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ABSTRACT

This paper proposes a fast, stable and accurate meshless method to simulate geometrically non-linear elastic behav-

iors. To address the inherent limitations of finite element (FE) models, the discretization of the domain is simplified

by removing the need to create polyhedral elements. The volumetric locking effect exhibited by incompressible

materials in some linear FE models is also completely avoided. Our approach merely requires that the volume of

the object be filled with a cloud of points. To minimize numerical errors, we construct a corotational formulation

around the quadrature positions that is well suited for large displacements containing small deformations. The

equations of motion are integrated in time following an implicit scheme. The convergence rate and accuracy are

validated through both stretching and bending case studies. Finally, results are presented using a set of examples

that show how we can easily build a realistic physical model of various deformable bodies with little effort spent

on the discretization of the domain.

Keywords
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1 INTRODUCTION

Simulating realistic deformations of a soft virtual ob-

ject is a complex task that can quickly transform into

a considerable challenge when the simulation needs to

be performed in a close to real-time framerate. Start-

ing from a 3D representation of a deformable object,

the model must account for all external forces such as

gravity, collision impacts and other elements that alter

the surface of the object. This can be achieved by build-

ing a volumetric representation of the object and by de-

riving the displacement field according to the contin-

uum mechanics laws in a discretized space. This ap-

proach is usually referred to as a physics-based simula-

tion framework [NMK*06]. Hence, the object’s defor-

mation results from the natural equilibrium between ex-

ternal forces being captured by the simulation process

and elastic properties (mainly the resistance to stretch-

ing and compression) of the object’s material. The com-

plexity of the method then greatly depends on the ap-

plication for which the simulation process is designed

and more importantly, the performance criteria to be

achieved.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

1.1 Four key performance criteria

Over the last decade, a large number of engineering and

medical computer simulation applications have been

developed. For this type of application, the accuracy

of the solution is usually the main performance crite-

rion imposed on simulation methods. Simply stated,

the main concern here is how close is the virtual repre-

sentation to the object’s real deformation? Since this

strongly depends on the physical laws governing the

simulation model, this condition can also be translated

as how do the states of deformation compare to a the-

oretical solution? Physics-based methods are usually

best suited where high accuracy is required.

Other applications such as interactive modelers or vir-

tual simulators require quick updates of the various de-

formation states. This brings two other performance

criteria into play, namely the speed and the stability

of the simulation. In this work, the speed constraint

is expressed as either a real-time requirement (around

30 frames per second) or a close to real-time (around 1

frame per second) requirement. The stability constraint,

on the other hand, relates to the robustness of the sim-

ulation process and its response to unexpected external

forces.

The simplicity of the simulation framework is our fourth

and last criterion. The objective here is to adequately

correlate the accuracy of the solution produced by the

simulation process to the amount of configuration work

and technical knowledge required by the end-user.

To be effective, the simulation framework must provide

an adequate balance between these four criteria. More

specifically, the method must be accurate. It must also
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be well suited for interactive modeling and must be flex-

ible enough to handle the different properties of elastic

materials. Finally, the model must be simple enough to

allow inexperienced users to easily configure and run

the simulation with minimum assistance.

1.2 Current methods

Methods based on finite elements (FE) currently form

one of the most popular physics-based simulation

frameworks. Using a linear FE approach and a small

displacement assumption, [BC96] and [CDA99] have

pioneered the field of real-time surgical simulators. To

minimize the impact of rotations, [Fel00] and [NPF05]

have proposed a method, called the corotational FEM,

to extract a rotation matrix from the displacement

of elements. Their work has opened the door to a

whole new branch of FEM-based tools for interactive

simulation. Unfortunately, these methods come with

some drawbacks: the simulated object’s volume must

be pre-filled with well-formed and well-placed ele-

ments. In addition, for nearly incompressible materials,

FE methods are affected by volume locking effects

which lead to numerical errors that directly impact the

accuracy criterion. To overcome this situation, the user

must not only discretize the volume with elements,

but must also make sure that these elements will not

generate numerical errors. The complexity of this

approach compromises another of our performance

criteria, i.e. the simplicity of the framework.

