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Host cholesterol metabolism remodeling is significantly associated with the spread of
human pathogenic coronaviruses, suggesting virus-host relationships could be affected
by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry,
membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic
mechanisms may be promising drug targets for coronavirus infections. Moreover,
cholesterol and its metabolizing enzymes or corresponding natural products exert
antiviral effects which are closely associated with individual viral steps during
coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused
by severe acute respiratory syndrome coronavirus 2 infections are associated with
clinically significant low cholesterol levels, suggesting cholesterol could function as a
potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol
dysregulation against viral infection could be an effective antiviral strategy. In this review,
we comprehensively review the literature to clarify how coronaviruses exploit host
cholesterol metabolism to accommodate viral replication requirements and interfere
with host immune responses. We also focus on targeting cholesterol homeostasis to
interfere with critical steps during coronavirus infection.
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INTRODUCTION

Coronaviruses are enveloped viruses with non-segmented, single-stranded, positive sense RNA
genomes (1). They belong to the Nidovirales order in the Coronaviridae, and are divided into four
types: a, b, g, and d (1, 2). Coronavirus subfamily members are widespread in infected birds and
mammals and some respiratory and intestinal diseases (3–5). Currently, at least seven coronaviruses
are known to infect humans, including respiratory syndrome coronavirus 2, human coronavirus
OC43, human coronavirus NL63, human coronavirus 229E, severe acute respiratory syndrome
coronavirus, human coronavirus HKU1, and Middle East respiratory syndrome coronavirus (6).
Coronavirus diversity is due to the low fidelity of RNA-dependent RNA polymerase during viral
coding which produces approximately 10−3–10−5 substitutions/site/year (7). Previous evidence
indicated that coronaviruses undergo rapid recombination which creates new strains with altered
virulence (8). Recent studies reported molecular and serological evidence of the active transmission
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of SARS-CoV-2-associated coronavirus (SC2R-CoV) in bats in
Southeast Asia (9). Closely related coronaviruses are found in
distantly related animals; the consequences of this species barrier
jumpmay be devastating and lead to serious disease and death, e.g.,
SARS-CoV andMERS-CoV are zoonotic viruses that have crossed
the species barrier via bats/palm civets and dromedary camels,
respectively (10). Beta-coronavirus spill over from Hipposideridae
to Rhinolophidae, and then from Rhinolophidae to civets and
humans (11). Swine Acute Diarrhea Syndrome CoV is derived
from the species Rhinolophus bat coronavirus HKU2 which
potentially infects rodents (12, 13). Mechanistically, the species
barrier jump is believed to be due to a failure in specific interactions
between the viral spike protein receptor bindingdomain (RBD) and
the host receptor, angiotensin converting enzyme 2 (ACE2) (14).
This mechanism demonstrated a major tendency to jump from
animals to humans.

The COVID-19 pandemic caused by SARS-CoV-2 is the
latest example of a major threat to human health (15). This
marks the third time a highly pathogenic coronavirus was
transmitted to humans from animals (16, 17). SARS-CoV-2 is
believed to have originated in bats, however the intermediate
host species and the transmission mode remains unclear (18, 19).
Studies confirmed that SARS-CoV-2 replicates more easily in
ferrets and cats when compared with dogs, pigs, chickens, and
ducks (20). The main pathophysiological feature of SARS-CoV-2
is the excessive production of inflammatory factors, leading to
systemic inflammation and multiple organ dysfunction
syndrome, with an acute impact on the cardiovascular system
and lung fibrosis (21–24). Since SARS-CoV-2 belongs to b-
coronavirus family and is not a common human pathogen,
humans lack a natural immunity to SARS-CoV-2 (25).
Unfortunately, the development of novel coronavirus vaccines
commenced too late to effectively control the first infection wave
(26). Thus far, no specific, highly effective antiviral therapies are
available. The disease has rapidly spread to more than 200
countries and territories (27–30). According to World Health
Organization statistics, as of February 11th 2022, the total
number of COVID-19 cases worldwide had reached
402,044,502, of which 5,770,023 had died (https://www.who.int/
emergencies/diseases/novel-coronavirus-2019). SARS-CoV-2 is
estimated to have 2–4 times more affinity for ACE2 than the
SARS virus (31). Multiple mutations have been identified in the
viral S1 subunit, of which three are in the RBD. This not only
increases RBD affinity for ACE2 but improves viral escape from the
immune system (32). Currently (September 2021), several
SARS-CoV-2 delta variants have become more infectious due to
mutations in the S protein RBD, and they are also ORF8-deficient.
These variants have rapidly spread globally, including outbreaks in
the UK (33–36), Taiwan (37), Southeast Asia (38), Germany (39),
France (40), USA (41), Poland (42), and Italy (43). Strikingly,
ORF8-deficient variants had spread among domestic mink and
pangolin in Denmark, and were detected in humans (44, 45). Thus,
ORF8-deficient variants in unknown animal reservoirs pose great
challenges to human public health and safety (46), thus monitoring
such SARS-CoV-2 variants is critical for the prevention and control
of the COVID-19 pandemic (36).
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Previous studies reported that COVID-19 severity was related
to several risk factors, for example, obesity, old age, and
underlying disease (47–49). A recent study suggested that
when compared to the normal population, cholesterol levels
were significantly lower in COVID-19 patients (50).
Furthermore, high-density lipoprotein cholesterol was lower in
patients with severe and critical disease than in patients with
moderate or mild disease, in a study on cholesterol metabolism
in mild, moderate, severe, and critical COVID-19 patients (51).
Age-specific COVID-19-associated death data from 45 countries
showed that the infection fatality ratio was lowest among 5–9-
year-old children, with a log-linear increase by age in individuals
over 30 years old (52). In Spanish subjects over 75 years old, the
lethality rate approached 36% in hospitalized patients, far higher
than for younger groups under the same conditions in hospitals,
despite having s similar course to younger individuals (53). In
addition, Richter and Sohrabi studied obese factors in COVID-
19 patients when compared with the normal population. In
general, they observed that obese patients were twice as likely
to develop COVID-19 as those with a normal weight range (54,
55). A study of clinical characteristics on 393 patients with
COVID-19 in New York City, they found that respiratory
failure, a severe clinical symptom of COVID-19, was more
common among the obese patient subgroup, comprising 35.8%
of the patients studied in New York. In addition, they also found
that after advanced age, obesity was the most common risk factor
leading to severe disease and death from COVID-19 (56). In
addition to these factors, male sex, diabetes, smoking,
hypertension, and cardiovascular disease also affect COVID-19
risk severity.

