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Abstract

Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some
viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal
microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In
the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins
known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of
cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel,
replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated
that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to
be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early
and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion
protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while
trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site
was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend
on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin
cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal
proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an
essential determinant of the intracellular site of fusion.

Citation: Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, et al. (2014) Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in
a Proteolysis-Dependent Manner. PLoS Pathog 10(11): e1004502. doi:10.1371/journal.ppat.1004502

Editor: Stanley Perlman, University of Iowa, United States of America

Received May 26, 2014; Accepted October 2, 2014; Published November 6, 2014

Copyright: � 2014 Burkard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by the EU 7th Framework Programme (Virus Entry, project 235649, PJMR) and by a Utrecht University High potential grant to
CAMdH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: c.a.m.dehaan@uu.nl

¤a Current address: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom,
¤b Current address: Department of Pathobiology, Division Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands

Introduction

To achieve successful infection enveloped viruses need to fuse

with a host cell membrane to deliver the viral genome into the host

cell. Some viruses, such as herpes simplex virus, Sendai virus, and

human immunodeficiency virus, appear to be capable of direct

fusion at the plasma membrane after initial attachment [1–5].

However, the majority of enveloped viruses use endocytosis for

uptake and transport prior to fusion. Since endocytic cargo may

eventually end up in the destructive environment of the lysosome,

environmental cues are crucial to trigger viral fusion at the right

stage of trafficking. These triggers, which may include a decrease in

pH, changes in redox environment, and proteolytic activity [6–8],

induce conformational changes in the viral fusion proteins leading

to the merger of viral and host membranes. Two well-studied

viruses; influenza A virus (IAV) and vesicular stomatitis virus (VSV),

are known to undergo fusion upon exposure to low pH [9–12].

Other enveloped viruses, such as respiratory syncytial virus (RSV)

and Ebola virus, require proteolytic processing of their viral fusion

proteins in the endosomal system for fusion to occur [13–16].

Coronaviruses (CoVs) are enveloped, plus-strand RNA viruses
belonging to the family Coronaviridae in the order Nidovirales.
They are capable of infecting a wide variety of mammalian and
avian species. In most cases they cause respiratory and/or
intestinal tract disease. Human coronaviruses (HCoVs) are known
as major causes of the common cold (e.g. HCoV-229E and
HCoV-OC43). However, the emergence of new HCoVs of
zoonotic origin has shown the potential of CoVs to cause life-
threatening disease in humans as was demonstrated during the
2002/2003 SARS-CoV epidemics and more recently for MERS-
CoV in the Middle East [17,18]. The well-studied mouse hepatitis
virus (MHV) is often used as a safe model to study CoV infections.
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All CoV virions contain a canonical set of four structural

proteins. The viral genomic RNA is encapsidated by the

nucleocapsid protein (N) to form the helical nucleocapsid, which

is surrounded by the lipoprotein envelope, containing membrane

glycoprotein (M), the small envelope protein (E), as well as the

spike glycoprotein (S) (reviewed in [19]). Trimers of the CoV S

protein, a type I membrane protein belonging to the class I fusion

proteins, form the peplomers that protrude from the virion surface

[20]. The S protein can be divided into two functional subunits.

The amino-terminal S1 subunit contains the receptor-binding

domain; while the carboxy-terminal S2 subunit contains domains

required for fusion, including the fusion peptide (FP), heptad

repeat domains (HR) HR1 and HR2, and the transmembrane

(TM) domain.

Various entry routes have been described as being used by

different CoVs for infection of cells. Clathrin-dependent as well as

clathrin- and caveolae-independent entry pathways have been

reported for SARS-CoV [21,22]. Also feline infectious peritonitis

virus (FIPV) was suggested to enter via a clathrin- and caveolae-

independent endocytic route [23,24]. For the HCoV-229E a

caveolae-dependent endocytic uptake has been suggested [25].

Although the ability of MHV S proteins to cause cell-cell fusion at

a neutral pH was initially interpreted as an indication for fusion of

virions at the cell surface, more recent studies indicate the

requirement for clathrin-mediated endocytosis for entry of MHV

[26–29]. However, while some studies report that MHV strain

A59 is sensitive to lysosomotropic agents that affect endocytosis

[26], this is not the case according to others [27].

Proteolytic cleavage of the CoV S proteins appears to be

important for the induction of cell-cell fusion and/or virus entry

into host cells. Different cleavage sites have been identified for

different CoVs, the importance of which seems to differ for cell-cell

and virus-cell fusion. Some CoV S proteins, including that of

MHV strain A59, are cleaved at the S1/S2 boundary by furin(-

like) proteases during transport of the newly assembled virions

through the secretory pathway of the producer cell [30–33].

Inhibition of this S protein cleavage was shown to inhibit cell-cell

fusion, but not to affect entry of MHV strain A59 into host cells

[30,34,35]. MHV strain 2 contains an S protein that is not cleaved

at the S1/S2 boundary. Interestingly, although MHV strains 2

and A59 were both reported to enter via clathrin-mediated

endocytosis, entry of MHV 2 but not of MHV A59, was blocked

by inhibitors of low-pH activated cathepsin proteases [27,36].

Inhibitors of cathepsin proteases have also been shown to inhibit

entry of SARS-CoV and feline CoVs [23,37,38], while treatment

of cell-bound virus particles with different proteases was shown to

enhance virus entry and/or cell-cell fusion [27,34,39–45]. For

SARS-CoV and infectious bronchitis virus (IBV), it appears that a

proteolytic cleavage of the S protein at a more downstream

position than the S1/S2 boundary upon receptor binding is of

importance for cell entry [40,43,46–49].

In the present study we performed a detailed investigation of the

entry of different CoVs. Using siRNA gene silencing, we found

that the prototypic coronavirus MHV strain A59 (further referred

to as MHV) requires proteins known to be important for late

endosomal maturation and endosome-lysosome fusion for efficient

infection of cells. By using recombinant MHVs expressing reporter

genes as well as by applying a novel, replication-independent

fusion assay we confirmed the importance of clathrin-mediated

endocytosis and demonstrated that trafficking of MHV virions to

lysosomal compartments and processing of the S protein by

lysosomal proteases was required for productive entry to occur.

Our results indicate that a cleavage site in the S protein of CoVs

immediately upstream of the FP determines the site of fusion. In

agreement herewith FIPV, which requires processing by lysosomal

proteases, was also shown to depend on trafficking to lysosomes. In

contrast, MERS-CoV, which contains a minimal furin-cleavage

site consensus sequence in the S protein immediately upstream of

the FP, was negatively affected by inhibition of furin, but not of

lysosomal proteases.

Results

RNAi mediated gene silencing identifies endocytosis-
associated proteins to be important in MHV infection
In an automated, high-throughput RNAi screen [50] targeting

the druggable genome (approximately 7000 genes) a number of

proteins associated with endocytosis were found to be required for

efficient infection of HeLa cells with GFP-expressing MHV. To

validate these findings these proteins were subjected to a follow-up

analysis using siRNA-mediated gene silencing with oligonucleo-

tides from a different supplier than the one used for the initial

RNAi screen (Fig. 1A). The follow-up analysis included ACTR2

and ACTR3, two major constituents of the Arp2/3 complex

which are important for the formation of actin branches and cell

surface protrusions, as well as for the motility of several pathogens

inside host cells (reviewed in [51,52]). Also selected were the RAS-

related GTP-binding protein family members, RAB7A and

RAB7B, which have been shown to be involved in endosomal

maturation (reviewed in [53]). RAB7 interacts amongst others with

members of the homotypic fusion and vacuole protein sorting

(HOPS) tethering complex, involved in late endosome to lysosome

maturation. The HOPS subunit VPS39 (reviewed in [54]) was also

found to be a strong hit in the siRNA screen and therefore

selected. Other proteins included SNX1, involved in retrograde

transport of cargo between endosomes and the trans-Golgi

network (reviewed in [55]), VCL, inter alia involved in connecting

the Arp2/3 complex with integrins during actin polymerization

(reviewed in [56]), and the Ser/Thr-protein kinase PAK1, which is

activated by the Rho/Rac/Cdc42 family and is implicated in a

variety of downstream effects including modulation of the actin

cytoskeleton (reviewed in [57]).

Author Summary

Enveloped viruses need to fuse with a host cell membrane
in order to deliver their genome into the host cell. In the
present study we investigated the entry of coronaviruses
(CoVs). CoVs are important pathogens of animals and man
with high zoonotic potential as demonstrated by the
emergence of SARS- and MERS-CoVs. Previous studies
resulted in apparently conflicting results with respect to
CoV cell entry, particularly regarding the fusion-activating
requirements of the CoV S protein. By combining cell-
biological, infection, and fusion assays we demonstrated
that murine hepatitis virus (MHV), a prototypic member of
the CoV family, enters cells via clathrin-mediated endocy-
tosis. Moreover, although MHV does not depend on a low
pH for fusion, the virus was shown to rely on trafficking to
lysosomes for proteolytic cleavage of its spike (S) protein
and membrane fusion to occur. Based on these results we
predicted and subsequently demonstrated that MERS- and
feline CoV require cleavage by different proteases and
escape the endo/lysosomal system from different com-
partments. In conclusion, we elucidated the MHV entry
pathway in detail and demonstrate that a proteolytic
cleavage site in the S protein of different CoVs is an
essential determinant of the intracellular site of fusion.

Proteolysis-Dependent Coronavirus Entry via an Endo-/Lysosomal Pathway
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Transfection of HeLa cells carrying the receptor for MHV

(HeLa-mCC1a cells) with different siRNAs was followed by an

infection with GFP-expressing MHV (MHV-EGFPM) at low

multiplicity of infection (MOI), resulting in approximately 10–15%

infected cells under control conditions. After 8 h of infection cells

were collected and GFP expression by the replication of MHV was

analyzed by fluorescence-activated cell sorting (FACS). As controls

siRNAs silencing GFP and negative-control siRNAs were used. A

hit from the screen was considered as confirmed when transfection

with at least two out three independent siRNAs resulted in

significant reduction in MHV-driven GFP expression relative to

the negative-control siRNAs. siRNA-mediated gene silencing of

ACTR2 and ACTR3 resulted in reduced infections for all three

siRNAs, indicating that actin branching is important for MHV

infection (Figure 1A, dark orange). Also the importance of the

RAB7A, RAB7B and VPS39 proteins, involved in late-endosome

and late-endosome to lysosome maturation, for MHV infection

could be confirmed (Figure 1A, turquoise and light green). The

importance of SNX1, VCL and PAK1 for infection of HeLa cells

with MHV could not be confirmed (Figure 1A, grey). The latter

three genes were not studied any further. To validate our

transfection protocol and confirm the efficacies of the siRNAs at

the mRNA level, quantitative RT-PCR analysis was performed.

