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Abstract. Fluoroscopic images contain useful information that is diffi-
cult to comprehend due to the collapse of the 3D information into 2D
space. Extracting the informative layers and analyzing them separately
could significantly improve the task of understanding the image content.
Traditional Digital Subtraction Angiography (DSA) is not applicable for
coronary angiography because of heart beat and breathing motion. In
this work, we propose a layer extraction method for separating transpar-
ent motion layers in fluoroscopic image sequences, so that coronary tree
can be better visualized.. The method is based on the fact that differ-
ent anatomical structures possess different motion patterns, e.g., heart
is beating fast, while lung is breathing slower. A multiscale implementa-
tion is used to further improve the efficiency and accuracy. The proposed
approach helps to enhance the visibility of the vessel tree, both visually
and quantitatively.

1 Introduction

Coronary angiography is an important enhancement method for the analysis
of coronary images and therefore has many clinician applications for cardiac
related diseases. However, the task is very challenging because images contain
overlaying structures besides blood vessel, e.g. Figure 1. Moreover, radiation is
kept low for patient’s health and thus blood vessels often have poor visibility.
Digital subtraction angiography (DSA) [7] has been widely used in interventional
radiology for enhancing the vessel structure. However, it meets difficulties when
applied to the coronary images due to the complicated motion induced by heart
beating and breathing.

In this paper we propose a new framework to solve the above problem us-
ing motion layer separation. The intuition is based on the fact that different
anatomical structure have different motion patterns. For example, lungs usually
move in a slow and simple way, heart beating causes much more complicated
vessel motion, while bones and spines usually remain static. Consequently, it is
natural to model an image sequence as a superposition of different motion layers
and then use motion separation to extract layers we are interested in. The basic



Fig. 1. Different anatomical structures in the scene have different motion patterns.

idea is illustrated in Figure 1. The proposed approach is tested on both real and
synthetic sequences and demonstrated promising results.

There are several key ingredients in the proposed approach. First, the pro-
posed coronary extraction approach naturally uses motion layer separation. By
doing this, it not only avoids the challenging and error prone mask seeking proce-
dure used in traditional DSA approaches, but also achieves robustness by easily
integrating neighborhood information. Second, a multiscale scheme is adopted.
In addition to achieving better efficiency and accuracy, the multiscale framework
naturally maps different layers to different scales. Third, a dense motion field
is established by using thin plate spline (TPS) [4]. This enables us to handle
complicated vessel motions. Fourth, a quantitative measurement consistent to
human perception is introduced for evaluating visibility enhancement.

2 Related Work

Traditional motion estimation with adaptation [3] does not model the
transparency issue specifically. It does not work for general transparent motion.
Processing in Fourier space As opposed to the traditional spatial domain
approaches, Shizawa and Mase [11] reports that the 3D Fourier transform of
a transparent sequence whose transparent layers are in constant translation is
made of different planes corresponding to different layers. However, this ap-
proach has a major drawback: it assumes a constant transparent motion over a
significant number of frames [8].
Explicit transparency modeling This framework assumes constant motion
over three successive frames for two-transparent-layer case. The constraints be-
come cumbersome when we are dealing with more transparent layers. Many
classical motion estimation methods have been adapted to the transparency case
substituting the brightness assumption with some constraint equations. The pop-
ular methods that fall under this category are : block-matching techniques and
random fields [12], regularization [13], multi-resolution [1] etc.



Algorithm 1 Multiscale Coronary Extraction
/*Motion layer separtion at low resolution of 128×128*/
Data initialization and motion field preparation at low resolution
Solve equation (4) for three layers: background, lung, and vessel
/*Motion layer separtion at middle resolution of 256×256*/
Upsample from low resolution and remove background layer
Data initialization and motion field preparation at middle resolution
Prepare motion field at middle resolution
Solve equation (4) containing two layers for lung, and vessel
/*Final result at high resolution of 512×512*/
Upsample from middle resolution and subtract lung layer at high resolution

Parametric models - The Chicken and Egg problem The detection of
multiple motions can be addressed as a segmentation problem. However, the
optical flow-field segmentation problem is coupled with the estimation of the
flow itself which is a chicken-and-egg problem. If the flow were accurately given
everywhere then we can find the motion boundaries. These methods try to solve
the segmentation and estimations iteratively. The popular frameworks proposed
in the literature are the expectation-maximization framework [14], shift-and-
subtract strategy [2], temporal integration to blur the uninterested regions [6].
Repetitive motion When the dynamics in one layer is assumed to be repetitive,
global-to-local space-time alignment can be used to extract the other layer which
can have arbitrary motion [9].