To address the inherent limitations of FE models in de-

formable object animation, a well-established branch

of solutions is gaining momentum: meshless meth-

ods. With these frameworks, the discretization of the

domain is simplified by removing the need to create

polyhedral elements. They also prevent the volumet-

ric locking effect exhibited by incompressible materi-

als [BLG94]. Under normal conditions, the meshless

approach merely requires that the volume of the object

be filled with a cloud of points, frequently called parti-

cles.

Meshless methods have already been proposed in both

the Computer graphics & Animations and Computa-

tional mechanics communities. [HWJM10] has pro-

posed a fully non-linear element-free Galerkin method

[BLG94] for surgical simulation. Although no mention

was made with respect to real-time compliance, all in-

dications are that they were the first to propose a fast

enough Galerkin-based solution without element-based

approximations. Since then, their work has been car-

ried over to various surgical applications [MHJW12;

ZWJ*14; DRTZ16; DLLW16; WGJ*16]. While these

meshless methods are accurate, their use of fully non-

linear material is time-consuming and not well adapted

for applications requiring a real time or close to real-

time framerate. Since they use an explicit time integra-

tion scheme, they are also restricted to small and regular

time step intervals which implies a less robust solution

in an interactive environment.

[MKN*04] presented a completely mesh-free method

based on a moving least squares (MLS) approximation

and a particle density approach to integrate the elastic

energy equations in space. Using the same approach,

[SSP07] also presented a complete mesh-free method,

but this time using a smoothed particle hydrodynamics

(SPH) approximation. Unlike [MKN*04], their shape

function does not rely on the inverse of a moment ma-

trix and allows for co-linear and co-planar neighbor-

hoods. [BIT09; PGBT18] extended this strategy by

carrying the corotational principle to the SPH formu-

lation. While these meshless methods present visually

plausible results, their volumetric integration approach

is based on an approximation of the particle densities.

This reduces the precision of the simulation and induces

instabilities. It is especially true given that their parti-

cles represent both the degrees of freedom and the inte-

gration points.

Beside physics-based simulation frameworks,

geometry-based methods such as [SCL*04; MHTG05]

are often proposed where only the surface repre-

sentation of simulated objects matters. While these

approaches produce visually pleasing results, they

do not satisfy our accuracy criterion where material

properties must be correctly simulated anywhere inside

the simulated object.

1.3 Our proposed solution

In this paper, we propose to address the problem of 3D

deformable object simulation using a meshless method

whereby each object is defined only by their surface

meshes. The solution borrows concepts from both the

FE and meshless models. But unlike the other solutions

mentioned earlier, our approach relies on two basic ad-

justments that are directly driven by our four perfor-

mance criteria.

Firstly, unlike meshless density-based integration

methods, our approach relies on background quadra-

ture grids where the intersection between the surface

mesh and grid cells are used to accurately estimate

the interior domain’s volume. The objective here is to

both improve the integration process of the Galerkin

approach and reduce numerical errors inherent to large

non-linear displacements by applying the corotational

principle.

Secondly, since the effects of nonlinear rotations are

minimized by the corotational principle, we propose to

exploit a linear approximation of the stress and strain

measures. This then allows for close to real time fram-

erates. We also propose an implicit time integration

scheme for large time steps that are better suited for

interactive simulations.
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1.4 Paper outline

In Section 2, we present a brief overview of the math-

ematical framework that was selected to model mate-

rial elasticity and deformation. The basic features of

our proposed method are then discussed in Section 3.

Among other things, we show how, from the updated

positions of a set of integration points, the rotational

part of a displacement can be extracted. We also expose

the system assembly stages for both a static solving

scheme and an implicit time integration scheme. This

is followed by the introduction of a method to correctly

map the vertices of the object surface mesh to the par-

ticle positions. We then explain how collision forces

gathered from the surface mesh can also be mapped

onto the particles. In Section 4 we present a series of

case studies to measure the convergence rate and preci-

sion of our proposed model. We conclude this paper in

Section 5 with some suggestions for future work.

