistant, i.e. the frequencies of the overtones are exact multiples
of the fundamental frequency and form a harmonic series. This is not the case here, and
the word harmonic is used more loosely. In a harmonic series the fundamental is called
the first harmonic, the first overtone is the second harmonic etc. On the other hand, given
that it is not a harmonic series anyway, harmonic is sometimes also used as synonymous
to overtone, and hence the terminology ‘second harmonic’ can be ambiguous. We would
therefore like to encourage the practice of referring to the fundamental when ‘harmonic’ is
used as a synonym for overtone, and avoid the word harmonic as such if it is not used in
the sense of a harmonic series. Therefore, the first overtone may be referred to as ‘the first
harmonic of the fundamental’ or as ‘the second harmonic’, without ambiguity.

The first detections of overtones were made at a time when the inclusion of additional
equilibrium parameters in the coronal loop models and their influence on the eigenmode
frequencies was receiving increased interest. However, the interest was mainly in having
more insight into what determines the kink frequency and in computing more accurate val-
ues for it. Dispersion due to the width of the tube had been taken into account in the initial
studies by Edwin and Roberts (1983) while Van Doorsselaere et al. (2004) had begun the
investigation into the influence of curvature (for more references concerning the influence
of curvature see Van Doorsselaere et al. 2009, in this issue). The theoretical development of
loop oscillation models is discussed in greater detail in Ruderman and Erdélyi (2009) in this
issue.

The variation of the density along the loop was also just taken into account (Díaz et al.
2004; Andries et al. 2005) and it was realised immediately that this could provide a possible
explanation for the observed dispersion. Using a simple model of an isothermally stratified
plasma in the loop, Andries et al. (2005) and Goossens et al. (2006) related the observed
period ratio to coronal density scale height. While illustrating the potential of the observed
dispersion, these studies also clarified that more effort was required both from an observa-
tional and from a theoretical side. This paper is devoted to giving an overview of the recent
progress obtained in understanding, observationally and theoretically, the departure of the
period ratio from its canonical value.

From an observational point of view the improvements have reduced the error bars on
the observed frequencies by statistically averaging the observed time signals at different po-
sitions along a loop. Recent studies also try to incorporate as much of the observational data
as possible, such as the loop inclination, non-circularity and non co-planarity (Verth et al.
2008). Moreover, the detection of loop oscillations and the determination of their frequen-
cies is expected to benefit from the development of automated edge-tracking procedures
(Jess et al. 2008).

Concerning theoretical modelling, several studies have reconsidered the influence of the
density structure from different perspectives: quantifying influences of loop geometry or
heating functions (Dymova and Ruderman 2006; Díaz et al. 2006), obtaining analytical
dispersion relations for specific density profiles (McEwan et al. 2008), specialising to the
thin tube limit (Dymova and Ruderman 2006), or including the rapid density increase at
the footpoints and studying the relative influence of stratification within the loop or in the
environment (Donnelly et al. 2006; Díaz et al. 2007). Most importantly, the longitudinal
magnetic field variation was identified as a key quantity and its effect has been quantified
(Verth and Erdélyi 2008; Ruderman et al. 2008), and works against the effect caused by
longitudinal density stratification. These results have also been related to observations by
Verth et al. (2008).

The period ratio may in principle be studied in detail for any mode of a coronal flux tube,
be it a fast kink mode or a slow longitudinal mode (McEwan et al. 2006). While harmonics
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of other modes have been reported (Nakariakov et al. 2003; Melnikov et al. 2005; Srivastava
et al. 2008), mainly the kink modes have been used for seismological inversion so far.

Another interesting development concerns the use of the longitudinal eigenfunctions as
seismological tools (Erdélyi and Verth 2007; Safari et al. 2007; Verth et al. 2007; Andries
et al. 2009). Although its application is subject to considerably more observational uncer-
tainty, it is most certainly an avenue that must be considered.

The paper will first discuss the detection of loop oscillations and their overtones in
Sect. 2. Section 3 then describes the theoretical models that have been studied in order
to explain and invert the observed period ratios while Sect. 4 is then devoted to the subject
of spatial seismology. Finally a summary and discussion is provided.

2 Observations of Kink Mode Longitudinal Overtones

In this section, we review the observations of multiple harmonics of transverse oscillations
in coronal loops. The detection techniques are explained and their advantages and shortcom-
ings are discussed.

So far, most transverse loop oscillations have been detected with TRACE because that
spacecraft provides the high spatial and temporal resolution necessary to observe these os-
cillations, which have displacement amplitudes of typically a megameter (i.e. a few pixels)
and periods of typically five minutes (i.e. about ten measurements per period). These time
and spatial scales indicate why it is so difficult to observe multiple loop harmonics (only a
handful so far!). Indeed, if you go to the first overtone of the fundamental mode, a period of
2.5 minutes is expected. For TRACE this means that it makes roughly five measurements per
period. The most favourable locations to detect the different harmonic oscillations depend
on the longitudinal profile of the transversal velocity amplitude. The fundamental mode has
its largest velocity amplitude at the loop top. The first overtone has a velocity node at the
loop top and has its largest amplitude about halfway down the loop leg. The second over-
tone will have two velocity nodes, one third of the total loop length up the loop leg, with
an amplitude maximum near the foot points and at the loop top. The confident identifi-
cation and characterisation of the overtone relies on spatial information of the oscillation
amplitude as a function of distance along the loop. However, TRACE images only provide
information about the projected loop displacements and projected distance along the loop.
For example an accurate localisation of the loop top is difficult. Therefore, additional infor-
mation such as the line-of-sight velocity amplitude provided by spectrometers (Wang et al.
2008; Van Doorsselaere et al. 2007) and/or a 3d reconstruction of the loop geometry and the
oscillation polarisation using STEREO (Verwichte et al. 2009) is extremely useful.

The most common data analysis techniques to quantify the periods of oscillations start
by taking a slit in the direction of the projected polarisation of the oscillation. However,
most times this corresponds to the direction perpendicular to the loop because for such
a configuration the oscillation is clearest. Then, the slits are stacked in time to obtain a
space-time diagram known as an x–t diagram. The second step is to determine the loop
position as a function of time xn(tn), with the aid of the x–t diagram. This is not a trivial
procedure because of interference of variations in the line-of-sight background. Interactive,
semi-automated and fully automated techniques have been applied. The time series often
contains a trend, which is modelled by either a polynomial fit or a large-scale running aver-
age (ideally comparable in scale to the largest oscillation period). However, it is not always
easy to distinguish the trend from the oscillation.

To obtain periods from the time series, different techniques may be used: Fast Fourier
Transform (FFT), periodogram, wavelets or a fitting method. Each has its own advantages
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and disadvantages. Ideally, one would want to have a confident period measurement with
multiple methods.

In principle, the FFT only works for equally spaced data points, which is not always
the case for coronal observations with TRACE. In case of unevenly spaced time series,
interpolation may be used, but that introduces additional uncertainties. This problem may
be overcome by using the periodogram method instead (e.g. Scargle 1981). The spectral
resolution for both FFT and periodogram is determined from the length of the time series.
Because of the associated heavy damping and the limited spatial resolution, the oscillations
are only seen for 3 or 4 periods at best. The short duration of the observational run results in
a wide spectral peak and large errors on the periods.

An often used approach in time series analysis is the Continuous Wavelet Transform
(CWT) (e.g. Torrence and Compo 1998). The transform with the Morlet mother wavelet is
especially suited to detect oscillations. Its advantage is that it can describe the amplitude and
spectral evolution as a function of time. Also, it naturally ignores any linear trends. However,
it does share some of the same problems as for the FFT: necessity for a evenly spaced time
series, and the lack of spectral resolution.

A different method is to fit the data points with multiple damped sine functions using least
squares. This method also generates large errors because the oscillation is superimposed on
a larger time scale trend. The functional form of such a trend is hard to guess and will
significantly influence the fitting of the oscillation.

It is straightforward to detect multiple periods with FFT and CWT, because they will
be visible as extra spectral peaks. However, sometimes these spectral methods do not dis-
tinguish between different periods, because of the poor spectral resolution. Detecting the
multiple periods using the fitting method is more involved. There are two approaches: one
fit with multiple damped sine functions and consecutive fits using a single damped sine func-
tion. With the former method a large number of oscillation parameters have to be determined
(eight for two harmonics), which can make the method unstable. For the latter approach one
needs to do a fitting for the most dominant harmonic first, subtract the fit, and repeat the
fitting for higher harmonics. Because of multiple fittings, larger errors will be introduced in
the resulting residues.