All siRNAs used reduced the corresponding mRNA levels with

75–95% (Figure 1B). siRNAs targeting RAB7A were shown to

inhibit the expression of a RAB7a-fusion protein (Figure S1 in

Text S1).

To confirm and extend our understanding of the role of

endocytosis in MHV entry we subsequently selected a number of

proteins known to be involved in either caveolae- or clathrin-

mediated endocytosis, actin- or microtubule-mediated transport,

as well as proteins associated with endosomal vesicles and

endosomal maturation, to be screened using the siRNA silenc-

ing-approach described above. Again, proteins were considered

important for infection with MHV when transfection with at least

two out three independent siRNAs resulted in significant reduction

in MHV-driven GFP expression relative to the negative-control

siRNAs. siRNA-mediated downregulation of proteins involved in

caveolae-mediated endocytosis revealed that CAV2, but not the

other proteins analyzed are important for infection with MHV

(Figure 1C, light blue). Downregulation of most proteins associ-

ated with clathrin-mediated endocytosis inhibited MHV infection,

Figure 1. RNAi-mediated downregulation of endocytosis-associated proteins affects MHV infection. A) Confirmation of endocytosis-
associated hits from druggable genome-wide siRNA screen. Gene silencing was performed using individual transfection of three different siRNAs per
gene in HeLa-mCC1a cells. Cells were infected with MHV-EGFPM at MOI = 0.5 for 8 h and analyzed by FACS for cell viability and virus replication. The
effect of downregulation of expression on MHV infection was studied for the actin cytoskeleton-associated proteins ACTR2 and ACTR3 (orange), late
endosomal proteins RAB7A and RAB7B (turquoise), HOPS complex sububit VPS39 (light green), ER/Golgi secretion-associated protein SNX1, Integrin/
Actin-associated protein VCL, and Serine/Threonine-protein kinase PAK1 (grey). Error bars represent SEM, n= 4. B) Confirmation of siRNA-mediated
reduction in mRNA levels. mRNA levels at 72 h post transfection were measured by qRT-PCR in comparison to non-transfected cells. Error bars
represent SEM, n = 3*3. C) The effect of the RNAi-mediated downregulation of an extended set of endocytosis-associated proteins on MHV infection.
Infection of MHV-EGFPM was analyzed after downregulation of proteins associated with caveolae-mediated endocytosis (light blue), clathrin-
mediated endocytosis (dark blue), early endosomes (cerulean), actin cytoskeleton (dark orange), microtubule cytoskeleton (orange), late endosomes
(turquoise), and late endosome-to-lysosome trafficking (light green) as described above. Error bars represent SEM, n = 3. A, C) Dotted lines show the
lower 95% confidence interval of the negative siRNA controls.
doi:10.1371/journal.ppat.1004502.g001

Proteolysis-Dependent Coronavirus Entry via an Endo-/Lysosomal Pathway
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including DNM1, DNM2, CLTC, and DAB2. siRNA-mediated

silencing of EPS15 or AAK1, accessory factors of clathrin-mediated

endocytosis, did not affect MHV replication (Figure 1C, dark blue).

Silencing of early endosome-associated genes (EEA1, RAB5A,

RAB5B, and RAB5C; Figure 1C, cerulean) each decreased

replication-mediated GFP expression. While downregulation of

MYO6, involved in actin-based motility, did not influence MHV

infection (Figure 1C, dark orange), our results indicate that the

microtubule-associated motility proteins DYNC1H1 and

DYNC2H1 are important for infection with MHV (Figure 1C,

orange). Silencing of NSF, required for transport from early to late

endosomes [58], or of the HOPS subunits VPS11 and VPS41,

which are involved in late endosome to lysosome maturation

(Reviewed in [54]), all resulted in severely reduced MHV infection

(Figure 1C, turquoise and light green, respectively).

Endocytosis-affecting agents indicate clathrin-mediated
endocytosis and endosome maturation to be important
in MHV infection
To further explore the endocytic route and factors involved in

MHV infection we determined the effect of inhibitors on MHV

infection. HeLa-mCC1a cells were treated with endocytosis-

affecting agents for 30 min and then infected with luciferase-

expressing MHV (MHV-EFLM; [59]) in presence of the

inhibitors, after which the inhibitors were kept present until cell

lysis. When cells were inoculated with MHV-EFLM in the absence

of inhibitors, the inhibitors were added to the cells at 2 h post

infection (hpi) to assess effects of inhibitors on post-entry steps. At

7 hpi cells were lysed and firefly luciferase expression levels were

determined.

Infection in the presence of the solvents dimethyl sulfoxide

(DMSO) and methanol (MeOH), as well as the known inhibitors of

MHV RNA synthesis Brefeldin A (BrefA, inhibitor of GBF1) [60]

and MG132 (proteasome inhibitor, probably also affects MHV

entry; [61]) were included as controls. MHV infection was not

affected by addition of the solvents, whereas both MG132 and

BrefA severely decreased luciferase expression regardless of the

time of addition. Inhibition of endosome maturation with

ammonium chloride (NH4Cl), Bafilomycin A1 (BafA1), or

Chloroquine (Chloq) severely diminished luciferase expression

when the inhibitors were added prior to infection. Much smaller

effects were observed when these drugs were added at 2 hpi,

indicating that the inhibitors mainly affect MHV entry (Figure 2,

deep sky blue). Similar effects were observed with known inhibitors

of clathrin-mediated endocytosis; Chlorpromazine (Chlopro),

Monensin (Mon), Dynasore, and Dyngo-4A (Dyngo). All these

compounds strongly decreased MHV replication-mediated lucif-

erase expression when added early but not when added at 2 hpi

(Figure 2, dark blue). The actin- and macropinocytosis-affecting

drug EIPA, which inhibits the Na+/H+ exchanger NHE1, led to

reduced luciferase expression both when added prior to and after

entry of MHV at 2 hpi. Actin cytoskeleton altering drugs

Latrunculin A (LatA), Jasplakinolide (Jasp), Cytochalasin B

(CytoB), and Cytochalasin D (CytoD), or the inducer of

microtubule depolymerization Nocodazole (Noc) only decreased

MHV infection when added early, indicating a role for the actin

and microtubule cytoskeleton in entry but not RNA replication

(Figure 2, dark orange and orange). Likewise U18666A, a

cholesterol transport-affecting agent, which also prevents matura-

tion of late endosomes [62], had a strong inhibitory effect on

MHV infection when added early (Figure 2, turquoise). Collec-

tively, these results indicate an important role for clathrin-

mediated uptake and for endosome- and endosome-to-lysosome

maturation for MHV infection.

Clathrin-mediated endocytosis and late endosomal
factors are required for MHV fusion
The time-of-addition experiments with the different inhibitors

indicated that particularly the entry step of the MHV infection

cycle is negatively affected by perturbation of clathrin-mediated

endocytosis or of endosome maturation. However, assays based on

reporter gene expression driven by virus replication do not allow

discrimination between virus entry and RNA replication when

analyzing siRNAs or agents that also affect RNA synthesis. To

unequivocally demonstrate the importance of clathrin-mediated

endocytosis and endosome maturation for MHV entry, we

therefore made use of a fusion assay we recently developed [63].

The assay is based on minimal complementation of defective b-

galactosidase (b-galactosidase DM15) with the short a-peptide

[64]. MHV-aN, a recombinant MHV containing an N protein

tagged with the a-peptide (aN), is used to infect DM152fragment

expressing target cells. Upon fusion of the virion with a host cell

membrane aN is released into the cytoplasm resulting in

complementation of the defective b-galactosidase thereby recon-

stituting a functional enzyme. Conversion of the non-fluorescent

substrate fluorescein-di-b-D-galactopyranoside (FDG) by b-galac-

tosidase into green fluorophores fluorescein (FIC) can be measured

by FACS or fluorescence microscopy (Figure S2 in Text S1).

To analyze the effect of RNAi-mediated gene silencing on

fusion, HeLa cells expressing the MHV receptor and the DM152

fragment (HeLa-mCC1a-DM15 cells) were transfected with

individual siRNAs and inoculated with MHV-aN at 72 h post

transfection. Before infection cells were pre-loaded with FDG by

hypotonic shock. After 100 min incubation of cells with virus at

37uC, cells were collected and the amount of FIC generated as a

results of enzyme complementation analyzed by FACS. The fusion

assay showed that silencing of neither CAV1 nor CAV2 affected

MHV fusion (Figure 3A, light blue), even though reduction of

CAV2 was shown to affect MHV infection (Figure 1C). However,

downregulation of clathrin-mediated endocytosis associated pro-

Figure 2. Endocytosis affecting agents indicate clathrin-
mediated endocytosis and endosome maturation to be
important in MHV infection. HeLa-mCC1a cells, inoculated with
MHV-EGFPM at MOI = 0.5, were treated with the different inhibitors
from 30 min prior to 8 h post inoculation (0–8 h) or from 2–8 h post
inoculation (2–8 h; hatched bars): ammonium chloride (NH4Cl),
Bafilomycin A1 (BafA1), Chloroquine (Chloq), Chlorpromazine (Chlopro),
Monensin (Mon), Dynasore, Dyngo-4A, EIPA, Latrunculin A (LatA),
Jasplakinolide (Jasp), Cytochalasin B (CytoB), Cytochalasin D (DytoD),
Nocodazole (Noc), MG132, Brefeldin A (BrefA), as well as solvents
dimethyl sulfoxide (DMSO) and methanol (MeOH). Infection was
determined by FACS and displayed relative to the infection level
observed in mock-treated cells (UNTR). Error bars represent SEM, n= 3.
doi:10.1371/journal.ppat.1004502.g002

Proteolysis-Dependent Coronavirus Entry via an Endo-/Lysosomal Pathway
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teins DNM2 and CLTC lead to strongly decreased fusion, as did

the lack of early endosome-associated factors RAB5B and RAB5C

(Figure 3A, dark blue and cerulean, respectively). Fusion was also

affected by RNAi-mediated reduction of actin cytoskeleton-

associated proteins ACTR2 and ACTR3 (Figure 3A, dark

orange), proteins known to be involved in late endosome (RAB7A,

RAB7B) and late endosome-to-lysosome maturation (VPS11,

VPS39, and VPS41) (Figure 3A, turquoise and light green).

