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Abstract: In 2020, according to the publications of both the Global Cancer Observatory (GCO) and
the World Health Organization (WHO), breast cancer (BC) represents one of the highest prevalent
cancers in women worldwide. Almost 47% of the world’s 100,000 people are diagnosed with breast
cancer, among females. Moreover, BC prevails among 38.8% of Egyptian women having cancer.
Current deep learning developments have shown the common usage of deep convolutional neural
networks (CNNs) for analyzing medical images. Unlike the randomly initialized ones, pre-trained
natural image database (ImageNet)-based CNN models may become successfully fine-tuned to
obtain improved findings. To conduct the automatic detection of BC by the CBIS-DDSM dataset, a
CNN model, namely CoroNet, is proposed. It relies on the Xception architecture, which has been
pre-trained on the ImageNet dataset and has been fully trained on whole-image BC according to
mammograms. The convolutional design method is used in this paper, since it performs better than
the other methods. On the prepared dataset, CoroNet was trained and tested. Experiments show that
in a four-class classification, it may attain an overall accuracy of 94.92% (benign mass vs. malignant
mass) and (benign calcification vs. malignant calcification). CoroNet has a classification accuracy
of 88.67% for the two-class cases (calcifications and masses). The paper concluded that there are
promising outcomes that could be improved because more training data are available.

Keywords: breast cancer; mammogram; coronet; deep learning; convolutional neural network;
transfer learning

1. Introduction

Cancer ranks a significant obstacle to rising life expectancy, and is a leading cause
of death worldwide. In 2019, WHO reported that the first or second major reason for
death earlier than the age of 70 is cancer, in 112 of 183 nations. It is ranked third or
fourth in the other 23 countries [1]. It causes an irregular growth of cells and is frequently
named depending on the part of the body in which it occurs. Cancer usually spreads
out rapidly throughout the body tissues [2]. It starts in cells, the smallest units of body
tissues and organs, e.g., in the breast. Mostly, cancer results from mutations, anarchic
division, and multiplication or abnormal changes in the cells. New cells usually replace
the old or damaged cells that die. This process occasionally fails, and the cell can keep up
uncontrollable or orderless division, creating more cells similar to it and causing a tumor.

A tumor is divided into benign (uncancerous) or malignant (cancerous). Benign
tumors are not dangerous, because they do not cause cancer: their cells appear close to
normal, grow slowly, and do not attack near tissues or harm other body parts. In contrast,
malignant tumors are dangerous. If they are not checked, they ultimately exceed the
original tumor and attack other body parts.

Cases and deaths are broken down by global region and type of cancer. In 2020, 19.3
million new cases of cancer (18.1 million excluding NMSC, excluding basal cell carcinoma)
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as well as 10 million deaths (9.9 million excluding NMSC, excluding basal cell carcinoma)
occurred in various countries of the world (Table 1). Figure 1 depicts the global distribu-
tion of new cases and fatalities for the 10 most common types of cancer among females
worldwide in 2020 [3].

Table 1. New cases and deaths for 10 cancer types in 2020.

Location of Cancer Number of New Cases (% of
All Locations)

Number of New Deaths (% of
All Locations)

Brain, nervous system (1.6) 308,102 (2.5) 251,329
Colon (6.0) 1,148,515 (5.8) 576,858

Female breast (11.7) 2,261,419 (6.9) 684,996
Leukemia (2.5) 474,519 (3.1) 311,594

Liver (4.7) 905,677 (8.3) 830,180
Lung (11.4) 2,206,771 (18.0) 1,796,144

Nonmelanoma of skin (6.2) 1,198,073 (0.6) 63,731
Ovary (1.6) 313.959 (2.1) 207.252

Prostate (7.3) 1,414,259 (3.8) 375,304
Stomach (5.6) 1,089,103 (7.7) 768,793
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To detect the presence of cancer in the body, effective techniques are available. In the
early stages, Breast Cancer (BC) can be detected through screening; hence, the treatment
can be more effective. Several methods are available, including ultrasound, magnetic
resonance imaging (MRI), CT, tomosynthesis, and mammography, as well as molecular
breast imaging. Because mammography is cheap and available, it is considered the most
widely adopted screening method. When examining a human breast, mammography
employs low-dose X-rays. Notably, mammography is a simple and affordable method by
specialists. Actually, it is considered the gold standard method of detecting the early stages
of BC before the lesions turn into something clinically tangible. Its images show cancerous
masses and calcium deposits more brightly. As a result, the death rate decreased by 25 to
30%. A specialist receives two views of the breast, producing two images, namely MLO
(Medio Lateral Oblique) and CC (Cranio Caudal) views [4,5].