Terradas et al. (2004) apply several other data analysis techniques to known cases, and
compare the results to earlier findings. They use empirical mode decomposition, principal
component analysis, and Hilbert transform. These methods are all underused in coronal
oscillation analysis but may prove useful in the future to detect overtone periods with higher
accuracy.

There are only a few observational cases of multiple harmonics of a transverse oscillation
in a coronal loop and each publication uses a different method to determine the oscillation
parameters. The first two detections were obtained by Verwichte et al. (2004). In Verwichte
et al. (2004), from looking at multiple slits along the loop axis, multiple periods have been
determined using the CWT corresponding to the fundamental mode and its first harmonic.
Also, these harmonics have been confirmed by the amplitude profile as a function of pro-
jected distance from the loop top. However, the amplitudes of the overtones are only around
or even below the spatial resolution of TRACE which may cast some doubt on the signifi-
cance of the overtone signal. Moreover, the overtones are only detected by CWT and are not
picked up by the fitting procedure.

Van Doorsselaere et al. (2007) also used multiple slits along the loop. They measured
the multiple periods of the fundamental and first overtone using consecutive fits and ob-
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Table 1 An overview of observational measurements of two periods in a coronal loop. The improved errors
in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007)

Source P1 (s) P2 (s) P4 or 5 (s) P1/(2P2)

Verwichte et al. (2004) 448 ± 16 247 ± 6 0.91 ± 0.04

387 ± 8 245 ± 8 0.79 ± 0.03

De Moortel and Brady (2007)b (1038–2484) 577–672 250–346

Van Doorsselaere et al. (2007) 436 ± 5 243 ± 7 0.90 ± 0.03

O’Shea et al. (2007)a 448 224 (1)a,c

400 164 (1.2)a,c

476 198 (1.2)a,c

Verth et al. (2008) 242 157 (0.77)c

aThe identification as a kink-mode is uncertain

bThe mode number identification is uncertain
cDue to unspecified error bars the value of these measurements is limited or unclear

tained amplitudes above the instrument spatial resolution. The analysis suffers, however,
from a data gap after less than two periods of oscillation. This makes the mode identifica-
tion less confident and limits the confidence level of the fitting method.

De Moortel and Brady (2007) characterised the first and third or fourth overtone oscil-
lations at four slits along the loop using one fit with three damped sine functions. There
are some signatures of a fundamental mode as well but they vary widely depending on the
position along the loop (hence the parenthesis in Table 1). The higher overtone could not
be categorised reliably as either third or fourth. Moreover, some discussion exists about the
identification of the first overtone as well. In their original paper, they state that the os-
cillation with the highest power is the first overtone. However, the oscillation pattern may
also be consistent with a vertical fundamental mode. A very small amount of power in the
fundamental mode is at odds with the results of Terradas et al. (2007). The confusion with
respect to the mode identification is likely to be related to the helical geometry of the loop
and remains unresolved so far (see further comments at the end of Sect. 3.1). As has been
pointed out by Wang et al. (2008), due to the projection effect, even for co-planar curved
loops the mode identification may be doubtful if based on imaging data from certain viewing
angles.

O’Shea et al. (2007) also claim to observe multiple periodicities of kink oscillations in
a single loop based on data from CDS (Coronal Diagnostic Spectrometer) on board SoHO
(Solar and Heliospheric Observatory). However, they observe the oscillations in the inten-
sity, relying on an argument by Cooper et al. (2003) where the intensity oscillations are
caused by a variation of the column depth during the oscillation. It is unclear whether that
argument holds in this particular configuration. The mode identification is further based
upon the values of the period. In the absence of concurrent imaging observations the mode
identification is therefore uncertain. Furthermore, the analysis suffers from a very low spec-
tral resolution due to the very short duration of the time sequence. As a result the period ratio
cannot be determined accurately enough to show a significant difference from the canonical
value of 2.

Verth et al. (2008) recently reported another detection of both the fundamental and its first
harmonic. These results were based on very low cadence data. The values are obtained as
averages over the measurements along different slits (private communication) and involve
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automated edge tracking procedures by Jess et al. (2008). The periods are determined by
CWT and from their Fig. 2, it seems that one period dominates during the beginning of the
observation, whereas the other period dominates near the end. Error estimates are not given
but from inspection of their Fig. 2, they are expected to be large.

As stated before, in FFT (and also with wavelets), the error in the period is mainly de-
termined by the length of the time series. For the fitting method, it is not as simple to see.
Van Doorsselaere et al. (2007) used a Monte Carlo simulation to determine the magnitude
of the error in the period. Another approach would be to use the statistical error estimates of
the fitting routines. The error is also influenced by the number of slits and time series used.
Verwichte et al. (2004) took as an estimate of the uncertainty of the oscillation parameters
the standard deviation of the measurements from all slits. This produces a relatively large
error. Van Doorsselaere et al. (2007) proposed that the errors in the period measurement
can be reduced by performing the analysis in multiple slits across the loop. If it is assumed
that the same period is measured, the error in the period may be reduced by a factor

√
N ,

where N is the number of observations. The errors for the cases studied by Verwichte et al.
(2004) have been recalculated this way. This error method assumes that all measurements
are equal and unbiased. Considering other sources of errors (e.g. time series generation,
detrending, fitting quality), it is likely that the error realistically lies between these two ap-
proaches.

Evidently, there is still a considerable amount of uncertainty associated with each of the
reported detections (mode identification, significance of the observed amplitudes or the error
bars). It is worth noting that TRACE was not designed to do wave studies. The observational
cadence and integration times are often not constant, making wave studies more involved.
Future instruments, such as SDO/AIA, may allow for more confident detection and classifi-
cation of wave modes and a better determination of the wave periods.

Apart from using the observed periods of oscillation it has been suggested that the shape
of the oscillation mode along the loop may be used for seismology, an idea dubbed spatial
seismology (Erdélyi and Verth 2007). Observationally, this is not straightforward, because
only a 2D projection/integrated image of the corona is available to us which makes it non-
trivial to correctly identify the position on the loop of a certain pixel. Preliminar attempts
have been made to do spatial seismology by Verwichte et al. (2004) and Van Doorsselaere
et al. (2007). They attempted a fit with a sine function (i.e. without stratification parameters
taken into account), but failed even to get a confident estimate of the loop length. These
attempts could however be more successful if one would have an accurate 3D reconstruction
of a loop’s geometry to correct for projection effects and departure from circular shape. The
recently launched STEREO should be a great help in this regard. Already some progress
has been made by Aschwanden et al. (2008) using STEREO data to employ triangulation
techniques in reconstructing 3D loop geometry and quantifying possible effects such as loop
non-circularity and non-coplanarity. However, as has been suggested by Wang et al. (2008),
additional spectral data may be necessary to provide line of sight velocities in order to obtain
an accurate picture of the polarisation.

Srivastava et al. (2008) have found multiple periodicities in brightenings of post-flare
coronal loops. They attributed these periods to multiple sausage mode overtones. This is
an interesting avenue for seismology using multiple periods in different modes. For those
different modes, however, the theory is not as advanced as for kink modes. In fact, seismol-
ogy may prove to be much more difficult using sausage mode overtones, because they are
strongly dispersive (see the coronal dispersion diagram in Edwin and Roberts 1983).
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3 Explanations of the Overtone Period Ratios

MHD waves in a homogeneous and unbounded medium are known to be dispersionless.
Hence, overtones can be expected to be found at an exact multiple of the fundamental fre-
quency, under the condition that there is no other lengthscale whatsoever associated with
the equilibrium model. This condition is however not satisfied in the case of coronal loops.
There are, apart from the length of the loop, indeed several other length scales involved in
any realistic loop model. The loop has a width and a curvature radius. Moreover, the loop is
not invariant along the loop axis, which also can be formulated in terms of a length scale of
the longitudinal variation.

