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Purpose: The authors are developing an automated method to identify the best-quality coronary

arterial segment from multiple-phase coronary CT angiography (cCTA) acquisitions, which may

be used by either interpreting physicians or computer-aided detection systems to optimally and

efficiently utilize the diagnostic information available in multiple-phase cCTA for the detection of

coronary artery disease.

Methods: After initialization with a manually identified seed point, each coronary artery tree is

automatically extracted from multiple cCTA phases using our multiscale coronary artery response

enhancement and 3D rolling balloon region growing vessel segmentation and tracking method. The

coronary artery trees from multiple phases are then aligned by a global registration using an affine

transformation with quadratic terms and nonlinear simplex optimization, followed by a local registra-

tion using a cubic B-spline method with fast localized optimization. The corresponding coronary

arteries among the available phases are identified using a recursive coronary segment matching

method. Each of the identified vessel segments is transformed by the curved planar reformation (CPR)

method. Four features are extracted from each corresponding segment as quality indicators in the

original computed tomography volume and the straightened CPR volume, and each quality indicator

is used as a voting classifier for the arterial segment. A weighted voting ensemble (WVE) classifier

is designed to combine the votes of the four voting classifiers for each corresponding segment. The

segment with the highest WVE vote is then selected as the best-quality segment. In this study, the

training and test sets consisted of 6 and 20 cCTA cases, respectively, each with 6 phases, containing

a total of 156 cCTA volumes and 312 coronary artery trees. An observer preference study was also

conducted with one expert cardiothoracic radiologist and four nonradiologist readers to visually rank

vessel segment quality. The performance of our automated method was evaluated by comparing the

automatically identified best-quality segments identified by the computer to those selected by the

observers.

Results: For the 20 test cases, 254 groups of corresponding vessel segments were identified after

multiple phase registration and recursive matching. The AI-BQ segments agreed with the radiologist’s

top 2 ranked segments in 78.3% of the 254 groups (Cohen’s kappa 0.60), and with the 4 nonradiologist

observers in 76.8%, 84.3%, 83.9%, and 85.8% of the 254 groups. In addition, 89.4% of the AI-BQ

segments agreed with at least two observers’ top 2 rankings, and 96.5% agreed with at least one

observer’s top 2 rankings. In comparison, agreement between the four observers’ top ranked segment

and the radiologist’s top 2 ranked segments were 79.9%, 80.7%, 82.3%, and 76.8%, respectively, with

kappa values ranging from 0.56 to 0.68.

Conclusions: The performance of our automated method for selecting the best-quality coronary

segments from a multiple-phase cCTA acquisition was comparable to the selection made by human

observers. This study demonstrates the potential usefulness of the automated method in clinical

practice, enabling interpreting physicians to fully utilize the best available information in cCTA

for diagnosis of coronary disease, without requiring manual search through the multiple phases and

minimizing the variability in image phase selection for evaluation of coronary artery segments across

the diversity of human readers with variations in expertise. C 2016 American Association of Physicists

in Medicine. [http://dx.doi.org/10.1118/1.4961740]
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1. INTRODUCTION

Coronary artery disease (CAD) is the most common type of

heart disease and the leading cause of death worldwide.1 Of

the over 16×106 Americans with CAD, 445 000 die of this

annually, including 151 000 from acute myocardial infarction

(MI).2 When the coronary arteries are narrowed or blocked by

the accumulation of atherosclerotic plaque, the reduction of

oxygen-rich blood flow to the heart muscle can cause angina or

MI. Imaging CAD is a demanding task that requires both high
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spatial resolution due to the small size of the coronary arteries,

and high temporal resolution to reduce motion artifacts from

the beating heart. With the rapid advancement of computed

tomography (CT) techniques, electrocardiographic (ECG)-

gated coronary CT angiography (cCTA) with multidetector

rows is a promising modality for not only detecting CAD

but also for quantifying and characterizing plaque.3–7 With

the cyclic and rhythmic motion of the heart, different parts

of the heart and therefore different parts of the coronary

arteries move at different phases in a cardiac cycle. For

example, the right-sided coronary arteries are generally better

seen at end-systole, while the left-sided coronary arteries are

generally better seen at end-diastole.7 ECG-gating enables

data acquisition at a specific phase or phases of the cardiac

cycle over a series of cycles so that the cCTA examination

with data reconstructed at multiple phases. This increases the

probability that good quality images of the coronary arteries

can be found on at least one of the phases.

Multiple-phase cCTA allows the interpreting physicians

to search for the best-quality phase for each artery segment

during interpretation to achieve optimal diagnostic accuracy.

