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Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses that can
infect animal and human hosts. The infection induces mild or sometimes severe acute
respiratory diseases. Nowadays, the appearance of a new, highly pathogenic and lethal
coronavirus variant, SARS-CoV-2, responsible for a pandemic (COVID-19), represents
a global problem for human health. Unfortunately, only limited approaches are available
to treat coronavirus infections and a vaccine against this new coronavirus variant is
not yet available. The plasma membrane microdomain lipid rafts have been found
by researchers to be involved in the replication cycle of numerous viruses, including
coronaviruses. Indeed, some pathogen recognition receptors for coronaviruses as for
other viruses cluster into lipid rafts, and it is therefore conceivable that the first contact
between virus and host cells occurs into these specialized regions, representing a port
of cell entry for viruses. Recent data highlighted the peculiar pro-viral or anti-viral role
played by autophagy in the host immune responses to viral infections. Coronaviruses,
like other viruses, were reported to be able to exploit the autophagic machinery to
increase their replication or to inhibit the degradation of viral products. Agents known to
disrupt lipid rafts, such as metil-β-cyclodextrins or statins, as well as autophagy inhibitor
agents, were shown to have an anti-viral role. In this review, we briefly describe the
involvement of lipid rafts and autophagy in coronavirus infection and replication. We
also hint how lipid rafts and autophagy may represent a potential therapeutic target to
be investigated for the treatment of coronavirus infections.
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INTRODUCTION

Coronaviruses (CoVs) are a large group of enveloped animal and human viruses, with a
single-stranded positive-sense RNA genome. The Coronaviridae family, to which they belong,
includes four genera of CoVs, indicated as Alphacoronavirus (αCoV), Betacoronavirus (βCoV),
Gammacoronavirus (γCoV), and Deltacoronavirus (δCoV) (Cui et al., 2019; Chen et al.,
2020). αCoV and βCoV have evolutionary evolved from bats and rodents, and have been
responsible for human infections; whereas δCoV and γCoV derive from avian species (Woo
et al., 2012). αCoV and βCoV are further divided into subgroups, 1a-1b and 2a-2d, respectively,
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(Graham et al., 2013; Drexler et al., 2014; Cui et al., 2019;
Fung and Liu, 2019) (Supplementary Figure S1). Coronaviruses
have been regarded as etiologic agents of both relatively mild
and severe respiratory infections/diseases in humans (Zhao
et al., 2012; Paules et al., 2020). HCoV-NL63, HCoV-229E,
HCoV-OC43, and HCoV-HKU1 cause the common cold and
mild upper respiratory diseases in immunocompetent hosts,
although some of them can be potentially virulent in infants,
young children, and elder individuals. Highly pathogenic human
coronaviruses, responsible for more severe respiratory diseases,
include SARS-CoV that caused the 2003 pandemic outbreak of
severe respiratory tract infection (Ksiazek et al., 2003), MERS-
CoV, responsible for the 2012 outbreak in Middle Eastern
countries (Zaki et al., 2012), and the novel SARS-CoV-2, actually
causing a pandemic of severe pneumonia that started in China in
December 2019 (Benvenuto et al., 2019; Zhu et al., 2020).

Coronavirus and coronavirus-like infections have been
described also in domestic and wild animals, such as swine
[porcine transmissible gastroenteritis virus and porcine epidemic
diarrhea virus], cattle (BCoV), horses, camels, cats, dogs, rodents,
birds, bats, rabbits, ferrets, mink, and various wildlife species
(Fehr and Perlman, 2015; Lin et al., 2016; Banerjee et al., 2019;
Cui et al., 2019; Ye et al., 2020). Although many coronavirus
infections are subclinical in animals, however, they cause a range
of diseases that can have serious consequences for animal health
as well as for the economic losses in livestock. In addition,
domestic animals may have been important intermediate hosts
for virus transmission from natural hosts to humans (Fehr and
Perlman, 2015; Ye et al., 2020).

Since only limited approaches are available to treat or prevent
coronavirus infections (Zhang et al., 2020), the importance of
identifying novel therapeutic targets is evident.