As we will discuss further, the oscillation frequencies seem to be robust with respect to
several of these parameters (e.g. curvature and the finite tube width), due to the fact that the
loops are very thin. The most important candidates to influence the oscillation frequencies
of axial overtones are the equilibrium plasma parameters that vary along the loop axis. Most
significantly are the density (representing the inertia) and the magnetic field (which repre-
sents the restoring force in these oscillations). Of these two, the density structuring along the
magnetic field is most easily treated as it can be dealt with in a simple model with straight
magnetic field.

In much of the corona the magnetic field pressure is much stronger than the gas pressure,
and we can therefore neglect the gas pressure altogether. Furthermore, it is usual to neglect
gravitational forces. This aspect deserves further attention on two grounds. First of all there
is the role which gravity plays in the equilibrium configuration. Because of the strength of
the magnetic field in the corona, combined with a relatively low density, gravitational forces
are insufficient to influence the perpendicular variation of the magnetic field. This argument
(as discussed at greater length by Dymova and Ruderman 2006) can be summarised and
quantified by the relevant perpendicular length scales being smaller than v2

A/g, which is
around 400 Mm using the numbers of Dymova and Ruderman (2006). However, in the di-
rection along the magnetic field (the direction in which the Lorentz force does not operate),
gravity must be taken into account. In fact in that direction also the gas pressure should be
taken into account. Together they determine the longitudinal density distribution. In the end,
only the longitudinal density distribution enters in the subsequent analysis. Hence, we can
take the practical attitude of considering neither gas pressure nor gravity, which leaves the
longitudinal density distribution to be chosen freely. Thus within such a model the transver-
sal loop oscillations can be studied consistently without any assumptions related to the lon-
gitudinal hydrodynamic modelling of coronal loops (including their heating).

Secondly one may wonder how important the buoyancy term is in the dynamics of the
oscillation. In fact, the effect is generally believed to be small, although this has so far only
been assessed by McEwan and Díaz (2007) in a straight horizontal slab model. The effects
were found to be of the order of gL/v2

A and small under coronal conditions. However, the
relevance of these results for coronal loops remains to be explored.

It must also be realised that the present modelling of coronal loop kink-oscillations as-
sumes a static background coronal loop model. This, is surely an approximation which will
need to be reconsidered. It becomes more and more clear that loops are not static but involve
flows and cooling. E.g. Aschwanden and Terradas (2008) have shown recently for a num-
ber of oscillating loops that they cool down on timescales of the order of a few oscillation
periods. These effects will eventually need to be considered in the theoretical models.

3.1 Finite Tube Width and Curvature

Any effect that introduces dispersion of a wave also causes the period ratio between the
fundamental and the overtones to depart from their canonical harmonic values. There are
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two effects, namely, finite tube width and field line curvature, that act in this way, but it tran-
spires that the period shifts they introduce are small. Consider a straight tube model in a cold
plasma where the magnetic field B = Bez is constant. Now using a cylindrical coordinate
system (r, ϕ, z) the density is assumed to take the constant value of ρi when r < R and ρe

when r > R. Due to the azimuthal invariance we can consider an azimuthal dependence by
a factor exp(ımϕ), where m is the azimuthal wavenumber. The solutions can be constructed
for general m but only the modes for m = 1 displace the axis and these are therefore the only
ones of relevance to the observed oscillations. Likewise we consider a temporal dependence
of exp(−ıωt). In this longitudinally invariant model we also consider a longitudinal depen-
dence of exp(ıkzz), which we will have to relax when including longitudinal variation. The
longitudinal wavenumber kz is then related to the length of the loop (2L) by kz = πn/(2L),
with n = 1,2, . . . indicating the fundamental, first overtone, etc. According to Edwin and
Roberts (1983), the kink mode in this model has a phase speed vph given approximately by

vph = vk(1 − A(ςkzR)2K0(ςkzR)), kzR � 1, (1)

where K0 denotes the modified Bessel function and

vk =
(

2B2

μ(ρi + ρe)

)1/2

, A = 1

4

(
ρi − ρe

ρi + ρe

)
, ς =

(
ρi − ρe

ρi + ρe

)1/2

. (2)

Thus, the speed vph of an individual wave varies with the longitudinal wavenumber kz. Equa-
tion (1) allows us to determine the period P1 of the fundamental mode and the period P2 of
its first n = 2 harmonic, standing in a coronal flux tube of length 2L. The period ratio then
follows as (McEwan et al. 2006)

P1

2P2
≈ 1 − Ax2[4K0(2x) − K0(x)], kzR � 1, (3)

where we have written x = ςπ(R/(2L)). So P1/(2P2) depends upon the ratio of the loop
length 2L to the tube radius R and the densities ρi and ρe (through the parameters A and ς ).

Now a plot of expression (3) for P1/(2P2) as a function of x shows that it possesses
a minimum, at x = xm, and this gives the largest shift from unity that the kink mode period
ratio exhibits due to dispersion. The minimum in x corresponds to R/(2L) = (2/(κπ))xm.
The value of xm is independent of the densities ρi and ρe, being determined solely from a
transcendental relation involving Bessel functions, following from a detailed consideration
of (3); specifically, xm ≈ 0.48. The corresponding minimum value of P1/(2P2) is then

(
P1

2P2

)
min

= 1 − 1

4

(
ρi − ρe

ρi + ρe

)
M, (4)

where the constant M depends only on xm; specifically, M = 0.19. Thus, the shift in
P1/(2P2) from unity depends entirely on ρi and ρe, reaching a maximum value of 1

4 M ≈
0.0475 in the extreme ρi � ρe. Thus dispersion in the kink mode of a thin coronal flux tube
produces a shift in P1/(2P2) of at most 4.75%, with a corresponding minimum period ratio
of P1/(2P2) = 0.9525 (McEwan et al. 2006). This shift in period ratio, of 0.0475, is smaller
than observations indicate, suggesting that dispersive effects due to the finite thickness of
the tube alone cannot account for the observed period ratios.

Similarly, the effect of curvature may be considered. The analysis by Van Doorsselaere
et al. (2004) showed that for thin tubes modifications to the frequencies by curvature are
second order with respect to the ratio R/L, although the modifications to the eigenfunctions
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are first order in R/L. Since R/L is a few percent at most for any of the loops considered,
the effect of curvature can safely be neglected (for more details see the review on curvature
by Van Doorsselaere et al. 2009 in this issue). It is in a very similar way that the curvature
which is necessarily associated with studying expanding flux tubes can also be neglected,
and the remaining influence of the tube expansion is entirely due to the longitudinal variation
of the magnetic field strength (see Sect. 3.3).

An important theoretical consequence of the curvature is that the degeneracy in the po-
larisation is lifted. Both Van Doorsselaere et al. (2004) and Terradas et al. (2006) remark
that whereas for a straight tube the eigenmodes can be polarised in any direction perpendic-
ular to the magnetic field, the curved loop supports two distinct eigenmodes with different
frequencies. One polarised in the direction of the curvature and one polarised perpendic-
ular to the direction of the curvature. The two distinct eigenmodes are commonly termed
‘vertical’ and ‘horizontal’. However, this distinction is of limited concern to us, since the
oscillation frequencies of both modes are almost identical. If a loop is excited with a polar-
isation which is a mixture of both eigenmodes, it takes a very long time for both modes to
get out of phase. For the short duration in which a loop is observed to oscillate, it therefore
effectively oscillates in the direction of the initial mixed polarisation. Thus, practically, the
situation for a curved loop is identical to that of a straight tube where a priori no distinc-
tion is made between oscillations with different polarisations. Note that an elliptical cross
section also lifts the degeneracy and may in fact be much more important (Ruderman 2003;
Erdélyi and Morton 2009).

From an observational point of view Wang et al. (2008) made clear that due to the projec-
tion effect the uncertainty in the polarisation may give rise to ambiguities in the identification
of the mode number. But even more fundamentally it is an open issue how the theoretical
polarisation properties generalise further to helical loops. In particular, as polarisation may
change along the loop, the identification of overtones may become rather confusing. This
may explain the confusion associated with the observation by De Moortel and Brady (2007).