The search for the best-quality images for each individual ar-

tery segments is time consuming and may vary across readers

of varying expertise and experience. In clinical practice, the

radiologists may only use very few phases to interpret all

coronary artery segments because of their workload. Some

segments may therefore be interpreted in a suboptimal phase

and the other available phases are under-utilized. Automatic

selection of the best-quality segment among the corresponding

segments in the multiple-phase cCTA for each coronary artery

should be useful as a preprocessing step for both the interpret-

ing physician and also for a computer-aided detection system.8

Automated determination of a single “optimal” cardiac

phase, or the phase of minimal cardiac motion, among the

available multiple phases has been reported in a number of

studies.9–14 According to the 17-segment model defined by

American Heart Association (AHA), for each cCTA scan,

17 major coronary arterial segments are considered clinically

significant.15 However, the selection of only one best phase

cannot provide the optimal image quality for detection of

atherosclerotic plaques in each individual coronary artery

segment because it is unlikely that all coronary arteries

have the best quality in the same phase. We are developing

an automated selection method to select the best quality

segment among all phases for each individual coronary artery

segment. The resulting collection of artery segments may be

considered a “virtual” composite coronary arterial tree, of

which each individual segment may come from a different

phase among the available multiple phase cCTA examination.

The composite arterial tree can be prepared ahead of the

interpreting physician’s use or as a preprocessing step in

computer-aided analysis. Our previous pilot study16 demon-

strated the feasibility of the automated selection method using

a single feature and two cCTA cases. In the current study,

we further improved the matching of corresponding segments

from different phases, extracted new features from the

straightened curved planar reformation (CPR) vessel volume

and the original CT volume, and designed a weighted voting

ensemble (WVE) classifier for identification of the best-

quality segments. The performance of our automated method

for identification of the best-quality coronary segments was

evaluated by comparison with manual selection in an observer

preference study using a test set.

2. MATERIALS AND METHODS

2.A. Data sets

A data set containing 26 ECG-gated cCTA cases retrospec-

tively collected from patient files at the University of Michigan

Hospital with Institutional Review Boards (IRB) approval was

used. The cCTA cases were acquired with GE multidetector

CT scanners (GE Healthcare, Milwaukee, WI), 120–140 kVp,

300–600 mAs, and reconstructed at 0.625 mm slice interval

with 0.488 mm in-plane pixel size. Six reconstructed ECG-

gated phases were available for all 26 cases, resulting in a

total of 156 cCTA volumes and a total of 312 left and right

coronary artery trees combined. The data set was randomly

divided by case into training and test sets with 6 and 20 cases,

respectively.

2.B. Methods

Figure 1 shows the schematic diagram of our automated

approach to the identification of best-quality coronary artery

segments from a multiple-phase cCTA examination. The

processes on the left blocks were developed previously; the

current study focused on the development of the methods on

the right blocks. The coronary arteries are enhanced using

our multiscale coronary artery response (MSCAR) method,

and the left and right coronary artery trees are extracted

from the volume of each cCTA phase using a 3D rolling

balloon region growing (RBG) method.17,18 An automated

registration method is then used to align the multiple-phase

artery trees.19 The corresponding coronary artery segments are

identified among the registered arterial trees and each segment

is straightened by the CPR method.8,20 Several features are

extracted from each vessel segment as quality indicators in

the original CT volume and the straightened CPR volume.

A newly designed WVE classifier is finally used to select

the best-quality coronary segment among the corresponding

segments. Because there is no gold standard to determine

the best-quality vessels, we evaluated the performance of our

automated method by comparing the best-quality coronary

segments obtained by automated selection from multiple

phases to those by manual selection in an observer preference

study. The agreement between observers was also evaluated

using Cohen’s kappa statistics (using R, a free software

supported by the R foundation for statistical computing) as

a reference for the variability of subjective selection.21

2.B.1. Coronary arterial tree extraction

We have previously developed an MSCAR-RBG method

for extraction of coronary arterial trees.17,18 Briefly, the

heart region is first extracted by an adaptive thresholding
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F. 1. Schematic diagram of our method for identification of the best-quality coronary artery segments from multiple-phase cCTA. Multiscale coronary artery

response enhancement and 3D rolling balloon region growing (MSCAR-RBG) vessel segmentation and tracking method (Refs. 17 and 18).

method based on expectation–maximization estimation and

a morphological operation. The vascular structures within

the heart region are enhanced based on the analysis of

a multiscale coronary artery response function specifically

designed to extract information from the eigenvalues of

Hessian matrices for enhancing coronary vascular structures.22

The MSCAR-enhanced left and right coronary artery trees are

then segmented and tracked by the RBG method. At present,

the RBG method is initialized by two manually identified

seed points located at the origins of the left and right coronary

arteries for each phase. After initialization, all subsequent

processes are automated. In the RBG method, a rolling balloon

adaptively adjusts its diameter according to the local vessel

size and finds the branches and the next tracking point; region

growing is then used to identify the connected voxels along

the tracked vessel. The RBG method thus determines the

centerlines, the branching points, and the artery segments in

each tracked coronary tree.