Viruses have evolved a close interplay with the host cell and
the first encounter between the virus and target cell occurs at the
plasma membrane. Lipid rafts are specialized plasma membrane
microdomains involved in important processes of the virus
infections and of the host target cells (Rosenberger et al., 2000).

Viruses exploit lipid rafts to gain infection of the target
cells; therefore, pharmacologic depletion or disruption of lipid
rafts may provide a tool to reduce or inhibit viral replication
(Khandia et al., 2019).

Furthermore, it has been widely demonstrated that lipid rafts
play a fundamental role in autophagic machinery: they are
associated with autophagosome morphogenesis, either in the
initiation or in the maturation phases (Matarrese et al., 2014).

Autophagy, a cell process involved in cellular homeostasis,
stress, and immune responses to viral infections, is a two-edged
process in virus infections, since it may have pro- or anti-
viral roles (Kudchodkar and Levine, 2009; Khandia et al., 2019).
Viruses, on the other side, during co-evolution with the host
cell, developed mechanisms to usurp/exploit the host autophagic
system (Jheng et al., 2014).

This minireview reports on the available knowledge about
the interplay between coronaviruses, including the SARS-
CoV-2, with lipid rafts and autophagic pathways, in order
to focus the attention to novel potential targets to inhibit
coronavirus infections.

Lipid Rafts and Autophagy: Focus on
Coronavirus
Lipid rafts are plasma membrane microdomains (10–200 nm)
enriched in cholesterol, glycosphingolipids, and phospholipids.
They are also found in the endoplasmic reticulum (ER)
(Browman et al., 2006), in the Golgi complex (Eberle et al.,
2002), and on the membrane of endosomes (Sobo et al., 2007)
and phagosomes (Dermine et al., 2001). There are two main
types of lipid rafts based on their protein composition: “planar
lipid rafts” and “caveolae” enriched by the proteins flotillin
and caveolin, respectively (McGuinn and Mahoney, 2014). Both
possess a similar lipid composition that confers resistance
to solubilization by non-ionic detergents at low temperatures
(Brown and Rose, 1992), and the characteristic of being able
to be isolated in sucrose gradient (Sargiacomo et al., 1993).
Because of their dynamic and heterogeneous structure, they can
rapidly assemble and disassemble, changing their composition in
response to intra- and extracellular stimuli (Simons and Toomre,
2000). A key component of lipid rafts is cholesterol that is the
glue that maintains raft architecture, as demonstrated by the
disorganization and disruption of lipid rafts upon depletion of
plasma membrane cholesterol by the cholesterol depleting agent
methyl-β-cyclodextrin (MβCD) (Simons and Ehehalt, 2002;
Zidovetzki and Levitan, 2007). These membrane regions play an
important role in a variety of cellular functions, but principally
they recruit and concentrate several signaling molecules (Song
et al., 1997; Galbiati et al., 1999; Razani et al., 1999; Patel and
Insel, 2009) that, by interacting with caveolin and flotillin, form
a sort of signal transduction platform. Therefore, lipid rafts are
involved in many biological functions including endocytosis,
signal transduction, cell communication, and regulation of
autophagy (Nabi and Le, 2003; Shi et al., 2015).

Because of their capacity to cluster into a “phagocytic synapse”
several pathogen recognition receptors (Toll-like receptors,
C-type lectin receptors), lipid rafts are the focus of intense
research in the field of infection. In particular, they are involved
in several steps along a viral infection, such as virus entry into the
host cell (fusion and internalization), viral protein transport, viral
assembly, and budding processes (Hogue et al., 2012). Several
enveloped (HIV-1, influenza viruses, coronavirus, flavivirus) and
non-enveloped (SV40 and Rrotavirus) viruses exploit the raft
platform to bind to their specific receptors (Ono and Freed, 2001;
Pelkmans, 2005; Li et al., 2007; Takahashi and Suzuki, 2011).