3.2 Density Stratification

Now let us generalise the above piecewise homogeneous model to a model in which the
density varies longitudinally (in a continuous manner). With an azimuthal and temporal
dependence exp(ımϕ − ıωt), the relevant linearised MHD equations can then be brought to
the following form:

LA
1

r

∂rξr

∂r
=

(
m2

r2
− μ

B2
LA

)
pT, (5)

∂pT

∂r
= LAξr , (6)

LAξϕ = ı
m

r
pT. (7)

Here the Alfvén operator is defined as:

LA = ρ(z)ω2 + B2

μ

∂2

∂z2
= ρ(z)

(
ω2 + v2

A(z)
∂2

∂z2

)
, (8)

with v2
A(z) = B2/(ρμ) the square of the Alfvén speed.
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The equations involve the radial and azimuthal component of the Lagrangian displace-
ment and the Eulerian perturbation of the total pressure pT. In (5), ξϕ has already been elim-
inated by means of (7). The first two equations form a pair of partial differential equations
for the variables ξr and pT.

If we consider a density distribution which does not vary with radius r within some
distance R from the tube axis, and likewise outside the radius R, then in both regions the
Alfvén operator can be shifted through the radial derivative in (5) and ξr can be eliminated
in favour of pT. The result is:

∂2pT

∂r2
+ 1

r

∂pT

∂r
−

(
m2

r2
− μ

B2
LA

)
pT = 0, (9)

which is valid in regions without radial variation only.
We can now propose separable solutions of the form pT(r, z) = R(r)Z(z) and obtain

a set of a radial and a longitudinal differential equation for R(r) and Z(z) separately:

LAZ(z) = λZ(z), (10)

∂2R(r)

∂r2
+ 1

r

∂R(r)

∂r
−

(
m2

r2
− μ

B2
λ

)
R(r) = 0, (11)

with λ the separation constant. In the longitudinal direction the boundary conditions require
that the amplitudes of the oscillation vanish at the footpoints. The first equation together
with the line tying boundary conditions is therefore an eigenvalue problem for the Alfvén
operator. Given those eigenvalues (with corresponding eigenfunctions ψ ), the second equa-
tion is a Bessel equation for R(r). This is fundamentally equivalent to the solution method
used for homogeneous unstratified tubes, except that in that case the eigenvalue problem for
the Alfvén operator was solved a priori by a Fourier decomposition ansatz. Hence the full
solution for pT in both the external and internal medium is given by:

p
(in)
T (r, z) =

+∞∑
k=1

A(in,k)Im(κin,kr)ψ
(in,k)(z),

(12)

p
(ex)
T (r, z) =

+∞∑
k=1

A(ex,k)Km(κex,kr)ψ
(ex,k)(z),

where Im and Km are the modified Bessel functions of the first and second kind of order m.
The A(in,ex,k) are arbitrary coefficients of each of the Alfvén eigenmodes in the solution.

The root of κ2 = − μ

B2 λ has to be taken so that it has a positive real part in order to ensure
that the solution does not become unbounded at infinity. For negative values of κ2 it is more
appropriate to formulate the external solutions in terms of Hankel functions, where in fact
both contributions from the Hankel function of the first and second kind have to be retained.
For frequencies where this situation arises the problem is underdetermined resulting in a
continuous part in the eigenmode spectrum associated with the leakage of the waves in the
external medium. More frequently however only one of the Hankel functions is retained
relying on the Sommerfeld outgoing radiation condition (e.g. Cally 1986). That practice
leads to the determination of radiatively damped complex frequency solutions. The rela-
tion between the damped complex frequency solutions and the leaky continuous spectrum
was discussed in detail by Andries and Goossens (2007) in a (longitudinally invariant) slab
model. The frequencies of the fundamental and the first overtone generally do not reside in
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the leaky regime although Donnelly et al. (2006) and Díaz et al. (2007) found that higher
overtones are more likely to be leaky under coronal conditions.

The corresponding solutions for ξr are:

ξ (in)
r (r, z) =

+∞∑
k=1

κin,k

λin,k

A(in,k)I ′
m(κin,kr)ψ

(in,k)(z),

(13)

ξ (ex)
r (r, z) =

+∞∑
k=1

κex,k

λex,k

A(ex,k)K ′
m(κex,kr)ψ

(ex,k)(z).

The dispersion relation now follows from a matching condition of the solutions inside
and outside as both the radial displacement and the total pressure perturbation need to be
continuous across the boundary. For longitudinally invariant models both the internal and
external eigenmodes of the Alfvén operator reduce to Fourier modes, and the matching can
be performed for each Fourier mode separately. Hence, a linear system of equations arises
for the amplitudes A(in,k) and A(ex,k) for each k separately. In the presence of longitudinal
stratification this can no longer be done and instead the full expressions (12) and (13) have
to be matched as functions of z. When a certain basis for the functions in z is chosen this
can be expressed as a set of matching conditions for the amplitudes of each basis function.
An evident choice for a set of basis functions is the Fourier basis, as in the limit of no
stratification these basis functions are also the Alfvén eigenmodes, but any other basis set
can be used, e.g. Díaz et al. (2002, 2004, 2006), Donnelly et al. (2006) and Díaz et al.
(2007) used the approach to calculate the eigenmodes of the Alfvén operator in both media
and determine the matrix governing a change of internal to external basis by considering the
mutual inner products. In any case, the condition for existence of a solution is given by the
determinant of the linear system of matching conditions.

Andries et al. (2005) used the Fourier sine function basis thereby representing the longi-
tudinal Alfvén operator as a matrix operator in that basis. Then the density stratification can
also be expressed in a sine series expansion as:

ρ(r, z) = ρ0(r)

[
1 +

+∞∑
n=1

αn(r) sin

(
nπ

2L
(z + L)

)]
. (14)

Note that the expressions presented here slightly differ from those in Andries et al. (2005)
as the loop is now taken to be of length 2L rather then L, and the origin is at the loop apex
rather than at one of its footpoints, in order to be consistent with notation used furtheron.

Within this formalism it is a tedious but straightforward computation to establish a lin-
ear expansion of the frequency in the stratification parameters αn. A central quantity in the
analysis is the matrix operator Snkl which represents the nth amplitude in a sine series ex-
pansion of the product of the kth and lth sine basis function. In the absence of stratification
the different eigenmodes correspond to the different basis sine functions and can be ordered
by the number of nodes in the longitudinal direction. As soon as there is a longitudinal vari-
ation of the density this is no longer true and the longitudinal behaviour of the eigenmode
will involve several sine function contributions. In fact, as the solution is not separable in the
longitudinal and perpendicular directions, the number of nodes in the longitudinal direction
may in general even depend on the radial position. However, as we will see shortly, for thin
tubes the problem can be reduced to a second order differential equation for the longitudi-
nal variation of the displacement of the tube boundary. Hence, in that case the modes may
be ordered according to the nodes in the longitudinal direction. Also, if the stratification is
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small one of the contributing sine functions is dominant and determines the number of nodes
in the longitudinal direction at any radial position. We will therefore refer to the kth mode
in that sense (while being aware that this may break down for very thick or very stratified
loops). The linear approximation to the relative shift of the frequency of the kth mode is:

δω

ω
= −1

2

∑
n

αnSnkk. (15)

As Snkk is dependent on k it can clearly be seen that the longitudinal variation of the density
is felt differently by the different axial overtones.

In fact the above result can be derived straightforwardly from basic principles. Dispersion
relations for strings and/or surface waves are often derived using the concepts of generalised
stiffness and generalised inertia (e.g. Lighthill 1978, Sect. 3.2), which is just a specific form
of the Rayleigh-Ritz variational principle where the normal mode frequencies are found as
stationary values of the Rayleigh quotient representing the ratio between the wave potential
energy and wave inertia (e.g., Goedbloed and Poedts 2004, Sect. 6.4). The inertia are simply
given by:

I = ρ|ξ |2. (16)

Upon integration over the domain the first order change induced by the modifications of the
eigenfunctions vanishes (by the variational principle). Hence, at least if the density profile is
separable in r and z, the relative modification of the frequency can directly be approximated
as:

δω

ω
= − 1

2L

∫
z

δρ(z) sin2

(
kπ(z + L)

2L

)
dz, (17)

where δρ(z) = (ρ(r, z) − ρ0(r))/ρ0(r) is meant to represent the relative deviation of the
longitudinal density profile with respect to the unstratified reference model. Through its
summation over n, formula (15) is thus just the expression of this formula in the sine func-
tion basis. It is a straightforward consequence of the additional inertia as experienced by
the kth mode. Through the different behaviour in the longitudinal direction, different modes
experience a different amount of additional inertia introduced by the stratification. As will
be discussed in a moment, when the tube is thin the problem can be reduced to a 1-D wave
equation; and it was in this specific case that McEwan et al. (2008) pointed out the possibility
of using a variational procedure to obtain approximations to the frequency shifts. A similar
approach was used by Safari et al. (2007) also specialising to the thin tube. In fact, as has
just been made clear, the original linear approximation obtained by Andries et al. (2005)
can also be interpreted from a variational viewpoint and the method is not limited to the
thin tube approximation. The values Snkk appear in expression (15) not due to the specific
choice of the basis, but naturally from the variational principle and the fact that the zeroth
order solutions are pure sine functions. As soon as both a finite width and a non-separable
density profile are considered, the variational approach, however, does require integration in
the radial direction as well.