The importance of clathrin-mediated endocytosis and endo-

some maturation for MHV fusion was confirmed by analysis of

endocytosis-affecting agents using the fusion assay. After pre-

loading with FDG, cells were pre-treated with the inhibitors for

30 min at 37uC, after which cells were inoculated with MHV-aN

in the presence of the agents, and analyzed by FACS as described

above. As controls we included protein synthesis inhibitor

cycloheximide (CHX), MHV fusion inhibitor peptide HR2

(HR2, [20]), MG132 and BrefA. Fusion of MHV was not affected

by the solvents or CHX, the latter confirming that this assay is

independent of RNA replication and protein synthesis. MHV

fusion was barely affected by replication inhibitor BrefA, whereas

MG132 had a clear negative effect, in agreement with the

conclusion drawn previously that MG132 inhibits entry of MHV

as well as RNA synthesis [61]. Inhibition of endosomal maturation

by NH4Cl, BafA1 and Chloq (Figure 3B, deep sky blue) or of

clathrin-mediated endocytosis by Chlopro, Mon, and Dynasore

(Figure 3B, dark blue) severely inhibited MHV fusion. Distur-

bance of the actin cytoskeleton by EIPA or by LatA, CytoB, or

CytoD reduced fusion by 75–80% (Figure 3B, dark orange), while

interference with microtubule polymerization by Noc had a

smaller effect (Figure 3B, orange). Late endosomal maturation

arrest caused by U18666A reduced fusion to approximately 10%

(Figure 3B, turquoise). In conclusion, the replication-independent

fusion assay confirmed the importance of clathrin-mediated

endocytosis and of endosome maturation for entry of MHV.

The data indicate that late endosome-to-lysosome maturation is

required for efficient entry and fusion.

Live-cell microscopy confirms co-localization, co-tracking
and fusion of MHV in endosomal compartments
To confirm the importance of endocytic uptake and the

association of MHV with endosomal compartments we performed

live-cell confocal microscopy. To this end, sucrose density

gradient-purified MHV virus was covalently labeled with the

low-pH resistant dye DyLight 488 (MHV-DL488). HeLa-mCC1a

cells were transfected with plasmids to express monomeric RFP

(mRFP) fusion proteins of RAB5, RAB7, or LAMP1. At 24 h post

transfection, MHV-DL488 was bound to cells at 4uC for 90 min.

Inoculation medium was replaced by warm medium containing

trypan blue, which immediately shifts the emission spectrum of

surface bound particles rendering them undetectable in the 505–

530 nm channel unless they get endocytosed [65]. Cells were

imaged using a spinning-disc confocal microscope acquiring z-

stacks in 30 s intervals over 10 min time frames from 10–70 min

post warming. Only low-level RFP fusion protein expressing cells

were selected for analysis. Interestingly, MHV particles newly

appeared even 60 min post warming, in agreement with the

notion that MHV enters in an unsynchronized manner (unpub-

lished results). Co-localization and co-trafficking of viruses with

endosomal compartments was assessed by detecting virus particles

based on size and intensity (green channel) and by measuring the

underlying intensity in the red channel (endosomal vesicles). MHV

virions were found to co-localize with all three endosomal

compartments (Fig. 4A). Whereas newly entering/appearing

particles were always co-localizing with RAB5 molecules, they

only associated with RAB7 and LAMP1 containing vesicles at later

time points.

To assess the association of MHV with endosomal vesicles

during the entry process more extensively, we manually tracked

the virus particles in the green channel and independently tracked

the endosomal vesicles in the red channel in x/y and z-direction. A

virion was categorized as associating with a certain endosomal

marker only if this co-localization was observed over at least four

sequential 30 s interval images. When the initial co-localization

was lost, but the virion did not disappear, this virion was classified

as associating/dissociating. Complete disappearance of a virus

particle (including in other z-stacks) while immediately previously

co-localizing with an endosomal marker was categorized as a

Figure 3. Clathrin-mediated endocytosis and late endosome-
to-lysosome trafficking is required for MHV fusion. A) Fusion
assay upon siRNA-mediated gene silencing. Three different siRNAs per
gene were transfected individually into HeLa-mCC1a-DM15. 72 h post
transfection, cells were pre-loaded with FDG by hypotonic shock. MHV-
aN was allowed to bind to the cells on ice at MOI = 20 for 90 min.
100 min post warming to 37uC, cells were collected and analyzed by
FACS. Fusion was determined relative to the number of FIC-positive
cells observed upon mock treatment of infected cells (UNTR). Error bars
represent SEM, n= 3. B) Fusion of MHV upon treatment of cells with
different inhibitors was studied as in A. Cells were pretreated with
ammonium chloride (NH4Cl), Bafilomycin A1 (BafA1), Chloroquine
(Chloq), Chlorpromazine (Chlopro), Monensin (Mon), Dynasore,
Dyngo-4A, EIPA, Latrunculin A, (LatA), Jasplakinolide (Jasp), Cytochala-
sin B (CytoB), Cytochalasin D (DytoD), Nocodazole (Noc), U18666A,
MG132, Brefelding A (BrefA), as well as with the solvents dimethyl
sulfoxide (DMSO) and methanol (MeOH), protein synthesis inhibitor
cyclohexamide (CHX), and MHV fusion inhibitor HR2 peptide (HR2) for
30 min at 37uC. The inhibitors were kept present during binding of
MHV-aN to cells and during warming to 37uC cells for 100 min. Fusion
was determined relative to the number of FIC-positive cells after mock
treatment (UNTR). Error bars represent SEM, n= 3.
doi:10.1371/journal.ppat.1004502.g003
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fusion event (Figures S3 and S4 in Text S1). When a viral particle

co-localized with endosomal compartments but did neither

dissociate nor fade during the 10 min acquisition period it was

classified as non-fusing. With this quantification method we

analyzed 75–100 virions in total for each of the endosomal

compartment types studied. The fraction of virions not fusing

during the acquisition period was consistently found to be at

around 10–15%. We observed that all of the entering MHV

particles initially co-localized with RAB5-positive early endosomal

vesicles and that most virions dissociated (were no longer co-

localized) after 4–6 min. Notably, it appeared that in these events

the RAB5 marker faded rather than moved away. Only a very

small percentage of virions were categorized as fusing while in

early endosomes. The number of fusion events was much higher

for virions co-localizing with RAB7 or LAMP1 (Figure 4B),

indicating that most virions fuse in late endosomes or lysosomes.

MHV infection depends on endosomal maturation
Our results so far indicate that most virions enter cells after

having accessed late endosomes/lysosomes. We hypothesized that

these compartments provide the environmental cues required for

productive virus-cell fusion. In order to analyze to what extent the

low pH in the endosomal system is required for entry of MHV, we

analyzed the inhibition of MHV entry at different concentrations

of BafA1. While high concentrations of BafA1 (as used for the

results shown in Fig. 2 and 3) affect endosomal maturation, at low

concentrations this inhibitor of vacuolar-type H+-ATPase only

elevates the pH of endosomal compartments but does not affect

endosomal trafficking per se [66]. We made use of that property

and tested the sensitivity of MHV to BafA1 side by side with the

control viruses VSV and IAV. VSV has been described to fuse at

pH 6.2 in early and/or late endosomes [9,11,12,67–69], while

IAV has been shown to fuse in late endosomes at an even lower

pH [9,10,70]. HeLa or HeLa-mCC1a cells were pretreated with

increasing concentrations of BafA1 for 30 min prior to infection

with reporter gene expressing viruses: VSV (VSVDG/FLuc-G*;

[71,72]), IAV (IAV-RLuc; [73]), or MHV (MHV-EFLM).

Luciferase expression levels indicated that infection of cells with

VSV and IAV is much more affected by BafA1, with an IC50

values of 0.80 and 0.63 nM, respectively, compared to MHV,

which displays a three to four fold higher IC50 of 2.34 nM

(Figure 5A).

Our results thus indicate that MHV is much less affected by

perturbation of the endosomal pH than VSV and IAV.

Nevertheless RNAi-mediated silencing of HOPS subunits and

treatment of cells with U1866A indicates that late endosome-to-

lysosome maturation is required for efficient entry. To confirm

Figure 4. Live-cell microscopy demonstrates co-localization
and co-tracking of MHV with endosomal vesicles and fusion of
MHV in these vesicles. HeLa-mCC1a cells transfected with plasmids
encoding RAB5-mRFP, RAB7-mRFP, or dsRed-LAMP1 were inoculated
with DyLight 488-labeled MHV. Live cell imaging was performed to
track internalized particles. A) Examples of MHV particles co-localizing
with RAB5-, RAB7-, and LAMP1-positive endosomal vesicles. Size bars
indicate 0.2 mM B) Virus particles that could be tracked were classified
as ‘fusing’ (Fusing) ‘associating/dissociating’ (Assoc/Dissoc), or ‘non-
fusing’ (Non-fusing) as described in the Materials and Methods section.
doi:10.1371/journal.ppat.1004502.g004

Figure 5. MHV infection depends on endosomal maturation. A)
HeLa-mCC1a cells were pretreated with increasing concentrations of
Bafilomycin A1 (BafA1) for 30 min and subsequently infected with
luciferase expressing MHV, VSV, or IAV in the presence of BafA1.
Infection levels were determined by assaying the luciferase activity in
cell lysates relative to lysates of infected cells that had been mock
treated. Error bars represent SEM, n = 3*3. B) Haploid cells (HAP1),
haploid cells lacking VPS33A (H1-DV33) or VPS33A-lacking haploid cells
retransfected with FLAG-tagged VLP33A (H1-DV33-fV33) were infected
with luciferase expressing MHV, VSV, or IAV. Cells were lysed at 7 h
(MHV and VSV) or 16 h post infection. Infection is displayed relative to
virus-driven luciferase expression levels in HAP1 cells. Error bars
represent SEM, n = 3*3.
doi:10.1371/journal.ppat.1004502.g005
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and extend these observations, we made use of haploid HAP1 cells

lacking a functional HOPS complex resulting from lentiviral-

mediated knockout of the VPS33A subunit (H1-DV33 cells;

[74]).Both HAP1 cells and H1-DV33 cells were modified to stably

express the MHV receptor. As a control, the H1-DV33 cells were

in addition stably transfected with FLAG-tagged VPS33A (H1-

DV33-fV33). The different cells expressed similar levels of the

MHV receptor as determined by FACS analysis (Figure S5 in Text

S1). Expression of FLAG-VPS33A was confirmed by Western blot

(Figure S6 in Text S1). Functional reconstitution was confirmed by

confocal fluorescence imaging of lysosome localization (Figure S7

in Text S1). While in the knockout cells the lysosomes were

clustered, the lysosomes were dispersed again throughout the

cytoplasm in the FLAG-VPS33A re-transfected cells, as observed

in the HAP1 parental cells. The haploid cells were infected with

luciferase reporter gene-expressing MHV, VSV, or IAV at low

MOI. Cells were lysed at 7 (MHV and VSV) or 16 (IAV) hpi and

luciferase expression levels were determined. The lack of a

functional HOPS complex had no effect on VSV and IAV

infection; however, MHV infection was strongly reduced in the

knockout, but not in the re-transfected cells (Figure 5B). These

observations confirm the conclusion that late endosome-to-

lysosome maturation is required for efficient entry of MHV, a

characteristic that is not shared with the pH-sensitive VSV and

IAV.