Recent studies have implicated lipid rafts in coronavirus entry
and egress through a multistep endocytic process, although
the detailed mechanism remains to be disclosed (Li et al.,
2007). Figure 1 depicts a schematic view of the role of lipid
rafts in two paradigmatic human coronaviruses, HCoV-229E
and SARS-CoV, infections. Briefly, the receptors for the two
coronaviruses, aminopeptidase N (APN/CD13) and angiotensin
converting enzyme 2 (ACE2), respectively, are located into lipid
rafts and play a fundamental role in the initial step of the
virus infection. APN/CD13, a zinc-binding aminopeptidase, is
expressed in several cell types (endothelial, granulocytic, and
monocytic cells; epithelial cells of the kidney; respiratory tract
and intestine) and is required also for porcine, canine, and feline
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FIGURE 1 | Schematic representation of the role of lipid rafts in Coronavirus infection of the host cells is a multistep endocytic process characterized by a series of
complex events tightly regulated in space and time. Step 1 Entry process of coronavirus into the host cells is initiated by the binding of the spike glycoprotein with
the specific receptor (ACE2, APN/CD13) located into lipid rafts/caveolae. This interaction causes conformational changes of the viral particle, which trigger specific
signaling events necessary for the viral entry mechanism. Step 2 Lipid rafts/caveolae-mediated endocytosis is followed by intracellular trafficking of virus particles in
transport vesicles (early and late endosomes). The low pH in late endosomes induces a conformational change in coronavirus that mediates fusion of the viral
envelope with the endosomal membrane. Step 3 Viral genomes are translated in two polyproteins, pp1a and pp1ab, which encode the non-structural viral proteins
that form the replication transcription complex. This complex produces genomic RNA as well as multiple subgenomic mRNAs encoding structural proteins.
Translation of mRNA encoding for the nucleocapsid proteins occurs in the cytoplasm where the newly synthesized proteins interact with new genomes to form
ribonucleoprotein particles. In contrast, matrix, envelope and spike proteins translation occurs into the ER. Coronavirus uses also the autophagy machinery for
replication and has evolved strategies to avoid autophagy-induced lysosomal degradation. Step 4 After assembly the progeny viral particles, virus-containing
vesicles (smooth-wall vesicles) are budded and released into the extracellular environment through fusion with the plasma membrane (exocytosis). Alternatively, we
speculate that coronavirus might utilize multivescicular bodies (MVBs) and take advantage of the exosomal pathway for egress.

coronavirus recognition. ACE2, encoded on the X chromosome,
is a metalloprotease long known to be a key player in the renin–
angiotensin system that co-localizes with caveolin-1 and GM1
and is expressed on type I and II pneumocytes, enterocytes,
endothelial cells of the heart and kidney, epithelial cells of the
kidney, and the testis (Hamming et al., 2004). SARS-CoV-2, the
etiological agent of the COVID-19 pandemic, also binds ACE2
to infect host cells, by similarity to SARS-CoV, from which it
differentiates for point mutations on the spike protein, essential
for receptor binding (Wang et al., 2020; Yan et al., 2020). By
analogy to SARS-CoV, it can be hypothesized that SARS-CoV-2
may also use lipid rafts for its entry into the host cells.

The steps following coronavirus entry are not clearly
identified. A recent study demonstrated that SARS-CoV exploits
the activity of cathepsin L, an endosomal cysteine protease, to
initiate proteolysis and activation of membrane fusion within
endosomes (Simmons et al., 2013). In addition, coronavirus
mouse hepatitis virus (MHV) infection is inhibited when
early endosome-associated proteins, RAB5 and EEA1, are
down-regulated by siRNA (Burkard et al., 2014) and infectious
bronchitis virus (IBV) release of the nucleocapsid into the

cytoplasm (Wang et al., 2018) occurs through the fusion
with endosome–lysosome membranes. These data suggest that
coronaviruses exploit the early and late endosome compartment
after viral entry, as several other viruses (adenovirus, human
papillomavirus, polyomavirus, African swine fever virus, and
influenza virus) (Lakadamyali et al., 2004; Sánchez et al., 2017;
Spriggs et al., 2019).

Recent evidence shows that there is a close interplay between
lipid rafts and autophagy during physiological cell function,
as lipid rafts can regulate autophagy by interacting with
autophagosomes and autophagy-related proteins, such as ATG5
and ATG12 (Chen et al., 2014; Garofalo et al., 2016). In addition
a functional and structural link between lipid rafts and autophagy
comes from the evidence that chemical (e.g., MβCD, fumonisin
B1) or biological (e.g., siRNA inhibition of key enzymes involved
in the sphingolipids metabolism) molecules capable of altering
the chemical composition or molecular organization of lipid rafts
have also a strong impact on autophagy (Khandia et al., 2019).