Importantly, transcriptomics data indicated that host
cholesterol metabolism affects virus replication (57). Cholesterol
content in the plasma membrane is extremely high and is
important for biochemical and biophysical functions (58). As a
unique feature of mammalian membranes, host cell cholesterol is
targeted by pathogens (cytosolic bacteria and viruses) for entry and
egress (59–63), however, a small number of coronavirus strains are
distinct in terms of their dependence on cholesterol (64).
Notwithstanding, a strong relationship between cholesterol and
coronavirus replication is widely documented in the literature; in
some instances, cholesterol is vital for coronavirus entry,
membrane fusion, translation, pathological syncytia formation
and vascular pathology (65–68) (Figure 1). Cholesterol
metabolism may be hijacked by enveloped viruses to provide raw
materials for virus particle replication, assembly, and maturation
(69), e.g., Hepatitis C virus (HCV), human cytomegalovirus, and
Epstein-Barr virus (70–72). For coronaviruses, cholesterol and
other specific lipid requirements are required for viral replication
scaffolds (73–75). Also, previous studies reported significant
associations between cholesterol homeostasis and type I
interferon (IFN) responses (76). Viral infections may induce host
cells to alter the expression of cholesterol metabolizing enzymes
and metabolites, and similarly, cholesterol metabolism can also
regulate host antiviral responses (77, 78). Therefore, weaponizing
host cholesterol metabolism dysregulation against coronavirus
infectivity could be an effective antiviral strategy (79, 80).
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Thus, cholesterol could be an important tool for the in-depth
exploration of COVID-19 pathophysiology (81). The disruption of
cholesterol homeostasis may interfere with critical steps of
coronavirus infection, therefore understanding cholesterol
functions during COVID-19 pathogenesis may generate
improved prognostics and therapeutics (27). Recently, Daniloski
et al. conducted a large-scale screen of > 20,000 drugs potentially
used to treat COVID-19, and identified cholesterol biosynthesis
pathway induction as a possible mechanism of viral inhibition
(82, 83). The pharmacological inhibition of phosphatidylinositol
kinases and cholesterol homeostasis reduced replication of all
three coronaviruses. These findings provide important insights
for an increased understanding of the coronavirus life cycle and
the development of host-directed therapies (84). This review
focuses on the latest scientific evidence and clarifies how
coronaviruses manipulate host cholesterol metabolism to meet
their own replication needs and impair host IFN responses. In
addition, targeting and altering cholesterol levels in host cell
membranes, and interfering with intracellular cholesterol
metabolism pathways may be effective strategies in preventing
Frontiers in Immunology | www.frontiersin.org 3
early coronavirus cell entry and subsequent translation and
replication. These approaches could provide foundations for
the design of anti-coronavirus drug and treatment strategies
(79, 85).
THE ROLE OF CHOLESTEROL
METABOLISM DURING THE
CORONAVIRUS LIFE CYCLE

Molecular Mechanisms of Coronavirus Entry
Coronavirus entry into host cells is key for virus replication
cycles and evading host antiviral responses (86, 87). However,
coronaviruses enter cells by two ways: 1) when sufficient
proteases are present on plasma membranes, viruses exploit
this by fusing with the cell through the “early pathway” via the
plasma membrane, and 2) in the absence of extracellular
proteases, endosomal proteases activate the viral S protein to
FIGURE 1 | Disrupting cholesterol homeostasis interferes with critical steps during coronavirus infection. Cholesterol is important for coronavirus attachment
(A), endocytosis (B), membrane fusion (C), translation/replication (D), and maturation/release (E). 25HC, 25-hydroxycholesterol; MbCD, methyl-beta-cyclodextrin;
LE/MVB, late Endosomes/Multivesicular Bodies; IFITM3, interferon-induced transmembrane protein-3; U18666a, an intra-cellular cholesterol transport inhibitor;
DMVs, double-membrane vesicles; OSBP, oxysterol-binding protein; VAP-A, vesicle-membrane-protein-associated protein A; Oxy210, semi-synthetic oxysterols;
Oxy232, semi-synthetic oxysterols; AM580, a selective retinoic acid receptor-a agonist.
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gain cell entry via the endosomal pathway (88) which is sensitive
to the pH of endosome/lysosome pathways (89). Moreover, the
infection efficiency of SARS-CoV in the cell in the “early
pathway” is 100-1000 times higher than the endosomal
pathway (90). Previous research reported that many
coronaviruses, including infectious bronchitis virus (IBV),
porcine hemagglutinating encephalomyelitis virus (PHEV),
porcine epidemic diarrhea virus (PEDV), and feline
coronavirus (FCoV) enter host cells via the endocytic pathway
and then pass-through endosomal compartments via
multivesicular bodies (MVBs) to enter the cytoplasm (91–94).
The coronavirus S protein plays a key role in early viral infection
stages and is necessary for viral entry and chemotaxis in hosts
(95). This protein is a type I homotrimeric transmembrane
fusion glycoprotein, composed of S1 and S2 subunits with
different functions. The RBD of the S1 subunit recognizes the
cell receptor, ACE2, which determines cell homogeneity and
pathogenicity of coronaviruses. The S2 subunit mediates virus
and host cell membrane fusion via a wide range of
conformational rearrangements (96–98). Moreover, the S1
subunit of SARS-2-S also binds to cholesterol and possibly
high-density lipoprotein (HDL) components to enhance in
vitro viral uptake; this mechanism is mediated by the HDL
scavenger receptor B type 1 (99). In addition, the SARS-CoV-2
spike protein S1/S2 boundary sequence has key roles in
regulating viral entry and spread within the cell (96). More
importantly, S1/S2 border sequence deletion switches SARS-
CoV-2 from the plasma membrane to the endosomal fusion
pathway, significantly reducing viral transmission efficiency in
hamsters (100). In particular, the S1/S2 boundary sequence
contains a furin protease cleavage site which pre-activates the S
protein for membrane fusion, reducing SARS-CoV-2
dependence on plasma membrane proteases (e.g., TMPRSS2),
thereby efficiently improving cell entry (101). When compared
with other coronaviruses, murine coronavirus (MHV) is unique;
its receptor binding has dual roles when gaining cell entry: the S
protein N-terminal domain binds to the host receptor protein,
CEACAM1a (102), then MHV uses a zinc metalloprotease for
invasion and cell-cell fusion (103). This not only promotes MHV
attachment to host cells, but also promotes MHV fusion with the
host membrane (104). More specifically, the CEACAM1 receptor
or a pH 8 induces conformational changes in the MHV S
glycoprotein at 37°C. This conformational change is more
conducive to triggering membrane fusion without the need to
activate cleavage between S1 and S2 in advance (105).