Inhibition of lysosomal proteases prevents MHV fusion
Considering that MHV was much less affected by perturbation

of the endosomal pH than IAV and VSV while it requires

trafficking to lysosomes for efficient entry, we hypothesized that

entry might depend on cleavage of a viral protein by lysosomal

proteases. Hence we analyzed the extent to which different

protease inhibitors could inhibit MHV entry. Thus, HeLa-

mCC1a-DM15 cells were pretreated for 30 min with the different

inhibitors, after which the cells were inoculated with MHV-aN in

inhibitor-containing medium. Cells were collected, loaded with

FDG, and FDG conversion to FIC by complementation of b-

galactosidase upon viral fusion was assessed by FACS. Our results

indicate that most protease inhibitors tested (Fig. 6) hardly

inhibited fusion of MHV, if at all. Exceptions were AEBSF, which

has been shown to cause aggregation of early endosomal vesicles

[75], and a pan-lysosomal protease inhibitor (CPI; cystatin-

pepstatin inhibitor) capable of inhibiting the three major protease

family members found in lysosomes. Thus, by using CPI we

measured the combined effects of an endosomal papain-like

cysteine protease inhibitor (PLCP), an aspartyl protease inhibitor,

and an asparagine endopeptidase inhibitor (AEP) [76]. From these

results we conclude that inhibition of a broad range of endosomal

proteases efficiently blocks fusion of MHV, indicating that efficient

entry requires the activity of lysosomal proteases.

Introduction of a furin cleavage site immediately
upstream of the fusion peptide renders MHV
independent of lysosomal proteases
In general, class I fusion proteins require cleavage just upstream

of the FP to render them fusion competent [20,38,77]. However,

while the S protein of MHV is cleaved at the S1/S2 boundary

(Fig. 7A), no protease cleavage site has been identified close to the

fusion peptide. In view of the inhibition of MHV entry by the pan-

lysosomal protease inhibitor CPI and in analogy to other class I

fusion proteins, we hypothesized that an additional cleavage in the

S protein, immediately upstream of the FP, is necessary to induce

fusion. To test this hypothesis, we introduced an optimal furin

cleavage site (FCS) by substituting three amino acids by Arg

(AIRGRRRRRRR) immediately upstream of a highly conserved

Arg (indicated in bold) that occurs just N-terminal of the FP.

Recombinant MHV carrying this FCS in its S2 subunit was

designated MHV-S29FCS. (Figure 7A). Western blot analysis of

the S protein of a purified stock of this virus using an antibody

recognizing the S2 subunit showed no evidence of cleavage at the

newly introduced FCS (S29 site). Apparently, cleavage at this

position does not occur during virus production (Figure S8 in Text

S1). MHV carrying wild type or mutant S proteins displayed

similar growth kinetics (Figure S9 A and B in Text S1). Next we

analyzed whether the introduced FCS affected the sensitivity of the

recombinant MHV to CPI, which does not exhibit inhibitory

activity towards furin. Thus, HeLa-mCC1a cells were pretreated

with CPI for 30 min and subsequently infected with wild type S

(MHV-EFLM) or mutant S (MHV-S29FCS) containing viruses

expressing luciferase reporter genes in the presence of the protease

inhibitor. At 7 hpi the cells were lysed and viral-replication

dependent luciferase expression levels were determined. Introduc-

tion of the FCS resulted in the recombinant virus being no longer

sensitive to inhibition by lysosomal proteases (Figure 7B), probably

because the S protein is now cleaved by furin in an endocytic

compartment.

Furin inhibitor renders MHV-S29FCS sensitive to
endosomal maturation and decreases infection
To confirm that MHV-S29FCS is no longer dependent on

cleavage by lysosomal proteases, and to study its presumed

dependence on furin cleavage for entry, we analyzed the ability of

MHV-S29FCS to infect the haploid cells that lack VPS33A - and

thus the functional HOPS complex required for late endosome-to-

lysosome maturation - in the absence or presence of furin inhibitor

(FI). After pretreatment of MHV receptor-expressing HAP1, H1-

DV33, and H1-DV33-fV33A cells with furin inhibitor (FI) or mock

treatment, cells were inoculated with MHV-EFLM or mutant

virus MHV-S29FCS in presence or absence of FI. At 7 hpi the

cells were lysed and viral-replication dependent luciferase expres-

sion levels were determined. In agreement with previous results

Figure 6. Inhibition of lysosomal proteases prevents MHV
fusion. The MHV fusion assay was performed on HeLa-mCC1a-DM15
cells as described in the legend to Figure 3, in the presence of the
protease inhibitors CPI, AEBSF, Aprotinin, Leupeptin, Pepstatin A,
Camostat, and Phosphoramidon. As controls, cells were treated with
solvent DMSO, MHV fusion inhibitor HR2 peptide (HR2), and
lysosomotropic agent ammonium chloride (NH4Cl). Fusion was
determined relative to the number of FIC-positive cells after mock
treatment (UNTR). Error bars represent SEM, n= 3.
doi:10.1371/journal.ppat.1004502.g006
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(Fig. 5), infection with MHV carrying a wild type S was severely

reduced in cells lacking a functional HOPS complex and addition

of the FI did not alter this effect (Figure 8, red bars). In contrast,

infection with MHV-S29FCS was not decreased by the lack of a

functional HOPS complex. However, FI treatment had a clearly

negative effect on this virus, which was much more dramatic in the

absence of a functional HOPS complex in H1-DV33 cells

(Figure 8, blue). In conclusion, MHV-S29FCS lost the require-

ment for a functional HOPS complex in parallel with this virus

becoming insensitive to the pan-lysosomal protease inhibitor CPI.

In contrast to the virus with the wild type S, the mutant virus

became sensitive to inhibition of furin cleavage.

MHV-S29FCS fuses in early endosomes
To explore MHV-S29FCS entry requirements further we

assessed the effect of RNAi-mediated downregulation of early

and late endosome and HOPS complex associated genes.

Therefore, HeLa-mCC1a-DM15 cells were transfected with each

of three different siRNAs per gene for 72 h, after which they were

infected with wild type (MHV-EFLM) or mutant (MHV-S29FCS)

S protein containing MHV. At 7 hpi the cells were lysed and viral-

replication dependent luciferase expression levels were deter-

mined. As found previously (Fig. 1), infection with wild type S

protein carrying MHV was reduced after gene silencing of RAB5,

RAB7, VPS11, and VPS41 (Figure 9, red bars). On the other

hand, infection with MHV-S29FCS was significantly diminished

by downregulation of the early endosomal proteins RAB5B and

RAB5C, but not of the late endosomal proteins RAB7A and

RAB7B or the HOPS complex components VPS11 and VPS41

(Figure 9, blue bars). Consistently, infections with MHV carrying

wild type or mutant S protein were equally blocked by inhibitors of

clathrin-mediated endocytosis whereas the virus with the mutant S

(MHV-S29FCS) was much less sensitive to inhibitors of endosomal

maturation, including BafA1, or to perturbants of the actin

cytoskeleton (Figure S10 in Text S1). From these results we

conclude that introduction of a FCS immediately upstream of the

FP abolishes the requirement for trafficking of virions to lysosomes

and for processing by lysosomal proteases. The resulting virus,

which still depends on clathrin-mediated endocytosis, now requires

furin cleavage for efficient entry, the enzymes for which occur

earlier in the endocytic pathway [78].

Entry of other CoVs
Our results indicate that the protease cleavage site upstream of

the spike protein FP is an important determinant of the

intracellular site of fusion. To gain more insight into the putative

protease cleavage sites in the corresponding region of the S

proteins of other CoVs, we analyzed the sequence of this region in

several alpha, beta and gamma coronaviruses by performing

Figure 7. Introduction of a furin cleavage site just upstream of
the fusion peptide renders MHV independent of lysosomal
proteases. A) Schematic representation of the MHV spike protein. The
MHV S proteins are partially processed by furin at the S1/S2 boundary
(S1/S2) as indicated by the arrow. The furin cleavage site sequence at
this position (RRAHR) is shown. The signal sequence (SS) at the amino-
terminal end of the S1 subunit and the approximate positions of the
fusion peptide (FP), heptad repeat regions 1 and 2 (HR1 and HR2) and
the transmembrane domain (TM) in the S2 subunit are indicated. MHV-
S29FCS virus contains an optimal furin cleavage site (RRRRR) immedi-
ately upstream of the FP (S29, indicated by the arrow. B) Effect of pan-
lysosomal protease inhibitor (CPI) on MHV and MHV-S29FCS infection.
HeLa-mCC1a cells were pretreated with CPI for 30 min and inoculated
at MOI = 0.2 with luciferase expression cassette containing MHV-EFLM
or MHV-S29FCS in the presence of CPI, after which incubations were
continued in the presence of CPI until 7 hpi. Infection levels were
determined by measuring the luciferase activity in cell lysates relative to
mock-treated cells. Error bars represent SEM, n = 3*3.
doi:10.1371/journal.ppat.1004502.g007

Figure 8. Furin inhibitor reduces infection with MHV-S29FCS
and renders the virus sensitive to endosomal maturation.
Haploid HAP1 cells (HAP1), haploid cells lacking VPS33A (H1-DV33) or
VPS33A-lacking haploid cells retransfected with FLAG-tagged VLP33A
(H1-DV33-fV33) were infected (MOI = 0.2) with MHV-EFLM (MHV-wt) or
MHV-S29FCS for 7 h. Where indicated, cells were treated with furin
inhibitor (FI). Infection levels were determined by measuring the
luciferase activity in cell lysates relative to mock-treated cells. Error bars
represent SEM, n= 3*3.
doi:10.1371/journal.ppat.1004502.g008

Figure 9. MHV-S29FCS fuses in early endosomes. siRNA-mediated
gene silencing was performed as described in the legend to Figure 1. At
72 h post transfection, HeLa-mCC1a were inoculated with MHV-EFLM or
MHV-S29FCS at MOI = 0.2 and incubated until 7 hpi. Infection levels
were determined by measuring the luciferase activity in cell lysates
relative to mock-treated cells. Dotted line shows the lower 95%
confidence interval of the negative siRNA controls. Error bars represent
SEM, n = 3*3.
doi:10.1371/journal.ppat.1004502.g009
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ClustalW sequence alignment. The fusion peptide sequence was

found to be highly conserved amongst the different coronaviruses.