Autophagy is an evolutionarily conserved (from yeast to
mammals), selective, and finely regulated process that generates
ATP and precursors for the synthesis of macromolecules
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(Ktistakis and Tooze, 2016) and is considered as a survival
process put in place by cells under stressful conditions, such
as pathogen microbial infections. It plays a key role in
cellular homeostasis and is responsible for the turnover of
cellular organelles (Yu et al., 2018), as its main function is
to remove and recycle non-essential, damaged, or obsolete
cellular components, such as whole organelles or macromolecules
(Mizushima and Komatsu, 2011). During autophagy, cytoplasmic
portions are enclosed into double membrane bound vesicles
(autophagosomes) that then fuse with late endosomes/lysosomes,
whose contents are degraded by lysosomal proteases. Autophagy
has been shown to have additional function in innate immunity,
by degradation of viruses, or intracellular pathogens, as well
as by presenting pathogen components to the immune system
(Mao et al., 2019).

Autophagy can have a pro-viral role, promoting virus
infection and propagation, as well as an antiviral role, essentially
depending on the virus strain, on the phase of infection, on the
infected cell type, but also on the cellular microenvironment
(Lennemann and Coyne, 2015). During co-evolution with their
natural hosts, viruses developed the ability to hijack autophagic
mechanisms to their advantage by using them for immune
escaping, or using autophagosomes as a replicative niche.
However, data on autophagy interplay with coronaviruses are
scant so far, related on no more than 50 works published
between 2004 and 2015. In general, it is suggested that CoVs can
interact with some components of the autophagic pathway in an
opposite way with a dual effect: utilizing autophagy components
to promote viral replication and/or to inhibit degradation of viral
products through the autophagic pathway (Cong et al., 2017).
In some coronaviruses, infection results are still contradictory,
as in the case of MERS-CoV (Corman et al., 2016), which
has been reported to induce phosphorylation changes in key
kinases, such as AKT1 and mTOR, that regulate the early

steps of autophagic process (Kindrachuk et al., 2015), thus
stimulating autophagy in infected cells. In contrast, Gassen
et al. reported that MERS-CoV activates the SKP2 kinase,
consequently reducing Beclin1 (BECN1) activity and inhibiting
the fusion of autophagosomes with lysosomes, which results in
autophagy inhibition (Gassen et al., 2019).

In general, it has been hypothesized that coronaviruses
would induce accumulation of autophagic vacuoles to obtain
a larger availability of the membrane structure necessary for
their replication (Gassen et al., 2019), which is consistent to
the observed co-localization of the rodent coronavirus, MHV,
replication complex, with the autophagic proteins LC3 and
Apg12 (Prentice et al., 2004). Likewise, the SARS-CoV takes
advantage of autophagic pathway to replicate and transcribe
its own genome, as suggested by inhibition of its replication
through inactivation of GSK-3 (glycogen synthase kinase-3),
a serine/threonine kinase that inhibits autophagy, through the
mammalian target of rapamycin (mTOR) complex 1 (mTORC1)
(Wu et al., 2009; Zúñiga et al., 2010). A very recent study showed
that SARS-CoV-2, similar to MERS-CoV, strongly reduced
the autophagic flux in infected cell lines downregulating the
AMPK/mTORC1 pathway, altered autophagy-relevant signaling,
and also reduced autophagosome/lysosome fusion efficiency
(Gassen et al., 2020). As a result, the SARS-CoV-2 virus could
take advantage of the autophagy reduction, thus preventing viral
product degradation and enhancing double membrane vesicles
(DMV) availability, indispensable for their replication.

The cell organelle most involved in the dynamic membrane
changes is the ER. It is therefore not surprising that some
coronaviruses, through the insertion of their trans-membrane
glycoproteins at the ER level, are able to induce ER stress. This is
the case, for example, of the ORF3 protein produced by porcine
epidemic diarrhea virus (PEDV), which induced ER stress-
dependent autophagy in different porcine and human cell types

TABLE 1 | Function of lipid rafts and autophagy in coronavirus lifecycles: overview on drugs.