Niemann-Pick disease type C (NPC) is a lysosomal storage
disorder (106) caused by deficient lipid efflux from the late
endosome/lysosome (LE/L) and induces intracellular cholesterol
synthesis and transport disorders to impair viral SARS-CoV-2
infectivity via several lipid-dependent mechanisms (79). By
intervening in the NPC1 pathway, SARS-CoV-2 is blocked from
entering the host cell from the plasma membrane or endosomes/
lysosomes, thus viral infectivity is weakened (107). The Ebola virus
requires a functional NPC1 protein to complete its replication
cycle, however, it is unclear if this is true for coronaviruses (108).
Studies reported that SARS-CoV particle transport through
Frontiers in Immunology | www.frontiersin.org 4
endosomes to NPC1 positive compartments of the lysosomal
system was necessary for successful infection (109). Mingo et al.
showed that Ebola virus reaching NPC1-positive LE/Ls was the
rate-limiting step in determining viral infection (109).
Furthermore, although SARS-CoV does not require NPC1 for
entry, its entry into the cytoplasm begins after colocalization with
NPC1 (109). Therefore, pharmacological interventions targeting
lysosomal functions could induce transient NPC1-like cells and
biochemical phenotypes, which could constitute a possible
rationale for COVID-19 treatment (110). Drugs such as
fluoxetine not only damage LE/L acidification but also
accumulate cholesterol in these compartments (111).

Host Cholesterol in Coronavirus Entry
Coronavirus enters host cells mainly via plasma membrane fusion
or endocytosis (112, 113). Lipid rafts participate in endocytosis-
mediated processes, and function as platform and docking sites for
coronavirus entry and genome release (114, 115). Cholesterol is an
important component of lipid rafts; increased lipid raft formation
is benefitted by increased cholesterol levels (116). Early
coronavirus infection depends on lipid rafts (117) which may
harbor ACE2 receptors for the SARS-CoV-2 S protein (118–121),
permitting membrane rearrangements to facilitate transmissible
gastroenteritis virus (TGEV) entry (122). In addition, lipid rafts act
as attachment factors to promote IBV absorption before it enters
the cell (119). MHV entry and membrane fusion also require lipid
rafts (123). Membrane cholesterol consumption inhibits SARS-
CoV-2 and other coronaviruses from fusing with cells, preventing
viral entry (124, 125). By reducing plasma membrane cholesterol
levels and changing lipid raft-dependent ACE2 and TMPRSS2
activities, these processes interfere with viral internalization by
host cells (87, 110, 126). Therefore, cholesterol depletion from
cellular membranes using e.g., methyl-b-cyclodextrin (MbCD)
eliminates cholesterol in lipid rafts and significantly reduces
clathrin-dependent endocytosis to significantly eliminate IBV,
TGEV, and SARS-CoV infectivity (Figure 1A) (117, 119, 127).
In addition, SARS-CoV-2 pathogenicity was significantly
dependent on TMPRSS2 (128). Contributions of human ACE2
and TMPRSS2 in determining host-pathogen interaction of
COVID-19 (129). The SARS-CoV-2 Omicron variant showed
less efficient replication and fusion activity when compared with
the Delta variant in TMPRSS2-expressed cells (130). Omicron
infection was not enhanced by TMPRSS2 but was largely mediated
by the endocytic pathway. The differences in pathway entry
between variants may have impacted on clinical manifestation
or disease severity (130). In addition, anti-androgens target
TMPRSS2 and reduce SARS-CoV-2 virus entry in lung cells
(131), which may at least in part explain why men with
COVID-19 have a worse prognosis when compared to women
(132). SARS-CoV-2 cell entry inhibition via TMPRSS2 was
facilitated by camostat, nafamostat mesylate and alpha-1
antitrypsin (133, 134). It is therefore possible that inhibiting
androgen signaling by anti-androgens could reduce TMPRSS2
expression in the lung, and concomitantly reduce viral entry. For
this reason, anti-androgens are proposed as treatment options for
COVID-19 (135, 136).
April 2022 | Volume 13 | Article 791267
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Infectivity is also reduced by depleting cholesterol from the
viral envelope as in TGEV (127). Similarly, plasma membrane
cholesterol depletion is also triggered by ACE2 displacement
from lipid rafts to non-raft membrane domains, thereby
reducing efficient SARS-CoV cell entry (120). Previous studies
reported that 27-hydroxycholesterol (27HC) accumulation in
lipid rafts caused the rapid consumption of lipid raft cholesterol,
interrupted cell signal transduction in lipid raft membrane
microdomains, and specifically inhibited IL-6-JAK-STAT3
signaling (137, 138). It is worth emphasizing that lipid raft
destruction due to cholesterol consumption may be the main
reason for inhibiting extracellular signal-regulated kinase (ERK)
signaling and activation inhibition (139). Since the Raf/MEK/
ERK pathway is involved in the modulation of various important
cellular functions, numerous DNA and RNA viruses coopt this
pathway for efficient viral propagation (140). The ERK pathway
is known to be modulated during PEDV infection (141). In our
previous research, we reported that IBV infection activated
ERK1/2 signaling and that up-regulation of the phosphatase,
DUSP6 formed a negative regulation loop (142). ERK activation
is necessary for PEDV and porcine deltacoronavirus (PDCoV)
replication, the suppression of viral protein expression, and viral
RNA transcription via ERK activation inhibition (140, 143).
Also, the negative regulation of the Raf/MEK/ERK signaling
pathway by the MEK inhibitor, U0126 or DUSP6 upregulation
significantly impairs MHV and IBV progeny production (142,
144), respectively. However, the exact mechanism whereby ERK
activity regulates the replication cycle of PEDV during infection
remains unclear. Therefore, the targeted regulation of lipid raft
cholesterol levels may be a host defense strategy against
coronavirus infection (145).