This approximate treatment provides an accurate insight in why and how the period ra-
tio is expected to change by introduction of a small amount of longitudinal stratification.
However, as loops stretch out into the atmosphere up to heights comparable to the expected
density scale height, numerical calculations are required to solve the dispersion relation
nonlinearly in the stratification parameters αn.
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Dymova and Ruderman (2005, 2006) simplified the eventual dispersion relation to solve
by means of the thin flux tube assumption. The matching condition at the boundary can in
that case be approximated by the condition:

Lin
Aξr(r = R,z) = Lex

A ξr (r = R,z), (18)

or (
ω2 + 2B2/μ

ρi(z) + ρe(z)

d2

dz2

)
ξr = 0. (19)

This equation allows a much more direct interpretation in terms of a one dimensional wave

equation with a variable wave speed, which is identified as the kink speed
√

2B2

ρi+ρe
. The thin

tube approximation is very well satisfied for coronal loops and hence this method is very
accurate. For all practical purposes concerning coronal loops both methods are effectively
equivalent as we have discussed in Sect. 3.1.

If the observed deviation of the period ratio can be attributed to the longitudinal variation
in density this brings about the possible inversion of the observed periods to the stratifica-
tion parameters αn. A general equilibrium model involves several stratification parameters
αn (in principle an infinite set) and therefore requires the detection of several overtones to
constrain these parameters. Unfortunately, up till now, only two modes have been detected
simultaneously: the fundamental and the first overtone. Hence only a one parameter model
can be attempted at present.

An obvious candidate is to assume an isothermal atmosphere where the density falls
off exponentially with distance from the solar surface. Assuming a semi-circular shape of
the loop this can be projected onto the loop axis to yield a longitudinal variation of the
density. Away from the loop axis the same longitudinal density variation is assumed. Within
this model a one to one mapping results between the observationally determined ratio of the
periods and the model parameter determining the relative height of the loop into the stratified
atmosphere. This has first been done by Andries et al. (2005) and Goossens et al. (2006) for
the two observations of overtones reported by Verwichte et al. (2004). Despite the enormous
error bars (Fig. 1) the results were considered encouraging as they seemed to point in the
direction of confirming an expected scale height of around 50 Mm. The two values obtained
at that time were 65+∞

−38 and 36+63
−16. The first value could not exclude the possibility of higher

density at the loop top (hence no upper value for the density scale height). The improved
observational determination of the periods has brought down the error bars considerably.
A similar analysis with the improved data by Van Doorsselaere et al. (2007) yields 68+52

−21,
30+5

−4 and 109+37
−21 (the third value is for the new case studied by Van Doorsselaere et al.

2007). In fact at present the uncertainty due to the various specific assumptions in the model
is likely to be more important than the observational uncertainty.

A number of studies have reconsidered the influence of the longitudinal density stratifica-
tion to deepen our understanding of how it influences the periods and period ratios. A variety
of profiles are used either solving the full dispersion relation or specialising to the thin tube
approximation (19). Within the thin boundary assumption Dymova and Ruderman (2006)
obtained analytic solutions for a specific profile while solving the thin tube equation numer-
ically for other profiles. They conclude that the method is sensitive to the assumed longitu-
dinal stratification profile. Dymova and Ruderman (2006) basically assume an isothermally
stratified atmosphere but consider the loop to be not entirely semi-circular, which influences
how the density stratification is projected on the loop. They find that these effects can have a
significant influence. This was taken further by Morton and Erdélyi (2009) who considered
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Fig. 1 The density scale height (normalised with respect to the loop height, hence Hπ/L) as a function of
the seismological observable 2 − P1/P2 for the first two cases reported by Verwichte et al. (2004). (a) The
errorbars on the observed values and the estimated scale height for the first observation. As the errorbar
on the measurement includes the origin, the estimate includes the possibility of a ±∞ scale height, i.e.
no stratification. (b) The errorbars on the observed values and the estimated scale height for the second
observation. (After Andries et al. 2005.) Here L is the full loop length and hence equivalent to 2L in the
present notation

basically the same setup as Dymova and Ruderman (2006) but with the additional complex-
ity that the loop may follow an elliptical trajectory rather than a semi-circular one. As in
the other studies the curvature itself is not taken into account and is assumed to have neg-
ligible effect on the frequencies. Apart from a coronal density scale height, they therefore
consider two additional parameters: the state of emergence (as in Dymova and Ruderman
2006) and the ellipticity. They distinguish between two cases: the ‘minor ellipse’ and the
‘major ellipse’, according to whether the vertical direction is along the minor or major axis.
The deviations are found to be quite large (up to 35%) for the minor ellipse but less so for
the major ellipse. The message is, clearly, that when a longitudinal density variation along
the loop is related to an assumed vertical density distribution in the corona, the path of the
loop through the corona has to be taken into account. Van Doorsselaere et al. (2007) show
convincingly that with the improvement of the observational error bars, these effects are of
comparable or even larger order than the observational uncertainties. In that respect the most
recent seismological applications do take into account the various geometrical specifications
of the observed loops when considering the projection of the exponential profile on the loop
(Verth et al. 2008).

Both Andries et al. (2005) and Dymova and Ruderman (2006) also take into account
a small intermediate layer where the density varies radially. In a longitudinally invariant
loop this is known to cause damping of the oscillation by resonant absorption (Ruderman
and Roberts 2002; Goossens et al. 2002). It does not, however, influence the period ratio as
long as the layer is thin. More general numerical calculations were performed by Arregui
et al. (2006) and Arregui et al. (2005) which show that the period ratio seems to be largely
unaffected even if the radial transition layer is relatively thick. However, these computations
assumed a longitudinal stratification profile independent of radial position.

Díaz et al. (2006) have considered the problem from a viewpoint of relating the frequency
shifts to the heating functions. They confirmed that the dispersion due to the finite radius is
negligible although they only considered the fundamental mode and did not investigate the
overtone or the period ratio. A dense chromospheric footpoint layer was also taken into ac-
count by Díaz et al. (2006) (as in Díaz et al. 2004), but the analysis suffers somewhat from
only taking the chromospheric layer into account in the loop interior. The effect of consid-
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ering different longitudinal stratification profiles in the interior and the surrounding corona,
and including a chromospheric layer both in the interior and the surrounding corona was
investigated by Donnelly et al. (2006). For an exponential profile (along the loop, which is
not the same as an exponential profile with height) the Alfvén eigenmode problem can be
solved analytically in terms of Bessel functions of imaginary order (Díaz et al. 2007). In
that study Díaz et al. (2007) also include the chromospheric layer in both interior and sur-
rounding. Donnelly et al. (2006) and Díaz et al. (2007) point out that higher overtones may
prove less useful as seismological tools as they are likely to become leaky for longitudinally
stratified loops. However, no damping times were calculated. McEwan et al. (2008) have
used the exponential profiles in conjunction with the thin tube approximation, upon which
(19) can be solved analytically involving just Bessel functions of zeroth order.