2.B.2. Identification of corresponding coronary
segments in different phases

We have previously designed an automated registration

method to co-register the multiple-phase left or right coronary

arterial trees extracted from the cCTA volumes.19 Briefly, the

left and right coronary trees extracted from the adjacent phase

pairs (e.g., phases of 70% and 75%, 75% and 80%), where

the displacements of the arteries in the adjacent phases are

relatively small, are first registered based on a cubic B-spline

method with fast localized optimization (CBSO). The group

of registered trees from the adjacent phases (e.g., 40%, 45%,

and 50%) is then further registered with that from the farther

phases (e.g., 70%, 75%, and 80%). For the latter registration

of two groups that potentially have large displacements, a

global registration based on an affine transformation with

quadratic terms and nonlinear simplex optimization (AQSO)

is employed first to reduce the displacements, followed

by a local registration using CBSO to refine the AQSO

registered volumes. The details of our registration method

were described elsewhere.19

After the registration, for a segment Si in phase i, to find its

corresponding segment Sj in phase j, where j , i, the shortest

distance of the t-th center point Ct
j

on segment Sj to the

segment Si is calculated by Euclidean distance d as

D
(

Ct
j ,Si
)

=min

d
(

Ct
j ,C

u
i

)

: Cu
i ∈ c


, (1)

where Cu
i

is the u-th center point in the set of center points c

along the segment Si. The segment Sj in phase j is determined

as a candidate of corresponding segments for Si by the

criterion that greater than a threshold percentage P of its

center points are within a distance of Dmax to the center points

of the segment Si. K (K ≥ 0) candidate segments for Si can be

identified from each phase j. Among the candidate segments

Sk
j

(k = 1, . . . , K) from phase j, the corresponding segment S′
j

is then determined as the one that has the maximum number

of center points satisfying the above criterion,

S′j = argmax
k

N(Sk
j ), (2)

where N
(

Sk
j

)

is the number of center points along the k-th

candidate Sk
j

of the corresponding segments that satisfy the

above criterion defined by P and Dmax. P and Dmax were

experimentally determined to be 70% and 2 mm, respectively,

using the training set.

We designed a recursive coronary segment matching

(RCSM) method to identify the corresponding segments in

different cCTA phases as follows. The longest segment is first

selected from all phases by counting the maximum number of

center points along the branches from the seed point located at

the origins of the left or right coronary arteries to the end points

of the artery trees. The corresponding segments in the other

phases are then identified by Eqs. (1) and (2). The above proce-

dure is recursively repeated by selecting the longest segment

from the remaining unmatched segments in the multiple-phase
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coronary trees, and finding its corresponding segments in the

other phases, until no unmatched segments are left in all

phases. Short segments (<20 mm) are discarded. The process

is performed separately in the left and right coronary trees. For

a cCTA exam with six phases, each group of corresponding

arteries could contain up to six segments, one from each phase.

Some groups might have less than six segments if the vessels

are blurred or poor quality and could not be tracked in one or

more phases. Note that, in our method, an artery segment

determined in the first iteration of RCSM starts from the

seed point at the origin of one of the coronary trees to the

farthest point that the MSCAR-RBG algorithm can track along

the tree. The next longest artery segment will be searched

from the remaining unmatched tree branches, excluding an

entire vessel or the portions of a vessel already used in the

previous matches. Therefore, the other artery segments in

the subsequent iterations start from the bifurcations where

the artery branches off from an already matched segment

in the previous iterations. For simplicity, we use the term

“artery segment” to denote the portions of the artery found

and matched in each iteration but it can be different from

those defined in the 17-segment model of the AHA.15

2.B.3. Determination of the best-quality segments

The corresponding artery segments in the different phases

are first straightened using a CPR method.8,20,23 The CPR

method resamples the cCTA volume in planar cross sections

perpendicular to the tracked centerline, and reformats the

original curved vessel and its neighboring region into a

straightened volume.