Specialists have accomplished results of cancer detection that have varied broadly.
Even the performances of top clinicians pave the way for further improvements [6,7]. Al-
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though mammography is used extensively, interpreting its images has challenged special-
ists. For instance, false positives may cause patient anxiety [8] and unimportant follow-ups,
as well as invasive diagnostic proceedings. The types of cancer that are not identified at
screening may be unidentifiable until the advanced stages, when they are hard to treat [9].

In the 1990s, mammography had computer-aided detection (CAD). Since then, many
assisting tools have been adopted for medical purposes [10]. Although they have been
thought of as promising [11,12], this generation of software did not succeed in obtaining
a better performance compared to readers in actual settings [6,12,13]. Lately, several
developments have resulted in the reissuance of the field, because of the successful attempts
of deep learning. Scholars and researchers employed several machine learning methods to
detect BC using mammograms [14].

The Digital Database for Mammography Screening (DDSM) [15] represents the high-
est generally utilized databases of the public mammogram. Several papers utilized the
traditional techniques of automatic, not manual, extraction of features, including fractional
Fourier transform, Gray Level Co-Occurrence Matrix (GLCM), and Gabor filter, in order
to secure features, followed by applying SVM or further classifiers to conduct the classifi-
cation [16,17]. Furthermore, neural networks were utilized as classifiers [18,19]. Recently,
several papers have employed CNN for feature generations, using mammograms [20,21].
Some authors utilized pre-trained CNN as transfer learning uses. Lévy et al. [22] surpassed
human performance in the classification of DDSM images using CNN, exploiting transfer
learning on pretrained models such as AlexNet, the ImageNet Large Scale Visual Recogni-
tion Challenge’s winning network in 2012 (ILSVRC), and GoogLeNet, which won the 2014
edition of the same competition [23,24]. Guan [25] only used one Convolutional CNN, with
the front convolutional layers being responsible for feature generation and the back fully
connected (FC) layers acting as the classifier. Therefore, our CNN uses mammographic
images as the input, and the (predicted) label as the output. With no evident overfitting,
the average validation accuracy for abnormal vs. normal cases converged at around 0.905.
In 2018, Xi et al. used VGGNet, the winner of the ImageNet challenge in 2014, to achieve a
92.53% classification accuracy [26,27]. The same authors exploited ResNet to localize the
abnormalities within the full mammography images [28]. Recently, Ragab et al. extracted
ROIs from mammography, both manually and with threshold-based techniques, then
classified them using AlexNet chained with SVM [29]. On the CBIS DDSM dataset, they
claimed an accuracy of 87.2% with a 0.94 AUC. Shen et al. further extended these studies
by comparing the findings of several state-of-the-art architectures; when averaging the top
four models, they were able to obtain a 0.91 AUC [30].

In 2020, an important article was published in Nature [31], in which the authors
trained an ensemble of three models on more than 28,000 mammogram images. Then,
they compared its predictions with the decisions of radiologists. The actual labels were
determined using follow-up exams or biopsies. It turns out that AI beats humans in terms
of sensitivity and specificity.

Some scholars have addressed the scarcity of images in the DDSM dataset by proposing
data augmentation techniques. Hussain et al. [32] compared different transformations,
proving that using augmentation functions that preserve a high amount of information
(i.e., not too disruptive) helps to increase the classification accuracy. Similar results were
obtained by Costa et al. in a less extensive study [33].

In this study, we aim to perform abnormality classification in mammography using
CNNs. The dataset of interest is the CBIS DDSM. The mammogram images feature two
kinds of breast abnormalities: mass and calcification, which can be either benign or malig-
nant. In supplementary, we display the advances of the CAD methods utilized in detecting
and diagnosing BC, using mammograms that encompass pre-processing, feature selection,
features extraction, and contrast enhancement, as well as methods of classification.