Let us take a closer look at this analytical solution. We suppose that the plasma densities
ρi(z) inside and ρe(z) outside the loop are exponentials with the same scale height �c. We
assume for simplicity that there is equilibrium symmetry about the loop apex; this allows
us to consider half a loop in the region 0 ≤ z ≤ L, thus z = 0 at the apex and z = L at the
footpoints. The plasma densities inside and outside the loop are then taken to be of the form

ρi(z) = ρi(0)ez/�c , ρe(z) = ρe(0)ez/�c . (20)

Thus, the density inside the loop is considered to increase exponentially from a value
ρapex ≡ ρi(0) at the loop apex z = 0 to a value ρbase ≡ ρi(0)eL/�c at the loop base z = L.
Accordingly, the scale height �c is a measure of the longitudinal structuring; it is related to
the apex and base densities through

�c = L

ln(
ρbase
ρapex

)
. (21)

Thus, for example a uniform unstructured loop with ρapex = ρbase corresponds to �c → ∞,
and a loop with ρapex = ρbase/10 corresponds to �c = 0.43L, etc.

As a consequence of this longitudinal structuring, the kink speed vk is of the form

vk(z) = vk(0)e−z/(2�c) (22)

and the governing differential equation for the radial displacement ξr becomes

d2ξr

dz2
+ ω2

v2
k(0)

ez/�cξr = 0 (23)

where vk(0) is the kink speed calculated at the loop apex (z = 0).
Equation (23) has solution (see Abramowitz and Stegun 1965, Chap. 9)

ξr (z) = AJ0

(
2�cω

vk(0)
ez/(2�c)

)
+ BY0

(
2�cω

vk(0)
ez/(2�c)

)
, (24)

where J0 and Y0 denote the zeroth order Bessel functions.
The standing modes of oscillation of a loop of length 2L may be considered by apply-

ing boundary conditions to ξr . Line-tying at the chromospheric base requires that ξr = 0 at
z = L. If the loops are symmetric we can exploit this symmetry and apply boundary con-
ditions at the loop apex z = 0 according to the parity of the mode. For even modes, ξr is
symmetric about the loop apex so ∂ξr

∂z
= 0 at z = 0; the oscillation has a maximum (or min-

imum) at the loop apex. Similarly, the odd modes have a radial displacement ξr that has
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a node at the loop apex z = 0 as well as the loop base z = L. Notice that ‘odd’ and ‘even’
may be interpreted as referring to the longitudinal mode number. The dispersion relations
that result from application of such boundary conditions involve the Bessel functions J0

and Y0 and their derivatives. Coronal oscillation dispersion relations of this form have been
discussed by Donnelly et al. (2007) and McEwan et al. (2008).

In particular, McEwan et al. (2008) used such dispersion relations to obtain approximate
expressions for the periods P1 and P2 of the fundamental and its first harmonic of the loop
(of length 2L) as a whole, valid for weak longitudinal structuring (i.e., the first departure
from uniformity). Specifically, they showed that P1 is determined by

Pkink

P1
= 1 −

(
π

4
− 1

π

)(
L

π�c

)
+

(
π2

48
− 1

8
− 1

π2

)(
L

π�c

)2

, L � π�c, (25)

and P2 by

Pkink

P2
= 2 − π

2

(
L

π�c

)
+

(
π2

24
− 1

16

)(
L

π�c

)2

, L � π�c. (26)

Here Pkink denotes the fundamental period of a fast kink wave in a uniform loop:

Pkink = 4L

ck(0)
. (27)

The uniform loop corresponds to the limit �c → ∞, for which (25) and (26) give P1 =
2P2 = Pkink. As discussed earlier at least the linear part of these results may be interpreted
by the variational approach. It is easy to check that the linear part of the above expressions
can be recovered by integrating (with proper normalisation) the density profile multiplied
with the square of the fundamental or first overtone sine function. The second order part
cannot be recovered in that way straightforwardly as this also involves the first order changes
to the eigenfunctions. Expressions (25) and (26) determine, for an exponentially structured
loop with density profiles given by (20), the fundamental period P1 and the period P2 of its
first harmonic, expressed in terms of the loop length 2L and the kink mode period Pkink for
a uniform loop. By forming the period ratio we may eliminate Pkink:

P1

2P2
= 1 − 1

π2

L

�c
+

(
2

π4
− 5

32π2

)(
L

�c

)2

, L � π�c. (28)

Formula (28) relates the period ratio to the ratio L/(π�c), and so may be used to deduce �c

from a knowledge of the period ratio and loop length 2L (given the assumed model of
the density profile). Figure 2 shows the variation of P1/(2P2) with L/�c as determined
by (28). Also shown are the results obtained from a numerical solution of the full dispersion
relations. The agreement is excellent. In fact, the approximate period ratio given by (28)
agrees with the full numerical results rather better than one would have expected, given the
constraint imposed by the condition L � π�c. This condition is evidently satisfied for a
loop with say ρapex = ρbase/2, which corresponds to L/�c = 0.69, and similarly for a loop
with ρapex = ρbase/10, giving L/�c = 2.30; both these cases satisfy reasonably well the
requirement that L/(π�c) � 1. But for ρapex = ρbase/100, which gives L/�c = 4.60, the
condition is not satisfied. Nonetheless, the trend given by formula (28) is likely to be a good
guide as to more exact numerical results for arbitrary density ratios.

Not only the exponential density profile discussed above can be solved analytically. Other
profiles (such as a linear one) may be treated in much the same way and in fact produce
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Fig. 2 The period ratio
P1/(2P2) for a thin tube with
exponential longitudinal
structuring. The solid curve
corresponds to the analytical
approximation (28). Also shown,
by a dashed curve, is the period
ratio as determined by numerical
solution of the dispersion
relations. There is excellent
agreement between numerical
and analytical results. (After
McEwan et al. 2008)

a similar formula for the period ratio. However, more general profiles require a numerical ap-
proach. The variational approach is illustrated as a numerical tool in McEwan et al. (2008),
where it is shown that ω2 may be expressed in terms of integrals of the eigenfunction ξ and
its derivative. By choosing simple trial functions for the eigenfunction ξ , that satisfy the
appropriate boundary conditions on a mode but not the differential equation itself, we may
construct approximate values of ω2 for any profile. This is an easy to implement scheme,
leading essentially to the evaluation of simple integrals involving the specific density profile,
and may be used to determine period ratios. It may be noticed that the scheme followed by
Andries et al. (2005) is in origin not very different. In that case the trial functions are the
longitudinal Fourier modes and the integrals are the Fourier transforms of the equilibrium
profile. The additional complication in that scheme arises from taking into account the finite
width of the tube as well. While such fully numerical calculations are clearly available, they
lack the insight afforded by studying specific profiles and obtaining approximate formulae
such as (28) or (15).

3.3 Tube Expansion and Variation of the Magnetic Field

As was clear from the very beginning, also a longitudinal variation of the restoring force,
i.e. the magnetic field strength, results in dispersion. However, by the solenoidal constraint
longitudinal field variation necessarily involves divergence of the magnetic field lines and
therefore cannot be treated in a straight geometry. Hence, geometrical effects will complicate
the analysis, although the conclusion from the two studies tackling this problem seems to
indicate that to lowest order, these geometrical effects are in fact unimportant as long as the
tube is thin. Verth and Erdélyi (2008) and Ruderman et al. (2008) modelled an expanding
potential magnetic flux tube of length 2L with arbitrary internal and external longitudinal
densities ρi(z) and ρe(z) (see Fig. 3). In these models the flux tube is constructed with
rotational symmetry about the z-axis and in the absence of magnetic twist:

B = Br(r, z)er + Bz(r, z)ez (29)

so that the solenoidal condition is satisfied. As before, gravity is neglected and the plasma is
considered to be cold to approximate coronal conditions. The magnetic field can now con-
veniently be expressed in terms of a vector potential A with only an azimuthal component,

A = ψ(r, z)

r
eϕ. (30)
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Fig. 3 Stratification of plasma
density with an inhomogeneous
magnetic field. (After Verth and
Erdélyi 2008)

The vector potential described by (30) is convenient since ψ is a flux function i.e. it is
constant along field lines. Verth and Erdélyi (2008) showed by assuming a thin flux tube
with small expansion that the equilibrium quantity Bz, in the vicinity of the tube can be
given as a function of z only, to excellent approximation. In the same spatial vicinity, the
relationship between the equilibrium quantities can then be approximated by the following
equations,

ψ = 1

2
r2Bz, (31)

and

Br = − r

2
B ′

z, (32)

where ′ ≡ d/dz. Small tube expansion also gives the valid approximation,

B =
√

B2
r + B2

z ≈ Bz. (33)

These approximations are used both in the analysis by Verth and Erdélyi (2008) and Rud-
erman et al. (2008). Whereas Verth and Erdélyi (2008) consequently follow a brute force
calculation in cylindrical coordinates, Ruderman et al. (2008) somewhat more elegantly
carry out the calculations in terms of the flux coordinate ψ and the azimuthal, longitudinal
and perpendicular components of the displacement. In those coordinates the matching con-
ditions at the tube boundary are more easily performed than in the cylindrical coordinate
system used by Verth and Erdélyi (2008). Consequently, Ruderman et al. (2008) arrive at
a dispersion relation which is of the simple Sturm-Liouville type,

d2η

dz2
+

[
ω

vk(z)

]2

η = 0, η = 0 at z = ±L, (34)

where η = ξ⊥/r0 and vk(z) = Bz(z)/
√

[μ(ρi(z) + ρe(z))]/2. It is straightforwardly recog-
nised as a generalisation of (19) which was derived for a constant magnetic field. Verth and
Erdélyi (2008) arrived at a slightly different equation, although it was shown by Ruderman
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et al. (2008) that the solutions to both are almost equivalent. It thus seems that the difference
is of higher order in the thin tube parameter R/L.

