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Abstract

To capture the multiple dimensions of liquidity in the corporate bond market, we combine a

model of imputed transaction costs with a model that estimates the fraction of transactions

that involve dealer inventory. We connect this to a third model that estimates the arrival

rates of buyers and sellers in the market. The resulting expression captures the probability

of successfully executing a trade on a bond within a day, for a given target execution cost.

We propose this measure, abbreviated as PEX, the Probability of Execution, as a new

bond-specific liquidity proxy. By investigating various liquidity determinants that influence

the individual models, we are able to identify the bond characteristics and market conditions

that influence the PEX. We find that a bond’s total amount outstanding, the yield spread,

duration and transaction volume of the previous month are the most influential variables.

This study provides first evidence that the PEX is a viable alternative to more naive liquidity

estimators and can benefit applications ranging from bond selection to trade execution and

post-trade transaction cost analysis.

Keywords – Corporate bond market, liquidity, proxy, probability of execution, transaction

costs, warehousing rate, arrival rate, cross-sectional.
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1. Introduction

Corporate bond liquidity, which constitutes the ease, speed and cost of transacting bonds, is

unobserved and therefore difficult to measure. As dealers continue to cut back on market-making

activities, the demand for comprehensive liquidity proxies is ever increasing (CGFS, 2016). Due

to the poor liquidity conditions, finding liquidity has become a crucial part of investing in

corporate debt. To get a grip on liquidity, investors have turned to cost models, such as the

Barclays Liquidity Cost Score (LCS), and proxies of market impact, such as the Amihud measure

and Roll’s model (Ben Dor et al., 2012; Sommer & Pasquali, 2016). Even though such measures

sketch a picture of one of the aspects of liquidity, they often neglect that liquidity conditions differ

between market participants and they fail to combine other liquidity dimensions. For example,

costs are known to decrease with trade size and liquidity also depends on dealer behaviour and

market activity (Schultz, 2001). This study aims to bridge the gap between various liquidity

aspects and shows that liquidity can be expressed in an intuitive way using probabilities.

To capture the multiple dimensions of liquidity in the corporate bond market, we merge different

types of transaction costs and combine it with the arrival rate of buyers and sellers. This gives a

proxy for the probability of successfully executing a trade for a given set of bond characteristics

and market conditions. We propose this measure, abbreviated as PEX, the Probability of

Execution, as a new bond-specific liquidity proxy that can benefit applications ranging from

bond selection to trade execution and post-trade transaction cost analysis. Unlike most liquidity

proxies, the PEX is purely based on cross-sectional bond characteristics and therefore allows the

practitioner to do out-of-sample inference without the need for real-time transactional data.

More specifically, the PEX is based on three individual models: a cost model that estimates

imputed transaction costs for different types of bond flows, a warehousing rate model that

estimates the fraction of transactions that involve dealers using their inventory, and an arrival

rate model that estimates the amount of incoming buyers and sellers in a market. We motivate

our approach with a simplified representation of dealer markets in which buyers become sellers

and liquidity is removed when investors hold bonds until maturity. Using this representation,

we make our cost model conditional on different types of transaction flows. This is comparable

to the ‘Click-or-Call’ framework of Hendershott and Madhaven (2015), in which observed costs

are taken conditional on the chosen trading venue: electronic auctions or bilateral trading with

a dealer. Hendershott and Madhaven also develop a count model to estimate dealer responses

in electronic auctions. We employ the same technique with our arrival rate model in order to

describe the arrival distributions of buyers and sellers in the cross-section.

We relate the framework to a set of bond characteristics and market conditions using Gen-

eralized Linear Models (GLM). Specifically, GLMs allow us to estimate the dispersion of liquidity,

due to their flexible assumptions. Apart from developing the liquidity framework, this thesis also
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aims to find the set of liquidity determinants that have the largest effect on both the individual

models and the PEX. In order to do so, we derive approximations for the partial effects of

such determinants and employ cluster robust standard errors to control for latent liquidity

influences and potential model misspecification. The data we use to estimate the framework is

the enhanced dataset from FINRA’s Trade Reporting and Compliance Engine (TRACE), for

the period between 2005 and 2013. We link the transactions from TRACE to corporate bond

characteristics and market conditions using constituent data from the Barclays U.S. Corporate

Investment Grade index. Although the proposed framework seems applicable to high yield bonds

as well, this thesis investigates the liquidity of investment grade bonds only. Taking the intersect

of both datasets, we end up with 15,489 unique CUSIPs and 57,280,531 filtered transactions. We

also download market indices, such as the CBOE Volatility Index (VIX), to proxy overall market

conditions as the VIX acts as a gauge for aggregate ‘fear’ in the financial markets.

The methodology we use to impute transaction costs is based on the work of Feldhütter (2012),

who uses it to identify selling pressure in corporate bonds. Feldhütter imputes transaction costs

by observing that corporate bond transactions are reported to TRACE in clusters: dealers often

prearrange transaction flows before executing them. Once the transaction is set in motion, the

dealer reports two transactions to TRACE: one record indicating the transfer of bonds from

the seller to the dealer and a seperate record for the transfer between the dealer and the buyer.

These transactions have the same reported transaction size and are reported in quick succession

of each other. Feldhütter uses the imputed costs in two ways. First of all, he finds that the price

difference between small trades and large trades at a given point in time is representative of

selling pressure in the market, implying that there are more sellers than buyers. Secondly, he

uses the imputed costs in a theoretical search model, where investors bargain with dealers about

prices when initialised with random search intensities. By estimating the model with TRACE

data, Feldhütter finds elaborate evidence of different liquidity conditions for buyers and sellers,

and for different transaction sizes. Feldhütter’s results bear an important lesson: given that

liquidity is bifurcated between the buy and sell side and highly dependent on the bargaining

power of the investor, it is ill-advised to generalise a liquidity proxy to all market participants.

Using the enhanced TRACE data, we are able improve Feldhütter’s (2012) imputation methodol-

ogy by identifying exactly whether a buying or selling customer is involved in a trade. This gives

us the opportunity to find not just the seller-dealer-buyer roundtrips, but also identify other

combinations of pre-arranged transactions. Like Feldhütter, we employ a 15 minute detection

window. Our results prove to be relatively robust to the chosen window, where increasing the

window leads to slightly different average costs. Using the enhanced detection method and

deleting observations not covered by the Barclays data, we end up with 13,277,112 total bond

flows. These include both single transactions and combinations of pre-arranged transfers. We

use all of these observations in the warehousing and arrival rate models, but we can only use

combinations of two or more transfers to impute transaction costs for the cost model.
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The results of this thesis indicate that the PEX is able to give a full picture of bond-specific

liquidity by combining the explanatory power of the three models. The bond characteristics

that improve the PEX the most are the total amount outstanding and the trading volume

of the previous month. As expected from Schultz (2001) and subsequent literature, we also

observe that a higher transaction size yields a more liquid environment. On the contrary, an

increase in the duration and age of a bond gives the largest decrease in the probability of

execution, especially for lower values. Additionally, the level of the VIX and the yield spread

also decrease the PEX. The effect of the yield spread is surprisingly small, caused by the fact

that it coincides with both expensive transaction costs and higher market activity. In total,

we find that liquidity circumstances are slightly better for sellers than for buyers. This is

the result of three effects: buying is on average more expensive than selling, dealers tend to

use their inventory more for buyers than for sellers, and buyers arrive more frequently than sellers.

Our cost model results confirm that of Harris and Piwowar (2006) and Edwards et al. (2007).

We find similar effects for the age of a bond, its callability, the price and the amount outstanding.

In the same fashion, our results confirm most of those from Harris (2015). Specifically, we find

similar estimates for the size of transactions and the average transaction size of trades on a

bond. The cost results of Hendershott and Madhaven (2015) also largely coincide with ours.

Unfortunately, we did not have the data to include the daily absolute stock return and the

treasury drift. We believe that these would also bring a valuable addition to our cost model.

This thesis differs from related literature in a couple of ways. First of all, we observe from the

dealer markups that it is better to denominate transaction costs in dollar cents, not basis points.

We find that denominating costs in basis points ex ante, can lead to a ‘price effect’ such as observed

by Harris (2015). By denominating costs in dollar cents instead, the explanatory power of price is

almost completely eliminated when controlling for yield spread and duration. This gives a second

difference: we include bond duration and yield spread instead of maturity. This because DTS,

duration times spread, is related to future volatility and thereby also bond liquidity (Ben Dor et

al., 2007). Indeed, we find that DTS explains a lot of cross-sectional variation in all models. For

the final framework, we split DTS into separate terms because it yields better performance. Lastly,

we employ the log transform for our continuous regressors, opposed to Edwards et al. (2007)

who prefer taking the square root. We find that corporate bond liquidity quickly deteriorates

as bond characteristics become less favourable, but the deterioration slows down for illiquid bonds.

Apart from proposing the PEX, this thesis contributes to the corporate bond liquidity literature

in two other ways. First of all, this thesis extends Feldhütter’s (2012) research by shedding light

on the relation of selling pressure to cross-sectional liquidity determinants. Feldhütter does not

make the distinction between different types of transaction flows, although he acknowledges that

the different types can lead to different costs. Because we are able to identify the difference

between buy and sell costs, we are able to make transaction costs conditional on whether dealers
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use inventory or not. As a result, we can discern between the liquidity conditions of buyers and

sellers. The PEX is therefore consistent with Feldhütter’s findings.

The second contribution of this thesis is that we make the first step towards combining multiple

liquidity dimensions in a probabilistic setting. Harris (1990) divides liquidity into four dimensions:

width, depth, immediacy and resiliency. A fifth dimension, breadth, was proposed by Lybek and

Sarr (2002). These dimensions are well defined for exchange traded limit-order markets, in which

everybody can observe the quoted prices and volumes (Appendix A). Such definitions are based

on the premise that transactions always take place against the best prevailing price. Dealer

markets have no such guarantee: two market participants can transact the same quantity of

assets at the same time, but with wildly varying prices (Feldhütter, 2012; Harris, 2015). We

must therefore adjust the definitions of the liquidity dimensions to fit dealer markets. Sommer

and Pasquali (2016) propose to think of liquidity as a distribution of costs in a probability space

conditioned on transaction size and market impact. Following their proposition, we redefine

the liquidity dimensions by using our cost model to describe the probability distributions of

realised transaction costs. This is visualised in Figure 1. Width is taken as the smallest difference

between bid and ask executions, depth as the cost for which we observe the average probability

of success and breadth as the shape of the distribution, measured by the skewness and kurtosis.
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Figure 1: Liquidity dimensions for the probability density of transaction costs

There is no consensus in the liquidity literature on how to measure immediacy. We propose

a new way of measuring immediacy with the arrival rate model. We find that the estimation

of arrival rates greatly contributes to our liquidity framework, yielding additional information

from the cost model. We are not able to measure resiliency because it depends the behaviour of

individual dealers, for which we do not have information. By combining the width, depth, breadth

and immediacy dimensions in the PEX measure, this thesis makes a first step towards Sommer

and Pasquali’s proposal (2016) of expressing multiple liquidity dimensions in a single probability.

The remainder of this thesis starts with the development of the PEX measure in Section 2. We

explain estimation procedures in Section 3 and introduce our data in Section 4. We show and

discuss our results in Section 5 and complete the thesis with a conclusion in Section 6.
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2. Models

In this section we introduce our methodology for estimating the Probability of Execution (PEX).

We base the PEX on a conceptual transaction flow framework that captures multiple dimensions

of liquidity. We denote sellers as ‘S’, dealers as ‘D’ and buyers as ‘B’. Immediate roundtrips are

then represented as ‘SDB’, signifying the flow of bonds from left to right. By definition of a

dealer market, all transactions involve a dealer. If buyers and sellers arrive at the same time,

the dealer is able to execute instantaneous roundtrips (SDB). If not, the dealer either transacts

against his own inventory (SD or DB) or transfers the bonds to another dealer (SDD or DDB).

In the latter case, the bonds in the transaction either come from a dealer’s inventory or end up

in a dealer’s inventory. Let γB denote the fraction of buy trades that are sold from a dealer’s

inventory or short-sold using the repurchase agreement (repo) market. Likewise, let γS be the

fraction of sell trades where a dealer takes bonds into inventory. Buyers arrive in the market

with rate λB and sellers arrive with rate λS . Together, this gives the framework in Figure 2a.

sellers dealers

repo

buyers

λB

inventory

λS (1− γS)λS

(1− γB)λB

γSλS

incoming buyers

λB

γBλB

sell before maturity hold until maturity

Figure 2a: Overview of bond flows in a dealer market, arrows indicate bond transfers

Given the bond flows in Figure 2a, we can now relate different flows in this framework to observed

transaction combinations. This is displayed in Figure 2b. Instantaneous roundtrips appear as

‘SDB’ transactions. Sell transactions where a dealer absorbs bonds into inventory appear as ‘SD’

and ‘SDD’. Buy transactions involving dealer inventory appear as ‘DB’ and ‘DDB’.

sellers dealers buyers

inventory

SDB

DB, DDBSD, SDD

Figure 2b: Overview of transaction cost combinations, arrows indicate bond transfers

The framework is based on a couple of assumptions concerning market restrictions. We assume

that a customer is able to sell his bonds in three cases: the dealer knows a buyer that is willing
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to buy the bonds, the dealer is willing to take the bonds into inventory, or the dealer can

transfer the bonds to another dealer. For buyers, we assume that transactions are possible if

the dealer knows a seller, the dealer owns the bonds, the dealer buys the bonds from another

dealer or the dealer is willing to short sell bonds through the interdealer repo market. We

assume that if dealers short sell bonds to buyers, they will buy the bonds back as soon as

possible1. Because selling customers generally do not have direct access to the interdealer repo

market, we assume that short selling by customers is not possible. By this assumption, the

total flow in the framework is less than or equal to the amount of incoming buyers. Incoming

buyers have two options: they can keep their purchased bonds until maturity or they can sell

the bonds. Over the lifetime of the bond, the amount of incoming sellers is therefore bounded

from above by the amount of incoming buyers: λS ≤ λB. If all buyers keep their bonds until

maturity, liquidity dries up and λS converges to zero. In essence, liquidity is added to the

system when buyers arrive and removed when buyers hold their bonds until maturity. This can

be seen from Figure 2a, where bonds can only leave the system if buyers hold them until maturity.

The inspiration for this framework comes from the ‘Click-or-Call’ decision model of Hendershott

and Madhaven (2015). They develop a venue selection model to estimate the difference in

transaction costs when trading in an electronic auction instead of engaging in bilateral trading

with a single dealer. They estimate the probability that an investor chooses a specific venue

with a probit model and use the outcome in a venue-specific cost model to account for possible

selection bias2. The different ‘venues’ can be compared to the different transaction types in

our framework. They also estimate the amount of positive dealer responses to electronic auc-

tions and use it as a proxy for getting a successful electronic execution. This can be compared

to the arrival rates in our framework, which we use to proxy the immediacy dimension of liquidity.

We estimate the various parts of the framework using three models. The first model estimates

imputed transaction costs (hereinafter ‘cost model ’) of the various transaction combinations. All

possible combinations are SDB, SDD, SD, DD, DB and DDB3. We can only infer costs from

transaction combinations that involve at least two bond transfers (SDB, SDD, DDB). The second

model estimates the fraction of trades that dealers take into inventory for at least 15 minutes

(hereinafter ‘warehousing rate model ’). The last model estimates the arrival rate of buyers and

sellers in the market (hereinafter ‘arrival rate model ’). After development of the models, we

complete this section by explaining how the models are combined into a probability of execution.

1There are three main reasons why dealers want to buy back the borrowed bonds as soon as possible: market risk
(the bond price may rise), running costs (the cost of carry) and possible penalty costs (if the short-seller fails to
deliver the bonds before settlement). Most dealers minimise potential costs by short offering liquid bonds only.

2Hendershott and Madhaven (2015) assume that investors choose the venue with the lowest expected cost. This
means that the realised cost of transacting at a specific venue are observed conditional on the assumption that
the expected cost at that venue is lower than at the other venue. This could cause a selection bias, which they
account for by using inverse Mills ratios from the probit regression and including it in their cost model.

3Even though rare, if more than two dealers are involved in a transaction we also define them as SDB, SDD or
DDB. For example, transactions that involve one buyer and three dealers are classified as DDB even though
the correct representation would be DDDB. The same holds for SDB and SDD combinations.
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2.1. The cost model

To estimate transaction costs, we employ a generalized linear model with appropriate distribution

and link function. A generalized linear model is suitable for modelling transaction costs because

costs are truncated at zero by definition. Additionally, the variance of transaction costs is

approximately constant when measured on a logarithmic scale. Taking the logarithm of costs is

not desirable because it would transform both the linearity and the variance of the data4. Given

that the coefficient of variation is also approximately constant, we argue that a generalized linear

model is an appropriate choice due to its flexibility and independence of transformations of the

original data. We employ separate regressions for different trade sizes, similar to Edwards, Harris

and Piwowar (2007). We group sizes as odd-lot [$0–$100k), round-lot [$100k–$1mm) and block

sized [$1mm,∞). The trade types we can estimate are SDB, SDD and DDB because we need at

least two prices to be able to impute a cost.

Let ηgp = Xgpβgp, for design matrix Xgp and vector of coefficients βgp for transactions of

type p and size s belonging to group g. We can then estimate the expected cost as follows:

E[Cgp|Xgp] = µgp = g−1(ηgp) (1)

Var[Cgp|Xgp] = V (µgp) = V (g−1(ηgp)) (2)

for g = {s ∈ [0, 100k)}, {s ∈ [100k, 1mm)} or {s ∈ [1mm,∞)},
and p = SDB, SDD or DDB

Where g−1(·) is the inverse link function and V (·) a function of the expected cost. The estimation

error Cgp − E[Cgp|Xgp] is expected to follow a specific distribution. We illustrate the results

of various model specifications of the cost model in Appendix I. We find that a log-link with

gamma distribution is the most appropriate specification for transaction costs in the corpo-

rate bond market. This yields E[Cgp|Xgp] = exp(ηgp) and Var[Cgp|Xgp] = V (µgp) = φgpµ
2
gp.

The parameter φgp is the dispersion of the regression, which is estimated separately (Appendix B).

This model provides a broad representation of liquidity. The estimated parameters of the

model can be used to uncover the parameters of the underlying distribution. The distribution

can be interpreted as the probability of observing a specific cost, given that a transaction takes

place. We can use this to proxy the liquidity dimensions width, depth and breadth (Section 1).

The cost model is therefore not only useful for estimating expected costs, but can also be used to

estimate the liquidity characteristics of a given market. This is further explained in Section 2.4.