Host Cholesterol in Viral Fusion
Along with binding to host cell receptors, viral envelope fusion
with host cell membranes is critical in establishing successful
coronavirus infection, especially for viral gene delivery into the
cytoplasm. Coronaviruses enter cells by fusing directly with the
cell surface or internalization via endosomal membranes (146). In
general, the viral envelope contains specific cholesterol quantities;
cholesterol is an important component of lipid rafts, and the
fusion of viruses and host plasma membranes is affected by the
ratio of membrane cholesterol to fatty acids (147). Genome-wide
clustered regularly interspaced short palindromic repeats (CRISPR)
screening revealed that cholesterol metabolism was a key host
pathway promoting coronavirus (SARS-CoV-2, HCoV-229E, and
HCoV-OC43) infections (84), whereas cholesterol dysregulation
reduced viral invasion (82, 84, 100, 148). In addition, coronavirus
enters cells either via fusion or endocytosis (149) via clathrin-
mediated mechanisms in a cholesterol dependent manner
(Figure 1B) (92). Cellular cholesterol homeostasis regulation,
especially in endosomal compartments, exerts a significant impact
on the entry stage of viral infection (108). It is because that
coronavirus or coronavirus-containing MVBs via the endosomal
cathepsin activate viral S protein to mediate the cytoplasmic release
of viral nucleic acid, and artificially destroying the homeostasis of
cholesterol in the endosomal membrane will inhibit this invasion
step (91, 150). Therefore, the virus reprograms cholesterol
Frontiers in Immunology | www.frontiersin.org 5
metabolism to promote virus replication, or specific infection-
induced host defense responses. Targeting cholesterol metabolism
pathways in cells could be a potential target for interfering with
“viral cargo”, and may be used as an intervention to inhibit
coronavirus membrane fusion in the endosome (79). Many
coronaviruses, including IBV, PHEV, PEDV, and FCoV pass
through endosomal compartment via MVBs to enter the
cytoplasm (91–94). In a previous study, IBV membrane fusion
was induced in the LE/L after 1 hour post infection (91). The
accumulation of cholesterol and oxidized sterols in late endosomes
and MVBs also impaired virus functions, hindered viral membrane
fusion, and subsequent replication (79, 151). Therefore, the
destruction of cholesterol homeostasis to block viral entry
exemplifies the importance of cholesterol during viral infections
(150). Cholesterol function during viral invasion was extensively
studied in several coronaviruses, including SARS-CoV (120), PEDV
(152), MHV (123, 153), PDCoV (154), and IBV (117, 119).

Coronavirus infections may be significantly restricted by IFN-
induced transmembrane proteins (IFITMs) (155). These
proteins significantly inhibit endosome membrane fusion and
are driven by the viral S protein (156). IFITMs inhibit viral
membrane fusion before hemifusion occurs, by reducing
membrane fluidity and imparting positive spontaneous
curvature to outer cell membrane leaflets (157). IFITM
phosphorylation status and carboxy-terminal amino acid
residues are key factors determining human coronavirus entry,
including, HCoV-NL63, SARS-CoV, MERS-CoV, HCoV-OC43,
and MERS-CoV (158). These functional units may pass it
interacts with the virus and/or host cell components of the
virus entry site to regulate the fusion of the virus envelope and
cell membrane (158)The vesicle membrane-associated protein A
(VAPA) and oxysterol-binding protein (OSBP) jointly regulate
intracellular cholesterol balance (150). IFITM3, as a member of
the IFITM protein family, hinders binding of OSBP and VAPA,
which not only causes abnormal cholesterol accumulation in late
endosomes, but also increases membrane hardness and inhibits
viral nucleic acid release (Figure 1C) (150).