Also an Arginine residue immediately upstream of the predicted

fusion peptide is highly conserved with the exception of FIPV

(serotype II). Interestingly, MERS-CoV and IBV-Beaudette

contain a minimal furin cleavage site Arg-X-X-Arg just upstream

of the fusion peptide (Figure 10A). In analogy with the results

obtained with FCS-mutant MHV, we predicted that FIPV and

MERS-CoV would differ in their protease inhibitor sensitivity and

lysosomal trafficking requirements. To corroborate these findings,

we decided to analyze the entry of these two other coronaviruses.

To this end, HeLa cells expressing the FIPV receptor (HeLa-

fAPN cells) were subjected to siRNA-mediated downregulation of

late endosomal proteins RAB7A and RAB7B or of HOPS

complex subunits VPS11, VPS41, and VPS39, followed by

inoculation with luciferase expressing FIPV (FIPV-D3abcRL;

[79]). Infection with FIPV was significantly affected by siRNA-

mediated downregulation of proteins required for late endosome-

to-lysosome fusion (Figure 10B). Since the requirement for a

functional HOPS complex is indicative of fusion in lysosomes, as

we observed for MHV, we analyzed whether FIPV requires

processing by lysosomal proteases for efficient entry as well. The

results indicate that this is indeed the case as FIPV-driven

luciferase expression was diminished in the presence of the pan-

lysosomal protease inhibitor CPI (Fig. 10C). On the other hand,

infection with FIPV was not affected by FI.

As MERS-CoV carries a FCS in its S protein immediately

upstream of the FP, we hypothesized this virus not to require

trafficking to lysosomes and processing by lysosomal proteases for

efficient entry. To test this prediction, Huh-7 cells were pretreated

with FI or the pan-lysosomal protease inhibitor CPI for 30 min.

Cells were subsequently inoculated with MERS-CoV at a MOI of

0.1 in the presence of these inhibitors. At 8 hpi the cells were fixed

and the number of infected cells determined using immunocyto-

chemistry and wide-field microscopy. The results indicate that, in

contrast to wild type MHV and FIPV, but similarly to

recombinant MHV carrying a FCS immediately upstream of the

FP, infection with MERS-CoV is strongly inhibited by the FI but

not by CPI (Figure 11), indicating that MERS-CoV does not

require trafficking to lysosomes for efficient entry. Based on these

results we conclude that the cleavage site in the CoV S protein

immediately upstream of the FP is a key determinant of the

intracellular site of fusion.

Discussion

The results of this study provide an explanation for several,

apparently conflicting results from earlier studies with respect to

the process of MHV cell entry, particularly also regarding the

necessity of proteolytic cleavage of the CoV S protein. By using a

replication-independent fusion assay, we confirmed that MHV

entry requires clathrin-mediated endocytosis despite the well-

Figure 10. Entry of FIPV. A) Clustal W alignment of spike proteins from several coronaviruses. Displayed is the fusion peptide (boxed) and the area
upstream thereof. The area immediately upstream of the fusion peptide that contains the optimal FCS site (RRRRR) in MHV-S29FCS is also boxed. B)
siRNA-mediated gene silencing was performed as described in the legend to Figure 1. At 72 h post transfection, HeLa-fAPN cells were inoculated at
MOI = 0.2 with luciferase expressing FIPV-RLuc. At 7 hpi infection was determined by measuring the luciferase activity in cell lysates and displayed
relative to mock treated infection (inf). Error bars represent SEM, n = 3*3. Dotted line shows the lower 95% confidence interval of the negative siRNA
controls. C) HeLa-fAPN cells inoculated with FIPV-Rluc at MOI = 0.1 were treated with pan-lysosomal protease inhibitor (CPI) or furin inhibitor (FI) from
30 min prior to 7 h post inoculation (0–7 h) or from 2–7 h post inoculation (2–7 h; hatched bars). Infection levels were determined by measuring the
luciferase activity in cell lysates relative to mock-treated cells. Error bars represent SEM, n = 3*3.
doi:10.1371/journal.ppat.1004502.g010
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known ability of the MHV S protein to cause cell-cell fusion at

neutral pH. We demonstrate that MHV particles traffic to and

fuse in lysosomes. Yet, MHV is much less sensitive to perturbation

of the low pH in the endo-/lysosomal system than low pH-

dependent control viruses VSV and IAV. Our results additionally

indicate that, for fusion to occur, the S protein of MHV requires

proteolytic cleavage immediately upstream of the FP, like other

class I fusion proteins. Efficient inhibition of MHV entry was only

observed using a pan-lysosomal protease inhibitor, and could not

be achieved using more specific protease inhibitors. Introduction

of an optimal furin cleavage site in the S protein immediately

upstream of the FP abolished the requirement for trafficking of

virions to lysosomes for fusion. However, this virus still required

clathrin-mediated uptake for efficient entry. Consistent with a

common mechanism for the entry of CoVs, FIPV, but not MERS-

CoV, the latter of which contains a furin cleavage site immediately

upstream of the FP, was shown to require trafficking to lysosomes

and processing by lysosomal proteases for efficient entry. Based on

these results we propose a model in which the cleavage site

immediately upstream of the FP is an essential determinant of the

intracellular site of CoV fusion (Figure 12).

The importance of clathrin-mediated endocytosis and endoso-

mal trafficking in the entry of MHV was revealed by several

complementary approaches. One of these was siRNA-mediated

gene silencing. Although - with the exception of RAB7A -

knockdown was not monitored at the protein level, we believe this

approach firmly demonstrates the importance of novel host factors

for several reasons. Validated siRNAs were used and the

experimental conditions were confirmed by analyzing the mRNA

expression levels of several genes by quantitative RT-PCR.

Furthermore, we made use of three independent siRNAs per

target gene, and a target was only classified as a hit when at least

two out three siRNAs showed the same phenotype. Importantly,

our findings were strengthened by targeting multiple proteins per

host cell pathway/complex, each time with very similar results.

Moreover, hits obtained with the replication-dependent reporter

assays were confirmed with our novel replication-independent

enzyme complementation entry assay. Also the use of recombinant

viruses differing only in their spike proteins enabled us to show that

inhibition of virus infection upon siRNA transfection resulted from

differences in virus entry and not virus replication. Finally, the

results obtained were corroborated by using a large panel of

inhibitors and by making use of haploid knockout cells, in which

late endosome-to-lysosome trafficking was inhibited.

Our results demonstrate that MHV requires endocytic uptake

for virus entry despite the S protein’s ability to induce cell-cell

fusion at neutral pH. Endocytic uptake is also required for a

mutant virus carrying a S protein with a FCS immediately

upstream of its FP, despite the relative insensitivity to high

concentrations of BafA1. Therefore, the ability of a virus to infect

cells in the presence of BafA1 does not necessarily imply virus

entry to occur at the cell surface. Also a recombinant MHV

carrying the spike protein of MHV-4 (MHV-JHM) was found to

enter via clathrin-mediated endocytosis (MHV-S4; Figure S10 in

Text S1) despite its ability to cause extensive cell-cell fusion [80–

82]. The ability of MHV to cause cell-cell fusion at neutral pH

while requiring endocytic uptake for virus-cell fusion suggests

different requirements and triggers for these two fusion processes.

Similarly, RSV was recently shown to enter cells after endocytic

uptake despite the ability of this virus to cause cell-cell fusion

[13].

The present study confirms and extends previous publications

on MHV entry via clathrin-mediated endocytosis [26,83]. Both

siRNAs downregulating clathrin-mediated endocytosis-associated

proteins, such as clathrin heavy chain (CLTC) and Dynamin 2

(DNM2), and agents affecting this uptake pathway (Chlopro,

Dynasore, Dyngo-4a) were capable of inhibiting infection with

MHV. Importantly, these findings could be confirmed in our

novel replication-independent virus-cell fusion assay, thereby

directly showing an involvement of clathrin-mediated endocytosis

in entry of MHV. Analysis of several accessory factors of clathrin-

mediated endocytosis showed that clathrin-mediated entry of

MHV strain A59 depends on clathrin-adaptor DAB2, but not on

EPS15 or AAK1. Previously, clathrin-mediated entry of MHV

strain 2 was also shown to be independent of EPS15 [83]. Based

on the use of inhibitors, it was earlier concluded that MHV entry

depends on cholesterol and lipid-rafts, which may be indicative of

caveolae-mediated endocytosis [84,85]. Although our replication-

dependent assays indicate a requirement for caveolin 2 (CAV2)

for infection, this protein was shown not to be involved in virus

entry using our fusion assay. Also depletion of other proteins

involved in caveolae-mediated endocytosis, including caveolin 1

(CAV1) and flotillins 1 and 2 (FLOT1 and FLOT2) did not affect

MHV infection or fusion. Interestingly, fusion of MHV was

severely inhibited by EIPA, an inhibitor of the Na+/H+

exchanger NHE1, which is regarded as a hallmark inhibitor of

macropinocytosis. Apparently, inhibition of virus entry by EIPA

does not prove by itself that a virus enters via this particular

pathway. EIPA has been reported to affect several other cellular

processes, including actin remodeling, internalization of lipid

rafts, distribution of endosomes, and even clathrin-mediated

endocytosis [86–90]. Similar to the results obtained with the

HeLa cells, also infection of murine LR7 cells was inhibited by

compounds interfering with clathrin-mediated endocytosis (Fig-

ure S11A in Text S1).