In this paper, Section 2 is dedicated to the Materials and Methods, whereas Section 3
is devoted to the methodology and pre-trained models. Section 4 explores the discus-
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sion of classification through classifiers and combined classifiers. Section 5 covers the
concluding remarks.

2. Materials and Procedures
2.1. Materials

The mammogram is one the most important methods on the effectiveness and sensi-
tivity of the screening modality [34].

2.1.1. Mammography Datasets

Various datasets are publicly accessible. They differ in terms of size, image format,
image type, and resolution, etc., such as DDSM and DDSM’s Curated Breast Imaging
Subset (CBIS-DDSM) as show (Table 2).

One of the most significant characteristics of a mammogram is the utilization of low-
energy X-rays, to screen and diagnose the human breast. Two master views are introduced
for acquiring the X-ray images: CC and MLO (Figure 2). Mammography mainly aims to
detect BC early [35,36], ordinarily by detecting abnormal regions or masses in the images
of the X-ray. These masses are often highlighted by a physician or an expert radiologist.
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Table 2. Mammography datasets for breast cancer [1,37,38].

Dataset Type # of Images View Format Classes Resolution
(Bit/Pixel) Availability

DDSM [37] Digital
Mammogram (DM) 10,480 MLO/CC LJPEG Normal, benign

and malignant 8–16 Publicly
available

CIBS-DDSM [38] Digital
Mammogram (DM) 10,239 MLO/CC DICOM Benign and

malignant 10 Publicly
available

The paper applied mammographic images from databases. As a dataset, DDSM was
first assembled and became available online in 2007 by South Florida University. It contains
2620 scanned film mammographic images of normal, benign, and malignant cases, all
stored in Lossless Joint Photographic Experts Group format (LJPEG) with altered sizes and
resolutions [37].

DDSM is employed to conduct research in the systems of detecting and classifying
BC. It shows real breast data with a resolution of 42 microns, 16 bits, and an average
size of 3000 × 4800 pixels. It [15,36,39] holds 2620 scanned film mammography studies
distributed in 43 volumes. DDSM database holds 695 normal cases and 1925 abnormal
cases (914 malignant/cancer cases and 870 benign cases, as well as 141 benign without
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callback), specifying the boundaries and locations of the abnormal cases. For every case,
four images can be found to represent the left and right breasts in the MLO and CC views
(Figure 2) [34]. An experienced radiologist can recognize malignant and benign masses in
all mammograms. CBIS-DDSM Dataset: CBIS-DDSM is a developed and united edition of
DDSM. Table 3 displays the distribution of data.

Table 3. Distribution of data.

Type Normal
Abnormal

Total
Benign Malignancy

Train 1190 688 719 2597
Test 128 64 64 256
Total 1318 752 783 2853

2.1.2. Data Pre-Processing

The dataset is provided as a set of numpy arrays, containing the images and labels
to use for training and testing. Before these data can be actually used as input for the NN
models, a few pre-processing steps are necessary. Depending on the specific classification
task (e.g., mass/calcification, benign/malignant, . . . ), the actions to perform can be slightly
different. The following list describes the whole sequence for preparing the data:

1. Import the training and testing data as numpy arrays from shared npy files.
2. When the baseline patches are not needed, remove them and the corresponding labels

from the arrays (even indices).
3. Remap the labels, depending on how many, and which classes are involved in the

specific classification. If the task is to only distinguish between the masses and
calcification, only two labels (0–1) are needed. Conversely, four labels (03) are required
when it is also important to discriminate benign abnormalities from malignant ones.

4. Normalize the pixel values to be in a range that is compatible with the chosen
model. Scratch CNN models using input in the range (0, 1) floating point, while
VGGNet and other pretrained models are designed to work with images in (0, 255)
that are further pre-processed with custom transformations (channel swapping, mean
subtraction, . . . ).

5. Shuffle the training set and corresponding labels accordingly.
6. Distribute the training data to “validation” and “training” subsets. The former will be

used to compute the loss function exploited by the optimizer, where the actual perfor-
mance is monitored on an independent group during training, using a validation set.