More loosely speaking (34) suggests that to lowest approximation a thin tube behaves
exactly as a string with a variable tension and density, and all geometrical effects of the tube
expansion are higher order and can be neglected.

On average, the magnetic field strength is expected to decrease with height above the pho-
tosphere and the results of Lin et al. (2004) seem to confirm this. The flux tube interpretation
of coronal loops suggests that most loops should expand with height above the photosphere,
since flux tube cross-sectional area and magnetic field strength are inversely proportional.
This expansion, defined by Γ = ra/rf where ra is the radius at the apex and rf is the radius at
the footpoint, has been estimated for a number of loops. Analysing Yohkoh data, Klimchuk
(2000) measured a median value of Γ ≈ 1.30 for soft X-ray loops. Using TRACE data,
Watko and Klimchuk (2000) measured mean values of 1.16 and 1.20 for nonflare and post-
flare EUV loops, respectively. So far, potential and force-free magnetic field extrapolations
tend to predict larger loop expansions than those observed (see e.g., McClymont and Mi-
kic 1994; Gary 1997; Klimchuk 2000; López Fuentes et al. 2006). A twisted magnetic field
could reduce the amount of loop expansion with height but a force-free extrapolation of a
twisted loop embedded in a magnetic dipole by Klimchuk et al. (2000) showed that although
the twist did reduce the expansion of the loop, the observed relatively constant thickness
could still not be matched. Alternatively it could be that the resolution of previous/current
images has simply not been sufficient to observe coronal loop expansion accurately enough
(see e.g., DeForest 2007). However, López Fuentes et al. (2008) strongly disagree with the
idea of unresolved loop expansion and suggest that the observed near constancy of loop
width is due to the magnetic field within loops being highly tangled.

Solving (34), Verth and Erdélyi (2008) found that for an expanding loop with a potential
magnetic field (with free parameter, loop expansion factor Γ = ra/rf) and constant density,
the period ratio of the fundamental mode to the first overtone can be approximated to first
order by

P1

2P2
=

[
1 + 3(Γ 2 − 1)

2π2

]
. (35)

Equation (35) shows that change in period ratio is purely dependent on Γ and that
P1/(2P2) ≥ 1. Therefore, if magnetic field strength is decreasing with height above the
photosphere, this has the opposite effect to that of density stratification on the period ratio
(see left of Fig. 4).

Although they should be used with care due to the uncertain errorbars, two results of
O’Shea et al. (2007) have P1/(2P2) > 1 which may be interpreted as kink oscillations which
have the effect of loop expansion dominating over the effect of density stratification. Regard-
ing the observational results De Moortel and Brady (2007), if we use the interpretation of
De Moortel & Brady of the first overtone having the most power, then the mean value from
Table 1 of their paper has P1/(2P2) = 1.38. If we assume that most of the power must be in
the fundamental mode and therefore interpret P2 and P4 or 5 in table 1 as P1 and P2, then the
mean value is P1/(2P2) = 1.07. Either way both interpretations have P1/(2P2) > 1. So this
may be further evidence of the effect of loop expansion dominating over density stratifica-
tion. If we assume that the observed loops of O’Shea et al. (2007) and De Moortel and Brady
(2007) have a constant magnetic field, then the values of P1/(2P2) could be interpreted as
loops having a negative scale height, i.e., being more dense at their apex. However, the effect
of an expanding flux tube offers a physically more reasonable and simpler explanation.
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Fig. 4 Left: The period ratio P1/P2 plotted against expansion factor Γ with a constant plasma density. Right:
The solid and dashed-dotted curves show the dependencies of the scale height H on the expansion factor Γ

for the two cases reported by Verwichte et al. (2004). The dashed curve shows the dependence of H on Γ for
the case reported by Van Doorsselaere et al. (2007). (After Ruderman et al. 2008)

Implementing the previously described expanding flux tube theory, we revisit three re-
sults by Andries et al. (2005) and Van Doorsselaere et al. (2007), where they used measure-
ments of P1/(2P2) < 1 to estimate the coronal density scale height, assuming a constant
magnetic field. Now we can quantify the possible corrections to these estimates due to pos-
sible loop expansion. Solving the governing equation (34) with same exponential density
profile of Andries et al. (2005) and Van Doorsselaere et al. (2007), H is plotted against
Γ (varying Γ from 1 to 1.65) for the three cases and the results are presented in the right
panel of Fig. 4. Significantly, we see that the scale height is a decreasing function of Γ ,
i.e., neglecting loop expansion causes H to be overestimated. Therefore, the scale height
estimates of Andries et al. (2005) and Van Doorsselaere et al. (2007) can only be taken as
upper bounds.

The magnetoseismological estimates by Andries et al. (2005) and Van Doorsselaere et al.
(2007) were made using TRACE 171 Å passband which has its peak response temperature
around T ≈ 1 MK. Coronal loops observed at this wavelength, if in hydrostatic equilibrium,
should have H ≈ 50 Mm. If we assume a constant magnetic field, then the two diagnosed
scale heights of H = 68 Mm and H = 109 Mm represent super-hydrostatic scale heights
(with the case of H = 30 Mm representing a sub-hydrostatic scale height). Thus far, there
has been no satisfactory theoretical explanation for possible super-hydrostatic scale heights
in the corona (see e.g., DeForest 2007, for detailed discussion). However, it can be seen
from Fig. 4, that expansions of only Γ ≈ 1.1 and Γ ≈ 1.5 would result in hydrostatic scale
heights for these loops. Furthermore, these values are consistent with the modest values of
Γ measured by Watko and Klimchuk (2000) for TRACE EUV loops (see Figs. 14 and 15
in their paper). Unfortunately, none of the time series data of these observational exam-
ples allows for an actual visual determination of Γ since they are all only visible at small
apex sections. However, there has been a recent study by Verth et al. (2008) of the TRACE
Bastille Day 1998 post-flare loop oscillation data where both the ratio P1/(2P2) and the loop
expansion Γ could be estimated. The active region AR 8270, where this event took place,
was predominantly bipolar in nature and the analysed loop was found to be approximately
semi-circular with Γ = 2.05, consistent with a similar shaped loop embedded in an ideal di-
pole. Emphasising the magnetoseismological importance of correcting for loop expansion,
it was found that the density scale height was reduced substantially (by a factor of 2).
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Fig. 5 Longitudinal variation of
the displacement amplitude for
three different profiles of the
longitudinal density distribution.
J corresponds to a longitudinally
invariant loop. For details on K

and L see Erdélyi and Verth
(2007). The apex maximum
amplitude for the fundamental
kink mode (at z = 0) is
normalised to 800 km. (After
Erdélyi and Verth 2007)

4 Spatial Seismology

Inspired by the seismological results based on the period ratio, Erdélyi and Verth (2007)
suggested that it may be beneficial to attempt seismology in the spatial domain, i.e., by
analysing the eigenfunctions. In theory, one could produce numerous density profiles that
would result in the same period ratio P1/(2P2). However, if one could determine the eigen-
function with enough accuracy, the seismological inversion would provide a much more
unambiguous determination of the true density profile.