In a straightened CPR volume for a vessel segment, the gray

level of the cross section of the cylinderlike vessel volume

is gradually decreasing from the vessel center to the vessel

wall. For a good quality vessel with less artifacts caused by

cardiac motion, contrast timing, CT reconstruction noises,

etc., the contrast filling in the vessel lumen is relatively

uniform so that the radial gradient vectors approximately

point to the centerline with the maximum radial gradients

occurring at the vessel wall, while the gradient vectors along

the vessel approximately point parallel to the centerline. Based

on the above assumptions, for each segment in each phase,

we designed the following four features extracted from the

original CT volume and the straightened CPR volume as

quality indicators.

2.B.3.a. ( f1) Mean radial gradient of vessel wall (mRGV).

A measure of vessel sharpness, referred to as mRGV, is defined

as the mean radial gradients of voxels located at or adjacent to

the vessel wall. On a vessel cross sectional plane perpendicular

to the centerline and centered at a center point Ct (t = 1, . . . ,

Nc, where Nc is the number of center points in the vessel

segment), the radial gradient gm at the m-th voxel along a

radius from the vessel center to the vessel wall on the cross

sectional plane is calculated as

gm =
1

3
*
,

3


i=1

Im−i−

3


i=1

Im+i+-, (3)

where Im−i and Im+i are the CT values of the voxels before

and after the m-th voxel along the radius, where m = 4, 5,

. . . Nr −3, and Nr is the number of voxels along the radius

from the vessel center to the edge of the reformatted cross

sectional plane in the CPR volume of the vessel. The radial

gradient of the lumen at center point Ct is then calculated as

the average of the maximum gradients along all radii,

gt =
1

360

360◦


θ=1◦

max
�
gθm

�
, (4)

where gθm is the gradient gm along the radius at angle θ (with

respect to the horizontal direction x-axis in the CPR volume).

Finally, mRGV is calculated as the mean of the gt over all

center point Ct along the vessel segment,

mRGV=
1

Nc

Nc


t=1

gt . (5)

2.B.3.b. ( f2) Vessel smoothness measure (VSM). A vessel

smoothness measure (VSM) is calculated as the mean of

the gradients within the lumen in the direction parallel to

the centerline where the gradients are calculated similar to

Eq. (3), but with the gradient direction pointing parallel to the

centerline,

VSM=
1

Nv

Nv


m=1

gm, (6)

where Nv is the number of voxels of the extracted coronary

segment in the CPR volume.

2.B.3.c. ( f3) Vessel blurriness measure (VBM). The CT

values accumulated along the direction parallel to the vessel

centerline within the vessel lumen in the CPR volume are

calculated as

A(x,y)=
1

Nc

Nc


z=1

I (x,y,z), (7)

where x, y , and z are the voxel coordinates of the CRP volume.

(x, y) are the coordinates on the cross sectional plane and z

is the direction parallel to the centerline. A(x,y) is therefore

a 2D distribution of the CT values averaged over all cross

sectional planes of the vessel. A 2D Gaussian function is then

fitted to A(x,y). VBM is defined as the mean of the standard

deviations σx and σy of the fitted 2D Gaussian function,

VBM=
1

2

�
σx+σy

�
. (8)

2.B.3.d. ( f4) Ratio of mean CT value in the vessel central

regions relative to that in the surrounding region within the

lumen (mRCS). Within the vessel lumen in the original CT

volume, the ratio of the mean CT value in a small cube to the

mean CT value in a large cube enclosing but excluding the

voxels of the small cube is defined as

RCS
�
Ct

�
=

µC

µS

, (9)

where µC is the mean CT value in a 3×3×3 cube, and µS is

the mean CT value in a 7×7×7 cube excluding the voxels in

the central 3×3×3 cube; both cubes are centered at the center
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point Ct. The mRCS is then calculated as the mean of the

RCS values over all center points along the vessel segment,

mRCS=
1

Nc

Nc


t=1

RCS
�
Ct

�
. (10)

For each corresponding vessel segment identified from the

different phases by the RCSM method, the above four features

are extracted as quality indicators. Each quality indicator is

used as a voting classifier to cast vote for the corresponding

vessel segment. The vote of the segment Sj in phase j by

quality indicator f i (i = 1, 2, 3, 4) is defined as

v
�

f i,Sj

�
=


V1 if f i
�
Sj

�
> µ( f i)

V2 else
, (11)

where f i
�
Sj

�
is the quality indicator f i measured in the

segment Sj, and µ( f i) is the mean of f i over the corresponding

segments identified by RCSM method (e.g., six segments from

six phases). For the four features defined above, the larger the

values of f1 and f4, and the smaller the values of f2 and f3

indicate better vessel quality. Therefore, V1= 1 indicates better

quality for f1 and f4, V2= 1 indicate better quality for f2 and

f3, and Eq. (11) can be rewritten as

v
�

f i,Sj

�
=


1 if f i
�
Sj

�
> µ( f i)