MHV virions require trafficking through the endocytic pathway

to lysosomes for efficient entry. Upon clathrin-mediated uptake

these virions are temporarily associated with early endosomes as

demonstrated by co-localization with RAB5 during live cell

imaging. Furthermore, the importance of early endosomes for

entry was indicated by siRNA-mediated downregulation of various

proteins associated with early endosomes (EEA1, RAB5A,

RAB5B, and RAB5C), which inhibited MHV infection, as well

as virus-cell fusion. However, only very few MHV particles

appeared to fuse in the early endosomes. Live cell imaging

indicated fusion largely to occur in late endosomes and/or

Figure 11. MERS-CoV requires cleavage by furin but not by
lysosomal proteases for infection. Huh-7 cells inoculated with
MERS-CoV were treated with furin inhibitor (FI) or pan-lysosomal
protease inhibitor (CPI) starting from 30 min prior to inoculation.
Numbers of infected cells was determined by immunocytochemical
staining. Error bars represent SEM, n= 3.
doi:10.1371/journal.ppat.1004502.g011
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lysosomes. Consistently, depletion of host proteins associated with

late endosome and late endosome-to-lysosome maturation

(RAB7A, RAB7B, and the HOPS complex subunits VPS11,

VPS33A, VPS39 and VPS41) or addition of U18666A, which

blocks late endosome-to-lysosome trafficking, were shown to

inhibit both infection and virus-cell fusion. The importance of

lysosomes for entry was confirmed by using knockout cells lacking

a functional HOPS complex (For a review on the HOPS complex

see [54]). Interestingly, in these cells lysosomes are clustered in a

perinuclear region of the cell rather than dispersed throughout the

cytoplasm. Complementation of the missing HOPS subunit

restored the normal lysosome distribution and entry of MHV

(Figure S7 in Text S1). The importance of late endosome-to-

lysosome trafficking for efficient entry was also observed in murine

cells (Figure S11C in Text S1) and for MHV-S4 carrying the S

protein of MHV-4 (JHM; Figures S10 and S12 in Text S1).

Corroborating the importance of trafficking of MHV virions

through the endocytic pathway, perturbation of endosome

maturation by the addition of inhibitory agents, such as

ammonium chloride, BafA1, Chloroquine, and Monensin inhib-

ited infection and fusion of MHV. Also the importance of the actin

and microtubule cytoskeleton - as demonstrated by the inhibition

of MHV entry by downregulation of the Arp2/3 complex factors

(ACTR2 and ACTR3), of the microtubule-associated transporter

dynein (DYNC1H1 and DYNC2H1), or by addition of actin- or

microtubule-affecting drugs - may be explained by the document-

ed involvement of the cytoskeleton in endosome maturation

(reviewed in [7]). Indeed, entry of MHV-S29FCS, which

presumably fuses in early endosomes, was much less affected by

actin-affecting drugs than that of MHV carrying wild type spike

proteins (Figure S10 in Text S1). However, we cannot exclude that

actin also plays a role in the clathrin-mediated uptake of MHV

particles, as has been observed for VSV and other pathogens that

depend on clathrin-mediated endocytosis (reviewed in [91]).

MHV particles require trafficking to the low pH environment of

lysosomes to achieve membrane fusion. Nevertheless, MHV was

much less sensitive to elevation of pH in the endo-/lysosomal

system by the addition of BafA1 than viruses known to fuse in early

or late endosomes (VSV and IAV). BafA1, an inhibitor of

vacuolar-type H+-ATPase was effective in blocking MHV entry

only at high concentrations, which are known to prevent

endosomal maturation in addition to the elevation of the pH

[66]. The absence of a functional HOPS complex, which is

required for late endosome-to-lysosome maturation, did not affect

Figure 12. Model of early and late coronavirus fusion.MHV and MHV-S29FCS are taken up by DAB2-dependent clathrin-mediated endocytosis
to end up in RAB5-containing early endosomes. The FCS of MHV-S29FCS is cleaved by furin or furin-like enzymes to allow fusion of the virus in early
endosomes. Trafficking of MHV from late endosomes to lysosomes (RAB7/LAMP1-positive compartments) is required for processing of MHV by
lysosomal proteases and viral fusion to occur. We propose that the sequence immediately upstream of the FP is a key determinant of the intracellular
site of fusion. MERS-CoV and FIPV enter cells via fusion in early endosomes or lysosomes, respectively. MERS-CoV, which contains a minimal FCS, is
inhibited by furin inhibitor (FI) but not by the pan-lysosomal protease inhibitor (CPI). The opposite holds true for FIPV. Based on this model, we
predict that IBV strain Beaudette and HCoV-NL63, which contain FCSs (Fig. 10), to fuse in early endosomes in a furin-dependent manner. Other CoVs
that do not contain a FCS at this position are predicted to fuse in lysosomes.
doi:10.1371/journal.ppat.1004502.g012
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infection of cells with VSV or IAV, while entry of MHV was

severely reduced. Thus, the low pH trigger that mediates entry of

VSV and IAV in the endosomal system of these cells, is not

sufficient to induce fusion of MHV. Other environmental cues,

present in lysosomes only, are apparently required to activate

conformational changes in the S protein leading to fusion. Indeed,

inhibition of the three major classes of proteases present in the

lysosome by CPI effectively prevented MHV fusion. Infection of

murine LR7 cells with MHV was also inhibited by CPI (Figure

S11B in Text S1). Strikingly, other inhibitors that affect members

of a single protease family had none or only little impact on MHV

fusion. These results are in consistence with a functional

redundancy of protease family members [47,76] and may explain

why previous studies using specific lysosome protease inhibitors

[27,92] failed to detect entry inhibition. Also, the inhibition of

MHV entry by MG132 may be explained by the known ability of

the proteasome inhibitor to negatively affect lysosomal proteases

[93–95], although we cannot exclude that MG132 affects entry by

its interference with lysosomal trafficking [96].

Our results indicate that cleavage of the S protein immediately

upstream of the FP is essential for CoV entry and determines the

intracellular site of fusion. Although we did not demonstrate

cleavage of MHV S at the FP proximal position directly, a recent

study found a cleaved form of the MHV S2 subunit to

correspond with the fusion-active form [49]. Furthermore,

introduction of an optimal FCS at the FP proximal position

abolished the entry inhibition by the pan-lysosomal protease

inhibitor whilst introducing a dependency on furin-related

enzymes. Consistent with the known presence of active furin in

early endosomes (reviewed in [78]) the mutant virus no longer

required trafficking to late endosomes/lysosomes for entry to

occur. However, in the presence of furin inhibitor, entry of this

mutant MHV was much more efficient in wild type cells than in

cells lacking a functional HOPS complex (Fig. 8), indicating that

under certain circumstances lysosomal proteases may play a role

in entry of this virus as well. Trafficking of virions to lysosomes

was shown to be also important for entry of FIPV, but not of

MERS-CoV, in agreement with the latter virus containing a

putative FCS immediately upstream of the FP. Correspondingly,

entry of FIPV was inhibited by the pan-lysosomal protease

inhibitor CPI but not by furin inhibitor, while the reciprocal held

true for MERS-CoV. The importance of S protein cleavage

downstream of the S1/S2 boundary and upstream of the FP for

infection has so far only been demonstrated for SARS-CoV and

IBV [40,43,46–48].

Based on the present study and on the work of others, we

conclude that cleavage at the FP proximal position is likely to be a

general requirement for CoV entry. With the exception of

possibly IBV, cleavage at this position does not appear to occur in

the virion-producing cell as it is not observed in released virions,

but in the target cell (this study; [40,43,47,48]). This suggests that

receptor binding or other environmental cues are necessary to

render the cleavage site accessible for proteolysis in the intact

virion. Also for several other viruses, including RSV [13] and

Ebola virus [16], cleavage of the fusion protein upon endocytosis

has been shown to be required for entry. Our results furthermore

show that cleavage at a FP-proximal position is an important

determinant of the intracellular site of fusion. The question

remains, however, why some CoVs evolved to fuse in early

endosomal vesicles while others require trafficking to lysosomes.

In view of the growing number of proteases that have been shown

to cleave CoV spike proteins [97], this question should probably

be studied in relation to the proteolytic enzymes available in the

CoV target tissues and cells in vivo.

Materials and Methods

Cells and viruses
Murine LR7 fibroblast [98] and feline FCWF cells (ATCC)

were used to propagate the recombinant MHV and FIPV viruses,

respectively. HEK293T, MDCK and Vero cells were used to

propagate pseudotyped VSVDG/Luc-G*, Renilla luciferase

expressing influenza A pseudovirus, or MERS-CoV, respectively,

as described previously [71,73,99]. Cells were maintained as

monolayer cultures in Dulbecco’s modified Eagle’s medium

(DMEM, Lonza), supplemented with 10% fetal bovine serum

(FBS). HeLa-ATCC cells stably expressing murine CEACAM1a

(HeLa-mCC1a) and LR7 cells were used for infection experiments

with MHV. HeLa-mCC1a cells stably expressing the deficient b-

galactosidase DM15 (HeLa-mCC1a-DM15) were used in the

fusion assay. Stable cell lines were generated using a Moloney

murine leukemia (MLV) retroviral vector. MLV was produced in

HEK293T cells by triple plasmid transfection of a transfer vector

containing the DM15 or mCC1a gene as well as a puromycin or

neomycin resistance marker gene, respectively, in combination

with expression vectors encoding the MLV Gag-Pol, and the VSV

spike protein G. Upon MLV transduction, stably transduced cells

were selected at 2 mg/ml puromycin and/or 0.5 mg/ml G418

(both Sigma), maintenance at 1 mg/ml puromycin and/or

0.5 mg/ml G418 in DMEM, supplemented with 10% FBS.