3 Our Approach

In this section we describe the proposed approach. We take a hierarchical frame-
work for both efficiency and effectiveness. In this framework, we first subtract
the background layer at low resolution. Then the lung and vessel layers are sep-
arated at middle resolution. Finally, the vessel layer is refined at the finest scale.
A summary of the approach is given in Algorithm 1.

3.1 Problem Formulation

Without loss of generality, we assume that our problem is to extract layers
from image sequences which consist of N layers overlapping with uniform trans-
parency, i.e., the contribution of each layer is 1/N . For X-ray image formation,
an exponential relationship exists between the incident and transmitted photon
fluence [10]. After passing through multiple layers of materials, the final amount
of photon fluence received by the detector which forms the X-ray image is:

Nx = N0e
∑

µixi , (1)

where µi is attenuation coefficient of the ith layer and xi is its thickness.



Because of the exponential form of the X-Ray image formation, X-ray images
are usually manipulated in the logarithmic space. In the logarithmic image space,
the image can be written as a linear combination of the layers:

Im =
N∑

l=1

Tm
l Ll, (2)

where Im is the mth observed image, Ll is the lth unknown layer. Tm
l is the

motion field for the lth layer that maps Ll to Im. Refer to Sec. 3.3 for how the
motion field is constructed. Im and Ll have the same size. Denote W and H as
their width and height, respectively. Ll has W ×H pixels with unknown values.
Our goal is to find images of different layers by minimizing the reconstruction
error. For achieving robustness to noise, we use M(M > N) images to find a
least square solution to the following equation

min
M∑

m=1

‖
N∑

l=1

Tm
l Ll − Im‖2 . (3)

To solve ( 3), it is transformed into a least square optimization form. We omit
the details because of the page limit.

arg min
x
‖Cx− d‖2 , (4)

where C ∈ RK×J is a matrix that is constructed based on the motion field,
x ∈ RJ is a vector that is the concatenation of all the unknown pixel values of
all N layers, d ∈ RK is a vector which is the concatenation of all the (known)
pixel values of all the M images. K = W ×H ×M and J = W ×H ×N .

In practice, the number of images M should be relatively big to tolerate small
shape deformation in one image. On the other hand, it should not be too big
because shape deformation would accumulate with more images, which would
violate the assumption that sum of all layers equal to the observed image. In our
experiments, we empirically found that M = 9 produces the best result. This
coincides with the fact that the number of frames per heart cycle is roughly 9.
The workflow is the following: for each image Im in the sequence, we use images
in a local time window Im−4, Im−3, . . . , Im+4 and the corresponding motion fields
to construct C and d in Equation 4. Once the optimization converges to a solution
x, we re-arrange x and obtain all the transparent layers in that image. After all
the images have been processed, a video sequence is obtained for each layer.

3.2 Multiscale Framework

The least squares problem (4) is very large in scale. For example, to estimate
3 layers for a sequence with image size 512×512, the number of unknowns is
786432. On the other hand, the matrix C is very sparse with most of its entries
to be zero. So we can resort to the iterative optimization technique to solve



the problem. Notice that the value of unknowns can not be negative, we are
actually trying to solve a constrained optimization problem. In the current im-
plementation, the solution is found using a trust region method based on the
interior-reflective Newton method. In each iteration, an approximate solution is
obtained using the method of preconditioned conjugate gradients.

For the coronary angiography, we could assume that there are 3 layers in
the image: the static background like rib, the slow moving lung and fast beating
vessels. To reduce the complexity of the problem, we perform the estimation in
a pyramid. For the image of size 512 × 512, we build additional two levels of
size 256× 256 and 128× 128. Assuming that the background remain unchanged
through out the sequence, we estimate it first using the lowest resolution. Fol-
lowing the workflow mentioned above, we could get a sequence of estimated
background images. Most of them are quite similar but not necessarily the same.
There might be few erroneous estimates because of the correlation in motions
of different layers. Nevertheless, the median of of all those estimation gives a
reliable estimate of the overall background. Then the estimated background is
upsampled to 256 × 256 and we subtract the background from each image for
estimating the remaining two moving layers (vessel tree and diaphragm). As
Figure2 illustrated, only the moving objects are retained after subtracting the
background and they look more evident than in original image.