Cholesterol Metabolism Is Involved in
Coronavirus Translation/Replication
As a positive-strand RNA virus, after internalization and un-
coating, coronavirus first uses its own genomic RNA as a template
to replicate and produce the polyproteins, pp1a and pp1ab via
cap-dependent translation, and then via autoproteolytic cleavage,
15–16 nonstructural proteins (NSPs) (159). NSPs induce the
rearrangement of cholesterol-rich lipid rafts on cell membranes,
forming double-membrane vesicles (DMVs) in the cytoplasm,
thereby anchoring viral replication transcription complexes (160).
DMVs act as efficient replication sites for coronavirus genomic
RNA and provide a safe site for viral RNA replication and
translation (161). Cholesterol is also enriched in DMVs and
constitutes the viral replication site of DMVs with fatty acids
(80, 162). DMVs destroyed by Oxy210 (semi-synthetic oxysterol)
significantly inhibit SARS-COV-2 replication in vitro (163)
(Figure 1D). Thus, disruption of lipid rafts may affect viral
replication and transcriptional synthesis. Recently, it was
reported that intracellular cholesterol biosynthesis and transport
April 2022 | Volume 13 | Article 791267
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systems were related to virus replication (164–166). Cellular
cholesterol is derived from the biosynthesis and cellular uptake
of low-density lipoprotein (167–169). U18666A is a cationic
amphiphilic drug affecting cholesterol biosynthesis and
intracellular transport (170). Previous studies reported that
cholesterol was involved in the viral life cycle of type I FCoV
infection (64), and that U18666A induced cholesterol
accumulation via NPC1 dysfunction and type I FCoV
replication inhibition (144, 171, 172).

Host Cholesterol May Not Be Involved in
Coronavirus Assembly and Release
After un-coating, translation, and genome replication, virus
particles assemble in the endoplasmic reticulum (ER)-Golgi
intermediate compartment and are coordinated by the M
protein (159, 173). For most coronaviruses, virus assembly sites
contain highly active enzymes involved in the cholesterol
biosynthesis pathway; these include, cholesterol-synthesizing
enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A reductase,
and mevalonate diphospho decarboxylase (165, 174, 175).
Several studies indicated that many enveloped viruses, such as
human immunodeficiency virus, Dengue, Zika, and alphavirus
contain cholesterol in the virion, and that viral proteins involved
in virus particle assembly and budding are related to cholesterol
(78, 176). Furthermore, different cholesterol levels in hosts
generate different envelope cholesterol levels in alphaviruses
(177). When compared with mayaro virus particles from
mosquito cells, virus particle envelopes from vertebrate cells
have higher cholesterol levels (178). In terms of coronaviruses,
Simons et al. found that althoughMHV- S protein was localized to
the Golgi, that contained cholesterol and lipid rafts, the assembled
and released of MHV is not associated with cholesterol (167). But,
cholesterol involvement in virus assembly and budding has mainly
focused on viruses budding from cell membranes, however,
studies on viruses budding from intracellular membranes are
rare (167). Moreover, the different functional roles of cholesterol
in enveloped RNA virus stability, infectivity, and assembly are not
entirely clear (177, 179). Therefore, coronavirus assembly and
budding may not necessarily use cholesterol on Golgi membranes,
thus specific mechanisms require further study.

Cholesterol Metabolizing Enzymes
and Metabolites Combat
Coronavirus Infectivity
Coronavirus infection induces host cells to alter the expression of
certain cholesterol metabolizing enzymes and metabolites which
may exert antiviral effects (Figure 2A) (77). Indeed, both 25-
hydroxycholesterol (25HC) and 27-hydroxycholesterol (27HC)
are physiologically produced by the enzymatic oxidation of
cholesterol and may be used to inhibit enveloped and non-
enveloped human viruses (183, 184) and highly pathogenic
viruses, including Zika (185), mammalian reovirus (186), Lassa
virus (187), encephalomyocarditis virus (188), porcine
reproductive and respiratory syndrome virus (189). A recent
study reported that the 25HC treatment of mice infected with
SARS-CoV-2 significantly reduced virus numbers in the lungs and
trachea (148). On the one hand, cholesterol is transformed into
Frontiers in Immunology | www.frontiersin.org 6
25HC by Cholesterol 25-Hydroxylase (CH25H). By obstructing
membrane fusion, 25HC exhibits extensive anti-coronavirus
activity (125, 184). Similarly, the internalization of 25HC
aggregates in late endosomes may inhibit spike protein-catalyzed
membrane fusion of SARS‐CoV‐2 by blocking cholesterol export
(124); however, CH25H consumes available cholesterol on the
plasma membrane to suppress virus-cell fusion (125). These data
indicate that membrane-modifying oxysterols are possible
antiviral therapeutics, thereby inhibiting SARS-CoV-2 and other
coronaviruses (Figure 1A) (153). However, it is possible to
obstruct PDCoV proliferation using CH25H which acts as a
host restriction factor, but this inhibition is not entirely
dependent on its enzymatic activity (190). The junction
adhesion molecule-A and the cation independent isoform of the
mannose-6-phosphate receptor are two key replication molecules
common to all viruses that use adhesion molecules and the
endosomal pathway to enter and diffuse target cells. Both
molecules are downregulated by 25HC and 27HC (191).
Previous studies suggested that SARS-CoV-2 propagation in
cultured cells was inhibited by various cholesterol molecules,
including natural oxysterols, 7-ketocholesterol, 22(R)-
hydroxycholesterol, 24(S)-hydroxycholesterol, and 27HC
(Figures 2A-e, c) (163). At effective concentrations, 25HC, 7-
dehydrocholesterol (7DHC), and 27HC were non-toxic natural
products, with potentially curative applications for emerging virus
infections, such as SARS-CoV-2 (192), human immunodeficiency
virus, Ebola virus, Nipah virus, Rift Valley fever virus, and
Zika (153).

The Sterol Metabolic Network Participates
in Host-Immune Responses
All coronaviruses have a similar infection mechanism, which
successfully manipulates host cell functions. One strategy to
suppress the host innate immune response to evade antiviral
responses, is shielding RNA intermediates in replication
organelles (193, 194). In fact, coronaviruses with +RNA genomes,
which duplicate solely in the cytoplasmic matrix, and modify the
inner membranes of cells to form virus duplication bases, also
known as “replication factories” or “replication organelles”. While
varying in morphology and membrane composition, these
structures appear to centralize viral replication machinery,
intermediates, and products in membrane-bound vesicles or
invaginations, and are beyond the reach of innate immune
sensors in the cytosol. Thus, viral infection outcomes are
determined by metabolic interactions between hosts and viruses
(195). Cholesterol is a crucial component of cell membranes and
lipid rafts. Cholesterol metabolism contributes to the formation of
immune synapses and downstream signal transmission (196).The
host’s defenses against virus infection requires IFN-mediated
cholesterol biosynthesis and the formation of immune synapses,
and also host innate immune metabolic regulators as potential
antiviral strategies (197).