HAP1 cells and the VPS33A knockout derivative thereof (H1-

DV33) have been described previously [74]. H1-DV33 cells were

stably transfected with FLAG-tagged VPS33A (H1-DV33-fV33)

using MLV transduction as described above using a blasticidin

resistance marker gene in the transfer vector. Stably transduced

cells were selected and maintained at 5 mg/ml blasticidin. HAP1

cells and its derivatives were also provided with mCC1 as

described above to allow infection of these cells with MHV.

Chemicals
The MHV fusion inhibitor HR2 peptide has been described

before [100] and was synthesized by GenScript. The peptide was

diluted in Tris/HCl 50 mM, pH 7.8, 4 mM EGTA at 1 mM stock

solution and used at 10 mM final concentration. Fluorescein-di-b-

D-galactopyranoside (FDG) (AnaSpec) was dissolved in DMSO

resulting in a 20 mM stock solution. Stocks of 700 mM

cycloheximide (CHX, Sigma), 125 mM Bafilomycin A1 (BafA1,

Enzo Life Sciences), 140 mM Chloroquine (Chloq, Sigma),

120 mM Dynasore (Dyn, Enzo Life Sciences), 15 mM Dyngo-4a

(Dyngo, Abcam), 100 mM Ethylisopropyl amiloride (EIPA, Enzo

Life Sciences), 1 mM Nocodazole (Noc, Sigma), 1 mM Latruncu-

lin A (LatA, Enzo Life Sciences), 2 mM Jasplakinolide (Jasp,

Sigma), 20 mM Cytochalasin B (CytoB, Sigma), 20 mM Cyto-

chalasin D (CytoD, Sigma), 25 mM MG132 (Sigma), 1 mM

Brefeldin A (BrefA, Sigma), and 10 mM Furin Inhibitor I (FI,

Calbiochem) were prepared in DMSO and diluted 1:1000 in the

experiments, except when indicated otherwise. Stocks of 2 M

ammonium chloride (NH4Cl, Fluka), 5 mM AEBSF, 5 mM

Leupeptin, 1 mM Camostat, 1 mg/ml Aprotinin (all obtained

from Sigma) were prepared in H2O and used at 1:100 final

concentrations. 10 mM chlorpromazine (Chlopro, Sigma), and

20 mM U18666A (Enzo Life Sciences) were prepared in H2O and

used at 1:1000 final concentrations. Stocks of 6 mM Monensin

(Mon, Sigma) and 5 mM Phosphoramidon (Sigma) were prepared

in methanol (MeOH) and used at 1:1000 and 1:100 final

concentrations, respectively. 25 mg/ml cycloheximide (CHX,

Sigma) and 5 mM Pepstatin A (Sigma) were prepared in methanol

(EtOH) and used at 1:1000 and 1:100 final concentrations,

respectively. Solvents EtOH, MeOH, and DMSO were obtained
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from Sigma-Aldrich. A stock of 125 mM CPI in PBS was made

[76] and used at 5 mM final concentration.

Plasmids
All plasmids were constructed using conventional cloning

techniques. The DM15 gene was isolated from a DH5 E. coli
strain by DNA extraction and PCR. The gene was cloned into a

pCAGGS vector for (transient) expression and into a MLV-based

pQCXIP transfer vector (Clontech), resulting pQCXIP-DM15, for

the generation of stable cell lines. The gene encoding the MHV

receptor mCC1a [101] was cloned into pQCXIN, resulting in

pQCXIN-mCC1a. The RNA transcription vectors used for the

generation of recombinant MHV using targeted recombination

were generated using pMH54 derivatives [98,102]. pMH54

containing a GFP expression cassette between the E and M gene

was generated as described previously for firefly luciferase [59].

The transcription vector used to generate MHV-S29FCS

(pXHERLM-S29FCS+) was generated by site-directed mutagen-

esis, thereby changing the sequence encoding AIRGR immedi-

ately upstream of the FP into a RRRRR-encoding sequence in

vector pXHERLM [59] (GCA9ATC9CGA9GGG9CGT to

AGA9CGC9CGA9AGG9CGT). The transcription vector used to

generate MHV-S4 expressing firefly luciferase, was generated by

introducing the firefly luciferase expression cassette between the E

and M genes similarly as described previously [59] in a pMH54-

derived transcription vector that contains the gene encoding the S

protein of MHV-4 (MHV-JHM) [82]. This latter vector was kindly

provided by Susan Weiss.

Generation of recombinant/pseudo viruses
Recombinant MHV-EGFPM virus, containing a GFP expression

cassette between the E and the M gene, MHV-S29FCS, containing a

Renilla luciferase expression cassette between the E and the M gene

and a FCS at the FP-proximal position, andMHV-S4 containing the

spike gene of MHV-4 (JHM) and a luciferase expression cassette

were generated by targeted RNA recombination as described before

[98]. Briefly, donor RNA was generated from linearized pMH54-

derived transfer vectors described above, and electroporated into

FCWF cells infected with interspecies chimeric fMHV coronavirus

(an MHV-A59 derivative, in which the ectodomain of the spike

protein has been replaced by that of a feline coronavirus, thereby

changing host cell tropism). The electroporated FCWF cells were

seeded onto a monolayer of LR7 cells. After 24 h of incubation at

37uC, culture supernatant containing progeny viruses was harvested.

Genotypes of the recombinant viruses were confirmed after two

rounds of plaque purifications. Passage 3 stocks were used in

experiments. Generation of MHV-EFLM and MHV-ERLM,

containing a firefly or Renilla luciferase expression cassette between

the E and the M gene, andMHV-aN, containing a N protein tagged

with the a-peptide, has been described before [63,103]. Construction

of FIPV expressing Renilla luciferase was reported previously

[79].Recombinant VSVDG/FLuc-G* pseudovirus was generated as

described before [71]. Construction of IAV-WSN pseudovirus

expressing Renilla luciferase has also been described previously [73].
Viruses were stored in culture medium, supplemented with 25 mM

HEPES or upon sucrose cushion purification in TN buffer (10 mM

Tris-Cl, pH 7.4, 10 mM NaCl).

siRNA transfections
30,000 HeLa-mCC1a-(DM15) cells were seeded one day prior to

transfection in a 24-well dish. Using Oligofectamine (Life Technol-

ogies) reagent three independent, non-overlapping siRNAs (pre-

designed Silencer Select siRNAs from Ambion) per gene were

individually transfected into target cells according to the manufac-

turer’s instructions. Transfection mix for one well contained 2.5 ml

of 1 mM siRNA and 0.5 ml Oligofectamine in 50 ml OptiMEM

(Gibco). Transfection was done in 250 ml final volume of

OptiMEM. 4 hours post transfection 125 ml of DMEM, 30% FBS

were added. Cells were infected 72 hours post transfection.

qRT-PCR of siRNA-mediated gene knockdowns
HeLa-mCC1a cells were subjected to siRNA-mediated gene

knockdown as described above. At 72 hpi cells were harvested by

trypsinization, single-cell suspension counted, and collected by

centrifugation. Cellular RNA was extracted using the RNeasy

Mini Kit (Qiagen). mRNA levels of genes were analyzed by qRT-

PCR using a custom designed pair of specific primers to the gene

resulting in about 150 bp products. RNA levels were measured

using the GoTaq 1-Step RT-qPCR system (Promega) according to

the manufacturers’ instructions on a LightCycler 480 (Roche).

Expression levels were corrected for cell number and viability as

determined by the Wst-1 assay (Roche).

Virus infections
Cells were inoculated with MHV-EGFPM at MOI= 0.5 (15–

20% infected cells) in DMEM, 2% FBS, for 2 h at 37uC. The

inoculum was replaced by warm DMEM, 10% FBS. At 8 hpi, cells

infected with MHV-EGFPM were trypsinized and fixed in 4%

formaldehyde solution in PBS. Cells were washed and taken up in

FACS buffer (2% FBS, 0.05M EDTA, 0.2% NaN3 in PBS) and

GFP expression was quantified by FACS analysis on a FACS

Calibur (Benson Dickson) using FlowJo software. Of each sample

at least 10,000 cells were analyzed. HeLa, LR7, or HAP1 cells

were inoculated with luciferase expressing (pseudo)viruses (MHV-

EFLM, VSVDG/FLuc-G*, IAV-RLuc, MHV-S29FCS, or FIPV-

RLuc, MHV-EFLM-S4 (JHM)) at MOI=0.2, unless indicated

otherwise, in DMEM or IMDM (HAP1), supplemented with 2%

FBS at 37uC. At 2 hpi the inoculum was replaced by warm culture

medium containing 10% FBS. Cells were lysed at 7 hpi (MHV,

VSV, and FIPV) or 16 hpi (IAV) in passive lysis buffer (Promega).

Firefly luciferase expression was assessed using the firefly luciferase

assay system from Promega or using a homemade system (50 mM

tricine, 100 mM EDTA, 2.5 mM MgSO4, 10 mM DTT,

1.25 mM ATP, 12.5 mM D-Luciferin). Renilla luciferase expres-

sion was assessed using the Renilla luciferase assay system

(Promega). Light emission was measured on a Centro LB 960

luminometer. When indicated cells were transfected with siRNAs

prior to inoculation as described above. Luciferase expression

levels (in relative light units, RLU) were corrected for cell number

and viability as determined by the Wst-1 assay (Roche). When

indicated cells were treated with pharmacological inhibitors

starting at 30 min prior to or 2 h post inoculation. Huh-7 cells

were inoculated with MERS-CoV at a MOI of 0.1 in FBS-

containing DMEM. 8 h post infection, cells were fixed in 4%

formaldehyde in PBS. Cells were stained using rabbit anti-SARS-

CoV nsp4 antibodies that are cross-reactive for MERS-CoV,

according to a standard protocol using a FITC-conjugated swine-

anti-rabbit antibody. Number of infected cells was determined by

cell counts on a wide-field fluorescent microscope.

Fusion assay using b-galactosidase complementation
The b-galactosidase complementation fusion assay was per-

formed as described previously [63]. Briefly, cells were preloaded

with FDG substrate by incubation of adherent target cells with

2.5% FBS, 100 mM FDG, 50% PBS at room temperature. After

3 min incubation an excess of 5% FBS in PBS was added,

supernatant removed and replaced by growth medium. After a

recovery period of 30 min at 37uC, cells were (mock) treated with
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the different inhibitors for 30 min. MHV-aN virus was bound to

cells in DMEM with 2%FCS (in the absence or presence of

inhibitors) at a MOI= 20 for 90 min at 4uC to synchronize

infection, after which cells were shifted to 37uC for 2 h. Cells were

trypsinized and transferred to Eppendorf tubes, washed and

immediately analyzed by FACS. For experiments with protease

inhibitors the cells were loaded with FDG by hypotonic shock after

trypsination and collection of the cells. In this case, FDG loaded

cells were incubated on ice for 14 h before being analyzed by

FACS.