4Jensen’s inequality tells us that predictions from a regression with a transformed distribution of the dependent
variable, e.g. lognormal, can be systematically biased. This because if the true distribution is not equal to the
transformed distribution, the transformation will incur additional estimation error to the regression. This can
be prevented by estimating the transformed expected value of the data, opposed to transforming the data itself.
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2.2. The warehousing rate model

The fraction of trades that are either sold from, or absorbed in, dealer inventory is estimated

with a probit model. The warehousing rates of buy and sell trades, γB and γS , are estimated

by classifying whether individual trades involve dealer inventory. Let yBg be a vector of binary

responses within size group g, where element yBig is 1 if buy trade i was type DB or DBB and 0

otherwise. The same holds for ySg , for which element ySig is 1 if sell trade i was type SD or SDD

and 0 otherwise. Given a design matrix Xg for size group g, we estimate the following models:

P[yBg = 1|Xg] = Φ
(
Xgδ

B
g

)
for buy trades (3)

P[ySg = 1|Xg] = Φ
(
Xgδ

S
g

)
for sell trades (4)

for g = {s ∈ [0, 100k)}, {s ∈ [100k, 1mm)} or {s ∈ [1mm,∞)},

With δBg and δSg the vector of coefficients for buy and sell trades with size s in group g, respectively.

We are mainly interested in the differences of the warehousing rates γB and γS in the cross-

section. Therefore, we designed the study in such a way that the regressors explain cross-sectional

variation between bonds, not between transactions on the same bond. By construction, the

model therefore has low explanatory power to classify individual transaction types. Instead, we

expect to find explanatory power in the cross-section as warehousing rates should vary with bond

characteristics and market conditions.

To find the warehousing rates γB and γS , we simply use the expected probability that a

trade involves dealer inventory. This because the probability of observing an outcome of a binary

random variable is equal to the expected fraction of random draws with that outcome5. If

we assume that the probability that any transaction goes through inventory is independent of

other transactions, we find that the fraction of trades that involve dealer inventory equals the

probability that any single transaction involves inventory:

γB(g,Xg) = P[yBg = 1|Xg] (5)

γS(g,Xg) = P[ySg = 1|Xg] (6)

We assume that dealers are rational and always execute instantaneous SDB roundtrips if possible.

Because instantaneous roundtrips are effectively arbitrage opportunities for dealers, this is a

feasible assumption (we explain the role of dealers in Appendix C). In our framework, the

possibility of an instantaneous roundtrip thereby dictates what type of transaction we observe.

Therefore, because the transaction combinations are mutually exclusive, we do not need to

include a selection bias correction in our cost model as in Hendershott and Madhaven (2015).

5In essence, if we have n independent Bernoulli random variables Xi for i = 1, ..., n such that P[Xi = 1] = p for
all i, then E[

∑n

i=1
Xi] = np. Clearly, the expected fraction of realisations equal to 1 is np/n = p. The fraction

is therefore equal to the probability, which coincides with the intuition behind a binomial distribution.
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2.3. The arrival rate model

To model the arrival flows λB and λS of buyers and sellers, we use a count model. The amount of

incoming customers per fixed time period can also be interpreted as the ‘rate’ at which customers

arrive. We estimate the amount of arriving buyers NB
btg of size s or larger in group g for bond

b = 1, ...,K on day t = 1, ..., T as the outcome of a Poisson distribution with conditional mean:

E[NB
btg|Xbtg] = λB(Xbtg) (7)

λB(Xbtg) = exp
(
Xbtgκ

B
g + ηbtg

)
(8)

for bond b = 1, ...,K,

day t = 1, ..., T,

and group g = {s ∈ [0,∞)}, {s ∈ [100k,∞)} or {s ∈ [1mm,∞)}

with NB
btg = 0, 1, 2, ..., and κBg the vector of coefficients for group g. The error ηbtg captures

individual variation in bonds. To allow for unobserved cross-sectional heterogeneity, we assume

that ηbtg follows the gamma distribution Gamma(θB, 1). This yields a negative binomial regres-

sion model with shape parameter θB and scale set to one. The negative binomial regression

is therefore a generalisation of a poisson regression with support for overdispersion6. The pa-

rameter θ can be interpreted as the dispersion of the amount of arrivals. This count model

also allows for zero outcomes, which is important as illiquid bonds have no trades on most

days. We repeat the above estimation procedure to estimate the arrival rate of sellers as well.

The corresponding notation is the same, except that parameters are denoted with ‘S’ instead of ‘B’.

The probability of nbtg buyers arriving on day t for bond b, conditioned on the regressors

Xbtg of size group g can now be written as:

P[NB
btg = nbtg|Xbtg] =

Γ(nbtg + θB)

Γ(θB)Γ(nbtg + 1)

(
θB

θB + λB(Xbtg)

)θB
(

λB(Xbtg)

θB + λ(Xbtg)

)nbtg

, (9)

for amount nbtg = 0, 1, 2, ...,

bond b = 1, ...,K,

day t = 1, ..., T,

group g = {s ∈ [0,∞)}, {s ∈ [100k,∞)} or {s ∈ [1mm,∞)}

where Γ(·) is the gamma function, nbtg are a given number of arriving customers and θB is the

shape parameter of the negative binomial distribution. Note that the size groups overlap as any

group g also contains all higher size groups. The rationale for this is provided in the next section.

6In a poisson distribution, the variance equals the mean. Overdispersion in a poisson model occurs when
the conditional variance is higher than the conditional mean. A negative binomial regression accounts for
overdispersion by estimating the additional parameter θ in the variance term of the error distribution.
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2.4. The probability of execution (PEX)

Now that we have established the three individual models, we can use them to make probabilistic

inferences of bond-specific liquidity and construct the PEX measure. Before we develop these

expressions, we first get a better grip on expected buy and sell costs. We combine the cost and

warehousing rate model to calculate a weighted average of the different transaction types:

expected buy costs: E[CB] = γ̂BE[CDDB]+(1− γ̂B)E[CSDB] (10)

expected sell costs: E[CS ] = γ̂SE[CSDD]+(1− γ̂S)E[CSDB] (11)

Next, we want to express the probability of observing the execution of a trade of size s for a given

cost target or better. We do this by transforming the expected value from the cost model into

the underlying cumulative probability function. The cost model regression yields an estimated

dispersion parameter φ̂ from which we can find α and β in Gamma(α, β). Specifically, for any

set of bond characteristics and market conditions Xgp, we can use the model to find an estimated

cost ĉgp = E[Cgp|Xgp] for a transaction of type p in size group g. We then find the parameters of

the gamma distribution as follows: α̂gp = 1/φ̂gp, β̂gp = α̂gp/ĉgp. We can now find the probability

of observing the target cost c or better with the CDF of the gamma distribution:

P[Cgp ≤ c|Xgp] =
γ(α̂gp, β̂gpc)

Γ(α̂gp)
=
γ(φ̂−1

gp , c φ̂
−1
gp ĉ

−1
gp )

Γ(φ̂−1
gp )

with γ(α, βx) =

∫ βx

0
tα−1e−t dt (12)

Here Γ(·) is the gamma function and γ(α̂gp, β̂gpc) the lower incomplete gamma function evaluated

at the target cost c. This expression is dependent on Xgp, because of the estimated ĉgp.

To measure the immediacy with which transactions can be executed, we assume that transactions

can be executed with the same rate at which the opposite party arrives. For instantaneous

transactions (SDB), this assumption is true. For the other transaction types we assume that

dealers are willing to take the bonds into inventory with the same rate at which buyers arrive,

given that they sell their inventory to buyers. Dealers are thereby believed to smooth market

frictions with regard to transaction time and size. We argue the same for buyers, given that

liquidity is provided by incoming sellers. For newly issued bonds, the rate at which buyers are

accommodated can be larger than the rate at which sellers arrive because dealers hold a lot

of inventory. We might therefore underestimate the buy-side liquidity circumstances of new

issues. We also assume that any transaction in group g can be offset by an opposite transaction

in the same group or higher. For example, any buy transaction with size si ∈ [100k, 1mm) is

offset by any incoming sell transaction with size sj ∈ [100k,∞), even if si > sj . We assume

that market frictions within size groups are absorbed by dealers. This assumption is consistent

with the phenomenon that executing smaller transactions is easier than transacting larger ones.

Nevertheless, there is no guarantee that large market frictions can be absorbed by the dealer.

Our immediacy proxy can therefore be upward biased for very large transaction sizes.
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To proxy the rate at which liquidity is available, we use the arrival rate model to find the

probability that at least one opposite customer arrives. Let Xgp be the vector of regressors and

θ̂ the estimated shape parameter of the negative binomial distribution. For a buyer of bond b in

size group g, the probability that a seller is available in group g or higher is then:

P[NS
bg > 0|Xbg] = 1− P[NS

bg = 0|Xbg] = 1−
(

θ̂

θ̂ + λS(Xbg)

)θ̂

(13)

with g = {s ∈ [0,∞)}, {s ∈ [100k,∞)} or {s ∈ [1mm,∞)}

Finally, we combine the three models into a single probabilistic estimate. We do this by taking

the CDF of equation (12) for the different transaction combinations and weighing them with the

warehousing rate model. We multiply this with equation (13): the probability that an opposite

party is available. For the set of bond characteristics Xi and target cost c, we now have our

proposed liquidity measure, the Probability of Execution:

Arrival rate model Warehousing rate model

1−
(

θ̂S
θ̂S+λS(Xi)

)θ̂S

γ̂B = Φ(Xiδ
B
i )

PEXB(c,Xi) = P[NS > 0]

(
γ̂B P[CDDB ≤ c] + (1− γ̂B) P[CSDB ≤ c]

)
(14)

Cost model

P[CDDB ≤ c] = 1

Γ(φ̂−1

DDB
)
γ(φ̂−1

DDB, c φ̂
−1
DDBĉ

−1
DDB)

P[CSDB ≤ c] = 1

Γ(φ̂−1

SDB
)
γ(φ̂−1

SDB, c φ̂
−1
SDB ĉ

−1
SDB)

The PEX is a comprehensive measure that combines multiple dimensions of bond-specific liquidity.

It estimates the width, breadth and depth of the market with the transaction cost term. The

immediacy of being able to execute a transaction is proxied with the probability that an opposite

party supplies liquidity. We assume that the probability of realising a cost of given type is

independent of the probability that an opposite party is available. Additionally, we assume that

dealer always prefer instantaneous roundtrips over other trades. The probability of observing a

given transaction type is therefore independent of observing another type. For completeness, the

PEX measure for both the buy and sell side are as follows:

PEXB(c,Xi) = P[NS > 0](γ̂BP[CDDB ≤ c]+(1− γ̂B)P[CSDB ≤ c]) for buying

PEXS(c,Xi) = P[NB > 0](γ̂S P[CSDD ≤ c]+(1− γ̂S)P[CSDB ≤ c]) for selling
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3. Methods

The three models that appear in this thesis can be estimated using traditional GLM estimation

procedures (McCullagh & Nelder, 1989; Dobson & Barnett, 2008). This because all three models

make use of a distribution from the exponential family. The cost model uses a gamma distribution,

the warehousing rate model can be written as a GLM with binomial distribution and probit

link function, and the arrival rate model is a GLM with a negative binomial distribution. The

binomial and negative binomial distribution are part of the exponential family if the number of

trials (or failures) is fixed. The estimation theory of generalized linear models is explained in

Appendix B. In this section we explain how we estimate two-way clustered parameter variances

and how we find the partial effects of variables on the individual models and the PEX.

3.1. Variance estimation and two-way error clustering

A disadvantage of using GLMs is that estimating the variance of the coefficients is nontrivial.

There is no closed-form solution to the variance, such that we must resort to a Taylor approxi-

mation of the log-likelihood function around the estimated coefficients. This approach assumes

that the model is correct and that there exists a true set of parameters θ0. We can now use the

Taylor approximation to find the distance between the set of estimated coefficients θ̂ and the

true coefficients θ0 as θ̂ − θ0. The Taylor expansion approximates the likelihood function ln(θ̂)

around θ0 with sample size n as follows:

ln(θ̂) ≈ ln(θ0) + l′n(θ0)(θ̂ − θ0) +
1

2
(θ̂ − θ0)

T l′′n(θ0)(θ̂ − θ0) (15)

In order to maximise this likelihood, we set l′n(θ) = 0 and drop the last term. This yields:

l′n(θ̂) ≈ l′n(θ0) + (θ̂ − θ0)
T l′′n(θ0) = 0 (16)

θ̂ − θ0 ≈
(
−l′′n(θ0)

)−1
l′n(θ0)

T (17)

Now if we take the variance of θ̂, we get Var[θ̂|θ0] = E[(θ̂ − θ0)
2] because θ̂ is unbiased. Hence:

Var[θ̂|θ0] =
[
−l′′n(θ0)

]−1 [
Var[l′n(θ0)|θ0]

] [
−l′′n(θ0)

]−1
(18)

where the covariance matrix is symmetric. By using asymptotic theory, for example that
1
n l

′
n(θ0)

P→ 0, and estimating the likelihood functions directly from the sample data by evaluating

them at θ̂, we yield the well-known asymptotic Huber sandwich estimator (Geyer, 2003):

θ̂
D∼ N(θ0, [−l′′n(θ̂)]−1

V̂ar[l′n(θ̂)] [−l′′n(θ̂)]−1) (19)

With N(µ, σ) the normal distribution and V̂ar[l′n(θ̂)] the variance matrix of the first partial

derivative of the likelihood function evaluated at θ̂, where the sample size n is sufficiently large.
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Now we can work out the first and second partial derivative of the log-likelihood as follows:

l′(θ) =
n∑

i=1

gi(yi|θ) =
n∑

i=1

∂

∂θ
log f(yi|θi, φ) (20)

l′′(θ) =
n∑

i=1

hi(yi|θ) =
n∑

i=1

∂2

∂θ2
log f(yi|θi, φ) (21)

where f(yi|θi, φ) is the conditional probability density of the data, further developed in equa-

tion (43) in Appendix B. If we substitute first and second partial derivates l′(θ) and l′′(θ) back

into the sandwich estimator, we can write the asymptotic variance of θ̂ as:

Var[θ̂]
D≈


−

n∑

i=1

hi(yi|θ̂)



−1 


n∑

i=1

gi(yi|θ̂)T gi(yi|θ̂)




−

n∑

i=1

hi(yi|θ̂)



−1

(22)

For all models, we adjust the standard errors with two-way clustering on day and bond issue.

This because the residuals can be clustered on individual days due to overall market conditions

that the model cannot explain. Additionally, transactions that happen on the same day and

on the same bond can have the same explanatory variables, such that their contribution to

the variance of the estimators must be adjusted. We also cluster on bond issues to adjust for

bond-specific biases. This because a bond that is classified as relatively liquid under the cost

model may actually display unusually high transaction costs due to some external effect that is

not captured by the regressors. Error clustering is therefore important because ignoring potential

error correlations within clusters can lead to erroneous statistical inference.

The two-way clustered asymptotic variance of θ̂ can be found by summing over the clusters first

when calculating the covariance matrix of the sandwich estimator. We assume that clusters

are independent, but observations within clusters can have correlated errors. For the two way

clustering, we cluster on both bond b and day t. Let cb denote the set of observations of bond b

and let ct be the set of observations that occur on day t. Implementing the two-way clustering,

the middle part of the sandwich estimator becomes the following:

∑

b

∑

t


 ∑

i∈cb∪ct

gi(yi|θ̂)



T 
 ∑

i∈cb∪ct

gi(yi|θ̂)


 (23)

where the outer two sums go over all bonds b and days t. The two outside terms in equation (22)

remain the same. As shown, we estimate the dependence between observations if they share either

the same bond cb or the same day ct, such that both observations are in cb ∪ ct. This adjusted
sandwich estimator is robust under model misspecification and takes into account cluster-specific

dependencies when estimating the covariance between observations.
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3.2. Partial effects of variables

In order to find the effect sizes of individual variables on the three models and the PEX measure,

we need to estimate partial effects. We calculate partial effects in three ways. First of all we can

factor out the effect from the original model if the model specification allows for this. Second

of all, we can take the partial derivative of a model with respect to a variable xi, and use the

derivative to linearise the effect of the variable for a given change ∆xi. The derivative is a linear

approximation of the function near xi and works relatively well for small changes ∆xi. The third

method is to find the ratio between the function f(x1, ..., g(xi), ..., xk) and f(x1, ..., xi, ..., xk),

where g(xi) is some projection of xi and the model f takes k variables. This is exact for single

observations but needs to be averaged for the partial effect over the full sample.

The partial effect of variables in a GLM with log-link function

Assume a GLM model with link function g such that g(E[Y ]) = Xβ. We can estimate this

model as Y = g−1(Xβ) + ε where some distribution is assumed for ε. In order to interpret the

estimated coefficients β̂, we need to understand the partial effects of the individual variables.

For non-transformed variables, an additive change in the variable has a partial effect that is

multiplicative under a log-link function. Given the vector of variables Xi of observation i, the

estimated expected value of the dependent variable is:

E[Y |Xi] = exp
(
β̂0 + β̂1x1 + · · ·+ β̂ixi + · · ·+ β̂kxk

)

Given an additive change m in variable x, the partial effect under log-link is:

E[Y |x1, x2, ..., xi +m, ..., xk] = exp
{
β̂0 + β̂1x1 + · · ·+ β̂i(xi +m) + · · ·+ β̂kxk

}

= exp
{
β̂0 + β̂1x1 + · · ·+ β̂ixi + · · ·+ β̂kxk

}
exp

{
β̂im

}

= E[Y |Xi] exp
{
β̂im

}

So for the additive effect m in xi +m, we get the partial effect of the estimate as exp
{
β̂im

}
.

For log transformed independent variables, a multiplicative change in the variable has a partial

effect that is multiplicative under a log-link function. Given variables x1, x2, ..., log(xi), ..., xk,

the partial effect under a log-link function is:

E[Y |x1, x2, ...,m · xi, ..., xk] = exp
{
β̂0 + β̂1x1 + · · ·+ β̂i log(xi ·m) + · · ·+ β̂kxk

}

= exp
{
β̂0 + β̂1x1 + · · ·+ β̂i log(xi) + β̂i log(m) + · · ·+ β̂kxk

}

= E[Y |Xi] exp
{
β̂i log(m)

}

So for the multiplicative effect m in log(xi ·m), we get the partial effect as exp{β̂i log(m)}. To
turn this into a percentage, we simply take exp{β̂i log(m)} − 1.
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The partial effect of variables in a probit model

We want to find the multiplicative partial effect of an independent variable xi that has been

transformed as f(xi). For a set of variables Xj and the estimated coefficients δ̂g of trade j in

size group g, we can write the estimated probit model as follows:

γ̂(g,Xj) = P[yg = 1|Xj ] = Φ(Xj δ̂g) = Φ(δ̂0 + δ̂1x1 + · · ·+ δ̂if(xi) + · · ·+ δ̂kxk) (24)

We can now find the elasticity by taking the partial derivative of γ̂(g,Xj) with respect to xi:

∂γ̂(g,Xj)

∂xi
= φ(Xj δ̂g) · δ̂i

df(xi)

dxi
(25)

For the transformation f(x) = x · m, we simply get δ̂imφ(Xj δ̂g) as the partial effect. The

corresponding semi-elasticity is δ̂imφ(Xj δ̂g)/Φ(Xj δ̂g). For the transformation f(x) = log(x), we

get the following partial effect:

∂γ̂(g,Xj)

∂xi
= φ(Xj δ̂g) · δ̂i

1

xi
(26)

/γ̂(g,Xj)
======⇒ ∂γ̂(g,Xj)

∂xi
· xi
γ̂(g,Xj)

=
φ(Xj δ̂g) · δ̂i
Φ(Xj δ̂g)

(27)

This is the full elasticity E of the probability γ̂ for the unit change log(x) + 1 = log(x · e). For
any other multiplier m, we need to make the adjustment: log(x · e) + log(m/e) = log(x ·m).