2 MODELING ELASTIC MATERIALS

To simulate the elastic behavior of an object, a set of

rules governing the shape of an object over time must be

used. For a body that is stretched or compressed by ex-

ternal forces, whether from a gravitational field or from

a collision with another object, the rules ensure that an

equilibrium state is always maintained between these

forces and the body’s deformation resistance dictated

by the intrinsic material properties. The rules also in-

volve two key parameters to describe the stiffness of the

material: i) Young’s modulus E (N/m2) which defines

the lengthwise resistance to stretch and compression;

and ii) Poisson’s ratio ν which quantifies the perpen-

dicular expansion (respectively the transverse compres-

sion) of the body’s volume during compression (respec-

tively stretch). A material is said to be incompressible

when its Poisson’s ratio approaches the limit of 0.5.

The rules that we selected for our simulation framework

are derived from Cauchy’s first law of motion, which

states the conservation of linear momentum in a con-

tinuum. Here, Cauchy’s stress tensor σσσ conveys the

amount of stress (N/m2) sustained by the material un-

dergoing a certain deformation. Under the small strain

hypothesis, if uuu= [u v w]T is a displacement vector from

position xxx0 in the undeformed state of the body to its de-

formed position xxx = xxx0 +uuu, the deformation of a mate-

rial can then be approximated by the linear strain tensor

:

εεε(uuu) =
1

2
(∇∇∇uuu+∇∇∇uuuT ) (1)

where ∇∇∇uuu is the displacement gradient.

Using a constitutive model that follows Hooke’s law of

elasticity, we can define the stress tensor σσσ explicitly as

a linear function of the displacement uuu:

σσσ(uuu) = 2µεεε +λ tr(εεε)III (2)

where λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) are the Lamé

coefficients. It is important to note that equations 1 and

2 are linearized versions of their counterparts found in

finite strain theory. This means that the stress and strain

tensors can only represent relatively small and linear

displacements of the body. However, they can be com-

puted faster and, as we will see later, they can be pre-

calculated at the beginning of the simulation. Also, we

will later present a method to minimize the effects of

this linearization when nonlinear transformations (rota-

tions) are encountered.

Cauchy’s first law of motion can finally be translated

into a system of partial differential equations which

pose our set of rules for the simulation process:

−∇∇∇ ·σσσ = fff ⇒







−( ∂σ11
∂x

+ ∂σ12
∂y

+ ∂σ13

∂ z
) = fx

−( ∂σ21
∂x

+ ∂σ22
∂y

+ ∂σ23

∂ z
) = fy

−( ∂σ31

∂x
+ ∂σ32

∂y
+ ∂σ33

∂ z
) = fz

(3)

where fff is the external force. Finding the deformed

shape of an elastic object is then reduced to the prob-

lem of solving for the unknown displacements uuu of the

partial differential equations 3. This can be viewed as

a static simulation as it does not involve any time inte-

gration scheme.

For a dynamic simulation that involves time dependent

terms such as the gravitational force, equation 3 be-

comes:

ρ
d2xxx

dt2
+ fff elastic(xxx, t) = fff ext(xxx, t) (4)

where ρ is the material density, fff elastic(xxx, t) =−∇∇∇σσσ(uuu)
is the internal elastic force and fff ext(xxx, t) is the external

force. In this case, finding the deformed shape of an

elastic object requires numerically integrating equation

4 over time.

The next section presents the complete process of com-

puting the elastic force fff elastic(xxx, t) and the description

of an implicit method to integrate equation 4 over time.

3 OUR PROPOSED METHOD

In the previous section, we described a linear relation-

ship between stress and infinitesimal strain in a contin-

uous domain. In order to solve the unknown displace-

ment field uuu of our object, and given that we do not

have an explicit definition of it, we propose using an

approach that relies on the Galerkin method, which we

now outline.