Fluorescent labeling of MHV
MHV wt virus was grown on LR7 cells and purified over a 20%

sucrose cushion in TN buffer by centrifugation at 110,000 rcf for

2.5 h. Supernatant was removed and pellet resuspended in 200 ml

TN buffer overnight on ice. Concentrated virus solution was

subjected to further purification on a Pfefferkorn gradient (10–

20%, 25–50%, 50% cushion). After spinning for 1 h at 150,000 rcf

a clear virus band was visible. The virus band was collected and

diluted in TN buffer. The virus was pelleted by centrifugation at

110,000 rcf for 1 h and resuspended in 200 ml 0.1M sodium

phosphate, 0.15M NaCl buffer pH 7.2 overnight on ice. The

purified virus solution was labeled using DyLight NHS 488

(Thermo Scientific) according to the manufacturer’s instructions.

Infectivity of the labeled virus was confirmed by TCID50 analysis

and qRT-PCR.

Live-cell microscopy
HeLa-mCC1a cells were seeded into 8-well glass-bottom

chambers to reach 60% confluency the next day. Plasmids

encoding mRFP-tagged RAB5A or RAB7A, or dsRed-LAMP1

[104] were transfected into the cells one day after seeding using

Lipofectamine 2000 (Life Technologies) according to the manu-

facturer’s instructions. 24 h after transfection MHV-DyLight488

was bound to cells on ice at MOI= 20 for 1.5 h in DMEM, 2%

FBS. The inoculum was removed and cells washed with cold PBS

to remove unbound virus. Warm imaging medium (DMEM

without phenol red, 10% FCS) containing 0.008% trypan blue

(Invitrogen) was added to the cell chambers. The cell membrane

impermeable trypan blue shifts the expression spectrum of cell

surface bound particles rendering them undetectable in the 505–

530 nm channel (described in [65]). Different low to medium RFP

expressing cells were imaged live at 37uC, 5% CO2 in 10 min time

frames from 10 min post warming up to 70 min in 30 s intervals

thereby acquiring z-stack images. Each slice was 0.30 mm in

thickness, averaging 12–14 slices per stack. For recording a Zeiss

Axio Observer Z1 inverse spinning-disk confocal microscope,

equipped with full box stage incubation, including CO2 (Pecon),

argon-krypton and helium-neon laser, two Photometrics Evolve

512 back-illuminated electron-multiplying charge-coupled-device

(EM-CCD) cameras, and 10061.46NA Oil alpha Plan Apochro-

mat objective was used. Fluorescence images were exported as.czi

files (Zeiss) and subsequently imported into Fiji (ImageJ, NIH).

Upon import into Fiji, color channels were split and saved as 8-

bit tagged image file format. Virus movements were manually

tracked in x/y or z direction in the green channel using the

MTrackJ plugin. Tracks were saved and subsequently loaded onto

the red channel. For each virus spot the area underlying a circle of

0.213 mm2 was measured for its gray mean value. Viruses were

considered colocalizing if the gray mean value reached 50% of the

maximum. Subsequently red and blue color channels were

merged, tracks imported and viruses classified using the viral

track. If the virus co-localized with the endosomal vesicle over at

least four sequential 30 s frames the virus was categorized as

associating. Viruses that, after initial co-localization, separated

from the vesicle were classified as ‘associating/dissociating’. If a

virus particle faded and disappeared (and could not be found in

other z-stacks) whilst co-localizing in previous intervals with an

endosomal vesicle it was categorized as ‘fusing’ (Figure S2 and S3

in Text S1). When a viral particle co-localized with endosomal

compartments but did neither dissociate nor fade during the

10 min acquisition period it was classified as ‘non-fusing’. With

this quantification method we analyzed 12 cells for RAB5 with 75

virions in total, 12 cells for RAB7 with 105 virions in total, and 16

cells for LAMP1 with 115 virions in total, acquired over three

independent experiments.

Sequence alignment
The sequences of MHV-A59 and MHV-S29FCS were based on

pMH54 sequencing results. Sequences for BCoV (GI: 18033975),

FIPV (GI: 556925469), HCoV-OC43 (GI: 530802591), HCoV-

HKU1 (GI: 306569687), SARS-CoV (GI: 89474484), MERS-

CoV (GI: 510937295), HCoV-229E (GI: 82780499), HCoV-NL63

(GI: 530802144), IBV-Beaudette (GI: 138186) were obtained from

NCBI. Alignments were performed over the entire length of the

spike proteins using MegAlign (Lasergene DNASTAR) using a

ClustalW alignment, gap penalty 10, gap length penalty 0.2, delay

divergent sequences 30%, DNA translation weight 0.5, protein

weight matrix: PAM series, DNA weight matrix: ClustalW.

Confirmation of siRNA-mediated knockdown of RAB7A
HeLa cells were co-transfected with mRFP-tagged RAB7A

similarly as described previously [60]. Briefly, 7’500 HeLa cells

were seeded one day prior to transfection in a 96-well plate. Using

Oligofectamine (Life Technologies) reagent three independent,

non-overlapping RAB7A siRNAs (pre-designed Silencer Select

siRNAs from Ambion) per gene were individually transfected into

target cells with the mRFP-RAB7A plasmid. Transfection mix for

one well contained 2.5 ml of 1 mM siRNA, 10 ng plasmid, and

0.5 ml Oligofectamine in 12.5 ml OptiMEM (Gibco). Transfection

was done in 62.5 ml final volume of OptiMEM. 4 hours post

transfection 125 ml of DMEM, 30% FBS were added. RFP

expression was analyzed 24 h post transfection using an EVOS

Cell Imaging System.

Immunostaining of HAP1 cells
Confluent HAP1, H1-DV33, and H1-DV33-fV33 cells and their

stably mCeacam1a expressing counterparts were detached using a

cell scraper, homogenized, and fixed. After 30 min incubation in

blocking buffer (3% BSA (Sigma), in PBS) for 1 h cells were

incubated in 1:100 N-CEACAM-Fc [80] antibody, washed, and

stained with 2ry AF488 goat-anti-rabbit antibody (Life Technol-

ogies). After washing cells were analyzed by FACS at 10,000 gated

single cells per sample.

Western blotting
HAP1 cells were trypsinized and collected by centrifugation at

350 rcf for 10 min. The pellet was resuspended in Laemmli sample

buffer containing 100 mM DTT, boiled for 5 min at 95uC and

subjected to electrophoresis in 10% acrylamide (Bio-Rad) gels.

Viruses were purified and concentrated over a 20% sucrose cushion

(in TN buffer) at 110,000 rcf. Pelleted virus was resuspended in TN

buffer overnight on ice. After addition of Laemmli sample buffer

(16 final concentration, 100 mM DTT), samples were boiled for

5 min at 95uC and subjected to electrophoresis in 7% acrylamide

(Bio-Rad) gels. Upon transfer to a nitrocellulose membrane

(Millipore), the presence of cellular and viral proteins was probed
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with antibodies against GM130 (rabbit pAb, Abcam), FLAG (HRP-

labeled mouse anti-FLAG mAb, Sigma) or the S2 subunit of MHV

A59 [105] (mouse anti-S2 mAb) diluted 1:1000. When necessary,

the blots were subsequently incubated with HRP-labeled rabbit

anti-mouse or swine anti-rabbit antibodies (both diluted 1:5000;

DAKO). Binding of HRP-labeled antibodies was visualized using

Amersham ECL Western blotting substrate (GE Healthcare Life

Sciences) according to the manufacturer’s instructions.

Immunofluorescence analysis of HAP1 cells
To image the localization of LAMP1 in HAP1, H1-DV33, and

H1-DV33A-fV33, cells the cells were seeded onto coverslips one

day prior to staining. Cells were fixed in 4% formaldehyde in PBS

for 15 min at RT, washed with PBS, and subsequently

permeabilized in PBS containing 0.1% Triton-X-100 for

10 min. Cells were incubated with antibody against LAMP1

(rabbit anti-LAMP1 pAb, 1:100 dilution; Abcam) in 3% BSA in

PBS followed by incubation with secondary antibodies coupled to

AF488, AF-568 phalloidin, and DAPI (all Life Technologies). The

samples were analyzed using a confocal laser-scanning microscope

(Leica SPE-II).

Growth curves of recombinant viruses
LR7 cells were infected at MOI= 0.1 or MOI= 4.0 with MHV-

ERLM or MHV-S29FCS in DMEM containing 2% FBS and

25 mM HEPES (infection medium). After 3 h of infection

supernatant was replaced by fresh infection medium and infection

was allowed to progress over a period of 24 h. Every 3 h a small

sample of the culture supernatant was collected and immediately

frozen. The samples were subsequently analyzed in TCID50

assays on LR7 cells and subjected to qRT-PCR analysis to

quantify virion production. Therefore viral RNA was extracted

from the samples using the QIAamp Viral RNA Mini Kit

(Qiagen). The relative amount of viral RNA present was

determined with a LightCycler 480 using LightCycler 480 RNA

Master Hydrolysis kit (Roche Applied Biosciences) and specific

primers and probe targeted against the MHV 1b gene by

comparison with a standard curve.

Gene identification numbers
Gene SwissProt ID

AAK1 Q2M2I8

ACTR2 P61160

ACTR3 P61158

CAV1 Q03135

CAV2 P51636

CLTC Q00610

DAB2 P98082

DNM1 Q05193

DNM2 P50570

DYNC1H1 Q14204

DYNC2H1 Q8NCM8

EPS15 P42566

FLOT1 O75955

FLOT2 Q14254

LAMP1 P11279

MYO6 Q9UM54

NSF P46459

PAK1 Q13153

RAB5A P20339

RAB5B P61020

RAB5C P51148

RAB7A P51149

RAB7B Q96AH8

SNX1 Q13596

VCL P18206

VPS11 Q9H270

VPS33A Q96AX1

VPS39 Q96JC1

VPS41 P49754
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