Implementing the valid thin flux tube approximation of Dymova and Ruderman (2006),
Erdélyi and Verth (2007) made a detailed study into variation of the eigenfunction of the
commonly observed fundamental mode with a realistic exponential density profile for a
vertical semi-circular loop. Figure 5 shows the longitudinal variation of the displacement
amplitude for varying values of the stratification parameter. The maximum eigenfunction
amplitude is fixed to a typical observed value of 800 km. It can be seen from Fig. 5 that
the eigenmodes of stratified loops only deviate very slightly from those of constant density.
Although previously mentioned by Andries et al. (2005) this was only quantified rigorously
by Erdélyi and Verth (2007). For a loop with loop half length L = 100 Mm and density scale
height H = 50 Mm, the maximum change would only be about 50 km, below even the best
future planned EUV resolution of SO (150 km at perihelion). These eigenfunction results
were subsequently confirmed by Safari et al. (2007) using a perturbation method. They also
provide computations for the modifications to the eigenmodes of the first overtone, and in
fact for any overtone in general. They focus on the maximum amplitude of the modifications,
which is found to be small.

Verth et al. (2007) point out that a much more promising spatial signature of density
stratification is the anti-node shift of the first overtone towards the loop footpoint (as shown
in Fig. 6 right). The normalised anti-node shift is linear to good approximation for expected
coronal values (cf., Fig. 6 left) and for a vertical semi-circular loop is given by the simple
formula

|�zAN|
L

= 0.028
L

H
. (36)

Although the right hand side of (36) is relatively small, the shift may be substantial due to
the large length scale of the oscillations. E.g., L = 100 Mm and H = 50 Mm causes a shift
of 5.6 Mm, well within the resolution of TRACE (714 km).

This was taken up further by Andries et al. (2009) anticipating possible detection of
higher overtones in the future. Carrying out a linear expansion of the eigenfunctions in
the stratification parameter α (as Andries et al. 2005 had done earlier for the frequency), an
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Fig. 6 Left: Plot showing the shift of the anti-node of the first overtone towards the loop footpoints if there
is density stratification and a constant magnetic field. Right: Normalised anti-node shift, �|zAN|/L against
L/H for a loop with density stratification and a constant magnetic field

Fig. 7 Left: Plot showing the shift of the anti-node of the first overtone towards the loop apex if there
is magnetic stratification and constant density. Right: Normalised anti-node shift, �|zAN|/L against Γ for
a loop with magnetic stratification and constant density

approximation is found for the lth Fourier contribution in the kth mode with k and l arbitrary.
The obtained formulae are similar to those of Safari et al. (2007) but obtained in a different
way and valid for both displacement and compression, which have a different longitudinal
profile. The formulae are straightforwardly related to the anti-node shifts and confirm the
results obtained by Verth et al. (2007). Interestingly it is found that the eigenmodes of higher
overtones will be altered even more. However, they conclude that the shift of the antinode
does not seem to be the best signature of the eigenfunction modifications. Moreover, the
linear behaviour for relatively large values of stratification found by Verth et al. (2007)
was shown to be rather specific for the density profile considered. Furthermore, they clarify
that the modifications to the eigenfunction of the fundamental and the first overtone are
much larger in the compression than in the displacement. Although it is unlikely that the
compression can be detected very accurately, if it could be detected it would have a much
larger potential.

Regarding the spatial seismological signature of loop expansion, it was shown by Verth
and Erdélyi (2008) that in contrast to the effect of density stratification, magnetic stratifi-
cation causes the anti-node of the first overtone to shift towards the loop apex (see right
of Fig 7). The linear approximation of normalised anti-node shift for a loop with constant
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density is given as a function of Γ by

|�zAN|
L

= 0.294(Γ − 1). (37)

Hence for a loop with L = 100 Mm, it only takes a relatively small expansion of
Γ = 1.2, to create a shift of 5.9 Mm, approximately the same size of shift (but in the oppo-
site direction) caused by a density scale height of H = 50 Mm. The importance of correcting
for possible loop expansion when making coronal density scale height estimates from the
observed value of P1/(2P2) was previously stated in Sect. 3.3. Likewise, in the spatial do-
main, loop expansion must also be corrected for, along with other important factors such as
loop shape and inclination.

It must be noted, that a prerequisite to spatial seismology is an accurate determination
of the polarisation. As long as only projected amplitudes are measured, the true amplitudes
remain inaccessible. This is, however, a very complicated task, and requires accurate re-
construction of the loop geometry as well as additional line of sight velocity/displacement
diagnostics.

5 Conclusions and Discussion

The observation of overtones of coronal loop oscillations can clearly be considered a land-
mark in the area of coronal loop seismology. The first observations gave an immediate boost
to the development of the theoretical models of coronal loop kink oscillations. Of the first
extended models available, the longitudinal variation of the density seemed to have the most
important impact on the periods of the overtones (the ratio with the fundamental period).
The deviation of the period ratio from its canonical value of 2 was thus used as a seismo-
logical tool to better understand the variation of the density along the loop. The original
analysis suffered from large observational uncertainties but its potential was recognised im-
mediately. From the observational side attention was paid to the reduction of the error bars,
with great success, resulting from combining time series analysis at several points along the
loop.

From a theoretical side it was recognised that apart from the longitudinal density varia-
tion many other parameters could influence the period ratio, and the community embarked
at an effort to assess which are the most important. It would seem that the most important
effects are due to the longitudinal changes of the equilibrium parameters, most notably the
density (the inertia) and the magnetic field (the restoring force).

While the variation of the magnetic field necessarily involves the consideration of flux
tube expansion and hence introduces more computational complexity through the curvature
of the magnetic field lines, its effect is almost entirely due to the longitudinal variation of the
magnetic field strength. All direct geometrical effects on the loop oscillations are expected
to be negligible as long as the loop is thin. For example, the inevitable curvature associated
with the expansion is found to be negligible because the loops are thin, in agreement with
the results for a curved but non-expanding flux tube.

For some observed loops the expansion of the loop can be measured with some degree
of accuracy which provides a direct handle on the effect of the varying magnetic field and
leaves the longitudinal variation of the density as the only remaining parameter. As a model
for the density there is basically no constraint and any longitudinal profile can be proposed,
relying on the specification of a heating function. As at present, with the observation of a
single overtone, there seems to be no possibility in discriminating between different heating
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functions, the most popular model is that of an isothermally stratified plasma. In most recent
studies the effects of the loop geometry (non-circularity, non-coplanarity, inclination angle,
etc.) are taken into account in that respect. For that aim it is thus worth to assemble as much
information as possible about the geometries of the oscillating loops prior to attempting any
seismological inversion. The 3-D reconstruction of coronal loop geometries by means of
STEREO data and/or magnetic field extrapolation is thus of direct relevance to coronal loop
seismology.

As the longitudinal variation of the equilibrium quantities not only modifies the eigenfre-
quencies but also the eigenfunctions, one could attempt to determine the longitudinal eigen-
functions profile theoretically and observationally to provide an additional seismological
constraint. Attempts of this sort have so far been unsuccessful. While changes are marginal
for the fundamental mode, they could be detectable for the overtones. In any case, such type
of analysis has to take into account the polarisation of the oscillation, which is often hard to
determine very accurately.

Neither the damping nor the excitation of the loop oscillations has been addressed specif-
ically in this review although they remain important subjects of study as well. The excitation
problem is of relevance to the present subject as the relative amplitudes of the overtones de-
pend on the initiation parameters. Terradas et al. (2007) have investigated this theoretically
and concluded that an asymmetric initiation closer to the loop footpoints favours the exci-
tation of overtones. Nevertheless, the fundamental mode always seems to dominate. This
problem has also been addressed numerically (Selwa et al. 2006) with similar results.

Somewhat contrary to helioseismology where one tries to deduce information about the
variation of equilibrium quantities with depth, seismology of coronal loops by means of
kink oscillation overtones is, as it stands, aimed solely at resolving longitudinal variation of
the equilibrium quantities. The variation of the quantities with radius is effectively removed
by the fact that the loops are thin. Observations in the corona suffer from a line of sight in-
tegration effect which makes it hard to obtain longitudinal profiles of equilibrium quantities
by direct observation. The methods developed in coronal loop seismology and described in
this review are therefore valuable tools in the determination of these quantities.
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