0 else
for i = 1,4, (12)

v
�

f i,Sj

�
=


1 if f i
�
Sj

�
< µ( f i)

0 else
for i = 2,3. (13)

We designed a new WVE classifier to combine the votes of

the four voting classifiers for each corresponding segment Sj,

WVE
�
Sj

�
= w1v

�
f1,Sj

�
+w2v

�
f2,Sj

�
+w3v

�
f3,Sj

�
+ w4v

�
f4,Sj

�
, (14)

where w1, w2, w3, and w4 are the ensemble weights of

the four voting classifiers and are determined by a linear

discriminant analysis using the training set. The segment with

the highest WVE score is determined to be the best-quality

coronary segment among the corresponding segments from

the available phases.

For the training set of 6 cCTA cases, our methods extracted,

tracked, and registered 324 segments for the left and right

coronary artery trees, which were then matched into 72 groups

by RCSM. The best-quality coronary artery segments were

visually identified by an experienced radiologist and used as

reference standard for the training of the WVE classifier.

2.B.4. Observer preference study

Because there is no ground truth to measure which coronary

segment has the best quality among the corresponding

segments in different phases, we designed an observer

preference study to evaluate whether the best quality of

the coronary vessels selected by our automated method

agreed with the selection by human observers (Fig. 2). We

developed a computer graphical user interface (GUI) for the

observer study. An example of a displayed vessel segment

to the observer is shown in Fig. 3. The CPR images of the

corresponding coronary segments in six phases identified by

our RCSM method were displayed side by side on a Siemens

DSB 2003D, 3-mega-pixel (1536×2048) 20.8 in. gray scale

LCD monitor. Note that the six phases of the corresponding

vessel segments were displayed in a randomized order for

each segment and each observer, rather than in consecutive

phases (e.g., 40%, 45%, 50%, 70%, 75%, and 80%), to avoid

bias in the observer’s selection because some cardiac phases

are expected to have less motion artifacts clinically. Each

observer was blinded to the quality indicators and visually

ranked the quality of the vessel segments from 1 to 6 (1 is

the best) by clicking the checkbox on the right side of each

segment image. The GUI provided functions that allowed the

observer to adjust the window settings and zoom to improve

visualization as needed.

2.B.5. Performance evaluation

One experienced cardiothoracic radiologist and four expe-

rienced medical imaging researchers participated in this study

as observers. From the 20 test cCTA cases, 999 segments

were extracted, tracked, and registered for the left and

right coronary artery trees. The RCSM method matched

F. 2. An example of the segmented left (blue) and right (yellow) coronary artery trees in cCTA scans acquired with ECG gating and reconstructed at six phases

(80%, 75%, 70%, 50%, 45%, and 40%) using the MSCAR-RBG method. One group of the corresponding artery segments that were identified in the six phases

for a tracked vessel are pointed out by white arrows. (See color online version.)
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F. 3. A screen shot of our in-house developed graphic user interface for the observer preference study. The CPR images of corresponding coronary segments

in six phases determined by our RCSM method were displayed side by side in a randomized order for each segment and each observer. The rankings of the

vessel quality ranged from 1 to 6 with 1 being the best. The labels S j ( j = 1, . . . , 6) are added to indicate the order of the images in the figure to facilitate the

discussion in Table III; they were not displayed during the observer experiment.

the corresponding vessel segments from the multiple phases

into 254 groups, which were displayed and visually rated

by each observer in the preference study. Some groups

did not have corresponding segments from all six phases

because vessel segmentation and tracking might fail in phases

that had poor quality due to motion, poor contrast filling,

and/or noise. Figure 4 shows an example that had only five

corresponding segments as determined by the RCSM method.

The performance of the automated identification of the best-

quality artery segments was evaluated as the percentages

of the 254 groups for which the automatically identified

best-quality (AI-BQ) segments agreed with the observers’

top ranked segments, i.e., the observers’ preferred artery

segments, among the available phases.