3.1 The Galerkin method

The Galerkin method uses a weak formulation of the

discrete partial differential equations to be solved. To

simplify the reading, we temporarily disregard the time

dependent terms of our equations and refer only to the
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(a) (b) (c) (d)

Figure 1: Volumetric discretizations of a 3D surface. (a) Surface mesh provided by the user. (b) Background grid

where the grid’s cubes are used to place the DOFs and the integration points. (c) DOFs and integration points are

cropped to fit the surface mesh. (d) A neighborhood of the closest particles is built around each integration point.

static case. By multiplying equation 3 by a test func-

tion www in the Sobolev solution subspace H1(Ω0)
3, and

by following Green’s theorem, the set of equations be-

comes

−

∫

Ω0

σσσ(uuu) ·δεεεdΩ0

︸ ︷︷ ︸

Πelastic

=
∫

Ω0

bbb ·wwwdΩ0 +
∫

Γ0

ttt ·wwwdΓ0

︸ ︷︷ ︸

Πext

(5)

where Ω0 is the initial (undeformed) domain, Γ0 is the

domain boundary, δεεε denotes the variation of the strain

tensor and ttt =σσσ ·nnn is the surface normal traction vector.

Here the left term Πelastic can be viewed as the internal

virtual work and Πext as the work related to external

loads.

3.2 Volumetric discretization: the FE ap-

proach

In finite element methods, the initial domain Ω0 is dis-

cretized into a set of polyhedral elements (usually tetra-

hedrons or hexahedrons). These elements serve two im-

portant purposes: i) to construct an interpolation func-

tion of the displacement anywhere in the domain, and

ii) to numerically integrate the continuous equations.

The FE approach begins by building an explicit geomet-

rical representation of an element domain Ωe. From this

representation, an interpolation uuue(xxx) of the displace-

ment inside every element e with respect to its nodes is

assembled. The displacement uuu(xxx) of any position xxx ∈

Ω0 then becomes the displacement uuue(xxx) where element

e is the one surrounding xxx. By gathering all element

nodes into a set called degrees of freedom (DOFs), the

problem of solving for the unknown displacement field

uuu(xxx) is thus reduced to one of solving for a finite vec-

tor of n unknown displacements [uuu0,uuu1, ...,uuun]
T . Fur-

thermore, placing one or more Gauss integration point

inside the elements provides a means of numerically es-

timating the integral terms of equation 5 since elements

usually conform to the surface, hence producing an ac-

curate volumetric representation (the sum of all integra-

tion point volumes should equal the total volume of the

object).

3.3 Volumetric discretization: the mesh-

less approach

Whereas FE methods use the nodes of a polyhedral el-

ement to interpolate the displacement at Gauss points,

meshless methods instead create an approximation of

the displacement by considering the values of nearby

points. The idea is thus to fill the interior volume of

the object with an evenly distributed cloud of points,

the particles. These particles represent the DOFs of the

system and, consequently, the unknown displacements

to be solved. The approximation is built by using shape

functions φ that are evaluated at every particle near a

given position. The value of the displacement uuu(xxx) be-

comes:

uuu ≈ ũuu = ∑
i∈V (xxx)

φi(xxx) uuui (6)

where V (xxx) is the set of particles in the vicinity of po-

sition xxx. Here, ũuu is an approximation since our shape

function does not offer the Kronecker delta property

at the nodes, and is therefore not a true interpolant

[BKO*96].