7. Instantiate Keras generators as data sources for the network. Data augmentation
settings can be specified at this stage.

At the end of the pipeline, one or more of the resulting samples are effectively visual-
ized to verify that:

• The data are formatted as expected (size, range . . . )
• The images content is still meaningful and was not accidentally corrupted during

the process.

2.2. Methodology
2.2.1. Pre-Trained Models

CNNs have grown deeper in the past few years, because they have shown great
performance; with the state-of-the-art networks going from 7 layers to 1000 layers. In this
paper, we use some of these state-of-art architectures, pre-trained on ImageNet, for transfer
learning from natural images to breast cancer images.
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2.2.2. Pre-Trained VGG Architecture

A very deep convolutional network has many versions (VGG) [27], and has been
published by researchers from Oxford University as one of the best networks; it is known
as simple. Its architecture is very easy and deep; the convolution layers and dropout layers
are basically switched between. To replicate the influence of bigger receptive fields, the first
step is to use numerous small 3 × 3 filters in each convolutional layer and to merge them
in a sequence (VGG).

Despite the simple architecture, the network is costly regarding the cost of the com-
putation and memory, because the dramatically rising kernels cause more computational
time and a bigger sized model. The applied VGG16 architecture includes 13 convolutional
layers and five pooling layers, and attains 9.9% top-5 error on ImageNet. Its immense size
makes the training an extremely cumbersome process; notwithstanding, VGG16 is often
used for transfer learning, thanks to its flexibility.

2.2.3. Pre-Trained ResNet50 Architecture

Microsoft Research team introduced the ResNet50 for Image Recognition [28]; a
deep residual learning model. Notably, it is one of the best developed models. Due
to the novel concept of residual layers, some levels are bypassed to prevent a vanishing
gradient. The authors developed an elegant, simple, and straightforward idea by gathering
a standard deep CNN and adding shortcut connections that avoid limited convolutional
layers simultaneously. These connections generate residual blocks, as the convolutional
layer’s output is prompted by the block’s input tensor. The ResNet50 model, for example,
is made up of 50 layers of similar blocks connected by shortcuts. These connections keep
the computation time to a minimum, and provide a rich combination of features at the
same time; see Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 12 
 

5. Shuffle the training set and corresponding labels accordingly. 
6. Distribute the training data to “validation” and “training” subsets. The former will be 

used to compute the loss function exploited by the optimizer, where the actual per-
formance is monitored on an independent group during training, using a validation 
set. 

7. Instantiate Keras generators as data sources for the network. Data augmentation set-
tings can be specified at this stage. 
At the end of the pipeline, one or more of the resulting samples are effectively visu-

alized to verify that: 
 The data are formatted as expected (size, range...) 
 The images content is still meaningful and was not accidentally corrupted during the 

process. 

2.2. Methodology  
2.2.1. Pre-Trained Models 

CNNs have grown deeper in the past few years, because they have shown great per-
formance; with the state-of-the-art networks going from 7 layers to 1000 layers. In this 
paper, we use some of these state-of-art architectures, pre-trained on ImageNet, for trans-
fer learning from natural images to breast cancer images. 

2.2.2. Pre-Trained VGG Architecture 
A very deep convolutional network has many versions (VGG) [27], and has been 

published by researchers from Oxford University as one of the best networks; it is known 
as simple. Its architecture is very easy and deep; the convolution layers and dropout layers 
are basically switched between. To replicate the influence of bigger receptive fields, the 
first step is to use numerous small 3 × 3 filters in each convolutional layer and to merge 
them in a sequence (VGG).  

Despite the simple architecture, the network is costly regarding the cost of the com-
putation and memory, because the dramatically rising kernels cause more computational 
time and a bigger sized model. The applied VGG16 architecture includes 13 convolutional 
layers and five pooling layers, and attains 9.9% top-5 error on ImageNet. Its immense size 
makes the training an extremely cumbersome process; notwithstanding, VGG16 is often 
used for transfer learning, thanks to its flexibility.  