Now the new (foreground) sequence contains only two transparent layers.
We follow the same procedure to estimate the diaphragm layer and vessel layer
in the middle resolution (256 × 256). After reducing the number of layers, the
number of unknowns in Equation 4 is now 256 × 256 × 2 = 131072. Then we
upsample the estimated diaphragm layer to 512× 512 and subtract it from the
foreground sequence, thus obtain the final vessel layer at the original resolution.
By doing the whole process in a pyramid, we keep pushing details into the vessel
layer because this is really what the clinician want. In addition, we avoid the big
problem of trying to optimize 786432 unknowns all together. This not only brings
the huge advantage in efficiency, but also helps to avoid some local maxima for
the direct optimization as mentioned above. The idea is to takes advantage of
the fact that the background layer is invariant across time and slow moving layer
is relatively invariant compared to vessel, so that a large part of the search space
can be eliminated.

3.3 Constructing Motion Field

The motion of vessels is very complicated, global transformation like affine trans-
formation [1] is therefore insufficient to model it. Instead, we use a dense motion
field to represent the vessel motion. Specifically, for any location with coordi-
nates (x, y) at layer Ll, the motion field at this particular coordinates Tm

l (x, y)
maps (x, y) to a new position (x′, y′) in image Im.

An efficient way to construct the motion field is through the thin plate spline
(TPS) [4] interpolation. Given two point sets with correspondence between them,
TPS finds a nonlinear warping by minimizing a second order “bending energy”.



Fig. 2. Vessel tree separation. From left to right: input fluoroscopic image, background,
diaphragm, and vessel tree.

In our task, the TSP warping has the following formula
{

x′ = axx + bxy + cx +
∑n

j=1 dx,jU((x, y)− (xj , yj))
y′ = ayx + byy + cy +

∑n
j=1 dy,jU((x, y)− (xj , yj))

, (5)

where {(xj , yj)}n
j=1 is the sparse anchoring point set; ai, bi, ci, di,j for i = {x, y}, j =

1..n are warping parameters that are estimated from sparse motion vectors; and
U(.) is a Radial Basis Function. We use manually selected control points (e.g.
junction points on vessels) to get sparse motion vectors since this work focuses
on motion layer separation. For automatic estimation of sparse motion vectors,
We have developed techniques for automatic detection [15] and tracking [16] of
thin curved structures, which could be used for vessel detection and tracking in
low resolution images. The detection of junction points can be done using the
Marginal Space Learning Framework [17].

4 Experimental Results

4.1 Experiments on Real Sequences

We tested the proposed approach on two real sequences, one for vessel enhance-
ment and another for guidewire enhancement. Figure 2 shows the extracted three
layers for one image. As can be seen, static objects like bones are retained in
the background layer. Slow moving diaphragm is extracted in another layer. The
vessel tree we are interested in lies in its exclusive layer and is more visible than
that in the original fluoroscopic image. We also applied the method to separating
the guidewire and lung in another sequence and the result is shown in Figure 3.
Please refer to supplemental videos for more results.

4.2 Evaluation of Visibility Enhancement

While we can see the visibility improvement qualitatively, it’s desired to quanti-
tatively analyze the enhancement. A synthetic sequence is shown in Figure 4(a).



Fig. 3. Guidewire separation. From left to right: original fluoroscopic image, back-
ground, lung, and guidewire. The guide wire is hard to see before separation.

The measurement we use is based on the Jeffries-Matusita distance, which mea-
sures the separability between two classes, vessel and background. The higher
the measure, the better the separability.

Jvb = 2(1− e−Bvb), Bvb =
(µv − µb)2

4(σ2
v + σ2

b + ε)
+

1
2

ln
σ2

v + σ2
b

2σvσb
, (6)

where µv and µb are means of vessel and background, respectively and σ is the
standard deviation. Note there is a term ε in the the formulation, which is added
to to make it consistent with the human perception. We have experimentally set
ε = 100 according to the input of multiple experts. For the synthetic image in
Figure 4(a), Jvb = 0.31, while the extracted result in the right has Jvb = 0.89.
The evaluation of the whole sequence is summarized in Figure 4(b). We have
carried out extensive experiments with different noise adding to the synthetic
image. They all exhibited clearly quantitatively enhancement.
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Fig. 4. (a) Synthetic image with moving background (left), extraction result (right).
(b) Quantitative evaluation of visibility enhancement.



5 Conclusion

In this paper, we propose a framework for separating transparent layers from
fluoroscopic image sequences, so that coronary tree can be better visualized. It
utilizes motion information to decompose an image into different layers. The
proposed approach does not require any pre-selected mask, thus avoid the dif-
ficulties of the traditional DSA. The motion layer extraction is proceeded in
a hierarchical fashion to achieve both efficiency and robustness. The proposed
approach is tested on both real and synthetic sequences, and promising results
are observed. Our ongoing work focus on automatic motion vector detection and
learning-based tracking of vessel structures.
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