For the volumetric integration of equation 5, we use a

background grid of regular cubic elements that com-

pletely covers the domain. The Gauss points within

these volume elements, the integration points, are used

for numerical integration of the equation. The summa-

tion of the volume of every integration point must al-

ways be very close to the total interior volume of the

simulated object. The integration over the continuous

domain Ω0 becomes:
∫

Ω0

f (uuu)dΩ0 ≈ ∑
I

vI f (ũuuI) (7)

where vI is the volume of integration point I and ũuuI is

the approximation of the displacement at position of I.
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Using equation 6, the displacement of any integration

point is estimated by accumulating the weighted dis-

placements of the particles surrounding it. The shape

functions we selected for our proposed framework are

similar to those described in [HWJM10] and are found

by using a moving least squares approach to minimize

weighted residuals from the polynomial approximation

uh(xxx) = pppT (xxx)aaa(xxx). To conform with time constraints

imposed by interactive simulations, we use linear basis

functions ppp = [1 x y z]. Solving for the unknown coeffi-

cients aaa, the shape function and its derivative become:

φi = PPPIAAA
−1WIiPPPi

φi,x = [PPPI,xAAA−1WIi +PPPI(AAA
−1
,x WIi +AAA−1WIi,x)]PPPi (8)

where PPPI = ppp(xxxI), AAA = ∑ j∈V (xxx0
I )

WIiPPP jPPP
T
j and with

WIi = W (
∥
∥
∥xxx0

I − xxx0
j

∥
∥
∥ ,h) is a monotonic and decreasing

weight function on a distance threshold of h, beyond

which it becomes null. In this work, we used the

quartic spline weight function described in [HWJM10]

where h is found by taking the mean distance of the k

nearest neighbors of a position xxx and multiplying it by

a small dilatation factor.

3.4 The corotational nodal elastic forces

Similar to FE methods, and because the continuous in-

tegration terms in equation 5 are discretized into a sum

over the integration points (equation 7), the continuous

system is now reduced to a set of smaller systems of

equations to be solved around each neighborhood. Be-

fore we describe the process of solving for the unknown

displacements uuu, let us start by assuming that they are

already known. To derive the elastic forces of equation

4 applied to a particle i in the neighborhood of an inte-

gration point I, we look at the rate of change of internal

elastic energy in the direction of uuui, yielding:

fff elastic
I→i = vIσσσ(uuuI) ·δεεε

= vI [λ (∇ ·uuuI)III +2µε(uuuI)] ·δεεε

= vIBBB
T
i CCC ∑

j∈V (I)

[BBB j uuu j] (9)

where CCCi jkl = λ IIIi jIIIkl +µ(IIIikIII jl +IIIilIII jk) is the elasticity

tensor, often reduced to a 6x6 matrix, and where BBBi is

the strain matrix and is defined as

BBBT
i =





φi,x 0 0 φi,y 0 φi,z

0 φi,y 0 φi,x φi,z 0

0 0 φi,z 0 φi,y φi,x



 (10)

Normally, a rigid transformation (translation or rota-

tion) of the simulated body should not generate any

elastic force since there is no deformation involved.

Unfortunately, since both the strain tensor and constitu-

tive model are linear approximations, rotations, which

(a) Ghost forces prevent the

cylinder to rotate down.

(b) The corotational approach

alleviates the effects of ghost

forces by removing rotations

before the computation of elas-

tic forces.

Figure 2: Simulation of a cylinder fixed at the left and

deformed by gravity (downward along the Y axis).

are non-linear transformations, will wrongly generate

internal forces, often called “ghost forces” (see figure

2a).

In order to minimize these ghost forces, we extend the

work of [NPF05] and [BIT09] by introducing a coro-

tational approach to our method. Whereas in FEM the

rotation is extracted from an element, and in the SPH

formulation of [BIT09] the forces are gathered around

the particles, our method relies on the integration point

neighborhood. Since these quadrature positions are not

represented by unknown variables, their position does

not get updated throughout the simulation. To solve

this, we manually update their positions at the begin-

ning of each time step by using the displacement of

neighboring particles (equation 6). Using these updated

positions, we construct a transformation matrix of each

integration point subspace:

AAAI = ∑
j∈V (xxx0

I )

v j(xxx j − xxxI)(xxx
0
j − xxx0

I )
T (11)

where v j is the volume of a particle and is obtained

by splitting the volume of the integration points evenly

among its neighbors. We then use the stable SVD de-

composition method of [PTVF07] to extract a rotation

matrix RRRI from the transformation matrix AAAI . Finally,

we cancel this rotation from the displacement approxi-

mation in equation 9 to get the corotational forces:

fff elastic
I→i = vIRRRIBBB

T
i CCC ∑

j∈V (I)

[BBB j (RRR
T
I xxx j − xxx0

j)] (12)

The benefits of this approach are shown in figure 2b

where ghost forces no longer appear.