Alternatively, we can roughly adjust the coefficients with (m/e) · δ̂i. This gives the following:

Eγ̂(g,Xj)(xi,m) =
∂γ̂(g,Xj)

∂xi
· xime

−1

γ̂
= δ̂ime

−1 φ(Xj δ̂g)

Φ(Xj δ̂g)
(28)

Using method 3, we can also find the partial effect by increasing xi with the multiplier m inside

the function and dividing by the original, unadjusted probability:

γ̂(g,Xj + δ̂i log(m))

γ̂(g,Xj)
=

Φ(Xj δ̂g + δ̂i log(m))

Φ(Xj δ̂g)
(29)

Both methods yield approximately the same estimate of the partial effects. Because the estimate

depends on the chosen variables Xj , we take the average of the individual partial effects over all

observations. This is representative of the average partial effect of the variable on the sample.

The partial effect of variables on the CDF of the gamma distribution

As explained before, we relate the outcome of the cost model for group g and type p to the

underlying gamma distribution using α̂gp = φ̂−1
gp and β̂gp = φ̂−1

gp ĉ
−1
gp for Gamma(α̂gp, β̂gp) (original

18



explanation in Section 2.4 on page 13). For a cost target c and a set of k variables in vector Xj ,

we can calculate the corresponding cumulative distribution function as follows:

P[Cgp ≤ c|Xj ] =
γ(φ̂−1

gp , c φ̂
−1
gp ĉ

−1
gp )

Γ(φ̂−1
gp )

=
1

Γ(φ̂−1
gp )

γ
(
φ̂−1
gp , c φ̂

−1
gp exp{−Xj β̂gp}

)
(30)

where γ(·, ·) is the lower incomplete gamma function γ(s, x) =
∫ x
0 t

s−1e−t dt. To find the partial

effect of a variable xi in this function, we increase the log-transformed log(xi) with the multiplier

m inside the function and then divide by the original CDF:

P[Cgp ≤ c|x1, ..., log(xi ·m), ..., xk]

P[Cgp ≤ c|Xj ]
=
γ
(
φ̂−1
gp , c φ̂

−1
gp exp{−Xj β̂gp − β̂i log(m)}

)
/Γ(φ̂−1

gp )

γ
(
φ̂−1
gp , c φ̂

−1
gp exp{−Xj β̂gp}

)
/Γ(φ̂−1

gp )

=
γ
(
φ̂−1
gp , c φ̂

−1
gp exp{−Xj β̂gp − β̂i log(m)}

)

γ
(
φ̂−1
gp , c φ̂

−1
gp exp{−Xj β̂gp}

) (31)

Because the partial effect depends on the chosen variables Xj , we take the average of the

individual partial effects over all observations to find the average partial effect.

The partial effect of the target cost on the CDF of the gamma distribution

Continuing with the notation from Section 3.2, we can find the partial effect of c in P[Cgp ≤ c|Xj ]

by taking the partial derivative with respect to c:

∂P[Cgp ≤ c|Xj ]

∂c
=

1

Γ(φ̂−1
gp )

∂

∂c

∫ c φ̂−1
gp ĉ−1

gp

0
tφ̂

−1
gp −1e−t dt (32)

Using the product rule ∂
∂xh(g(x)) = h′(g(x))g′(x) with h(x) the lower incomplete gamma function,

h(x) = γ(φ̂−1
gp , x) =

∫ x
0 t

φ̂−1
gp −1e−t dt and g(x) = c φ̂−1

gp ĉ
−1
gp . Using the fundamental theorem of

calculus, we see that h′(x) = xφ̂
−1
gp −1e−x and g′(x) = φ̂−1

gp ĉ
−1
gp . Substituting terms, we then find

the following:

∂P[Cgp ≤ c|Xj ]

∂c
=

1

Γ(φ̂−1
gp )

(
c φ̂−1

gp ĉ
−1
gp

)φ̂−1
gp −1 (

e−c φ̂−1
gp ĉ−1

gp

)(
φ̂−1
gp ĉ

−1
gp

)
(33)

= c−1 1

Γ(φ̂−1
gp )

(
φ̂−1
gp ĉ

−1
gp

)φ̂−1
gp
(
e−c φ̂−1

gp ĉ−1
gp

)
(34)

Which is the semi-elasticity of increasing the target cost c with one cent. To find the full elasticity,

we can divide by the CDF again:

∂P[Cgp ≤ c|Xj ]

∂c
· 1

P[Cgp ≤ c|Xj ]
= c−1

(
φ̂−1
gp ĉ

−1
gp

)φ̂−1
gp
(
e−c φ̂−1

gp ĉ−1
gp

)

γ(φ̂−1
gp ,−c φ̂−1

gp ĉ
−1
gp )

(35)
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Additionally, we may also use method 3 and divide the function with the target cost plus one by

the original function:

P[Cgp ≤ c+ 1|Xj ]

P[Cgp ≤ c|Xj ]
=
γ
(
φ̂−1
gp , (c+ 1) φ̂−1

gp ĉ
−1
gp

)

γ
(
φ̂−1
gp , c φ̂

−1
gp ĉ

−1
gp

) (36)

The partial effect of variables on the probability of at least one arrival

Using method 3, we find the partial effect of the effect xi ·m on the probability that at least one

opposite party arrives by multiplying the log-transformed variable log(xi) with the factor m in

the original formula and dividing by the original probability function:

P[NS
g > 0|x1, ..., log(xi ·m), ..., xk]

P[NS
g > 0|Xj ]

=

1−
(

θ̂S
θ̂S+λS(Xj) exp{κ̂i log(m)}

)θ̂S

1−
(

θ̂S
θ̂S+λS(Xj)

)θ̂S
(37)

=
1− θ̂θ̂SS

(
θ̂S + exp{Xj κ̂

S
g + exp{κ̂i log(m)}

)−θ̂S

1− θ̂θ̂SS

(
θ̂S + exp{Xj κ̂Sg }

)−θ̂S
(38)

The partial effect depends on the chosen k variables in Xj , so we take the average of the individual

partial effects over all observations.

The partial effect of variables on the PEX

Now that we have established the partial effects of the various components of PEX in the previous

sections, we can compute the multiplicative partial effect ∆i of a variable xi on the PEX of a

buy trade for a given set of independent variables Xj as follows:

∆iPEXB = ∆iP[N
S > 0]

(
γ̂B∆iγ̂B∆iP[CDDB ≤ c] + (1− γ̂B∆iγ̂B)∆iP[CSDB ≤ c]

)
(39)

Here we have omitted the dependencies, but all terms are conditional on the given set of dependent

variables Xj . In the same fashion, the partial effect on PEXS may be calculated as follows:

∆iPEXS = ∆iP[N
B > 0]

(
γ̂S∆iγ̂S∆iP[CSDD ≤ c] + (1− γ̂S∆iγ̂S)∆iP[CSDB ≤ c]

)
(40)

As before, we assume that the models in the PEX are independent such that the partial effects

can simply be multiplied. Because the individual models rely on the given set of independent

variables Xj , we estimate the partial effects separately per observation and take the average.

Unlike the partial effects on the individual models, the partial effect of a variable on the PEX is

not (log)linear. The average partial effects on the PEX are therefore not always representative of

partial effects on individual observations. We illustrate this in Figure 3 in the results (Section 5).
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4. Data

In order to find transaction combinations, we use all corporate bond trades reported to the

Financial Industry Regulatory Authority’s (FINRA) Trade Reporting and Compliance Engine

(TRACE) between the years 2005 up and until 20137. Specifically, we use the enhanced time-

and-sales data which includes, among others, the original trade sizes and all reporting side

indicators. This gives us an advantage over some of the older literature, where either trade sizes

are downward biased or reporting sides have to be inferred from the data (Feldhütter, 2012). In

total, we have 110,189,735 raw data records, including both trades and corrections to trades.

To filter the data, we first apply the filtering approach described by Dick-Nielsen (2009, 2014).

We delete cancelled or reversed trades (2.61%)8, apply corrections to erroneously reported records

(1.13%) and delete records with odd or missing information (3.71%). We also delete all records

of non-corporate bonds, records that modify other records, records with special prices9, trades

that are executed outside of market hours and trades that are reported long after they took

place (6.63%). Like Dick-Nielsen, we also remove agency trades (11.57%) and double interdealer

records (22.01%). Dick-Nielsen removes interdealer records using a price sequence filter. We find

a more accurate way to remove interdealer records in the enhanced data: we delete all buy-side

interdealer transactions that have not been disseminated10.

On July 30, 2012, FINRA released a better version of TRACE with additional market ref-

erence data and improved process tracking capabilities. This greatly simplifies the cleaning

procedure for data that was disseminated after this change. We find that these improvements,

elaborately described by Dick-Nielsen (2014), do indeed improve the filtering accuracy. Because

we are mainly interested in transaction costs of bonds that trade under normal conditions of the

underlying company, we amend Dick-Nielsen’s filter with several additional filters. We remove

all records with extremely low prices, either when the corresponding bond ever reaches a price

of ✩1 or less, or if the transaction price is lower than ✩50 (0.74%). This is done to prevent

distressed debt from entering our sample because they give a large upward bias in the cost

estimates. Additionally, dealers are unwilling to take distressed debt on their books, such that

the fraction of trades that go through inventory is downward biased. The arrival rate of buyers

7FINRA releases the enhanced TRACE dataset with a lag of 18 months.
8Percentages denote the amount of deleted records from the original full dataset. The record types we refer to in
the filter are the same as by the definitions of FINRA. The difference between cancels and reversals is that
“firms report a ‘cancellation’ when trades are cancelled on the date of execution and a reversal when trades are
cancelled on any day after the date of execution.” (A311.3 of FINRA’s FAQ).

9Harris (2015) explains the definition of ‘special prices’ in TRACE. In short, a transaction has a special price if
its price is expected (by FINRA) to deviate from the normal market due to some irregularity.

10FINRA states the following on their website (FAQ 1.23): “For interdealer trades, TRACE disseminates only the
sell side of the transaction. All Customer trades are disseminated.” Therefore, we can safely delete all buy-side
interdealer records that are also not disseminated. If a buy-side interdealer record has been disseminated
(indicated by a flag), then it is not safe to delete this record because the corresponding sell-side record is either
missing or contains an error. Because FINRA has access to dealer identifiers, they can perfectly match related
interdealer records. Through the dissemination flag, we can therefore also make use of this information.
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may also be influenced as hedge funds often step in to buy distressed debt. Our goal is to

estimate transaction costs under normal company conditions and we are therefore not interested

in distressed debt. We also remove bonds of which the price is larger than or equal to ✩200

(0.75%). This is done to prevent convertible bonds from entering our sample as they behave

differently than non-convertible bonds with respect to overall market conditions and company

performance11. A full overview of the amount of deleted observations per year can be found in

Table 7 on page 52. After filtering, we are left with 57,280,531 corrected trades.

Next, we apply detection logic to identify the different transaction combinations (described in

the next section). This leaves us with 39,092,570 combinations (all types). We now only take the

30,690,032 observations of type SDB, SDD, DDB, SD or DB that are relevant for this study. After

imputing transaction costs, we apply two more filters. First we delete all imputed roundtrip costs

with zero or negative costs. We delete transactions with zero costs because dealers often transfer

bonds between their subsidiaries without markup12. Because of the reporting obligation to

TRACE, such transfers will show up as having zero cost. We also delete roundtrips with negative

costs because they are probably caused by uncorrected records or a failure of the roundtrip

discovery logic for ambiguous situations in which many trades happen in a short period of time13.

Negative costs may also appear due to sudden market movements between the time that the

dealer buys and sells the bonds, which hinders our assumption that costs are always positive.

Deleting the negative costs, we end up with 29,161,855 combinations in total.

We acquire a wide variety of bond characteristics from constituent data of the Barclays U.S.

Corporate Investment Grade index. Because not all bonds that are reported to TRACE are

covered by the index, we only consider bonds that appear in both. We restrict our sample to

investment grade bonds only because we find significantly different results with high yield bonds.

High yield bonds seem to have different relations with respect to the explanatory variables.

Nevertheless, the methodology in this thesis can be applied to high yield bonds too. At first

glance, we find approximately similar results for high yield bonds, but with different coefficient

magnitudes and significance. Further research is necessary to shed more light on these differences.

After taking the intersection between the bonds available in TRACE and the bonds covered

by the index, we are left with 13,277,112 observations. Finally, we split the sample into three

different groups according to transaction size: ✩0 to ✩100k (odd-lot), ✩100k to ✩1mm (round-lot)

and ✩1mm or more (block sized14). We find that of the final trades in our sample, 62% has an

11Convertible bonds benefit from capital appreciation should the company do well: they can be interpreted as
bonds that include a call option on the company’s stock. This is reflected in the price of these bonds.

12For example, dealer subsidiary ‘A’ conducts a transaction with bonds from the inventory of subsidiary ‘B’.
Before subsidiary A can sell the bonds, subsidiary B must first transfer the bonds to A. This shows up as a
seperate zero-cost transaction in TRACE. We delete such transfers because they concern the same dealer.

13Because we do not have dealer identifiers, it can happen that dealer records are accidentally intertwined. This
can potentially result in the identification of negative costs.

14Industry conventions sometimes dictate another split for transactions sized between ✩1mm and ✩5mm and sizes
of ✩5mm or higher. We found no special differences between the two groups so we decided to aggregate them.
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odd-lot transaction size, 23% is a round-lot trade and 15% is block sized. When performing the

regressions, we further delete observations for which we have missing bond characteristics. To

show how many observations we end up using, we display the amount of included observations

separately per regression. For the cost model, we additionally delete the 0.5% of highest transac-

tion costs per size group. These records have extremely high costs, likely due to uncorrected

errors by inaccuracies in the filtering procedure15 or fat-finger errors16.

4.1. Identifying and imputing transaction costs

Before we estimate the models, we first explain how we identify the different transaction com-

binations. For this, we build on the methodology of Feldhütter (2012). Feldhütter calculates

imputed roundtrip trades (IRTs) based on the phenomenon that bonds often do not trade for

hours, or even days, and then two or more transactions are reported to TRACE within a very

short time span. We can assume that these trades are part of a ‘pre-matched arrangement’ where

a dealer has matched both a buying and selling customer. Once the dealer has found such a

match, two transactions take place. One between the seller and the dealer and one between the

dealer and the buyer. If any other dealers are involved in the pre-matching, there can also be

additional trades that are part of the same roundtrip. Feldhütter classifies trades as part of

an IRT if two or more consecutive trades take place within 15 minutes of each other, on the

same bond (same CUSIP) and with equal size (par value volume in dollars). For any such event,

Feldhütter takes the lowest price to be from the seller and the highest price to be from the

buyer. The roundtrip cost is then taken as the buyer’s purchasing price minus the price that the

seller received17. Under Feldhütter’s definition of IRTs, a roundtrip is detected when at least

one customer is present and two transactions with the same size happen at approximately the

same time. This causes the transaction combinations SDB, SDD and DDB to all be classified

as the same IRT. Feldhütter admits that SDD and DDB transactions are in fact representa-

tive of just half (or approximately half) of the effective bid-ask spread. Because he does not

differentiate between the three types, it causes the IRTs to underestimate actual transaction costs.

Because we have access to the enhanced TRACE data, we can amend Feldhütter’s (2012)

approach to avoid misclassifications. First of all, we have access to uncapped transaction sizes18.

This improves the accuracy of accurately detecting roundtrips. Secondly, we also have buy

and sell flags for every trade. This means that we can see exactly which trades involve buyers

or sellers. As a consequence, we can observe the buy and sell prices directly from the trades

15Especially before the 2012 improvement, it is sometimes not possible to find the record that should be corrected
(this is quite rare). We always delete all records if a correction or deletion happens to match multiple.

16Sometimes we observe a roundtrip with, for example, buy price $110.50 and sell price $101.25. Likely, the sell
price should have been $110.25 because the last 0 and 1 were switched by accident and never corrected. These
type of errors are extremely rare, but are sometimes observed when dealers report information manually. This
is more common in the beginning of the sample; nowadays almost all reporting is automated.

17Transaction costs are taken as a fixed dollar amount with respect to price, not with respect to yield spread.
18In the non-enhanced data, transaction sizes in TRACE are capped at ✩5mm for investment grade bonds and

✩1mm for high yield bonds. This can lead to erroneously matching trades that actually have different sizes.
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instead of inferring them from the imputed spread. This gives us the opportunity to classify the

different transaction combinations exactly as they occur, thus making the distinction between

SDB and SDD or DDB types. Because costs can not be imputed for DB and SD combinations, we

cannot use them. We therefore assume that the imputed transaction costs from SDD and DDB

combinations are also approximately representative of the SD and DB types. This means that we

might overestimate costs of transactions that involve dealer inventory, given that an additional

dealer must be involved for costs to be identifiable. Because this is a common phenomenon in

the corporate bond market, it can be argued that this is a decent assumption19.

We define transaction costs as being half of the realised bid-ask spread. Assuming that the

theoretical value of a bond is the midpoint of the bid-ask spread, we argue that the cost of trading

is the deviation from the true value, the midpoint. Given that SDB combinations represent the

full bid-ask spread, we divide the bid-ask spread by two to get the implied transaction costs.

Because SDD and DDB combinations are representative of approximately half the bid-ask spread,

we can directly infer transaction costs from them20. Mathematically, the cost C is calculated as

C = (pB−pS)/2 for SDB combinations, and C = (pB−pS) for SDD and DDB combinations. Here,

pB is the buyer’s price and pS is the seller’s price. We denominate costs in dollar cents because

we observe that dealers generally do not adjust their markups for different prices. Instead, dealers

seem to use fixed markup amounts (10❿, 25❿, etc.) and we therefore argue against denominating

costs in basis points ex ante. Doing so can result in the accidental inclusion of a price effect21. We

have demonstrated this effect in Figure 7 on page 51, where the cost distribution for costs in basis

points shows a relation to price. As a consequence, we find that denominating costs in dollar cents,

opposed to basis points, removes most of the explanatory power of price observed by Harris (2015).