3. RESULTS

Table I shows the agreement between the automated

method and human observers in identifying the best-quality

coronary artery segments from multiple-phase cCTA for the

test set. If the AI-BQ segment being within the observer’s top

2 rankings is considered to be in agreement, the agreement

between AI-BQ and the radiologist is 78.3%, and between

AI-BQ and the other four observers are 76.8%, 84.3%,

83.9%, and 85.8%, respectively. If the AI-BQ segment being

within the observer’s top 3 rankings is considered to be in

agreement, the results are 89.8%, 87.8%, 92.9%, 89.4%, and

94.5%, respectively. Among the five observers, 96.5% of the

AI-BQ segments agree with at least one observer’s top 2

rankings, and 89.4% of AI-BQ segments agree with at least

two observers’ top 2 rankings. Table II shows the agreement

between the radiologist and the other four observers. The

percentages of the 254 groups for which an observer’s top

ranked segment agreed with the radiologist’s top 2 ranked

segments ranged from 76.8% to 82.3% and the Cohen’s kappa

statistics ranged from 0.56 to 0.68. Three of the four observers

show substantial agreement with the radiologist and one has

moderate agreement. In comparison, the agreement between

the AI-BQ segment and the radiologist’s top 2 rankings has a

kappa value of 0.60±0.05, which is at the borderline between

moderate and substantial agreement.

Figure 5 shows the distributions of the percentages of AI-

BQ segments and the segments within the five observers’

top 2 rankings in the six cCTA phases for the left and right

coronary trees. The percentages for the AI-BQ segments in

the left and right coronary trees were calculated relative to the

total number of vessel segment groups in each tree, 147 and

Medical Physics, Vol. 43, No. 10, October 2016
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F. 4. An example for which only five corresponding segments were found in the six phases by the RCSM method because the corresponding vessel segment

could not be extracted and tracked in one of the phases. The rankings of the vessel quality ranged from 1 to 6 with 1 being the best. The labels S j ( j = 1, . . . , 6)

are added to indicate the order of the images in the figure to facilitate the discussion in Table III; they were not displayed during the observer experiment.

107, respectively, while the percentages for the observers’

top 2 selections were calculated relative to two times the

total number of vessel segment groups in each tree because

2 vessels with rankings of 1 and 2 were counted for each

group.

4. DISCUSSION

Automated segmentation and tracking the coronary arteries

is a fundamental step to select the best-quality coronary

arterial segment from different cCTA phases. Many fac-

tors, such as irregular heartbeats, incorrect contrast timing,

narrowing and blockages caused by coronary plaques, and

other noise artifacts can cause poor quality of a vessel and

the failure of automated vessel segmentation and tracking.

Both missing branches and false positives (FPs), such as

coronary veins, in the tracked coronary arterial trees from

different phases make it more challenging for automated

registration of coronary trees in multiple phases. In addition,

the average displacements of the left and right coronary trees

in adjacent phases are different due to the physiological

fact that the right coronary tree in general has greater

motion than the left coronary tree. The performances of

our methods for segmentation and tracking of the coronary

arteries and for the registration of the left and right coronary

trees in multiple phases have been described in detail

previously.17–19

To identify the corresponding coronary segments, our

RCSM method starts with the longest coronary branch among

all branches in the available phases. The longest branch that

is identified from the root of the coronary artery to the distal

end usually contain more than one coronary segments; for

example, the branch most often found to be the longest in the

left coronary tree contains segments of left main, proximal

left anterior descending (LAD), mid-LAD, and distal LAD

arteries. The success of segmenting and tracking a long

vessel to the distal end in one phase often indicates that

the vessel has a better quality than those corresponding but

shorter tracked vessels in the other phases. Using the longest

tracked vessel branch as a starting point establishes a tree-

stem landmark that can simplify the recursive procedure of the

RCSM method in finding the corresponding vessel segments

among a large number of vessel segments in multiple phases.

The difference between the artery segments identified by our

method and those by the AHA 17-segment model is not

a problem because we envision that the selected segment

being displayed for clinician’s interpretation can be shown

T I. Agreement between the automated method and human observers in identifying the best-quality coronary

artery segments from multiple-phase cCTA.

Automated method Radiologist Observer 1 Observer 2 Observer 3 Observer 4

Agreement within top 1 ranking (%) 61.4 54.7 61.4 70.5 61.0

Agreement within top 2 rankings (%) 78.3 76.8 84.3 83.9 85.8

Agreement within top 3 rankings (%) 89.8 87.8 92.9 89.4 94.5
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T II. The agreement between the radiologist and the other four observers evaluated by the percentages of

the 254 groups for which an observer’s top ranked segment agreed with the radiologist’s top 2 ranked segments,

and the Cohen’s kappa values and confidence intervals. The agreement between the AI-BQ segment and the

radiologist’s top 2 ranked segments is also shown for comparison.