Two molecules, sterol regulatory element-binding protein-2
(SREBP-2) and 3-hydroxy-3-methyglutaryl CoA reductase
(HMGCR), have significant roles in the cholesterol biosynthetic
pathway; SREBP-2 is the master transcriptional regulator of
cholesterol biosynthesis (Figures 2B-e, g) and HMGCR is a rate-
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limiting enzyme for cholesterol synthesis (198). SREBP-2 cleavage
and HMGCR degradation are two major feedback regulatory
mechanisms governing cholesterol biosynthesis (Figures 2A-a)
(58). Recently, the sterol metabolic network was shown to
participate in interferon (IFN) antiviral responses (76, 199).
Studies have reported that the IFN regulatory loop mechanism
downregulates sterol biosynthesis, linking innate immune responses
to viral infection, via sterol metabolism regulation (171). After viral
infection, the infected cells produce high IFN levels, thereby
reducing enzyme expression in the cholesterol pathway (171). On
the one hand, the sterol metabolic network is involved in IFN
Frontiers in Immunology | www.frontiersin.org 7
antiviral responses (76) with reduced flux through the mevalonate
pathway leading to upregulation of type I IFN responses (172)
(Figures 2A-b, d). IFN-g induces proteasomal degradation of
HMG-CoA reductase and the rapid proteasomal elimination of
HMG-CoA reductase by IFN-g in primary macrophages which
requires endogenous 25HC synthesis (200). On the other hand,
cholesterol metabolism and mevalonate pathways are crucial for
regulator T-cells which efficiently drive regulatory T cell
proliferation and enhance and stabilize their suppressive capacity
(201, 202). In particular, LKB1 triggered activation of the
mevalonate pathway by upregulating IFN-g and IL-17A levels,
BA

FIGURE 2 | Overview of mevalonate pathway and coronavirus infection. (A) Cholesterol metabolizing enzymes and metabolites act against viral infectivity. Red type
represents cholesterol metabolizing enzymes or corresponding natural products which may be used as drug targets or directly to exert antiviral effects. (a) HMG-CoA
reductase regulates cholesterol biosynthesis and is targeted by statins. (b, c, d) The sterol metabolic network participates in interferon (IFN) antiviral responses. (e, f)
SARS-CoV-2 propagation in cultured cells is inhibited by various cholesterol molecules and semi-synthetic oxysterols. The detailed steps of the cholesterol synthesis
pathway can be found in (180–182). (B) Cholesterol metabolism reprogramming and antiviral responses after viral infection. (a) Cholesterol promotes pathological
syncytial formation during SARS-COV-2 infection. (b) Serum TC, TG, and non-esterified polyunsaturated fatty acid levels are remodeled in COVID-19 patients. (c, d)
SARS-CoV-2 infection increases glucose entry into the TCA cycle via increased pyruvate carboxylase expression and reduced oxidative glutamine metabolism, while
maintaining reductive carboxylation. (f) SREBP-dependent lipidomic reprogramming is a broad-spectrum antiviral target, AM580 strongly inhibits coronavirus replication by
interacting with SREBP-2. (e, h, g, i, j) COVID-19-activated SREBP-2 disturbs cholesterol biosynthesis, leading to a cytokine storm. Importantly, SREBP-2 activity is
regulated by crosstalk between cholesterol consumption and NF-kB expression via several inflammatory response processes induced by SARS-CoV-2 infection. Red
arrows represent upregulation and blue arrows represent downregulation. Acetyl-CoA, Acetyl-Coenzyme A; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; EBP,
D(7)-isomerase; DHCR24, 3-b-hydroxysteroid-D-24-reductase; SC5DL, Sterol C5-desaturase; DHCR7, 7-dehydrocholesterol reductase; CH25H, cholesterol-25-
hydroxylase; 25HC, 25-hydroxycholesterol; 27HC, 27-hydroxycholesterol; IFNb, Interferon-b; TC, Total cholesterol; HDL-C, High-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; TG, Triglyceride; ATP, Adenosine triphosphate; SREBP-2, Sterol regulatory element-binding protein 2; AM580, a selective RARa
agonist; HMGCR, 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase; NF-kB, Nuclear transcription factor-kB.
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which were essential for the stabilization of T regulatory cells (201).
Cholesterol is required for SARS-CoV-2 to form pathological
syncytia which is believed to help replicate and evade host
immune responses (67). For example, cholesterol biosynthesis
pathways are affected by SARS-CoV which regulate levels of
SREBP2, S1 protein, peroxisome proliferators-activated receptors
g (PPARg), diacylglycerol acyltransferase-1or cholesterol efflux
regulatory protein (203–205). COVID-19-activated SREBP2
disturbs cholesterol biosynthesis (Figures 2B-e), leading to a
cytokine storm (50) (Figures 2 B-j). Importantly, SREBP-2
activity is regulated by crosstalk between cholesterol consumption
and nuclear factor k-B (NF-kB) expression from various
inflammatory response processes induced by SARS-CoV-2
infection (Figures 2B-h) (50). In addition, a metabolic
configuration is induced by SREBPs where glucose is metabolized
via the citrate malate shuttle, thus enabling natural killer cell growth,
proliferation, and function (206). Therefore, SREBP-dependent
lipidomic reprogramming may be viewed as a broad-spectrum
antiviral target (203). 25HC exerts inflammatory properties and
significantly attenuates proteolytic processing of SREBP2
(Figures 2A-c), thereby inhibiting the isoprenoid branch of the
mevalonate pathway (207). 25HC also amplifies inflammatory
signals (207), with growing evidence suggesting it has a broad
impact on innate and adaptive immunity (195, 208–213), including
antiviral immunity, inflammasome activation, and antibody class
switching (214), In addition, lung-selective 25HC nano-therapeutics
may function as inhibitors of COVID-19-mediated cytokine storms
(215). IFN-b production may be regulated by targeting the 7-
dehydrocholesterol reductase (DHCR7) and adding 7-
dehydrocholesterol (7-DHC), an intermediate natural product in
the cholesterol metabolism pathway (77) (Figures 2A-b). Moreover,
it is possible to enhance anti-viral immunity by promoting serine/
threonine kinase 3 (AKT3) activation (77); a positive feedback loop
is formed via type I IFN signaling and 7DHC accumulation to
amplify innate immune responses and control viral infection by
activating AKT3. Also, the emergence of highly pathogenic viruses
may be inhibited by DHCR7 inhibitors and 7-DHC (216). York et
al. suggested that a reduction in cholesterol biosynthesis was a key
event in inducing antiviral responses in virus-infected cells (172)
and that decreased cholesterol biosynthesis facilitated anti-viral
signaling by the stimulator of interferon gene (STING) in the ER
(Figures 2A-d) (216). Although cholesterol is a crucial component
of immune cell membranes, cholesterol accumulation in lymphoid
organs promoted T cell priming and stimulated the production of
the B cell growth factors, Baff and April (217). Ito et al. (2016)
reported that defects in cholesterol metabolism in CD11c+ immune
cells resulted in impaired antigen presentation and ultimately
autoimmune disease (218). Excessive cholesterol may exert
immune dysfunction and promote excessive pulmonary and
systemic inflammatory responses (219).