3.5 Solving the static system

In the previous section, we described how to compute

the localized elastic force fff elastic
I→i applied to a given par-

ticle i in the vicinity of integration point I. The total

elastic force on i is found by accumulating the contri-

bution of every integration point. This elastic force defi-

nition is only useful when the current displacements uuu j

ISSN 2464-4617 (print) 

ISSN 2464-4625 (DVD)

Computer Science Research Notes 

CSRN 2901 WSCG Proceedings Part I

95 ISBN 978-80-86943-37-4



are known. Typically, in a static scheme (where there

are no time dependent terms), the displacements are

unknown, which implies that a linear system of equa-

tions must be solved in order to find them. When linear

strain and stress tensors are used, displacements uuu can

be factored to obtain the system KKK uuu = fff ext where KKK

is the stiffness matrix and is constant in time. However,

since our method relies on displacements relative to up-

dated integration point positions due to our corotated

approach, the stiffness matrix is no longer constant.

Therefore, solving for the unknown displacements is

done using an iterative Newton-Raphson method. Start-

ing from an initial displacement, uuu0, we try through an

iterative process to find a correction δδδ u that balances

the linearized set of equations after n iterations:

K̇KK
n−1

δδδ
n
u = fff elastic(uuu0 +δδδ

n−1
u )+ fff ext (13)

where K̇KK is the tangent stiffness matrix obtained by de-

riving the force of equation 12 with respect to the dis-

placement of the neighbors. The 3x3 sub-matrix K̇KKi j

can be viewed as the linear action of the displacement

uuu j on the particle i:

K̇KKi j = ∑
I

vIRRRIBBB
T
i CCCBBBT

j RRRT
I (14)

where I represents an integration point influencing both

particles i and j.

3.6 Solving the dynamic system

For dynamic schemes, time-dependent terms must

be incorporated into the equations. For example, the

gravity force involves the acceleration of particles, the

damping force involves their velocity and collision

forces involve the current state of the surfaces. To solve

this time-dependent system, we decided to follow the

Euler implicit time integration method [BW98]. Using

the discrete formulation MMMaaa− fff elastic = fff ext, we derive

the acceleration aaa and velocity vvv from the following

equations:

MMMaaat+∆t = fff elastic(xxxt+∆t)+ fff ext(xxxt+∆t)+DDDvvvt+∆t

vvvt+∆t = vvvt +∆taaat+∆t

xxxt+∆t = xxxt +∆tvvvt+∆t (15)

where MMM is a diagonal lumped mass matrix of the par-

ticles and DDD is a constant Rayleigh damping matrix.

Since the forces at time t +∆t are unknown, the follow-

ing linear equation is obtained from a first order Taylor

approximation :

(MMM−∆tDDD−∆t2K̇KK)aaat+∆t = ∆t( fff elastic(xxxt)+ fff ext(xxxt))+∆t2K̇KKvvvt

(16)

This equation is finally solved using the iterative conju-

gate gradient method.

3.7 Surface displacement and external

force mapping

So far our attention has been confined to the interior of

the deformable body. The last and final step consists

of extending the displacements derived in the previous

steps to the object’s surface using the shape functions.

Since the surface of an object is usually represented by

a mesh of triangles or quads, the displacement of these

polygon vertices can be derived by evaluating the shape

function of their neighboring particles (see figure 3b).

(a)

(b)

Figure 3: The similarities between (a) the relation be-

tween particles and integration points, and (b) the map-

ping of particles and the surface tesselation. Here, the

green oval shape is the simulated object, the blue nodes

represent the unknown degrees of freedom, the black

nodes are the surface vertices and the blue crosses are

the integration points.
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While this method is trivial and very fast, it should be

noted that other methods based on an implicit repre-

sentation (see [MKN*04]) can also be used to produce

even more visually satisfying results. However, given

the objectives set earlier in this paper, we consider the

displacement approach to be sufficient.