2.2.3. Pre-Trained ResNet50 Architecture 
Microsoft Research team introduced the ResNet50 for Image Recognition [28]; a deep 

residual learning model. Notably, it is one of the best developed models. Due to the novel 
concept of residual layers, some levels are bypassed to prevent a vanishing gradient. The 
authors developed an elegant, simple, and straightforward idea by gathering a standard 
deep CNN and adding shortcut connections that avoid limited convolutional layers sim-
ultaneously. These connections generate residual blocks, as the convolutional layer’s out-
put is prompted by the block’s input tensor. The ResNet50 model, for example, is made 
up of 50 layers of similar blocks connected by shortcuts. These connections keep the com-
putation time to a minimum, and provide a rich combination of features at the same time; 
see Figure 3.  

 
Figure 3. The architecture of VGG16 and ResNet50.

2.2.4. Pre-Trained MobileNet Architecture

MobileNet [40] is a scooped architecture proposed by Google to operate via mobile
phones and embedded devices or systems that do not have computational power. Its
architecture employed depthwise separable convolutions to radically decrease the sum
of trainable parameters, in rapprochement with regular CNNs with corresponding depth.
Both the spatial and depth dimensions are handled by the depthwise separable convolution
(number of channels). It breaks up the kernel into two parts, one for depthwise convolution,
and the other for pointwise convolution. The cost of calculation is considerably reduced
when kernels are used. MobileNet provides findings of rapprochement with AlexNet, while
drastically reducing the trainable parameters. Table 4 shows Summary of the architectures
of CNN.
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Table 4. Summary of the architectures of CNN.

Model Main Finding Depth Dataset Error Rate Input Size Year

AlexNet Utilizes Dropout and ReLU 8 ImageNet 16.4 227 × 227 × 3 2012

VGG Increased depth, small filter size 16, 19 ImageNet 7.3 224 × 224 × 3 2014

ResNet Robust against overfitting because of
symmetry mapping-based skip links 50,152 ImageNet 3.57 224 × 224 × 3 2016

Xception A depthwise convolution followed by a
pointwise convolution 71 ImageNet 0.055 229 × 229 × 3 2017

MobileNet-v2 Inverted residual structure 53 ImageNet - 224 × 224 × 3 2018

3. New Method

The present part tackles the work method of the suggested methods.

3.1. Convolutional Neural Network (CNN)

Deep CNN represents one of the distinctive types of neural networks that have found
major and popular use in machine learning and computer-aided detection applications [41]
for better performance and efficiency. The CNN has demonstrated extraordinary perfor-
mance in several competitions regarding image processing and computer vision. The
fantastic uses of CNN involve speech recognition, natural language processing, video
processing, and object detection, as well as image classification and segmentation.

CNN is a mathematical structure, which usually includes three types of building blocks:

3 Convolution layers;
3 Pooling layers;
3 Fully connected layers.

Convolution and pooling building blocks perform feature extraction, while the third
charts the extracted features into a final output, such as classification. A convolution
layer has an interesting part of CNN that is made of many mathematical operations, like
convolution, which represents a specialized type of linear operation.

The strong learning ability of the deep CNN network is firstly due to it using several
feature extraction phases that can acquire representations based on data automatically.
There has been an acceleration in the CNN network by research, due to the large amounts of
available data and hardware improvements. Researchers have reported exciting deep CNN
architectures. Many inspirational ideas have been discovered for achieving developments
in CNN networks, including the use of several activation and loss functions, architectural
innovations, regularization, and parameter optimization. They are achieved through
architectural innovations and important developments in the representation capacity of
CNN deep networks.

3.2. Architecture and Development of the Model

The CNN model, i.e., CoroNet, was proposed to automatically detect BC from mammo-
gram images according to Xception CNN architecture [42,43]. Xception Extreme Inception
architecture represents the major feature of Xception (the predecessor model). In addition,
it consists of a 71-layer deep CNN architecture pre-trained on an ImageNet dataset. The
major conception behind Xception is its depthwise separable convolution. Using this
method, the operations’ number is decreased using a factor proportional to 1/k. Xception
employs depthwise separable convolution layers with residual connections instead of tra-
ditional convolutions. Separable in-depth Convolution replaces the traditional n × n × k
convolution with a 1 × 1 × k point-wise convolution followed by a channel-wise n × n
spatial convolution.