For the full period from 2005 up and until 2013, we find 17.10% of all transaction combi-

nations to be DD interdealer trades, 2.73% to be SDB instantaneous roundtrips, 12.50% are

SDD halftrips and 18.94% are DDB halftrips. Additionally, 19.96% are single SD trades and

24.71% are single DB trades. Finally, we are not able to classify 4.08% of record combinations

because they are ambiguous22. Descriptive statistics of the filtered sample can be found in

Table 1. It must be noted that the sample statistics are primarily dominated by liquid bonds.

This is caused by the fact that liquid bonds have many transactions, thereby contributing a

large portion of transaction to the total sample. This causes liquid bonds to dominate aggregate

19Feldhütter (2012) also makes this assumption, arguing that SDD and DDB transactions are still representative
of the then-prevailing bid-ask spread. Nevertheless, if one prefers to remove this assumption, then the SDD
and DDB results in this thesis can be interpreted as unrepresentative for SD and DB transactions. This would
limit the scope of inference for the SDD and DDB types, but retains interpretation for SDB combinations.

20The definition of transaction costs can differ according to preferences. If the full bid-ask spread is preferred as a
measure of transaction costs, one can also retain the SDB costs and double the SDD or DDB spreads.

21Nota bene: given a transaction cost of 30 cents for an asset with price ✩90 and for an asset that costs ✩110, the
relative transaction costs will be higher for the cheaper asset by construction (33 bps versus 27 bps).

22The combination is flagged as ambiguous if the identification logic finds that more than one buying or selling
customer with the same transaction size appears before the roundtrip has ended (= opposite party found).
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statistics. Table 1 is therefore only representative of an average transaction, but not of an average

transaction on an average bond.

Table 1: Descriptive statistics of transaction costs. This table gives an overview of the
sample statistics related to the imputed transaction costs. As discussed in Section 1, the statistics
in the table capture different liquidity dimensions. Specifically, the first percentile is related to
the ‘width’, the mean and median to the ‘depth’ and the skewness and kurtosis to the ‘breadth’ of
the aggregate bond market. Costs are denoted in dollar cents and are taken as half of the imputed
bid-ask spread. SDB stands for Seller-Dealer-Buyer imputed roundtrip costs. SDD and DDB are
imputed Seller-Dealer-Dealer and Dealer-Dealer-Buyer transaction costs, respectively. Statistics
are calculated over the separate size groups after cleaning the data. Transactions for which we
do not have bond characteristics are deleted. The metrics in this table are representative of the
same sample that is used for our cost model estimates. The notation ‘p.b.’ denotes ‘per bond’.
The number of trades are listed in thousands, indicated by (k). The mean and median trade
sizes are denoted in thousands of dollars, denoted by (✩k).

$0–$100k $100k–$1mm $1mm+

SDB SDD DDB SDB SDD DDB SDB SDD DDB

Mean cost 67 57 88 23 39 60 13 19 22

1st percentile 1 2 3 0 1 1 0 0 1

Median cost 50 50 88 10 25 39 9 8 12

99th percentile 213 225 259 150 200 244 75 125 150

Std 58 49 67 31 42 59 15 26 30

Skewness 0.8 1.4 0.6 2.5 1.9 1.2 3.4 3.3 3.1

Kurtosis 2.7 5.3 2.6 10.6 7.6 3.9 24.0 19 16

Mean trades p.b. 19 135 277 7 23 48 7 7 10

Median trades p.b. 5 31 74 3 8 17 4 3 5

Mean size (✩k) 24 22 24 284 227 214 5100 3200 2900

Median size (✩k) 20 15 20 200 150 150 3000 2000 2000

Bonds 5183 6852 7315 5616 6430 7038 6354 5414 6422

Trades (k) 97 922 2023 40 148 336 42 36 62

Analysing Table 1, we observe several patterns. First of all, average costs decrease for higher

transaction sizes. The SDB cost for a transaction between $0–$100k averages at 67 cents. Like-

wise, an SDB transaction of $1mm+ has an average cost of just 13 cents. Costs are higher when a

trade goes through dealer inventory (SDD, DDB) than if it is transacted instantaneously (SDB).

We also observe that DDB transactions are more expensive than SDD transactions. A reason for

this might be that SDD transactions are relatively simple for a dealer: he buys the bonds and

charges the expected inventory costs. For DDB transactions, it might be that the dealer needs to

borrow the bonds from the interdealer repo market. This entails more costs and could therefore

lead to higher markups. We see that the distribution of costs shifts more towards the midpoint
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as transaction size increases, as can be judged from the first percentiles and median costs. This

would imply that the width of the market is smaller for larger transaction sizes. On the other

hand, we also observe that, as transaction size increases, the market becomes less liquid in other

dimensions. The growing skewness and kurtosis convey that markets thin out in terms of breadth

for higher sizes. Even though median costs become cheaper, it also becomes more likely to observe

a cost in the tail of the distribution. In general, we observe that the average cost is always higher

than the median. The same holds for the average amount of trades per bond, where the average

amount of trades per bond is always higher than the median. This gives evidence that liquidity is

unevenly distributed across bonds, with outliers both for very liquid bonds and very illiquid bonds.

When looking at the different transaction combinations, we also observe some interesting proper-

ties. SDD trades have both a higher skewness and kurtosis than DDB trades, but not higher

average or median costs. This implies that the distribution of realised costs for SDD trades is

more dispersed, suggesting that sellers are willing to occasionally accept high costs. We imagine

this happens in times of distressed selling or weakened overall market conditions. The prevalence

of the different transaction combinations also changes with transaction size. As transaction size

increases, dealers become increasingly unwilling to absorb bonds into inventory. This causes the

SDB transaction combinations to appear more often than the SDD combinations in the ✩1mm+

size group. This motivates weighing transaction costs with respect to the probability of observing

a given combination. Specifically, because SDD and DDB costs are higher than costs for the

immediate SDB roundtrip trades, we argue that transaction costs should indeed be expressed as

an average cost that is weighted with the prevalence of the different combinations.

4.2. Variable selection

Now that we have developed the models, we need to select variables that we expect to explain

cross-sectional differences in corporate bond liquidity. Ex ante, the variable selection poses several

problems. First of all, we may not use statistical significance as a ‘decisive’ factor for selecting

variables. As elaborately discussed by Ziliak and McCloskey (2008), statistical significance is

useless if the effect has no practical significance or if the size of the effect is small. In our

case, this cautionary note holds especially true: we are bound to find statistical significance of

regression coefficients, regardless of practical significance or economic intuition. This is due to

the extremely large sample sizes that we work with. This is also known as the p-value problem:

p-values based on consistent estimators approach zero in the limit if the estimated parameter

is not exactly equal to the null hypothesis (Lin et al., 2013). Therefore, it makes no sense to

use statistical significance as a selection criterion. Instead, we investigate the size of effects

and try to understand the interaction between variables. This coincides with the investigation

of multicollinearity. Specifically, multicollinearity affects the estimated parameters such that

the interpretation of effects can become deceptive. We expect to find multicollinearity between

variables that are related to the same risk factor of corporate bonds. Examples of such risk
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factors are interest rate risk, credit risk or overall market risk. More obvious relations, such as

that between ‘age’ and ‘maturity’, should also be taken into account. Age and maturity have a

one-to-one relation, where maturity decreases with one year if the bond becomes one year older.

In the same way, there is also a relation between the duration of the bond and its age. But

because ‘duration’ also depends on other characteristics, such as the yield to maturity and the

coupon rate of the bond, this relation is much less pronounced.

For the selection, we use a bottom-up approach, starting with the variables for which we

have evidence of explanatory power by accompanying literature. For each variable, we take the

following steps to determine whether we want to add it to our framework:

1. First we create an ex ante hypothesis regarding the sign of the effect of the variable.

2. We add the variable to the existing regression and inspect the resulting estimated coefficients.

3. If the coefficients of previously added variables change sign, the regression has become

instable. In this case, we investigate the reason for the instability. If the coefficient of the

newly added variable is not as expected, we proceed with caution to the next steps.

4. We inspect multicollinearity by calculating the ‘variance inflation factors’ (VIF) of the

different variables (Kutner, 2005). If the VIF of a variable is higher than 2, we investigate

its dependency structure with existing variables in the regression.

5. If a variable is believed to cause instability in the regression, we compare the new variable

to the variables that are highly correlated. We run the regression again, each time including

one of the correlated variables. We record the size of the effect and the variance of the

corresponding estimated coefficient. Of this set of correlated variables, we choose the one

that (1) has a clear economic interpretation, (2) exhibits the largest effect, (3) is supported

by previous literature and (4) has satisfactory precision of the estimated coefficient. These

aspects are considered in order of appearance, with (1) being the most important and (4)

posing as a final check. If the sign of the variable is not as expected, we reason ex post

why this may be the case. We discard the variable if we cannot explain the observed sign.

In practice, this procedure is difficult to implement due to the three different size groups and

different types of transaction combinations that we consider. To maintain comparability between

the different size groups and regressions, the selection procedure is performed jointly over the

various size groups and combinations. We use cluster-robust standard errors to get a more

objective picture of the variation in regression coefficients (see Section 3.1). We include the

variable ‘price’ in both the cost and warehousing rate model because we want to show its effect

and discuss its low explanatory power.
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4.3. Variable overview

After performing the selection procedure, we end up with the following selection of variables:

Price The price of the transaction. Taken as the buy-side price whenever possible.

Duration The (remaining) duration of the bond in years.

Spread The yield spread of the bond in basis points. Calculated as the difference in yield

between the corporate bond and the U.S. Treasury yield curve for given maturity.

Age The age of the bond, taken as the number of years since the date of issuance.

AmtOut The amount of outstanding debt in thousands, consisting of the issue size of the

bond plus any additional debt redemption or reissuance. Because the amount

outstanding represents the actual amount of tradable debt in the market, it is

believed to be a better proxy of liquidity than just the issue size (Hom 2004).

Size The transaction size, taken as the par value volume in dollars.

AvgSize The average transaction size of the bond, calculated separately per size group by

using all transactions in that group and in higher groups.

Volume The past monthly transaction volume of the bond, calculated using TRACE.

VIX The level of the CBOE Volatility Index, which is a measure of implied volatility

of S&P 500 index options. The VIX proxies general risk aversion in the markets.

Senior A dummy variable indicating whether the bond is senior or subordinated debt.

Callable A dummy variable indicating whether the bond has an embedded option.

The variables Duration, Spread, Age and AmtOut are recalculated monthly. The other variables

are available on a daily basis. All calculations are performed without look-ahead bias, by exclud-

ing the information on the day of the transaction. For example, Volume is calculated over the

period t− 23 until t− 1 for a transaction that takes place on day t. For the variables that are

calculated on a monthly basis, we use the information of the previous month. A description of

the other variables that we investigated can be found in Appendix G on page 53. An overview of

the variables that have been investigated in other studies can be found in Table 8 on page 55.

For the cost and arrival rate models, we find that the relation between the regressors and

the dependent variable is best represented in multiplicative form, by using a log-link function. We

have included Q-Q plots for various cost model specifications in Appendix I. Secondly, plotting

regression residuals versus individual covariates conveys heteroscedasticity, indicating that the

regressors should be transformed. We present formal deviance tests for ✩1mm+ transactions in

Table 9 in Appendix I. From this table, it can be observed how the log transformation yields the

highest improvement in deviance for almost all regressors in the models. For Age, we find that

the square-root transform also works well, but we use the log transform for consistency and ease

of interpretation. We do not transform VIX because its effect is already linear.
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5. Results

We regress the models from Section 2 on the cleaned data from Section 4. From the estimated

coefficients, we calculate partial effects as derived in Section 3. In this section we show all results

and discuss the most interesting ones. We begin with the results of the PEX measure.

5.1. Results of the PEX measure

Table 2: Probability of Execution partial effects. This table shows the partial effects on
the PEX measure for buy and sell transaction for sizes between $0–$100k, $100k–$1mm and
$1mm+. The first row denotes the mean PEX of the observations. The partial effects are denoted
in percentages and calculated as explained in Section 3.2. The effect multiplier mk we use for
variable xk appears in square brackets after the name. To give an example of interpretation:
given a ✩1mm+ buy trade, if the AmtOut doubles [×2], the PEXB increases by 42.96%. For the
buy side we use all DDB and SDB combinations and for the sell side the SDD and SDB types.
Standard deviations appear in brackets below the corresponding estimate. The mean PEX and
the partial effect of the cost target are calculated by setting the cost target at 25❿.

$0–$100k $100k–$1mm $1mm+

PEXB PEXS PEXB PEXS PEXB PEXS

Mean 0.11 0.22 0.17 0.28 0.20 0.25
(0.11) (0.09) (0.11) (0.15) (0.14) (0.18)

Cost target [+1] 4.94 4.61 2.09 1.91 1.68 1.42
(0.70) (0.41) (0.35) (0.34) (0.67) (0.67)

log(Price) [×10%] −8.27 −3.07 0.29 −2.24 0.19 −0.88
(1.27) (0.28) (0.06) (0.43) (0.09) (0.49)

log(Spread) [×2] −23.39 −1.29 −15.31 −8.17 −4.46 −4.19
(3.43) (6.87) (4.04) (3.62) (5.45) (3.28)

log(Duration) [×2] −52.87 −22.67 −31.15 −15.90 −16.17 −10.03
(5.23) (2.07) (4.14) (2.58) (6.85) (3.11)

log(Age) [×2] −3.64 −11.23 −5.77 −10.55 −7.80 −8.53
(0.93) (3.29) (1.73) (2.93) (2.12) (2.22)

log(AmtOut) [×2] 31.17 13.37 40.20 24.47 42.96 32.25
(19.40) (10.68) (16.66) (13.45) (13.18) (11.51)

log(Size) [×2] −2.87 6.75 21.30 15.66 9.08 4.44
(0.59) (0.67) (5.29) (3.74) (5.18) (3.71)

log(AvgSize) [×2] −16.71 −12.96 −5.77 −6.57 0.52 0.64
(9.56) (9.90) (2.80) (4.24) (4.20) (5.20)

log(Volume) [×2] 2.15 7.01 9.33 14.61 16.19 22.06
(3.62) (5.85) (3.88) (6.48) (5.55) (7.80)

VIX [+1] −0.20 0.20 −0.23 −0.25 −0.50 −0.56
(0.06) (0.07) (0.07) (0.04) (0.21) (0.28)

Senior [=1] 19.71 2.30 19.68 3.66 13.99 7.68
(4.27) (0.83) (3.98) (0.82) (3.81) (3.48)

Callable [=1] −32.24 −20.44 −7.69 −11.59 −0.68 −3.83
(4.69) (1.51) (3.02) (1.89) (3.23) (3.27)

Observations 3,041,914 523,936 140,167
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The effect of a bond characteristic or market condition on the PEX is a multiplicative combi-

nation of the individual partial effects on the cost, warehousing rate and arrival rate models

(Section 3.2). Because of this nonlinearity, we find that the relation between a variable and

the PEX gives a rich representation of how a variable influences a bond’s liquidity. These

relationships have been visualised in Figure 3 for the set of most influential variables. Because

the partial effects depend on the characteristics of the chosen bond and the size of a trade,

we also provide the average partial effects of the buy and sell transactions in our sample in Table 2.

The biggest effect on the probability of execution is a bond’s total amount outstanding and

the transaction volume of the previous month. Both these effects yield an increase in the PEX

for both buyers and sellers of any amount of bonds. We find that the effect increases with

transaction size: a bond with twice the amount outstanding than a similar counterpart, yields

an average 13% increase in the probability of selling a trade below ✩100k. In the same way, the

effect gives an increase in probability of almost 43% for transacting above one million. Other

variables that positively influence the PEX of buyers and sellers is the size of the transaction

and whether the debt is senior or subordinated. The effect of transaction size, more accurately

described in Figure 3 for a transaction size of ✩2mm, has become a stylised fact of corporate

bond liquidity since Schultz (2001) described transaction costs as decreasing logarithmically with

size. Akin to corresponding literature, we confirm the same relation between size and liquidity,

with the strongest effect for trades between ✩100k and ✩1mm. However, we find that the effect

largely declines, and can even be negative, for small odd-lot transactions. Moving on to seniority,

we argue that the increased liquidity of senior debt can be explained by its direct relation to

the risk profile of a bond: it has a higher payment priority than subordinated debt in case of

default. In turn, this decreases risk for dealers and thereby lowers expected transaction costs.

The observed positive effect of seniority on the PEX thereby coheres with our expectations.

On the other side of the liquidity spectrum, we observe that the duration of a bond has

the largest negative effect on the PEX, with a considerably larger effect for smaller trades. In

addition, duration seems to affect buyers approximately twice as much as sellers. From the graph

in Figure 3, we see that the impact on PEX is especially large for bonds with low duration.

Other variables that show a negative relation to the PEX are the age of the bond, the level of

the VIX and the yield spread. The effect of the latter is not as strong for all sizes as we would

expect. The probability of transacting at least one million decreases by only approximately 4%

if the yield spread of a bond doubles. By further investigating the individual models later in

this section, we find that yield spread has a relatively large effect on arrival rates. Apparently

bonds of high yield spread are more popular, thereby generating more market activity and thus

liquidity. The total negative effect of the yield spread on the PEX is therefore small. Lastly, we

find that callable bonds also result in a lower PEX, especially for odd-lot trades. We argue that

dealers charge a premium for callable bonds due to their complexity and inherent call risk. In

turn, this negatively influences the PEX when the target cost remains fixed.
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Figure 3: Partial effects of the PEX for a median ✩1mm+ transaction. These graphs
show the partial effects of the variables with the largest influence on the PEX for buying ( )
and selling ( ). The median ✩1mm+ transaction has a Size of ✩2mm, Price of ✩103, Spread
of 158 bps, Duration of 4.71y, Age of 2.2y, AmtOut of ✩1B, AvgSize of ✩1.05mm, past monthly
Volume of ✩65mm, VIX of 19.4, is Senior and does not have an embedded option.
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5.2. Results of the individual models

In this section we analyse the results of the three models by interpreting the effects of the various

liquidity determinants and providing possible explanations for the observed relations. We are

mainly interested in the sizes of the effects and their sign, and therefore only discuss statistical

significance if unsatisfactory. The goodness of fit measures used in this section, the deviance

mean squared error, Brier score, McFadden R2 and deviance tests, are explained in Appendix H.