Cholesterol-Modifying Drugs Inhibit
Coronavirus Replication
Recently, several commonly prescribedmedications were shown to
interfere with sterol biosynthesis, including haloperidol,
aripiprazole, cariprazine, fluoxetine, trazodone, and amiodarone
(220). Cholesterol-modifying drugs exert anti-viral roles by
Frontiers in Immunology | www.frontiersin.org 8
reducing the absorption or synthesis of systemic cholesterol or
directly changing cholesterol levels in target cell membranes (219)
(Figure1A). It is possible to alter the SARS-CoV-2cycle in vitro and
in vivo using various cholesterol-modifying drugs (e.g., AM580 is a
selective retinoic acid receptor alpha (RAR-a) agonist, fibrates, and
statins) which hinder fatty acid and cholesterol synthesis
(Figure 1E) (221). In fact, cholesterol-binding agents, including
statins or MbCD, affect cholesterol and destroy lipid rafts, thereby
damaging coronavirus adhesion and binding properties (119, 222).
Moreover, these compounds also block key downstream virus
infectivity molecules, reduce proinflammatory tumor necrosis
factor-a (TNF-a) and IL-6 levels, and/or affect autophagic
processes in viral replication and clearance (222). It is worth
noting that cholesterol, fatty acids, cytosolic phospholipase A2a
(cPLA2a), and fatty acid synthase contribute toSARS-CoV-2DMV
formation (204, 223). For example, fenofibrate (reduces triglyceride
and low-density lipoprotein cholesterol levels inhibit SARS-CoV-2
replication and pathogenesis by affecting lipid metabolism
pathways in the lung cells of patients with COVID-19 (224).
AM580 is a retinoid derivative which interacts with N-terminal
SREBP to block lipogenic transactivation (203). Statins reduce
intra- and extra-cellular cholesterol by targeting HMGCR
(Figures 2A-a) (225, 226), thereby affecting viral infection,
immunity, and inflammation (219). Statins may also limit
inflammation by altering HMGCR mediators in the cholesterol
biosynthesis pathway (227, 228). These anti-inflammatory
properties are considered statin’s core protective effects in
cardiovascular disease, in addition to lowering cholesterol levels
(225). Wang et al. suggested that high cholesterol levels increased
entry of pseudotyped SARS-CoV-2 and the infection of virus
particles, and more of the receptor ACE2 can be recruited to the
internalization site (229). Statins ability to decrease lipids, enhance
protective immune responses, and exert anti-inflammatory
properties are beneficial during SARS-CoV-2 infections (219).
Statin therapy was previously reported to increase blood clearance
rates in chronic HCV infections and reduce mortality and
intubation requirements during influenza infection (118). Statins,
especially pitavastatin, may significantly inhibit activity of SARS-
CoV-2’s main protease, Mpro, which has a greater binding energy
than proteases or polymerase inhibitors (230). Decreasing cellular
cholesterol may also trigger the intake ofmore cholesterol from the
blood, reducing serum HDL-cholesterol (HDL-C) and LDL-C
levels. As cholesterol-lowering drugs, statins are widely used in
cardiovascular and metabolic diseases (231, 232). They inhibit
inflammation by reducing cholesterol and phospholipid
deposition in blood vessels. Thus, anti-inflammatory molecules
provide protective effects in cardiovascular diseases, and do not just
lower cholesterol (225).