Observer 1 Observer 2 Observer 3 Observer 4 AI-BQ

Percentage agreement (%) 79.9 80.7 82.3 76.8 78.3

Kappaa 0.64 ± 0.05 0.65 ± 0.05 0.68 ± 0.05 0.56 ± 0.05 0.60 ± 0.05

95% confidence intervals of kappa [0.54, 0.73] [0.56, 0.74] [0.59, 0.77] [0.47, 0.67] [0.50, 0.70]

aThe following kappa values have been suggested to define interobserver agreement: poor (0), slight (0–0.20), fair

(0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80), and excellent (0.81–0.99) (Ref. 21).

on a “roadmap” in a “navigation” window that highlights the

corresponding segment(s) on the coronary tree. Alternatively,

a coronary artery labeling algorithm may be developed to

identify and display the selected segments following the 17-

segment model.

The cyclic cardiac motion between systole and diastole

causes the blurring of the coronary artery trees. Figure 5

shows that although the majority of the AI-BQ segments and

the observers’ top 2 rankings are identified from the 70% to

80% phases approximating end-diastole for the left and right

coronary trees, an average of about 35% and 27% of AI-BQ

segments and the observers’ top 2 rankings for the left and

right coronary trees, respectively, were identified from the

40% to 50% phases, which approximate end systole. This

reveals that a substantial number of coronary arteries have

better image quality in the lower phases. Automated selection

of the individual best-quality arterial segments, instead of a

single optimal cCTA phase as a whole, may better extract

the most motion free and therefore the most accurate data

representing the coronary arteries available from multiple-

phase cCTA, and potentially improve the diagnostic accuracy

for coronary arterial disease.

F. 5. The distributions of the percentages of the segments that were selected from the available phases and ranked as the top 2 by five observers in the six

cCTA phases. The percentages of the automatically identified best-quality (AI-BQ) segments were also plotted for comparison. (Top) Left coronary artery tree.

(Bottom) Right coronary artery tree. The percentages were calculated relative to the respective tree.
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F. 6. The reference coronary segment (green) in a recursive cycle of RCSM and its matched segments (red) are displayed in the multiple-phase left coronary

artery trees. The corresponding CPR images of the highlighted (green and red) vessel segments in (a) and (b) are shown in Figs. 3 and 4, respectively. In (b), the

LAD segment is missing in S1 because it could not be tracked and extracted in this tree. The labels S j ( j = 1, . . . ,6) correspond to those in the respective figure

and Table III. (See color online version.)

To evaluate the accuracy of the RCSM method, the

automated matched corresponding vessel segments from

the multiple cCTA phases are visually examined by an

experienced medical imaging researcher. For this evaluation,

the reference segment in a recursive cycle of RCSM and its

matched segments are highlighted in green and red colors,

respectively, on the vessel tree and displayed along with the

GUI used for the observer preference study that showed the

corresponding CPR segments; for example, Fig. 6(a) was

displayed below Fig. 3, Fig. 6(b) was displayed below Fig. 4.

The GUI allows the evaluator to rotate the coronary artery tree

in three dimensions to examine the location of each matched

segments and determine whether it was a corresponding

vessel. In 203 of the 254 vessel groups containing 763 vessel

segments, the corresponding vessels from different phases

were found to be correctly identified by the RCSM method.

In the remaining 51 groups that contain 228 corresponding

segments, 65 segments were mistakenly identified as the

corresponding segments. Of the 65 segments, 12, 14, 10, 10,

and 18 segments were ranked among the top 2 by observer

R1, R2, R3, R4 and the radiologist, respectively. However, none

were identified as the best-quality segments by the automated

method. Of 999 tracked vessel segments, 8 FP segments

were segmented and tracked in one of 6 phases. Six of them

were not identified as the AI-BQ segments by our automated

method, indicating that utilizing the automated identification

of best-quality coronary segments from different phases has

the potential to reduce FPs in automated tracking of coronary

artery trees because the FPs such as veins have less chance

to be selected as the best quality vessels compared with true

arteries.

Because there is no ground truth to measure which

coronary segments are the best quality among corresponding

segments in different phases. Our observer preference study

was performed to provide a reference standard to evaluate the

performance of the automated method for identification of

best-quality segments. In this study, five observers including

an experienced thoracic cardiac radiologist assessed the

rankings of the vessel quality for corresponding segments

in different phases. Table III shows the ranking of the vessel

segments by the five observers for the examples in Figs. 3

and 4. Although the visual differences in the quality of

the corresponding segments in each group of corresponding

vessels are very small, for the vessel group in Fig. 3, one

segment (S2) was ranked among the top 2 by all five observers

T III. The rankings of 1–6 (1= best) by one experienced cardiothoracic

radiologist and four experienced medical imaging researchers (R1–R4), and

the AI-BQ segments in the two groups of corresponding vessel segments

shown in Figs. 3 and 4. Note that the labels S j ( j = 1, . . . , 6) are used to

indicate the images displayed in the figures for one of the observers. The

rankings of the same segment from different observers are arranged in the

same row for comparison in this table although the images were displayed to

each observer in a randomized order.