Figure 4: Cost distributions. These graphs show probability density plots of the cost
distributions of the various size groups for buy (DDB, SDB) and sell (SDD, SDB) transactions.
The distributions show liquidity circumstances for the bid and ask side, as explained in Figure 1.
They are constructed by taking the first percentile (P1 = ), median (P50 = ) and last
percentile (P99 = ) of bond characteristics, where for each variable we take P99 as the most
liquid percentile of the variable. For example, the P99 distribution is calculated using the lowest
percentile of durations in the sample, because the effect of duration on costs is positive (Table 3).
The expected cost of the median transaction is indicated by a bullet (•).
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Table 3: Cost model estimates. This table shows the partial effects of a GLM regression
with log-link and gamma distribution of imputed transaction costs on bond characteristics and
market conditions for trade combinations of sizes between $0–$100k, $100k–$1mm and $1mm+.
Continuous regressors have been demeaned before estimation. Costs are taken as half the bid-ask
spread and are denominated in dollar cents. The listed partial effects are denoted in percentage
terms, except for the intercept. The model coefficient β̂k is transformed into its multiplicative
partial effect using either exp(β̂kmk) for the effect xk + mk on non-transformed variables or
exp(β̂k ln(mk)) for the effect xk ·mk on log transformed variables (see Section 3.2). The effect
multiplier mk we use for variable xk appears in square brackets after the name. To give an
example of interpretation: given a ✩1mm+ SDB trade, if yield spread doubles [×2] the expected
cost becomes 11.02% more expensive. SDB stands for Seller-Dealer-Buyer imputed roundtrip
costs. SDD and DDB are imputed Seller-Dealer-Dealer and Dealer-Dealer-Buyer transaction
costs, respectively. The symbol ∗∗ indicates significance at the 1% level and ∗ at the 5% level.
Standard errors are two-way clustered on day and bond issue. The corresponding cluster-robust
t-statistics appear in brackets below the corresponding coefficients. Also reported are the deviance
MSE, dispersion parameter φ̂, McFadden pseudo-R2 (in percentages), and deviance F -statistics.

$0–$100k $100k–$1mm $1mm+

SDB SDD DDB SDB SDD DDB SDB SDD DDB

Intercept 62.53∗∗ 56.10∗∗ 85.48∗∗ 23.33∗∗ 36.15∗∗ 60.03∗∗ 11.78∗∗ 17.51∗∗ 23.73∗∗

(184.14) (326.00) (390.07) (89.85) (188.61) (261.25) (77.22) (91.74) (106.16)

log(Price) [×10%] −0.77 1.36∗∗ 2.39∗∗ −0.44 1.79∗∗ −0.14 −0.79 1.15 −0.16
(−1.76) (7.36) (9.42) (−0.91) (3.23) (−0.49) (−0.92) (1.26) (−0.36)

log(Spread) [×2] 11.59∗∗ 3.61∗∗ 7.78∗∗ 17.47∗∗ 10.47∗∗ 11.46∗∗ 11.02∗∗ 12.17∗∗ 10.64∗∗

(15.77) (13.64) (24.50) (22.98) (25.64) (24.77) (23.12) (20.46) (18.17)

log(Duration) [×2] 15.14∗∗ 9.08∗∗ 21.07∗∗ 10.48∗∗ 8.21∗∗ 17.13∗∗ 14.92∗∗ 8.16∗∗ 10.34∗∗

(28.30) (46.51) (76.49) (15.50) (24.97) (18.62) (31.61) (15.18) (22.29)

log(Age) [×2] 1.50∗∗ 2.86∗∗ 0.57∗∗ 0.58 2.30∗∗ 0.10 1.05∗∗ 0.99∗∗ −0.74∗∗
(5.44) (15.48) (6.48) (1.55) (10.34) (0.39) (4.69) (3.48) (−3.10)

log(AmtOut) [×2] 0.79 −0.45∗ −1.70∗∗ −0.75 1.56∗∗ −0.93∗∗ −2.39∗∗ −1.74∗∗ −1.95∗∗
(1.90) (−2.25) (−9.36) (−1.13) (4.32) (−3.63) (−3.13) (−2.85) (−4.62)

log(Size) [×2] −6.09∗∗ −2.41∗∗ 0.94∗∗ −13.59∗∗ −10.44∗∗ −9.90∗∗ −2.79∗∗ −4.04∗∗ −8.69∗∗
(−27.11) (−17.92) (12.07) (−33.86) (−37.84) (−45.63) (−8.59) (−10.26) (−29.16)

log(AvgSize) [×2] −5.53∗∗ −0.96∗∗ −0.50∗∗ −3.98∗∗ −3.04∗∗ −1.47∗∗ −1.83∗∗ −3.28∗∗ −2.95∗∗
(−14.69) (−5.40) (−3.04) (−7.82) (−10.66) (−5.68) (−5.28) (−7.96) (−9.07)

log(Volume) [×2] 1.47∗∗ 0.00 0.91∗∗ 1.07∗∗ −0.53∗∗ 0.70∗∗ −0.62∗∗ −1.61∗∗ −0.26
(8.40) (−0.05) (11.89) (3.96) (−3.89) (5.54) (−3.18) (−6.75) (−1.20)

VIX [+1] 0.45∗∗ −0.14∗∗ 0.06 0.57∗∗ 0.31∗∗ 0.01 1.37∗∗ 1.72∗∗ 1.12∗∗

(4.25) (−3.12) (1.34) (3.66) (3.04) (0.12) (10.00) (10.42) (9.22)

Senior [=1] −15.33∗∗ −1.90 −7.88∗∗ −25.85∗∗ −3.66 −16.51∗∗ −4.58 −9.27∗∗ −20.39∗∗
(−6.81) (−1.49) (−6.59) (−7.92) (−1.81) (−11.18) (−1.09) (−2.84) (−7.28)

Callable [=1] 44.64∗∗ 19.86∗∗ 29.34∗∗ −2.79 22.69∗∗ 17.28∗∗ 2.74 19.66∗∗ 10.24∗∗

(7.96) (4.99) (6.17) (−0.58) (4.08) (4.01) (0.83) (4.96) (2.64)

Deviance MSE 0.70 0.82 0.73 1.16 1.18 1.04 0.84 1.17 1.09

Dispersion (φ̂) 0.64 0.70 0.47 1.47 1.12 0.85 1.04 1.60 1.34

McFadden R2 35.12 8.05 20.05 30.82 13.35 21.82 29.04 19.04 20.75

F -statistic 6,337 10,494 86,988 1,560 2,675 12,732 1,554 689 1,459

Observations 96,468 922,001 2,023,445 39,702 148,159 336,075 42,246 36,156 61,765
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The cost model is arguably one of the most important parts of the PEX measure, such that

most of the effects on transaction costs are closely related to what we observe in the PEX. The

distinctive way in which we use the cost model to estimate liquidity is pronounced in Figure 4.

From this figure we can see how the shape of the cost distribution changes on the bid and ask

sides, both for different transaction sizes and liquidity circumstances. The latter can be observed

by comparing the shapes of the distributions when taking the most liquid (P99) versus the most

illiquid values (P1) for each variable. The ability of the variables to completely change the

shape of the underlying distribution demonstrates the flexible character of the cost model. As

expected, the cost distributions shrink as transaction size increases. Where the expected cost of

the median transaction is more than 50❿ for a size below ✩100k, the cost decreases to just below

20❿ for sizes above ✩1mm. One explanation for this is that the size of transactions is related

to the size of the institution behind it. We expect a bigger investor to have a better network

of dealers and generate more business, resulting in more bargaining power when negotiating prices.

The partial effects of the cost model are shown in Table 3. Performing a likelihood ratio

test with the reported F -values, we find that the cost model significantly improves the deviance

compared to a model with just an intercept (α = 0.001). In addition, the McFadden R2 shows

that the variables also yield a good improvement in explanatory power. Interestingly, SDD

combinations prove to be more difficult to estimate than the DDB types. The SDB combinations

yield the highest R2 and the lowest mean squared error. The differences in the estimates of the

dispersion φ̂ for the different groups, give a good indication of the amount of variance in the

corresponding samples. Even though the dispersion increases for higher transaction sizes, the

explanatory power of the model remains satisfactory and even improves for SDD flows.

The yield spread and duration of a bond appear as the most important determinants for

transaction costs. Both their effect size and statistical significance are strong and robust over all

possible model specifications. Together with a bond’s age, callability and the level of the VIX,

these variables give the strongest increase in expected transaction costs. Surprisingly, a higher age

seems to improve liquidity in the ✩1mm+ DDB sample. A possible explanation is that dealers are

giving buyers a discount for removing illiquid bonds from their inventory. Going over the negative

effects, we observe that costs decrease when the amount outstanding is higher, the transaction

size is larger, the bond is senior, or the average transaction size for that bond is above-average.

The latter implies that dealers for that bond are used to transacting big lots, making the average

trade easier to handle and thereby cheaper. We expected that costs also decrease if the monthly

volume is higher, but this effect is not so clear-cut for all groups. Specifically, a high volume seems

to adversely affect the SDB and DDB types for sizes below ✩1mm, although the effect size is

small. We also included the price of transactions to demonstrate its effect. Controlling for spread

and duration, we find that price loses its explanatory power, thereby rendering most coefficients

insignificant. Interestingly, the effect of price becomes significant again when denominating costs

in basis points. This is because of the inclusion of a ‘price effect’, as shown in Appendix D.
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Table 4: Warehousing rate model, average partial effects. This table shows the average
partial effects of a probit regression on the event that trades are taken into inventory by dealers
(y = 1) or are instantaneous roundtrips (y = 0). We perform separate regression per size group
and buy or sell side. Continuous regressors have been demeaned before estimation. The listed
numbers are partial effects and are denoted in percentage terms, except for the intercept. The
intercept can be interpreted as the average warehousing rate in the corresponding sample because
it is transformed with the standard normal CDF, Φ(·). The average partial effect of variable xk
is calculated and transformed as described in Section 3.2. The effect multiplier mk we use for
variable xk appears in square brackets after the name. The symbol ∗∗ indicates significance at the
1% level and ∗ at the 5% level. Standard errors are two-way clustered on day and bond issue. The
corresponding cluster-robust t-statistics appear in brackets below the corresponding coefficients.
Also reported are the Brier score, McFadden pseudo-R2 (in percentages) and sum of squared
Pearson residuals (Pearson SSR). The Brier score can be interpreted as a MSE (Appendix H).
A chi-squared test of the Pearson SSR is highly insignificant (p ≈ 1) for all samples.

$0–$100k $100k–$1mm $1mm+

buying selling buying selling buying selling

Φ(Intercept) 0.98∗∗ 0.96∗∗ 0.96∗∗ 0.93∗∗ 0.92∗∗ 0.91∗∗

(85.80) (53.37) (58.22) (49.16) (74.90) (72.11)

log(Price) [×10%] 0.01 0.72∗∗ −0.05 −0.10 0.68∗∗ 0.37∗∗

(0.18) (6.81) (−0.29) (−0.56) (5.78) (2.78)

log(Spread) [×2] 0.51∗∗ −0.33∗∗ −0.20 −0.80∗∗ −1.41∗∗ −1.25∗∗
(11.92) (−3.86) (−1.33) (−3.89) (−7.75) (−6.72)

log(Duration) [×2] 0.21∗∗ 0.29∗∗ 0.50∗∗ 0.79∗∗ 1.25∗∗ 1.28∗∗

(3.39) (3.70) (3.50) (4.64) (9.86) (9.63)

log(Age) [×2] −0.30∗∗ 0.48∗∗ −0.29∗∗ 0.62∗∗ 0.06 −0.06
(−8.26) (7.58) (−3.15) (4.95) (0.81) (−0.73)

log(AmtOut) [×2] −1.07∗∗ −0.13 −0.58∗∗ 0.22 −0.81∗∗ 0.10
(−14.32) (−1.42) (−3.21) (0.90) (−4.68) (0.58)

log(Size) [×2] −0.08∗ −0.64∗∗ −0.84∗∗ −0.30∗∗ −1.23∗∗ 0.18∗

(−2.16) (−13.03) (−16.00) (−4.01) (−19.76) (2.54)

log(AvgSize) [×2] 0.25∗∗ 0.41∗∗ −0.88∗∗ −0.74∗∗ −0.10 −0.46∗∗
(4.06) (3.62) (−6.69) (−4.25) (−0.77) (−3.24)

log(Volume) [×2] 0.23∗∗ −0.18∗∗ 0.27∗∗ −0.30∗∗ 0.77∗∗ 0.05
(11.02) (−5.01) (5.38) (−3.80) (12.64) (0.82)

VIX [+1] 0.01 −0.03∗∗ 0.04∗∗ 0.03 −0.02 −0.02
(1.78) (−3.74) (3.45) (1.75) (−1.58) (−1.44)

Senior [=1] −0.05∗ 0.01 −0.12∗∗ −0.11∗ −0.18∗∗ −0.18∗∗
(−2.16) (0.24) (−3.51) (−2.53) (−6.09) (−5.95)

Callable [=1] −1.47∗∗ −0.95 −0.13 1.00 0.52 0.79
(−3.89) (−1.62) (−0.30) (1.85) (1.29) (1.85)

Brier score 0.03 0.04 0.05 0.07 0.09 0.10

McFadden R2 2.66 2.26 0.85 0.83 1.07 0.44

Pearson SSR 5,150,238 3,355,462 1,812,272 1,285,795 1,018,426 924,749

Observations 5,109,938 3,401,398 1,811,855 1,285,281 1,016,708 924,726
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Table 5: Arrival rate model estimates. This table shows the coefficient estimates of a
negative binomial regression with log-link of the amount of incoming buyers and sellers per day.
Regressions are repeated for different size groups. Continuous regressors have been demeaned
before estimation. Listed numbers are transformed incidence rate ratios, expressed in percentages.
The intercept can be interpreted as the average expected amount of arrivals per day. The model
coefficient β̂k is transformed into its incidence rate ratio using either exp(β̂kmk) for the effect
xk +mk on non-transformed variables or exp(β̂k ln(mk)) for the effect xk ·mk on log transformed
variables (Section 3.2). The effect multiplier mk we use for variable xk appears in square brackets
after the name. To give an example of interpretation: given a ✩1mm+ trade, if bond age doubles
[×2] the expected amount of incoming buyers per day decreases with 4.37%. The symbol ∗∗

indicates significance at the 1% level and ∗ at the 5% level. Standard errors are two-way clustered
on day and bond issue. The corresponding cluster-robust t-statistics appear in brackets below the
corresponding coefficients. Also reported are the deviance MSE, the estimated shape parameter
θ̂ of the negative binomial distribution, the McFadden pseudo-R2 (in percentages) and the sum
of squared Pearson residuals (Pearson SSR). A chi-squared test of the Pearson SSR is highly
insignificant (p ≈ 1) for all samples. The listed metrics are further explained in Appendix H.

$0–$100k $100k–$1mm $1mm+

buyers sellers buyers sellers buyers sellers

Intercept 0.73∗∗ 0.52∗∗ 0.25∗∗ 0.21∗∗ 0.08∗∗ 0.08∗∗

(−10.70) (−21.19) (−65.53) (−75.37) (−165.93) (−166.77)
log(Spread) [×2] 14.75∗∗ 2.73∗∗ 5.01∗∗ 3.62∗∗ 2.52∗∗ 3.97∗∗

(38.82) (9.19) (17.84) (11.90) (9.94) (13.58)

log(Duration) [×2] −4.40∗∗ −1.27∗∗ −4.55∗∗ −4.10∗∗ −1.86∗∗ −2.50∗∗
(−13.97) (−4.65) (−22.24) (−20.13) (−10.50) (−13.10)

log(Age) [×2] −7.10∗∗ −1.81∗∗ −6.06∗∗ −3.89∗∗ −4.37∗∗ −5.07∗∗
(−38.14) (−9.61) (−53.58) (−31.82) (−46.65) (−46.04)

log(AmtOut) [×2] 21.31∗∗ 34.86∗∗ 22.40∗∗ 27.72∗∗ 18.40∗∗ 22.55∗∗

(49.72) (86.23) (75.03) (91.90) (76.72) (81.98)

log(AvgSize) [×2] −20.42∗∗ −20.41∗∗ −8.07∗∗ −5.92∗∗ 0.61∗∗ 0.11
(−77.79) (−78.16) (−38.78) (−28.88) (4.03) (0.67)

log(Volume) [×2] 11.78∗∗ 7.37∗∗ 11.24∗∗ 7.66∗∗ 13.07∗∗ 9.89∗∗

(73.71) (60.69) (100.19) (73.43) (120.05) (79.16)

VIX [+1] 0.29∗∗ −0.27∗∗ −0.11 −0.35∗∗ −0.23∗∗ −0.22∗∗
(3.26) (−3.66) (−1.49) (−4.18) (−3.14) (−2.58)

Senior [=1] −2.08 14.13∗∗ 0.87 5.44∗∗ 8.66∗∗ 7.38∗∗

(−0.69) (4.18) (0.41) (2.60) (5.56) (4.83)

Callable [=1] −5.83∗ 13.69∗∗ −0.83 8.56∗∗ 3.87∗∗ 5.56∗∗

(−2.17) (4.42) (−0.46) (4.15) (2.71) (3.41)

Deviance MSE 10.31 4.74 10.86 8.22 43.91 29.28

Dispersion (θ̂) 1.13 2.55 1.88 2.10 1.11 1.16

McFadden R2 46.92 48.72 35.57 28.80 26.76 23.94

Pearson SSR 13,579,059 7,721,764 7,257,008 6,927,541 7,540,585 7,185,467

Observations 6,519,328 6,519,328 6,512,396 6,512,396 6,488,779 6,488,779
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Apart from the cost model, the warehousing and arrival rate models can also largely influence

the final estimate of the probability of execution. The explanatory power of the warehousing rate

model, as shown in Table 4, might appear surprisingly low on first sight. However, the listed

McFadden R2 is low by construction: the probit regression aims to classify whether individual

trades involve dealer inventory or not. Our goal for the warehousing rate model, on the other

hand, is to estimate the average warehousing rate of transactions for a bond in general. The

regressors we employ are therefore not aimed at correctly classifying the warehousing rate of

individual trades, which keeps the explanatory power artificially low. Nevertheless, the model

achieves satisfactory Brier scores and generates significant coefficients for most variables.

The most influential variables on the warehousing rate are a bond’s yield spread, duration,

amount outstanding and monthly volume. Of these, the yield spread and duration are the most

stable, but show opposite effects. The effect of yield spread has an obvious interpretation: higher

spreads lead to increased inventory risk, which makes dealers increasingly wary to take bonds

into inventory. As a consequence, we observe more instantaneous roundtrips. For duration, the

effect is the opposite: a possible explanation is that a higher duration leads to a less liquid

market. Dealers are therefore forced to use their inventory in order to make a market, simply

because pre-arranging transactions is more difficult. Moving on to the size and average size of

transactions, we observe an influence on the warehousing rate that is mostly negative. This

can be argued by the theory that dealers increasingly prefer to pre-arrange roundtrips for large

transfers. Lastly, we find that seniority instills confidence in dealers to use their inventory more.

The results for the arrival rate model, displayed in Table 5, advocate its importance within the

PEX measure. It achieves a relatively high explanatory power, despite the samples showing large

dispersion. Driven by outliers, bonds that are very liquid and have a lot of transactions per day,

the estimated Pearson residuals are higher than would be ideal. Nevertheless, almost all variables

are highly significant and have a large influence on the arrival rate. Of specific interest are the

amount outstanding and the bond’s volume of the previous month. Both variables increase the

arrival rates of both buyers and sellers with considerable effect. Interestingly, bonds with a higher

yield spread also generate more market activity. We hypothesise that the higher yield either

attracts more investors to a bond, or results in more transactions due to a higher turnover. On

the contrary, we find that market activity mostly decreases for old bonds, which can be explained

by the on-the-run effect: the most recently issued bonds of given tenor attract the most trading

volume. Finally, we observe that senior bonds generate more activity than their subordinated

counterparts. Likewise, callable bonds generate more arrivals than normal bonds.