Drugs Mechanism of action Target virus Antiviral effects References

MβCD, Nystatin Disrupt lipid raft
architecture by depleting
cell membrane cholesterol

CRCoV HCoV-229E
HCoV-NL63 HCoV-OC43
IBV MERS-CoV MHV
SARS-CoV-2

Inhibit viral entry/endocytosis Nomura et al., 2004; Thorp and
Gallagher, 2004; Choi et al., 2005;
Glende et al., 2008; Lu et al., 2008;
Guo et al., 2017; Owczarek et al.,
2018; Szczepanski et al., 2018; Baglivo
et al., 2020; Fantini et al., 2020

Statins (mevastatin) Inhibit lipid raft formation by
lowering cholesterol
biosynthesis

IBV SARS-CoV-2 Inhibit viral entry/endocytosis Guo et al., 2017; Abu-Farha et al.,
2020; Rodrigues-Diez et al., 2020

Chloroquine and
Hydroxychloroquine

Interfere with
lysosome-mediated
autophagy function by
increasing the
endosomal/lysosomal pH

MERS-CoV HCoV-229E
HCoV-OC43 SARS-CoV
SARS-CoV-2

Prevent viral fusion and inhibit the viral
entry by endocytosis, uncoating and
exit (exocytosis) process

ClinicalTrials.gov, 2020a,b,c,d,e,f,g,h,i,j

Rapamycin (Sirolimus) Inhibits mammalian target
of rapamycin (mTOR)
kinase

MERS-CoV PEDV
SARS-CoV-2

Downregulates virus infection ClinicalTrials.gov, 2020k

Nitazoxanide Inhibits Akt/mTOR/ULK1
signaling pathway

HCoVOC43 MERS-CoV
SARS-CoV-2

Inhibits virus replication Shakya et al., 2018; Yang et al., 2020

Niclosamide mTORC1 inhibitor MERS-CoV SARS-CoV Inhibits viral antigen synthesis Liu et al., 2019; Xu et al., 2020
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(Zou et al., 2019). In the same vein, MHV was observed to use the
host machinery to export vesicular ER to originate membranes
for the genesis of DMV. As regards the non-structural protein
(NSP) 6 of the avian infectious bronchitis virus (IBV), a gamma-
coronavirus, in addition to providing membranes useful for
the replication of the virus, it could prevent its degradation
within the lysosomes, effectively escaping the autophagy-based
cellular defensive mechanisms. Similar properties have also
been observed for MHV and SARS NSP6 proteins and PRRSV
arterivirus NSP5, NSP6, and NSP7 (Cottam et al., 2014).

DISCUSSION

Coronaviruses may represent a threat for human and animal
health for their potential to cross the species barrier, thus
acquiring human virulence, as evidenced by the previous SARS-
CoV and MERS-CoV outbreaks and by the ongoing COVID-
19 pandemic. Notwithstanding, treatment and prophylaxis
measures to control coronavirus infections are lacking so far,
either in humans or in livestock animals.

As outlined in this review, lipid rafts and autophagic pathways
play a pivotal role in coronavirus infection, being critical for viral
entry and replication, as well as for viral release from the host
cells. Actually, lipid rafts are the focus of intense research in the
field of infection, and it is conceivable to consider targeting some
lipid raft components in order to inhibit virus infection at the
cell level.