For the external forces applied to the surface mesh

(such as collision and external pressure), the surface

nodal forces are applied to the neighboring particles

following the same general idea. Thus, for an external

force fff s applied to a surface vertex at the initial posi-

tion xxx0
s , the mapped force fff ext

i at a neighboring particle

i becomes

fff ext
i = φi(xxx

0
s ) fff s (17)

4 RESULTS

In this section, we seek to demonstrate how our method

positions itself with respect to the four criteria pursued

in this work. Beginning with bending and stretching

scenarios, the solutions are validated through conver-

gence and precision analyses. Next, we outline the sta-

bility and simplicity of the method using various exper-

iments involving multiple objects and materials. The

computation times are given and were measured on an

Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz com-

puter with 16 GB of memory. No multithreading ma-

neuvers were used, hence leaving place for future speed

improvements. Our method was implemented as a plu-

gin for the multi-physics open source SOFA Framework

[FDD*12].

4.1 Convergence analysis
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Figure 4: The convergence rate of our method in differ-

ent scenarios. The error norm is obtained by comparing

the n DOFs solution against the (n−1) DOFs solution

of the same variant of the method in the same scenario.

The straight curve indicates a constant rate of conver-

gence.

To verify that the implementation of our method

works adequately from a numerical standpoint and

that it results in accurate deformations, we performed
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Figure 5: The accuracy of the solutions for the (a) bend-

ing and (b) stretching scenarios against a corotated

FEM reference solution of 69k regular hexahedral el-

ements.
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Figure 6: The computational times of the experiments

a convergence analysis using a FE solution as a

reference. The first scenario was a regular beam of

size 20x20x200 mm3 placed horizontally, fixed at one

end and subjected to a downward pressure force of

12 N/mm2 at the other. The material used a Young

modulus value of 50 N/mm2 and a Poisson ratio of

0.45.
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From this experiment, we gathered two measurements.

The first one, presented in figure 4, shows the conver-

gence rate of our method. It shows that, as the number

of DOFs increases, the static solution tends towards a

unique solution at a constant rate, whether that solution

is accurate or not. The second one, presented in fig-

ure 5a, validates the accuracy of the converged solution

against a reference solution. In this work, we used a

corotated FEM solution of nearly 70k regular hexahe-

dral elements as a reference.

To demonstrate issues with estimating the volume of an

object without a background grid, we also simulated the

beam with a nodal integration method where node mass

and volume were estimated by sampling neighboring

nodes as in [MKN*04]. While the estimated density is

very accurate, the corresponding mass and volume are

much higher than the actual ones and result in higher

stiffness of the simulated object. Furthermore, the esti-

mation is affected by particle distribution and will thus

vary as the number of DOFs changes. This means that

the simulation will not converge to a specific solution

as we increase the number of DOFs.
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Figure 7: The "locking" artifact of linear tetrahedrons

when used on an almost incompressible bending beam.

The distances of displacement from the tip of the solu-

tions are shown.

The bending of a beam is also a good way to illus-

trate one of the inherent meshing problems that come

with FE methods. As those methods need to generate

a mesh that conforms to the boundary surface, tetrahe-

dron meshes are generally preferred over hexahedrons

since they are well suited for automatic meshing meth-

ods. However, the solutions of linear tetrahedron-based

FEM can vary a lot: the under-integrating aspect dur-

ing the computation of the stiffness matrix can intro-

duce large numerical errors, also known as the "lock-

ing" effect. By building two tetrahedron FE models

from the regular hexahedron one, where both have 6

tetrahedrons per cube, but with different orientations,

we can clearly see how this numerical error impacts the

solution. Both have exactly the same number of ele-

ments, system unknowns and element shapes. How-

ever, as shown in figure 7, they converge to different

solutions. In both cases, these tetrahedrons would have

been accepted as "well-shaped elements" by most au-

tomatic meshing software. We can also see how our

method and the hexahedron one does not suffer from

this numerical constraint. Conversely, while the hexa-

hedron FE method is trivial to implement for a squared

cross-section beam, it remains very hard to apply to

general complex objects. This demonstrates an attrac-

tive benefit of our methods over traditional FE methods.