To give an impression of the results of the models and their contribution to the PEX, we

have compiled three examples of DDB transfers in Figure 5. The imputed costs of the three

examples can be compared to the estimated buy cost in our framework, denoted as E[CB]. The

distributions in the plots are those used in the resulting PEX calculations.
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Figure 5: Example transactions. This figure shows all model results for three DDB trades
of General Motors 8% 1/11/31 (example A), Bank of America 7.4% 15/1/11 (B) and Apple 2.4%
3/5/23 (C). Costs are in dollar cents and the PEX is calculated for a target cost of 25❿.

Examples of buy transactions

Example A B C

Bond ID GM-31 BAC-11 AAPL-23

Transaction date 28/7/06 14/11/08 11/6/13

Transaction time 09:26:00 13:51:09 09:46:01

Type DDB DDB DDB

Imputed costs 150 61 20

Price (✩) 99.8 102.3 93.9

Spread (bps) 329 625 72.5

Duration (years) 10.36 2.02 9.06

Age (years) 4.68 7.79 0.09

AmtOut (✩mm) 4000 1629 5500

Size (✩k) 50 190 2000

Average size (✩k) 1575 377 2684

Volume (✩mm) 1265 121 2254

VIX 14.9 59.8 15.4

Senior yes no yes

Callable no no no

Model results

E[CSDB] 81 62 7

E[CSDD] 69 60 8

E[CDDB] 153 65 16

γ̂B 0.97 0.96 0.93

γ̂S 0.95 0.93 0.90

E[CB ] 151 66 15

E[CS ] 70 60 7

P[CB ≤ 25] 0.04 0.29 0.80

P[CS ≤ 25] 0.23 0.37 0.94

P[NB > 0] 0.94 0.72 0.83

P[NS > 0] 0.92 0.59 0.79

PEX buy (c=25) 0.04 0.17 0.63

PEX sell (c=25) 0.21 0.27 0.78

Distribution parameters for buy transactions

Cost model

α̂ in Γ(α̂, β̂) 2.11 1.14 0.76

β̂ in Γ(α̂, β̂) 0.01 0.02 0.05

Warehousing rate

p̂ in Bin(100, p̂) 0.97 0.96 0.93

Arrival rate

m̂ in NB(m̂, r̂) 12.34 1.83 4.36

r̂ in NB(m̂, r̂) 1.13 1.88 1.11

Cost model

20 40 60 80 100 120
0.00

0.20

0.40

0.60

0.80

1.00

cost (❿)

cu
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Warehousing rate model

85% 90% 95% 100%
0.00

0.05

0.10

0.15

0.20

fraction

p
ro
b
a
b
il
it
y
m
a
ss

Arrival rate model

0 1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

arrivals

p
ro
b
a
b
il
it
y
m
a
ss

38



Now that we have presented the main results for the three models and the PEX measure, we

shortly discuss the decisions and assumptions behind the presented models. For the cost model,

we use a log-link GLM with gamma distribution, because it gives the best fit. We demonstrate the

fit for ✩1mm+ SDB transactions for both normal linear models and GLMs in Appendix I. As can

be seen from the various model specifications, a normal OLS model is not appropriate: the normal

distribution does not fit the cost distribution well, even if costs are log-transformed. We do not

consider limited dependent variable models, such as censored or truncated regressions, because

transaction costs are neither censored nor truncated: costs are simply positive by definition.

We find that the log-link GLM with gamma distribution is the only specification that is able

to accurately capture low transactions costs, even though it is not able to fit extremely high

outliers. The gamma distribution is also flexible enough to model the various shapes of the cost

distribution for different types of market participants (visualised in Figure 4).

For the warehousing rate model, we use a probit regression to stay consistent with Hendershott

and Madhaven (2015) and to stay close to the probabilistic setting of the PEX. We have no doubt

that a logit regression would give the same results. Nevertheless, the estimated warehousing

rates are largely dominated by positive outcomes, and it might therefore be worth investigating

whether zero-inflated models, or complementary-log-log models, provide a better fit. That being

said, our sample sizes are large enough such that we did not run into finite sample problems

when estimating the probit regressions. For the arrival rate model, we use the negative binomial

regression because the data suffers from significant overdispersion. We provide formal results of

overdispersion in Table 10 in Appendix I, where we use the test of Cameron and Trivedi (1990).

Investigating the accuracy of the arrival rate model, we find that the negative binomial regression

gives a good fit for arrivals under ✩1mm. For the highest size group, it might be worth looking

into zero-inflated negative binomial models to achieve a better fit.

When analysing the deviance and Pearson mean squared errors, we find that the three models are

able to estimate their respective liquidity dimensions with satisfactory precision. Additionally,

the regressors generally have significant coefficients. When comparing the performance of the

models to naive moving averages, we find that they also mostly outperform them. An overview

of the performance of naive moving averages is provided in Appendix K. Interestingly, the naive

moving average approach works quite well for estimating transaction costs and arrival rates for

smaller transaction sizes. Nevertheless, the performance results depend heavily on the chosen

lag. In the same Appendix K, we also replicate Roll’s measure as in Bao et al. (2008) and

show that half of the implied bid-ask spread by Roll’s measure largely underestimates imputed

transaction costs. A major weakness of naive measures is that they rely heavily on data of

recent transactions. Especially for illiquid bonds, where an accurate liquidity proxy is most

useful, it can therefore be difficult to do inferences. For example, a bond may not trade for

a prolonged period of time, such that the proxy is outdated for both market conditions and

bond characteristics may have changed. Additionally, naive liquidity proxies lack a connection to
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transaction size, thereby generalising the same estimate for all market participants. We observe

that liquidity is fragmented between different size groups: some bonds may be very liquid for

small transaction sizes but can simultaneously be illiquid for large sized block trades. This makes

such naive measures less practical for institutional investors.

The moving averages do bring up the importance of time variation, given that the corpo-

rate bond market has changed a lot over the past couple of years. The 2010 Volcker Rule and

the Third Basel Accord prevent banks from making speculative investments, which, in turn,

decreases the potential of banks to provide liquidity for many assets. As a consequence, the

liquidity landscape of corporate bonds is believed to be in a deteriorating state: there seem to be

too many bonds and too little dealers. Nevertheless, the amount of issued debt is ever increasing

and the total amount of trading volume is not disappointing (SIFMA, 2016). We therefore

propose to extend our research by further investigating how the performance of the PEX measure

changes throughout time. Even though we have included regressors that incorporate market

conditions, a comparison of parameter estimates in recent years compared to periods such as the

2008 financial crisis should provide extra insight into parameter stability.

To investigate the sensitivity of the PEX measure, we perform a robustness check on the

detection period of the imputed transaction types in Appendix L. We find that increasing this

window leads to the detection of more combinations, and slightly higher transaction costs on

average. The latter is probably caused by intraday interest rate movements. Nevertheless, the

costs increase only slightly because the warehousing rate scales the types according to their

prevalence. If more SDB transactions are found, and DDB transactions become more expensive,

the weighted expected buy costs can still remain relatively constant. Other detection periods are

therefore also viable options, and lead to slightly different cost estimates.

Apart from the detection period, the PEX also depends on other assumptions. We assume that

SDD and DDB transfers are representative of approximately half of the effective bid-ask spread,

which might not always be true: it can be argued that the second dealer is in fact a customer

too. This because the second dealer is willing to take the bonds into inventory, or sell from

inventory, thereby posing as the opposite liquidity provider to the transaction. From that point

of view, the SDD and DDB transactions are representative of more than half of the bid-ask

spread. Additionally, we assume that buyers can transact with the same rate at which sellers

arrive at the market and vice versa. Although we take the differences in the arrival rates to be

smoothed out by dealers, this approach is still quite rough. The arrival rate model could be

improved to better estimate the immediacy dimension of liquidity, for example by estimating the

actual volume that either arrives at the market or temporarily resides in the interdealer circuit.

We also assume independence of the three models within the PEX measure, which might not

hold. In order to investigate this assumption, we bootstrap residuals of the various components

in the PEX and plot them against each other. Because the three models use different samples,
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we only use those observations that appear in all three. For the warehousing and arrival rate

probability components, we calculate residuals by taking the average rates over the month in

which the transaction occurred. Although true residuals cannot be calculated, given that the

liquidity aspects are unobserved, this approximation gives an idea of how the residuals look like.

We bootstrap the resulting sample using 100,000 draws. In order to calculate 95% confidence

regions, we employ two-dimensional kernel density estimation using a Gaussian kernel and the

rule-of-thumb bandwidth of Venables and Ripley (2013). The resulting plots are displayed in

Appendix J. We find that the various PEX components do not suffer from obvious correlations

that are persistent throughout the size groups. Nevertheless, the plots show that the residuals can

covary, such that the PEX may suffer from biases for certain bonds. Further research is needed

to investigate whether the independence assumption is indeed valid. From the plots, we also

observe that transforming the arrival rates into a probability makes the result slightly upward

biased. As a result, the PEX might overestimate liquidity. Because true residuals do not exist,

we are not able to formally verify this. Another issue, is that the causality between the liquidity

dimensions is still unclear: do cheaper transaction costs attract more activity, or does more

activity result in cheaper transaction costs? The same goes for our limited understanding of the

warehousing rates. FINRA’s proposal for constructing a dataset with masked dealer identifiers

might change this (SEC, 2016). Using this new data, future research can study the behaviour of

individual dealers and the circumstances under which they change their inventory policy.

Lastly, we would like to make the recommendation to institutional investors to employ a

flexible cost target, not a fixed one. From the various examples presented in this thesis, it can be

observed how the PEX reacts heavily to deteriorating liquidity conditions. By adjusting the cost

target accordingly, investors can stabilise their chances of getting an execution while maintaining

a competitive position in the bilateral bargaining process with dealers.

6. Conclusion

The proposed PEX measure, as developed in this thesis, is the result of three individual models.

We observe that each model is able to capture a different aspect of corporate bond liquidity

which sufficient accuracy, such that we believe the resulting PEX measure to be a good proxy

for the probability of executing a transaction. Empirical evidence suggests that the cost model

can accurately estimate imputed transactions, thereby outperforming naive estimators. The

warehousing rate model has low explanatory power per construction, but nevertheless accomplishes

its task and yields satisfactory statistical significance for most regressors. The arrival rate model

proves to be a great addition to any liquidity proxy, and explains the immediacy dimension of

liquidity with good explanatory power. Although we acknowledge that more research is needed

to further establish the validity and implications of the PEX measure, this thesis gives first

evidence that the PEX measure is a stepping stone towards successfully capturing the multiple

liquidity dimensions of transacting in the corporate bond market.
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Appendices

A. Liquidity dimensions for limit order markets

One of the first comprehensive definitions of liquidity was proposed by Harris (1990). According

to Harris, liquidity can be measured in four different dimensions: width (or tightness), depth,

immediacy and resiliency. This definition set the stage for much of the following literature and

is still in use today (European Banking Authority, 2013). It can be argued that there exists a

fifth dimension, as done by Lybek and Sarr in IMF’s working paper: ‘Measuring Liquidity in

Financial Markets’ (2002). They show that market liquidity can also be measured by its breadth.

Sommer and Pasquali (2016) provide a short explanation for each of the first four dimensions.

We describe the last dimension, breadth, by following the definition of Lybek and Sarr.

Width measures the cost of consuming liquidity immediately, without regard for tradable quantity.

The width of a market is often measured by the minimum spread between bid and ask prices.

Depth is the total quantity of assets available for consumption. This can be measured by the

quoted quantities both above or below the current tradable prices of the asset, signifying the

existence of abundant orders. Immediacy is the speed with which orders can be transacted,

which is especially important for larger trades. Resiliency is the time it takes for the price to

return to value (or the ‘pre-trade equilibrium’) after a trade has taken place. Lastly, breadth is

the size and frequency of orders. It can be argued that a market is more liquid if its average

orders at the bid and ask sides are larger and appear with higher frequency.

It is possible to describe the five liquidity dimensions in terms of cumulatively available volume at

the bid and ask side of market. We have visualised this in Figure 6. This definition of liquidity is

based on exchange-traded limit order markets like the equity markets. These markets guarantee

that transactions take place against the best prevailing price on an exchange. Here, the breadth

of the market is visualised as the slope of available volume over the distance from the midpoint.

This because breadth captures the frequency and size of orders at the bid and ask sides.
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Figure 6: Visualisation of the liquidity dimensions for a limit order market
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B. Estimation theory for generalized linear models

We assume that observations yi are conditionally-independent given a vector of regressors xi for

i = 1, ..., n. We also assume that the conditional distribution of yi|xi belongs to the exponential

family. Let µi be the expected value of yi and let g(·) be a one-to-one continuously differentiable

transformation. We define the linear predictor ηi as:

g(µi) = ηi = x′iβ (41)

s.t. E[yi] = µi = g−1(ηi) = g−1(x′iβ) (42)

where β is a vector of unknown coefficients. We can express the probability density of any

probability distribution in the exponential family as:

f(yi|θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
(43)

where a(·), b(·) and c(·) are known functions. Functions a(·) and c(·) identify the chosen

distribution and b(·) depends on the chosen link function. The relation between g(·) and b(·) is
b′(θi) = g−1(x′iβ) (Dobson & Barnett, 2008). If ηi = θi because b

′(·) is g−1(·), the link function

is called canonical. We use non-canonical link functions for all three models. The mean and

variance are E[yi] = µi = b′(θi) and Var[yi] = σ2i (θi, φ) = b′′(θi)a(φ). We take the dispersion

of the regression a(φ) to be constant: a(φ) = φ. The variance function then boils down to

σ2i (θi, φ) = b′′(θi)φ, where θi is a function of ηi. The corresponding likelihood function becomes:

L(β|y, φ, x) =
n∏

i=1

exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
(44)

Where y, β and x are vectors and θ a function of the vector η. We can find the maximum

likelihood estimate of β for a fixed dispersion parameter φ as follows:

β̂ = argmax
β
L(β|y, φ, x) (45)

As explained in Dobson and Barnett (2008), we can now use a Fisher scoring method to maximise

the likelihood. First, note that the log-likelihood can be written as follows:

l(β|y, φ, x) =
n∑

i=1

yiθi − b(θi)

φ
+ c(yi, φ) (46)
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To maximise this log-likelihood, we simply apply Fermat’s theorem by taking ∂l/∂βj = 0 for

parameter βj . Using the chain rule and working out terms, this yields:

∂l(β|y, φ, x)
∂βj

=
n∑

i=1

∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

(47)

=
n∑

i=1

yi − µi
φ

1

σ2i

∂µi
∂ηi

xij (48)

=

n∑

i=1

yi − µi
φ

Wi
∂ηi
∂µi

xij (49)

which is repeated for all coefficients. The weight term Wi is defined as follows:

Wi =
1

σ2i

(
∂µi
∂ηi

)2

(50)

Putting (49) equal to zero and multiplying with φ yields the following scoring equation for βj :

Uj =
n∑

i=1

Wi(yi − µi)
∂ηi
∂µi

xij (51)

We can now derive the variance-covariance matrix Jjk between coefficient j and k to be:

Jjk = E[UjUk] =

n∑

i=1

xijxik
σ2i

(
∂µi
∂ηi

)2

(52)

where we assumed independence between the random variables Yi and Yj for i 6= j. In order to

find the estimates b of the coefficients β, we can use Fisher’s iterative scoring equation:

b(m) = b(m−1) +
[
J
(m−1)

]−1
U (m−1) (53)

where J is the information matrix with elements Jjk for all j and k. The term
[
J(m−1)

]−1
denotes

its inverse. The U matrix contains the coefficient scores. The vector b(m) denotes the parameter

estimates after the mth iteration.

Rewriting this scoring algorithm, we find that equation (53) yields (Dobson & Barnett, 2008):

XTWXb(m) = XTWz (54)

with W the matrix of weights and z a vector with the adjusted dependent variables:

zi = η̂i + (yi − µ̂i)

(
∂ηi
∂µi

)
for i = 1, ..., n (55)
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where η̂
(m)
i = x′ib

(m), µ̂
(m)
i = g−1(η̂

(m)
i ) and the derivative ∂ηi/∂µi is evaluated at µ̂

(m)
i . This

cannot be solved at once because b depends on W and z, and in turn W and z depend on b.

However, this representation lends itself to iteratively reweighted least squares estimation:

1. Given an estimate b(m), calculate η̂
(m)
i and µ̂

(m)
i for all i = 1, ..., n. Now calculate the new

adjusted dependent variables from equation (55), which yields a new vector z(m+1).

2. Calculate the new weights from equation (50):

W
(m+1)
i =

1

σ2i

(
µ̂
(m)
i , φ

)
(
∂µi
∂ηi

)2

(56)

3. We can now solve equation 54 to yield the new estimate b(m+1). One way of doing this is by

regressing z(m+1) on X with weight W (m+1) (a.k.a. weighted least squares). Now continue

with step 1 until consecutive improvements in the estimates of b are sufficiently small.

This procedure is initialised with an initial approximation b(0) and weights W set to one.

For the cost model, we estimate the dispersion parameter φ̂ as explained in the next sec-

tion. For the negative binomial distribution, the dispersion parameter φ̂ coincides with the shape

parameter of the gamma distribution (written as θ̂ in Section 2.3). In order to estimate θ̂, we

need to use the Gauss-Seidel method. Specifically, we initialise θ̂ by fitting a standard Poisson

model and relate the variance of the linear predictor to the mean of the regression (Breslow, 1984).

Given this estimate of dispersion, we now simply estimate the coefficients as before. Fixing the

estimated coefficients, we can find the dispersion parameter using a Newton-Raphson iterative

scheme. This process of fixing either the estimated coefficients or the estimated dispersion

parameter is iterated until convergence of both is achieved (Hinde et al., 1998).