Cholesterol as a Potential Marker for
Monitoring COVID-19
SARS-CoV-2 infection reshapes cholesterol metabolism via gene
activation and increased host metabolism activity (23) (Figure 2B).
Briefly, SARS-CoV-2 infection disturbs cholesterol biosynthesis by
activating SREBP-2 and affecting glucose or glutamine metabolism
(50, 233) (Figures 2B-e, c, d). Clinical data has also indicated that
lipid disorders may facilitate increased COVID-19 mediated
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pathogenicity, therefore lowering cholesterol levels may inhibit
SARS-CoV-2 replication and viral loads in patients (51, 65).
When compared with healthy individuals, patients with
dyslipidemia-related diseases are more likely to be infected by
SARS-CoV-2 (234, 235). Also, SARS-CoV-2 infection caused
some COVID-19 patients to have lower serum cholesterol levels
(e.g., 27HC, total cholesterol, high density lipoprotein cholesterol,
and low-density lipoprotein cholesterol), while triglyceride and non-
esterified polyunsaturated fatty acid levels were up-regulated
(Figures 2B-b) (27, 236–238). In particular, decreased serum
HDL-C levels are positively correlated with COVID-19 infection
severity (239). As infection worsens, serum TC and HDL are
lowered, but upon recovery, cholesterol levels return to normal
(65, 239–243). This may be due to SARS-CoV-2 S proteins affecting
HDL functions by removing lipids from HDL and remodeling its
composition/structure (243), potentially affecting virus clearance in
infected patients (244). Thus, serum cholesterol and lipoprotein
marker monitoring may have an important clinical value for
COVID-19 risk prediction (115). Increased triglyceride/HDL-C
ratios may be useful for the early identification of patients with
high risk and poor outcomes (245, 246). Moreover, in patients with
severe disease, significantly elevated serum HDL levels are
associated with favorable outcomes (112). HDL-C levels decrease
significantly in critically ill COVID-19 patients and are negatively
correlated with C-reactive protein and IL-6 levels, however
lymphocyte levels are increased with increased HDL-C levels,
which positively correlate with the COVID-19 severity (247).
Therefore, LDL-C levels may be used as predictors of COVID-19
progression and risk assessment (248).

SREBP is a membrane junction protein attached to the ER and
nuclear envelope (249); it regulates the effective synthesis of fat and
cholesterol and plays important roles in maintaining energy
homeostasis (Figures 2B-g) (250, 251). The SREBP protein
family regulate lipid cholesterol and fatty acid gene expression
via mitogen-activated protein kinase (MAPK) signaling (252). A
recent study reported that SREBP-2 C-terminal fragment was
detected for the first time in the blood of patients with COVID-19.
Based on data from clinical samples, SREBP-2 C-term was
suggested as a reference indicator to assess disease severity after
SARS-CoV-2 infection (50). SREBP-2-dependent lipidomic
reprogramming is a broad-spectrum antiviral target, with
SREBP-2 activation correlating with COVID-19-induced
cytokine storm activation (235). AM580 strongly inhibits
coronavirus replication by interacting with SREBP-2 (203, 204).
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CONCLUSIONS

Viruses are intracellular parasitic pathogens. They exploit host
nutrients and metabolites to accommodate their survival and are
highly adaptable molecules in escaping host antiviral responses.
Therefore, interventions in host specific metabolic pathways
could become potential antiviral targets (80, 203, 205, 253).
Potential cholesterol-modifying drugs exert broad-spectrum
antiviral effects by inhibiting activities of key rate-limiting
enzymes in the mevalonate pathway, and also SREBP proteins
which regulate host cholesterol homeostasis, thereby affecting
coronavirus entry, membrane fusion, and pathological syncytia
formation (204). Thus, cholesterol metabolism disorder is a
double-edged sword; it affects the normal physiological
functions of cells, however, weaponizing cholesterol
dysregulation in local cell environments such as lipid rafts or
endosomes could inhibit coronavirus replication. Therefore, the
development of selective cholesterol-modifying drugs targeting
key cellular components such as lipid rafts and endosomes in
infected cells could be a promising antiviral strategy for the early
stages of coronavirus infection.
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Malinowska AM, et al. The First Sars-CoV-2 Genetic Variants of Concern
(Voc) in Poland: The Concept of a Comprehensive Approach to Monitoring
and Surveillance of Emerging Variants. Adv Med Sci (2021) 66(2):237–45.
doi: 10.1016/j.advms.2021.03.005

43. Loconsole D, Sallustio A, Accogli M, Leaci A, Sanguedolce A, Parisi A, et al.
Investigation of an Outbreak of Symptomatic Sars-CoV-2 Voc 202012/01-
Lineage B.1.1.7 Infection in Healthcare Workers, Italy. Clin Microbiol Infect
(2021) 27(8):1174.e1–.4. doi: 10.1016/j.cmi.2021.05.007

44. Pereira F. Sars-CoV-2 Variants Lacking Orf8 Occurred in Farmed Mink and
Pangolin. Gene (2021) 784:145596. doi: 10.1016/j.gene.2021.145596

45. Sharun K, Tiwari R, Natesan S, Dhama K. Sars-CoV-2 Infection in Farmed
Minks, Associated Zoonotic Concerns, and Importance of the One Health
Approach During the Ongoing Covid-19 Pandemic. Vet Q (2021) 41(1):50–
60. doi: 10.1080/01652176.2020.1867776

46. Sharun K, Dhama K, Pawde AM, Gortázar C, Tiwari R, Bonilla-Aldana DK,
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74. Balgoma D, Gil-de-Gómez L, Montero O. Lipidomics Issues on Human
Positive Ssrna Virus Infection: An Update. Metabolites (2020) 10(9):356.
doi: 10.3390/metabo10090356

75. Luquain-Costaz C, Rabia M, Hullin-Matsuda F, Delton I. Bis
(Monoacylglycero)Phosphate, an Important Actor in the Host Endocytic
Machinery Hijacked by Sars-CoV-2 and Related Viruses. Biochimie (2020)
179:247–56. doi: 10.1016/j.biochi.2020.10.018

76. Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T, Shui G, et al. The
Transcription Factor Stat-1 Couples Macrophage Synthesis of 25-
Hydroxycholesterol to the Interferon Antiviral Response. Immunity (2013)
38(1):106–18. doi: 10.1016/j.immuni.2012.11.004

77. Xiao J, Li W, Zheng X, Qi L, Wang H, Zhang C, et al. Targeting 7-
Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and Irf3
Activation to Eliminate Infection. Immunity (2020) 52(1):109–22.e6.
doi: 10.1016/j.immuni.2019.11.015

78. Osuna-Ramos JF, Reyes-Ruiz JM, Del Ángel RM. The Role of Host
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