In figure 4 and 5b, the experiment is repeated but this

time through a stretching scenario. Here, using the

same previously used material, a pressure force exert-

ing 1500 N/mm2 was used in a direction parallel to

the beam. The computation times from both bending

and stretching scenarios are outlined in figure 6. To

solve the static systems, we used the Newton-Raphson

method described in equation 13 with a maximum of

100 iterations and a residual threshold of 0.00001.

4.2 Multiple materials

To illustrate the process of discretizing an object with

different material properties, figure 8 shows a cylinder

fixed at its center and deformed by gravity. Here, two

background grids of different material properties were

placed side by side, illustrating the simplicity of setting

the different material properties.

Figure 8: Material properties can vary inside a single

object. The cylinder is fixed at its center and gravity is

applied. The left half of the cylinder has a much higher

Young’s modulus than the right half.

We can imagine how this could be extended to com-

plex objects where some parts must be stiffer or heavier

than the others. A gradient of the material properties

could also be added around the boundary regions of the

different parts, smoothing out the change in material.

The inherent simplicity of dealing with a cloud of par-

ticles then allows for a lot of flexibility to the user, ei-

ther for determining how the objects should behave or

to improve the accuracy of the solution in some specific

regions of the object.

4.3 Surface mapping

The result of mapping the surface representation onto

the degrees of freedom is best demonstrated visually, in

figure 9. This figure shows the various object represen-

tations that are manipulated during a simulation. The

master state, represented by the degrees of freedom (red
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(a) (b) (c) (d)

Figure 9: Mapping between a surface and the deformation state of a torus. (a-b) Relation between the master

state (red circles) and its slave surfaces: the visual (red) and contact (yellow) tesselations. (c-d) Resulting mapped

surfaces after the contact with the floor.

circles in figures 9a and 9b) describes the deformation

of the object, while visual and contact model represen-

tations completely depend on that state to get their fi-

nal shapes (figures 9c and 9d). The contact forces can

be obtained through different methods. In this work,

a simple penalty based contact force was sufficient for

our demonstration purposes, even when used with col-

lisions between deformable objects as shown in figure

10.

5 CONCLUSION

We have presented a method for animating deformable

objects at interative framerates that require no poly-

hedral meshing of the volume. Where finite element

methods require well-formed and well-placed elements

inside their domain, our method only needs a cloud of

points to solve the system of unknown displacements.

Unlike other meshless methods based on nodal density

integration, we use a regular background grid which

does not need to conform to the surface mesh to effi-

ciently integrate the Galerkin formulation of elasticity

PDEs to be solved, hence improving the accuracy of

the solution. To minimize numerical errors and by us-

ing the integration points as a local reference frame, a

rotation matrix was extracted from the neighborhood of

those frames and used to reduce the effects of large non-

linear displacements. We have shown that this method

is both stable and accurate by presenting convergence

and precision analyses. We have also presented images

directly extracted from various simulations involving

collisions. These time dependent simulations followed

an implicit time integration scheme that is well suited

for interactive applications incorporating large and pos-

sibly inconsistent steps.

While this method is promising, there is however room

for improvement. Since the computation involves

neighborhoods containing more nodes than its FE

method counterparts, the resulting computation time

is a little bit heavier. Conversely, this can be greatly

improved by using multi-core computers and exploiting

the symmetry in elementary stiffness matrices by node

numbering optimizations. The benefits of this method

could also be explored in topological change scenarios,

such as cutting and plastic deformations. Finally,

we plan on doing extended convergence analyses to

establish optimal neighborhood configuration based

on the sparsity of the nodes and integration points to

further improve convergence rates.
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