Estimating the dispersion in a GLM with gamma distribution

First, we repeat that the density of an exponential family distribution can be expressed as:

f(yi|θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
(57)

where a(·), b(·) and c(·) are known functions. Functions a(·) and c(·) identify the chosen

distribution and b(·) depends on the chosen link function. The relation between g(·) and b(·)
is b′(θi) = g−1(x′iβ) (Dobson & Barnett, 2008). For the gamma density function with mean

parametrisation Gamma(µ, ν), we can write the density in the exponential family form as follows:

f(y|µ, ν) = 1

Γ(ν)y

(
νy

µ

)ν

exp

(
νy

µ

)
= exp




− 1

µy + ln( 1µ)
1
ν

+ ln

(
ννyν−1

Γ(ν)

)
 (58)
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From which we can deduce that θ = −1/µ and µ = −1/θ. Also a(φ) = 1
ν . Now in order to derive

the first two moments, we do:

b(θi) = − ln(−θi) (59)

db(θi)

dθi
= b′(θi) =

−1

θi
=

−1
−1
µi

= µi (60)

db′(θi)

dθi
= b′′(θi) =

1

θ2i
= µ2i (61)

It can now be derived that E[yi|θi] = b′(θi) and Var[yi|θi, φ] = b′′(θi)a(φ) (McGullagh & Nelder,

1989). Taking a constant dispersion parameter a(φ) = φ, we find that:

E[yi|θi] = b′(θi) = µi (62)

Var[yi|θi, φ] = b′′(θi)a(φ) = φµ2i (63)

Let there be n observations and p parameters. The dispersion parameter can now be estimated:

φ̂ =
Var[y|θ, φ]

µ̂2
=

1

n− p

n∑

i=1

(yi − µ̂i)
2

µ̂2i
(64)

We find that the mean squared pearson residual is approximately equal to the dispersion:

MSEp =
1

n

n∑

i=1

[
(yi − µ̂i)√
V (µ̂i)

]2
=

1

n

n∑

i=1

(yi − µ̂i)
2

µ̂2i
(65)

MSEp

φ̂
=

1
n

∑n
i=1

(yi−µ̂i)
2

µ̂2
i

1
n−p

∑n
i=1

(yi−µ̂i)2

µ̂2
i

=
n− p

n
(66)

s.t. MSEp = φ̂(n− p)/n and MSEp ≈ φ̂ for large n (67)

C. The role of dealers

The first and foremost understanding about liquidity is that it relies heavily on dealers. Even

though this is a basic notion about liquidity, it is important to understand the fundamental

motives and risks of dealers to understand their influence on liquidity and transaction costs.

For example, consider a market without dealers. Transactions in this market can only take

place if (1) opposite parties agree to transact at the same price, the same time (2) and with the

same quantity (3). These are both necessary and sufficient conditions for a transaction to take

place. Therefore, a certain level of heterogeneity between market participants is a prerequisite

for market activity. The more homogeneous the market is, the less likely it is that you will

find a counterparty that is willing to make a transaction. Specifically, this is due to the ‘fair
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value’ of the asset. Homogeneous participants will have the same thoughts about this fair value,

whereas heterogeneous participants will have differing views. In essence, if everyone knows

an asset is worth exactly a specific amount px and all market participants expect the asset to

be worth py > px tomorrow, then all participants will be buyers and no transactions can take place.

So now that we have established that the liquidity of a market is directly related to the

heterogeneity of its participants, we can also understand the role of the dealer. Given that

a liquid market requires heterogeneity, a dealer’s role is to bridge the heterogeneity between

market participants with opposing views. This is accomplished by continuously acting as an

opposite party to whoever is willing to transact. This bridges heterogeneity in at least one of

the three necessary conditions for a transaction: price, time and quantity. But there’s no such

thing as a free lunch and dealers want to be compensated for taking risk on their books. This

is accomplished through the bid-ask spread in which markets are quoted. The dealer offers to

buy at a bid price and sell at an ask price, thus earning a small spread. Bagehot (1971; Bagehot

is a pseudonym of J.L. Treynor) was one of the first to point out the biggest risk of market

making: trading against informed traders that possess ‘special information’ about the true value

of an asset. Following this line of thought, the true objective of dealers is to accommodate as

many transactions as possible, while minimising risk and maximising the earned bid-ask spread.

Instantaneous roundtrips, as mentioned in this thesis, are the type of transactions that are

closest to a free lunch: the dealer will only need to take the corresponding bonds on his books

for a negligibly small period of time (which is why we call them ‘instantaneous’). This implies

that the dealer is exposed to very little inventory risk and is not vulnerable to informed traders.

Especially for larger transaction sizes, such pre-arranged instantaneous roundtrips are a good

tool for dealers to protect against undesirable market movements and potential inventory risk.

D. The ‘price effect’ when costs are denominated in basis points

Harris (2015) finds that transaction prices, specifically the inverse of the price, to be statistically

significant, and to explain a large part of the relative cost spreads that he uses as the dependent

variable. Additionally, Harris finds that the inverse of the par value size is also significant, but

negative. Harris did not anticipate this result and explains that the estimated coefficient suggests

that there exists a fixed cost of ✩−0.89 per trade. He reasons that this result might be wrong,

and simply be due to multicollinearity. We argue that the observed fixed dollar amount cost is

an artefact of the accidental inclusion of a ‘price effect’ when transaction costs are denominated

in relative spread terms. We observe from our imputed transaction costs that dealers prefer to

use fixed dollar amount markups. Subsequently, an effect between price and the resulting costs

appears when transforming these fixed dollar markups relatively to price. We display this effect

in Figure 7. From these graphs, it can be seen how the fixed markups begin to display an effect

with respect to price when denominated in basis points instead.
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(a) Costs denominated in basis points (b) Costs denominated in dollar cents

Figure 7: Distribution of costs versus price, for SDB costs of size ✩1mm+

E. Characteristics of bonds in the sample

Table 6: Bond characteristics. This table gives descriptive statistics of some characteristics
of the bonds in our sample (2005–2013, investment grade bonds only). The metrics in this table
are dominated by liquid bonds and are therefore only representative of an average transaction in
the sample, not of an average transaction on an average bond. Units appear after the variable
name. Variables that are denoted in thousands of dollars have a trailing ‘(✩k)’ behind the
variable name. Millions of dollars are denoted by ‘(✩mm)’. P1 and P99 denote the first and 99th
percentile, respectively. Variable definitions are in Section 4.3 and Appendix G.

Mean P1 Median P99 Std Min Max

Duration (years) 6.15 0.97 4.66 17.55 4.45 0.07 28.21

Spread (bps) 162 25 137 638 142 4 3100

Age (years) 3.13 0.05 2.04 15.19 3.18 0.01 27.18

Maturity (years) 9.40 1.03 5.43 29.97 10.12 0.07 99.74

AmtOut (✩mm) 757 250 500 3186 677 215 15000

Other AmtOut (✩mm) 17705 0 7464 116021 26097 0 341335

Average size (✩k) 1644 116 1319 7412 1616 0 39827

Monthly volume (✩mm) 98.7 1.4 44.2 792.8 234.5 0 12567

Monthly turnover 9.0% 0.2% 6.2% 55.1% 10.6% 0% 163.6%

Equity listed 94.2%

Senior 93.5%

Callable 14.0%
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F. Filtered observations per year

Table 7: Filtered observations per year. This table shows the amount of observations that are either deleted or changed as a result of
each step in the filtering process. Filter conditions are described in Section 4, page 21.

2005 2006 2007 2008 2009 2010 2011 2012 2013 Total %

Cancels 126,988 121,933 105,745 130,517 202,684 192,329 168,385 210,525 200,365 1,459,471 1.32%

Deleted 126,549 121,803 105,652 130,402 202,514 192,165 168,249 210,695 200,583 1,458,612 1.32%

Corrections 114,606 107,420 87,546 94,888 129,863 143,316 121,302 254,409 240,874 1,294,224 1.17%

Corrected 107,883 102,130 82,986 90,422 123,982 137,157 116,350 246,963 233,080 1,240,953 1.13%

Reversals 128,877 105,926 78,645 90,646 151,186 228,596 121,535 12,165 2,765 920,341 0.84%

Deleted 172,626 149,842 114,556 126,346 214,358 407,377 212,455 18,526 2,834 1,418,851 1.29%

High price outliers 25,471 64,938 38,194 67,196 184,595 98,451 96,123 126,505 122,416 823,889 0.75%

Low price outliers 51,969 30,326 31,175 103,449 89,622 292,583 120,859 79,540 15,540 815,063 0.74%

Other outliers 622,410 363,482 266,224 615,950 1,051,960 1,241,073 1,105,435 1,078,924 960,896 7,306,354 6.63%

Double inter-dealer 1,572,434 1,513,815 1,441,356 1,923,909 3,526,709 3,540,847 3,359,465 3,696,332 3,676,370 24,251,237 22.01%

Ambiguous records 363,750 329,991 267,380 311,625 477,987 558,635 407,823 705,706 666,456 4,089,353 3.71%

Agency records 818,530 768,366 738,592 1,072,766 1,814,748 1,893,642 1,777,765 1,936,649 1,924,718 12,745,776 11.57%

Before filter 8,106,864 7,300,388 6,700,012 8,982,733 15,509,598 16,196,366 14,815,442 16,323,772 16,254,560 110,189,735

After filter 4,353,125 3,957,825 3,696,883 4,631,090 7,947,105 7,971,593 7,567,268 8,470,895 8,684,747 57,280,531 51.98%
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G. Other investigated variables of interest

Apart from the variables listed on page 28, we also tested a range of other variables. These

variables are not selected for the final models because they were either (1) highly correlated to

a more powerful variable that was already present in the regression, (2) did not have a clear

economic interpretation for the effect on the dependent variable, (3) did not have a large effect

on the dependent variable or (4) did not achieve satisfactory statistical significance.

Maturity The remaining time in years until the maturity date of the bond.

Issue size The number of issued bonds multiplied by the par value.

Coupon rate The annual coupon payments of the bond, relative to its par value.

Duration×Spread The interaction between the Duration of the bond and its Spread.

Other issue size The sum of the issue sizes of the other U.S. bonds of the issuer.

Other AmtOut The sum of the amount outstanding of the other U.S. bonds of the issuer.

Only issue A dummy indicating whether the bond is the only U.S. issue of the issuer.

No. of other issues The amount of other outstanding U.S. issues of the issuer.

Equity listed A dummy indicating whether the issuer also has listed equity.

Rating The credit rating of the bond, taken as the average between S&P and Moody’s

rating and converted to a 1–22 numerical scale of decreasing credit quality.

Total return Monthly return on the bond, calculated as the change in yield to maturity.

Volatility The volatility of the issuer’s equity, calculated over 1- and 6-month windows.

Turnover The past monthly Volume divided by the amount outstanding (AmtOut).

Missing prices A dummy variable indicating whether the bond traded on the previous day.

Fraction missing The fraction of days with no transactions, calculated over the last 100 days.

On-the-run A dummy variable indicating whether a bond is both Senior and the youngest

bond of the issuer (lowest Age of all outstanding bonds of the issuer).

Inventory change The sum of aggregate dealer inventory, calculated as a running sum of the

volume of bonds added to the aggregate dealer inventory (SD, SDD) and sold

from dealer inventory (DB, DDB). We tested both a window of 100 days and

an expanding window of the full available history of the bond.

CDX The daily CDX investment grade credit default swap index (by Markit Group).

We investigated both the level of the CDX and the daily percentage change.

Swap spread (5y) The difference between the fixed rate component of an interest rate swap and

the on-the-run U.S. Treasury yield, both for a maturity of 5 years.

TED spread (3m) The difference between the three-month LIBOR rate (for interbank loans)

and the three-month Treasury bill interest rate (government debt).
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Selection procedure results for other variables of interest

Below are individual explanations of why we do not use a specific variable. For the reasons

provided in Section 4.2, we decided to exclude these variables from this study. Nevertheless, most

variables did show a relation to liquidity and might therefore still be interesting for other studies.

Maturity Correlated to Age and Duration, where Duration is more powerful.

Issue size Correlated to AmtOut, where AmtOut has more power and better economic

interpretation.

Coupon rate Controlling for the final set of variables, Coupon rate does not have a large

effect on the dependent variables.

Duration×Spread High explanatory power, but provides no added value to the regression if

Spread and Duration are already included. Also creates instability in the

regression when the other two variables are already included.

Other issue size Correlated to Other AmtOut, where Other AmtOut has a better economic

interpretation.

Other AmtOut Decent effect, but gives some unexplainable coefficient signs. Also coefficient

signs are not robust over different size groups or model specifications.

Only issue Explanatory power is negligible and has low statistical significance.

No. of other issues Small explanatory power, low statistical significance.

Equity listed Small explanatory power, low statistical significance.

Rating Because we use investment grade bonds only, Rating does not provide a lot of

extra information. Also some coefficient signs could not be explained and co-

efficient signs are not robust over different size groups or model specifications.

Total return Small explanatory power, low statistical significance.

Volatility Small explanatory power when controlling for Volume and VIX.

Turnover Correlated to Volume, where Volume has a larger effect.

Missing prices Small explanatory power, low statistical significance and not robust.

Fraction missing Small explanatory power, some coefficient signs could not be explained.

On-the-run Small explanatory power when controlling for Senior and Age.

Inventory change Decent effect on its own, but negligible power when controlling for Volume,

VIX and AmtOut. Still we think this variable could provide additional

information, but more research is needed to confirm this.

CDX Correlated to VIX, where VIX has the most explanatory power.

Swap spread (5y) Correlated to VIX, where VIX has the most explanatory power.

TED spread (3m) Correlated to VIX, where VIX has the most explanatory power.
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Table 8: Variables investigated in other studies. This table shows the variables that studies about liquidity in dealer markets have
used. Both the application and the definition of the variables may differ between studies. The table shows whether a study investigates a
specific variable at all, using a tick (X). Note that because the studies have differing goals, they also employ different selection criteria.
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VIX X X
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Maturity X X X X X X X X X X X

Issue size X X X X X X X X X X X

Coupon rate X X X X X X

Duration×Spread X

Other issue size X X X X

Other AmtOut X

Only issue X

No. of other issues X

Equity listed X X X

Rating X X X X X X X X X

Total return X X X X

Volatility X X

Turnover X X X

Missing prices X X X X

Fraction missing X X

On-the-run X X

Inventory change X X X

CDX X

Swap spread (5y) X

TED spread (3m) X X

55



H. Definitions of goodness of fit measures and tests

Mean Squared Error (MSE)

The Mean Squared Error (MSE), as used in Appendix K, is defined as follows:

MSE =
1

N

N∑

i=1

(ŷi − yi)
2 (68)

where ŷi and yi are the estimated value and actual value of observation i, respectively. The

number of observations in the sample is denoted by N .

Deviance MSE

The ‘deviance residual’ of a GLM model is the difference between the log likelihood estimate of

the ‘saturated’ model lS(ψ̂|y) minus the log likelihood estimate of the proposed model l(β̂|y):

D = 2
(
lS(ψ̂|y)− l(β̂|y)

)
(69)

where the saturated model is the model with the ‘most general possible mean structure’: the

model has as many parameters (collected in vector ψ̂) as observations y (Kutner, 2005). The

deviance mean squared error (MSE) for data yi, where i = 1, ..., N , is then:

Deviance MSE =
1

N

N∑

i=1

2
(
lS(ψ̂|yi)− l(β̂|yi)

)
(70)

Brier score

The Brier score is a strictly proper scoring rule and has a similar interpretation as the mean

squared error for continuous models. The Brier score is bounded between 0 and 1, with 0 being

the best score. If p̂i is the estimated probability for observation i = 1, ..., N , and bi is the actual

binary outcome of the event (0 or 1), then the Brier score is defined as:

Brier score =
1

N

N∑

i=1

(p̂i − bi)
2 (71)

McFadden pseudo-R2

The McFadden pseudo-R2 is defined as one minus the log likelihood of a model l(β̂|y), with k
estimated parameters in the vector β̂, divided by the log likelihood of a model that only contains

an intercept α̂ with log likelihood l(α̂|y). For given data y, this yields:

McFadden pseudo-R2 = 1− l(β̂|y)
l(α|y) (72)
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Likelihood ratio test (Chi-squared test)

Assume there is a ‘full’ model with p parameters and a nested restricted model with k less

parameters than the full model. We can test if the fit of the small model is significantly worse

than the fit of the full model using a likelihood ratio test:

−2 ln

[
L(restricted)

L(full)

]
∼ χ2

p−k (73)

where L(restricted) and L(full) are the likelihoods of the restricted and full models, respectively.

This follows a chi-squared distribution asymptotically, with p− k degrees of freedom. The test

can also be formulated in terms of deviances. Specifically, the deviance of a model is twice the

difference between the log likelihood of the model l(model) and the log likelihood of the saturated

version of the model l(saturated) (as shown in equation (69) on page 56). If we substract the

deviance of the full model Dfull from the deviance of the restricted model Drestricted, we get the

likelihood ratio test again:

Drestricted −Dfull = 2 l(saturated)− 2 l(restricted)−
[
2 l(saturated)− 2 l(full)

]
(74)

= 2 l(full)− 2 l(restricted) (75)

The likelihood ratio test can therefore be used to test nested GLMs using their likelihoods or

deviances. The test is known to be incorrect for GLMs that include a separate estimation of the

dispersion parameter through quasi-likelihood estimation (as is the case with our cost model).

Approximate likelihood ratio test (F -test)

Following Venables and Ripley (2013), we test whether omitting k parameters from a model with

p parameters in total yields a significantly higher scaled deviance with an approximate F -test:

Drestricted −Dfull

φ̂(p− k)
∼ Fp−k,N−k (76)

where D is the deviance, N is the number of observations and φ̂ the estimated dispersion

parameter. We use this test both to find the significance of a decrease in deviance when adding

individual variables (or different transformations of individual variables) and to compare full

models to models with just an intercept (i.e. ‘null model’). The degrees of freedom p− k is equal

to the difference in parameters between the two specifications. This test is more appropriate than

the simple likelihood ratio test for models that use quasi-likelihood estimation: when a separate

estimate of the dispersion parameter is included. We therefore use this test for our cost model.

Pearson’s chi-squared test

To measure the goodness-of-fit (or rather the “badness of fit” in this case) for categorical variables

(the warehousing rate model and the arrival rate model), we calculate the sum of squared errors
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of Pearson residuals. These follow a χ2 distribution asymptotically, that can be used to test

whether fitted values are independent of the actual observations. If this hypothesis is rejected

for some significance level, it can be concluded that the proposed model might not be a good

fit for the data. In essence, we want the distribution of the fitted values to be dependent on

the distribution of the actual values. The value of the chi-squared test for Pearson residuals is

an indication of how likely it is that the fitted values do not coincide with the corresponding

observed values. Rejecting the test thereby suggests that the model does not fit the data well.

Using the notation from Appendix B, we calculate the Pearson residuals as follows:

pi =
yi − µ̂i√
V (µ̂i)

(77)

where yi is the actual observation i and µ̂i the estimated expected value of the observation. The

variance function V (µ̂i) differs per distribution. We take the dispersion in the variance function

to be a(φ) = φ and estimate the dispersion as explained in Appendix B.

The Pearson χ2 test can now be written as follows (Venables & Ripley, 2013):

N∑

i=1

p2i
D∼ χ2

N−p (78)

where p is the number of parameters in the full model and N is the amount of observations.

Note that this result holds asymptotically: it is approximately correct for large sample sizes.

Testing for overdispersion

To test for overdispersion in the arrival rates, we use the test of Cameron and Trivedi (1990).