In particular, lipid raft disruption by cholesterol-depleting
agents has been shown to inhibit infection of several microbes
by blocking their entry into the host cells (Nomura et al., 2004;
Thorp and Gallagher, 2004; Choi et al., 2005; Riethmüller et al.,
2006; Glende et al., 2008; Lu et al., 2008; Guo et al., 2017;
Owczarek et al., 2018; Szczepanski et al., 2018; Abu-Farha et al.,
2020; Baglivo et al., 2020; Fantini et al., 2020; Rodrigues-Diez
et al., 2020; Table 1). In human immunodeficiency virus (Ono
and Freed, 2001), herpes simplex virus, and rotavirus infections,
MβCD, a widely used raft-disrupting agent, has been shown to
affect virus entry, thereby reducing their infectivity (Dou et al.,
2018; Wudiri et al., 2017). In addition, in Japanese encephalitis
virus and dengue virus infection, disruption of lipid rafts by
MβCD has been shown to decrease viral infection acting at
both viral entry and intracellular replication step (Lee et al.,
2008). β-cyclodextrins are extensively utilized in pharmaceutical
formulations as excipients to enhance solubility, bioavailability,
and stability of many drugs (Loftsson and Brewster, 2012). In
the light of the above-described antiviral activity, further studies
on pharmacokinetic and safety of MβCD could foster its clinical
application as an antimicrobial agent in humans. Statins, used
in human therapy for their ability to inhibit cellular synthesis
of cholesterol, have also been reported to have an anti-viral
effect, inhibiting infection of flavivirus, such as dengue virus
(DENV), hepatitis C virus (HCV), West Nile virus (WNV),
and Zika virus (Mackenzie et al., 2007; Andrus and East, 2010;
Martínez-Gutierrez et al., 2011; Españo et al., 2019), and their
application to inhibition of the coronavirus infection would be
worth considering.

Likewise, the pharmacological modulation of autophagic
processes can represent an attractive therapeutic strategy for
elimination of the viral pathogen or containment of the infection
(Rubinsztein et al., 2009; Clark et al., 2018).

In fact, different drugs described as inhibitors or inducers of
the autophagy that control host cell pathways process involved
in coronavirus infection, have sparked interest for their potential
antiviral activity (Shakya et al., 2018; Liu et al., 2019; Xu et al.,
2020; Yang et al., 2020; Table 1). One of this, chloroquine (CQ),
and its derivative hydroxychloroquine (HCQ), known as anti-
malarial drugs (O’Neill et al., 1998), which are able to inhibit
autophagy by raising the lysosomal pH (Golden et al., 2015),
have also been evaluated for HIV infection (Romanelli et al.,
2004). Very recently, clinicians have paid attention to CQ and
HCQ as a possible treatment of patients infected by the novel
emerged SARS-CoV-2 (ClinicalTrials.gov, 2020a,b,c,d,e,f,g,h,i,j).
This insight is also supported by some recent works, including
a recent publication by Gao et al. that indicates some positive
effects of CQ on the course of pneumonia associated with the
infection and on the reduction in healing (Cortegiani et al., 2020;
Gao et al., 2020; Geleris et al., 2020; Yu et al., 2020).

On the contrary, other studies have highlighted the
ineffectiveness of these drugs both in the viremic phase and
in respiratory complications (Boulware et al., 2020; Mahévas
et al., 2020; Rosenberg et al., 2020). Although some data, both
referring to COVID-19 and SARS, have highlighted some
positive effects of CQ and HCQ in the evolution of the disease,
thus showing their therapeutic potential, at the moment,
there are no data that can support the use of these drugs to
control the entire pathological process related to SARS-CoV-2
(Gies et al., 2020).

In the same vein, rapamycin, also known as sirolimus, an
autophagy inducer already used as an immunosuppressant, has
been tested, with some success, in the treatment of COVID-
19 (NCT04341675) (ClinicalTrials.gov, 2020k). These cases may
represent a repositioning of the drugs with clinical success in
treatment areas beyond their original approved use. According
to this, the antiviral in vitro activity of spermidine, niclosamide,
and nitazoxanide (known autophagy inducers) vs. SARS-CoV-2
was recently reported (Shakya et al., 2018; Liu et al., 2019; Xu
et al., 2020; Yang et al., 2020). Thus, a prophylactic approach
to COVID-19 using these drugs, which are well tolerated,
clinically applied, or FDA-approved compounds, would be
rational (Gassen et al., 2020). Importantly, treatments for
emerging infections by targeting host cell pathways, rather
than the infectious agent directly, or to complement antivirals
with drugs that enhance host cell resistance mechanisms have
thus become an active and promising therapeutic strategy. This
strategy is even more important and urgent to be explored in the
case of such potentially and suddenly pandemic virus family, as
coronaviruses are.
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