Residual connections represent “skip connections” whose authorized gradients flux
directly via a network, without travelling via non-linear functions of activation; conse-
quently, disappearing gradients are avoided. In the case of residual connections, the output
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of a weight layer series is combined with the original input and passed via a non-linear
activation function.

Out of the 33,969,964 parameters in CoroNet, 54,528 are non-trainable, and the other
33,969,964 are trainable. Xception represents the base model of CoroNet while adding
a dropout layer, and two completely connected layers, ultimately. In Table 5, CoroNet’s
architecture, layer-wise parameters, and output shape are all depicted. In order to specify
the overfitting problem, we used Transfer Learning to initialize the model’s parameters.

Table 5. CoroNet Architecture Details.

Layer (Type) Output Shape No of Parameters

Xception (Model) 5 × 5 × 2048 20,861,480
flatten (Flatten) 51,200 0

dropout (Dropout) 51,200 0
dense (Dense) 256 13,107,456

dense_1 (Dense) 4 1028
Total parameters: 33,969,964

Trainable parameters:33,915,436
Non-trainable parameters: 54,528

4. Results and Discussion

The authors performed two scenarios for CoroNet, for the detection of BC from
mammogram images. The first model was the major multi-class model (two-class CoroNet),
trained to categorize mammogram images into two groups: masses and calcifications.
The other was the four-class CoroNet (malignant mass vs. benign mass and malignant
calcification vs. benign calcification).

CoroNet, the proposed model, was implemented in Keras on top of Tensorflow 2.0. It
was pre-trained on the ImageNet dataset before being retrained end-to-end on the prepared
dataset using the Adam optimizer with a learning rate of 0.0001, a batch size of 128, and an
epoch value of 200. The data were shuffled before each epoch was activated, which was
known as data shuffling. Google Colab was used to perform all of the experiments and
training attempts.

The adopted models’ training and performance were evaluated with reference to sig-
nificant parameters, namely, validation loss, training loss, validation accuracy, and training
accuracy, at various epochs. Table 6 shows these parameters’ results. The parameters were
considered to estimate the trained models’ under-fitting and over-fitting. The graphs of
training loss vs. validation loss and training accuracy vs. validation accuracy of each model
were presented (Figures 4–7). In sum, CoroNet demonstrates the minimum training and
validation loss, and shows the best accuracies of training and validation.

Table 6. Training performance of the CNN models in the present paper.

Models Epoch Stop Validation
Accuracy

Training
Accuracy

Validation
Loss Testing Loss

VGG 16 13 86.54 68.90 0.2886 0.4320
CoroNet 84 94.73 99.73 0.6079 0.0069

MobileNet 29 68.41 70.24 0.5759 0.6054
ResNet50 12 72.15 74.40 0.5457 0.5948
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5. Conclusions

Deep convolutional neural networks (CNNs) are frequently used for medical im-
age analysis, Unlike the randomly initialized ones, pre-trained natural image database
(ImageNet)-based CNN models have a better chance of being successfully fine-tuned to
produce better results than those that are randomly initialized. A CNN model called
CoroNet is suggested to perform the automatic detection of BC by the CBIS-DDSM dataset.
It leverages the Xception architecture, which was completely trained on whole-image BC
based on mammograms, and pre-trained on the ImageNet dataset. This paper proved
that the convolutional design method “CoroNet” outperforms its alternative networks. In
four-class classification, experiments demonstrate that it can achieve an overall accuracy
of 94.92 percent (benign mass vs. malignant mass and benign calcification vs. malignant
calcification). For the two-class examples, CoroNet has a classification accuracy of 86.67%.
(calcifications and masses).

High-resolution mammography handling is seen as a significant difficulty. In order to
see the fine features contained in these high-resolution mammograms, the models must also
be updated. Although there are various imaging modalities that can be employed, such as
MRI and ultrasound, the majority of the current CAD relies on X-ray mammography. The
use of 3D mammograms for diagnosis rather than 2D mammograms is another difficult
issue that necessitated research in order to make the most of the 3D property, and to
improve detection and classification performance.
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