Radiologist R1 R2 R3 R4 AI-BQ

Figure 3 S1 4 5 6 6 6

S2 2 1 1 2 1

S3 1 3 4 1 2 1

S4 3 2 2 4 4

S5 6 4 5 5 5

S6 5 6 3 3 3

Figure 4 S1

S2 3 5 4 4 1

S3 4 3 3 3 2

S4 5 4 5 5 3

S5 2 2 1 2 5 1

S6 1 1 2 1 4
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and another segment (S3) was ranked among the top 2 by three

observers and selected by the automated method; for the group

shown in Fig. 4, four observers ranked the same two segments

(S5, S6) to be the top 2 and one of which (S5) was the AI-BQ

segment. For the 254 vessel groups, the agreement between

the top 2 rankings of the radiologist and the best-quality

vessel by the automated method was 78.3% (Table I). The

agreement between the radiologist’s top 2 ranking and the top

rankings of the other four observers averaged 79.9%±2.3%

(range: 76.8%–82.3%) (Table II). These results indicate that

the performance of the automated method for the identification

of the AI-BQ vessel is comparable to that of the human

observers selecting the top ranked vessels. In addition, 89.4%

of AI-BQ segments agreed with at least two observers’ top

2 rankings, and 96.5% agreed with at least one observer’s

top 2 rankings. This demonstrates the feasibility of using our

automated method to identify the best quality segments among

different phases.

In comparison with our previous pilot study16 that demon-

strated the feasibility of an automated best-quality vessel

segment identification approach using a single feature and

two cCTA cases, our current approach uses a new method

to improve the matching of corresponding segments from

different phases, extracts new features from the original CT

volume in addition to the straightened CPR vessel volume, and

identifies the best-quality segments by using a newly designed

weighted voting ensemble classifier. The observer preference

study with five observers confirms that the automated method

has reasonable performance, within the variability of human

observers, in selecting best-quality vessels from multiple-

phase cCTA. Although the results show the promise of

this approach, one limitation is the relatively small number

of cases. A larger training data set will allow designing

more complex classifiers and/or additional image features to

characterize the quality of the vessels, which may further

improve the performance of the automated method.24,25 A

large test data set is also needed to include the variety of

relevant clinical occurrences of coronary abnormalities in

cCTA (e.g., different types of plaques of different degrees

of occlusions at different segments of the coronary trees),

so that the robustness of the method can be assessed in

cases more representative of the patient population. Another

limitation is that the current method is not fully automated,

requiring a manually marked seed point at the origin of

each coronary artery tree to initiate the tracking of the tree.

This step will be replaced when we can develop a reliable

method to identify the seed point location accurately and

automatically. Besides the manual identification of the seed

points, the other processes are all automatically performed

without any user interaction in this study. Ultimately, after

the automated method for best-quality vessel selection is

fully developed and its robustness validated, the usefulness

of this method for improving the detection of atherosclerotic

plaques in cCTA by radiologists or a computer-aided detection

system, as well as its potential benefits in improving workflow

and consistency in the selection of the coronary arteries

for interpretation, will need to be investigated in future

studies.

5. CONCLUSION

We developed an automated method for the matching of

corresponding segments from coronary artery trees extracted

from multiple phases of a cCTA examination, and designed

a new weighted voting ensemble classifier using four vessel

quality measures for identification of the best-quality segment

among the corresponding segments. The results of our

observer preference study showed that the performance of the

automated method was comparable, within the interobserver

variations, to the selection of the best-quality coronary

segments from the multiple cCTA phases by human observers.

The study demonstrates the potential of using our automated

method to identify the best-quality phase for individual

coronary arteries. The virtual composite coronary artery

trees containing the collection of the best-quality coronary

segments selected from all phases will enable interpreting

physicians to fully utilize the best available information in

cCTA for diagnosis of coronary disease, without requiring

manual search through the multiple phases and minimizing the

variability in image phase selection for evaluation of coronary

artery segments across the diversity of human readers with

variations in expertise. The automated method will also be

useful as a preprocessing step in a computer-aided image anal-

ysis system for detection of atherosclerotic plaques in cCTA.
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