Specifically, we estimate a Poisson model to find the conditional expected value E[yi] of dependent

variable yi on the vector of explanatory variables X. Let µi ≡ E[yi|X]. Using this expected

value, we then test whether Var[Yi] = µi with the following hypotheses:

H0 : Var[yi] = µi (79)

H1 : Var[yi] = µi + α · g(µi) (80)

where g(·) is some monotonic function (often g(x) = x or g(x) = x2). To test for overdispersion,

we can simply confirm whether α = 0 in (80). We do this by running (80) as a regression and then

checking whether α is statistically significant from zero with a t-test. A two-sided t-test clarifies

whether a Poisson model is sufficient, where a one-sided t-test can confirm whether the data

exhibits either significant under- or overdispersion. We are interested in testing overdispersion in

the samples, so we test the one-sided alternative H1 : α > 0.
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I. Model specification results

In this section, we provide statistical evidence of our various model specifications. In Figures 8

and 9, we show residuals for alternative model specifications of the cost model, using both normal

linear models (LM) and a GLM with gamma distribution for different link functions. The Q-Q

plots for the GLMs are based on Augustin et al. (2011). Investigating the plots, we find that

normal LMs are not suitable for transaction costs. A GLM with log-link and gamma distribution

appears to have the best fit, even though it slightly underestimates large outliers. In Table 9 we

present formal tests for different transformations of the regressors. We find that the log transform

gives the highest improvement in deviance for almost all regressors in the models. For VIX, we

find that it should not be transformed. For Age, the square-root transform also works well, but

we stick to the log transform for ease of interpretation. Lastly, we find significant overdispersion

in the arrival rates as observed from Table 10. This motivates the necessity of modelling the

arrival rates with the negative binomial regression instead of a Poisson model.

Figure 8: ‘fitted vs residual’ and ‘Q-Q plots’ for linear models of ✩1mm+ SDB costs.

These plots show the fit of two different linear model (LM) specifications: both with normal and
log transformed costs. These models assume a normal distribution for the error terms.
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Figure 9: ‘fitted vs residual’ and ‘Q-Q plots’ for GLMs of ✩1mm+ SDB costs. These
plots show the fits for different GLM specifications of the gamma distribution using the deviance
Q-Q plots of Augustin et al. (2012). The first two specifications use the identity link function,
both with and without log transformed costs. The last specification is the one used in this thesis:
a log-link with gamma distribution and no transformation of the dependent variable.
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Table 9: Variable specification results. This table shows the deviance improvements when
including either variables without transformation (x), with a square-root transformation (

√
x),

or with a log transformation (log x) for specific subsamples (in brackets below model name). The
results are slightly different for other sample groups (different types, sizes), but the same pattern
emerges. The significance of the deviance improvements for the cost model is tested with an
F -test. The F -values appear in brackets below the corresponding deviance improvements. For
the warehousing rate and arrival rate models, we use a likelihood ratio test (LRT) that is based
on the chi-squared distribution. These tests are more elaborately described in Appendix H. The
symbol ∗ indicates a significant improvement in the deviance (or likelihood) at the 1% level.

Cost model Warehousing rate model Arrival rate model
(✩1mm+, SDB, F -test) (✩1mm+, buying, LRT) (✩1mm+, buyers, LRT)

x
√
x log(x) x

√
x log(x) x

√
x log(x)

Price 18.38∗ 25.77∗ 32.30∗ 306.55∗ 371.07∗ 435.88∗

(18) (25) (31)

Spread 698.39∗ 1614.38∗ 2210.23∗ 793.11∗ 1440.34∗ 1084.38∗ 123.73∗ 172.18∗ 140.26∗

(674) (1558) (2134)

Duration 4160.52∗ 4473.42∗ 4572.66∗ 484.75∗ 782.38∗ 1294.27∗ 1.97 10.46∗ 84.26∗

(4016) (4318) (4414)

Age 121.27∗ 102.09∗ 62.12∗ 9.77∗ 0.18 8.20∗ 939.29∗ 1467.45∗ 1770.31∗

(117) (99) (60)

AmtOut 36.06∗ 59.32∗ 79.97∗ 116.41∗ 218.88∗ 296.50∗ 3429.41∗ 4425.42∗ 4941.99∗

(35) (57) (77)

Size 34.39∗ 256.37∗ 277.16∗ 17.62∗ 1064.42∗ 1865.64∗

(33) (247) (268)

AvgSize 12.35∗ 52.24∗ 87.86∗ 61.85∗ 41.42∗ 9.48∗

(12) (50) (85)

Volume 3.96 5.47 28.09∗ 23.20∗ 53.74∗ 1138.38∗ 1154.25∗ 5344.80∗ 10552.48∗

(4) (5) (27)

VIX 1755.72∗ 881.95∗ 969.23∗ 128.66∗ 43.94∗ 59.13∗ 124.38∗ 22.23∗ 19.42∗

(730) (851) (936)

Observations 42,246 1,016,708 6,488,779

Table 10: Overdispersion results of the arrival rates. This table shows results of the
Cameron and Trivedi (1990) test for overdispersion. The test is further explained in Appendix H.
The symbol ∗ indicates significant overdispersion (δ > 1, α > 0) at the 1% level.

$0–$100k $100k–$1mm $1mm+

buyers sellers buyers sellers buyers sellers

Var[yi] = δµi

dispersion (δ̂) 5.04∗ 2.07∗ 1.40∗ 1.26∗ 1.27∗ 1.20∗

(t-value) (12.47) (53.10) (95.79) (97.43) (55.87) (73.90)

Var[yi] = µi + αµ2

i

alpha (α̂) 1.81∗ 0.66∗ 0.58∗ 0.53∗ 0.90∗ 0.95∗

(t-value) (14.03) (56.96) (106.59) (110.73) (52.92) (84.67)

Observations 6,519,328 6,519,328 6,512,396 6,512,396 6,488,779 6,488,779
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J. Residual covariance analysis

The figures below show 95% confidence regions (2D Gaussian kernel density estimation with
bandwidth b̂ = 4.24min(σ̂, IQR/1.34)n−1/5 from Venables and Ripley (2013), with n the sample
size, σ̂ the standard deviation and IQR the interquartile range) of bootstrapped residuals for the
different components in the PEX. The residuals of the warehousing and arrival rate probabilities
are approximated by taking the average rates over the month in which the transaction occurred.
Buy-side regions appear as with mean and sell-side regions appear as with mean •.

Results for ✩0–✩100k transactions
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Results for ✩1mm+ transactions
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K. Performance comparison

Roll’s model to calculate the bid-ask spread is based on the premise that trading costs cause

negative serial dependence in consecutive changes in transaction prices (Roll, 1984). If we follow

the notation of Bao et al. (2011), we denote the price at time t as Pt. The implied bid-ask spread

by Roll’s model can then be written as two times the square root of the negative covariance

between consecutive price changes:

bid-ask spread = 2
√

−Cov[Pt − Pt−1, Pt+1 − Pt] = 2
√

−Cov[∆Pt,∆Pt+1] (81)

Albeit simple, Roll’s measure has proven to be a robust estimator of the bid-ask spread. Addi-

tionally, the advantage of Roll’s model is that only transaction prices are needed to calculate

it. The big disadvantage of the Roll model is its inability to generalise across bonds. Plenty of

recent transaction data is needed to accurately estimate the measure, such that the measure is

less useful for less liquid bonds. Naturally, a liquidity measure is most useful for such illiquid

bonds and this demonstrates why measures that use longitudinal, opposed to cross-sectional,

data have limited applicability. In Table 11 we show the performance results when taking half of

the implied bid-ask spread by Roll’s model for estimating imputed transaction costs.

Table 11: Roll model cost estimation performance. This table shows the performance of
the Roll model’s implied bid-ask spread to estimate realised transaction costs. Listed are the
mean error (ME), mean squared error (MSE), R2 (percentages) and the sample size (Obs.).

$0–$100k $100k–$1mm $1mm+

Lag SDB SDD DDB SDB SDD DDB SDB SDD DDB

10

ME −67.2 −56.6 −86.0 −21.6 −37.4 −58.4 −10.3 −17.4 −20.8
MSE 84.7 63.7 120.7 15.8 34.1 71.4 4.0 12.9 15.8
R2 (%) −8.4 −39.0 −53.0 −15.5 −29.2 −28.0 −16.6 −12.3 −15.8
Obs. 97,038 928,668 2,021,319 36,472 140,047 314,502 32,225 28,730 47,905

50

ME −63.8 −52.0 −81.4 −21.0 −35.8 −56.8 −6.4 −14.5 −17.6
MSE 78.9 57.8 112.0 16.7 32.6 69.1 3.0 10.5 16.5
R2 (%) 12.8 −19.6 −25.6 1.7 −15.1 −7.7 −9.0 −14.6 −11.4
Obs. 91,692 896,846 1,901,288 26,690 111,703 230,531 11,160 12,198 18,165

100

ME −61.5 −48.6 −78.0 −20.8 −34.8 −55.8 −4.8 −11.9 −14.3
MSE 75.3 53.8 105.8 17.6 32.0 68.2 3.4 9.6 11.1
R2 (%) 17.3 −15.0 −19.4 7.7 −9.2 −2.0 −6.1 −11.5 −10.2
Obs. 86,208 859,631 1,771,796 20,123 89,350 170,054 4,571 5,506 7,487

250

ME −57.6 −41.9 −70.8 −20.2 −32.4 −52.5 −2.3 −8.2 −9.0
MSE 69.3 46.8 94.2 19.4 31.1 64.9 4.9 12.0 7.8
R2 (%) 19.8 −10.7 −14.0 9.4 −3.0 5.6 −4.5 1.6 2.5
Obs. 74,142 766,373 1,486,643 11,323 54,461 86,466 1,102 1,256 1,410

all

ME 0.9 3.8 −29.7 −8.0 −21.0 −43.7 −6.9 −12.5 −16.9
MSE 43.8 47.5 65.6 10.0 24.2 54.0 3.4 11.0 14.0
R2 (%) 2.0 −26.9 −37.4 10.5 −9.3 −9.1 −16.2 −12.5 −17.0
Obs. 98,570 936,049 2,046,721 39,726 148,325 337,393 41,493 35,313 60,600
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Additionally, we also employ naive moving averages to estimate transactions costs and the

warehousing and arrival rates. For the naive moving average, we employ the simplest form of an

historical average to forecast a timeseries. Let yt for t = 1, ..., T denote the dependent variable

at hand and let Ft denote the filtration with all information up to and including time t. The

forecast we estimate for the value of yt+1 given the information up to time t, is then:

ŷt+1|Ft =
1

l

l∑

i=0

yt−i (82)

Where the window l is taken to use the information of the previous l values. We deliberately keep

this model as simple as possible to give a rough overview of its performance without resorting to

the estimation of the appropriate number of lags and the elaborate process of assessing parameter

stability. Naturally, this model therefore only poses as a naive average of past observations.

Table 12: Moving average cost estimation performance. This table shows the performance
of a naive moving average to estimate realised transaction costs. Listed are the mean error (ME),
mean squared error (MSE), R2 in percentages and the number of available observations (Obs.).

$0–$100k $100k–$1mm $1mm+

Lag SDB SDD DDB SDB SDD DDB SDB SDD DDB

10

ME 5.5 7.3 −9.0 11.3 −0.8 −19.7 0.8 −6.2 −10.3
MSE 30.2 36.6 36.0 13.5 22.4 36.6 3.4 9.4 11.7
R2 (%) 28.1 −3.8 24.9 10.2 −4.8 8.1 −2.0 4.3 1.8
Obs. 97,655 932,260 2,031,645 37,702 144,651 327,188 35,591 33,096 55,742

50

ME 6.1 9.9 −8.1 12.7 1.1 −18.7 0.2 −6.6 −10.8
MSE 27.9 33.8 33.2 12.9 20.4 34.5 3.2 8.8 13.0
R2 (%) 33.1 1.7 31.1 16.8 2.1 17.5 3.9 5.8 6.1
Obs. 93,268 904,527 1950,884 28,774 120,640 264,244 18,020 21,459 33,190

100

ME 6.2 11.4 −7.1 13.5 2.4 −18.2 0.4 −6.5 −10.9
MSE 28.0 33.4 32.5 13.7 20.4 34.5 3.3 8.7 14.0
R2 (%) 33.4 2.5 31.8 18.3 3.2 19.9 3.7 5.2 5.0
Obs. 87,860 865,207 1,840,656 22,247 98,558 207,205 9,686 13,260 19,761

250

ME 5.5 14.3 −5.7 14.4 4.4 −17.6 1.8 −5.9 −9.8
MSE 29.0 33.1 32.1 16.2 21.6 35.9 3.5 9.4 11.3
R2 (%) 31.7 3.0 31.5 18.6 3.5 21.8 4.7 5.7 7.6
Obs. 74,291 761,319 1,577,748 11,725 62,435 117,646 2,602 4,024 5,439

all

ME 16.9 25.2 −1.9 18.9 8.6 −12.9 0.1 −6.7 −10.4
MSE 31.6 38.2 34.0 14.2 20.7 32.3 3.2 9.6 11.7
R2 (%) 28.8 6.9 28.9 14.1 7.2 19.5 −3.2 2.1 1.4
Obs. 98,565 936,414 2,043,504 39,847 149,029 337,643 41,849 35,759 61,671
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Table 13: Moving average warehousing rate performance. This table shows the perfor-
mance of a naive moving average to estimate the warehousing rate. Listed are the mean error
(ME), Brier score (Brier) and the number of available observations (Obs.).

$0–$100k $100k–$1mm $1mm+

Lag buying selling buying selling buying selling

10
ME −0.02 −0.04 −0.05 −0.11 −0.23 −0.31
Brier 0.05 0.05 0.08 0.10 0.20 0.25
Obs. 2,748,745 3,181,667 1,110,650 856,681 484,083 414,477

50
ME −0.01 −0.04 −0.03 −0.09 −0.19 −0.25
Brier 0.05 0.04 0.07 0.09 0.18 0.21
Obs. 2,292,677 2,627,864 619,682 379,948 92,753 67,514

100
ME −0.01 −0.03 −0.03 −0.09 −0.17 −0.23
Brier 0.05 0.04 0.07 0.09 0.20 0.24
Obs. 1,959,124 2,182,452 384,502 206,635 19,869 15,058

250
ME 0.00 −0.03 −0.01 −0.10 −0.12 −0.21
Brier 0.05 0.04 0.08 0.10 0.24 0.24
Obs. 1,387,635 1,446,088 127,476 52,565 660 708

all
ME −0.03 −0.06 −0.05 −0.14 −0.23 −0.33
Brier 0.05 0.05 0.08 0.13 0.22 0.29
Obs. 2,918,789 3,373,030 1,370,103 1,202,433 846,698 819,503

Table 14: Moving average arrival rate performance. This table shows the performance
of a naive moving average to estimate the arrival rate of buyers and sellers. Listed are the mean
error (ME), mean squared error (MSE), R2 (percentages) and the number of observations (Obs.).

$0–$100k $100k–$1mm $1mm+

Lag buyers sellers buyers sellers buyers sellers

10

ME 0.00 0.00 0.00 0.00 0.00 0.00
MSE 3.42 1.02 0.53 0.36 0.21 0.16
R2 (%) 60.76 62.81 33.71 25.98 14.87 15.36
Obs. 17,873,130 17,873,130 17,832,540 17,832,540 17,758,125 17,758,125

50

ME 0.00 0.00 0.00 0.00 0.00 0.00
MSE 4.55 1.05 0.55 0.36 0.20 0.16
R2 (%) 48.19 61.77 29.80 25.57 13.53 13.86
Obs. 17,556,090 17,556,090 17,516,220 17,516,220 17,443,125 17,443,125

100

ME −0.01 −0.01 0.00 0.00 0.00 0.00
MSE 5.24 1.10 0.58 0.37 0.21 0.17
R2 (%) 41.17 60.20 26.69 24.15 11.98 12.41
Obs. 17,159,790 17,159,790 17,120,820 17,120,820 17,049,375 17,049,375

250

ME −0.03 −0.03 −0.01 −0.01 0.00 0.00
MSE 6.54 1.28 0.66 0.40 0.23 0.18
R2 (%) 30.59 55.26 21.20 20.73 9.14 9.68
Obs. 15,970,890 15,970,890 15,934,620 15,934,620 15,868,125 15,868,125

all

ME −0.17 −0.14 −0.06 −0.05 −0.02 −0.02
MSE 7.22 1.86 0.70 0.43 0.22 0.18
R2 (%) 15.78 31.70 10.13 10.18 4.20 4.52
Obs. 17,952,390 17,952,390 17,911,620 17,911,620 17,836,875 17,836,875
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L. Robustness checks

Table 15: Robustness check ✩0–✩100k. Robustness check of the transaction cost imputation
results for different window sizes and trades between ✩0 and ✩100k. These transactions are for
investment grade bonds only, where the top 0.5% of costs are deleted per roundtrip type (SDB,
SDD or DDB). In order to make a fair comparison, we do not delete transaction combinations
if they have missing bond characteristics. The sample used in this table is therefore slightly
different from the samples that we use in the regressions. Costs are representative of half of the
realised bid-ask spread and are denoted in dollar cents. We examine imputed costs for window
sizes ranging from 15 minutes (m), to hours (h), days (d) and a full workweek (w).

odd-lot transactions (✩0–✩100k)

Detection period 15m 1h 3h 1d 2d 1w

SDB

Mean cost 68 80 83 82 83 82
1st percentile 1 2 2 2 2 1
Median 50 67 70 67 66 63
99th percentile 234 256 271 286 298 318
Std 60 63 65 67 68 72
Skewness 0.9 0.8 0.9 1.0 1.1 1.3
Kurtosis 0.1 0.1 0.4 0.9 1.3 1.9

SDD

Mean cost 58 59 60 63 65 68
1st percentile 1 1 1 1 1 1
Median 50 50 50 50 50 50
99th percentile 228 242 250 267 288 304
Std 50 52 54 57 60 64
Skewness 1.5 1.5 1.6 1.6 1.7 1.8
Kurtosis 2.5 2.8 3.0 3.3 3.7 4.2

DDB

Mean cost 88 87 87 87 89 89
1st percentile 3 3 3 3 3 3
Median 87 84 80 80 80 78
99th percentile 260 266 274 284 296 300
Std 67 68 69 71 73 75
Skewness 0.6 0.7 0.7 0.8 0.8 0.9
Kurtosis −0.4 −0.3 −0.2 −0.1 0.0 0.1

ob
se
rv
ed

or
d
er

ty
p
es SDB 1.0% 2.0% 3.0% 3.6% 4.2% 2.6%

SDD 9.9% 10.1% 9.8% 7.2% 6.8% 3.5%
DDB 21.6% 19.9% 17.8% 12.2% 11.6% 5.7%
SD 22.7% 22.6% 22.3% 19.8% 20.0% 17.9%
DB 30.1% 30.4% 30.5% 32.4% 31.8% 33.7%
DD 14.7% 15.0% 16.5% 24.9% 25.5% 36.6%
Ambiguous 429,491 580,074 684,978 678,801 678,642 530,373
Observations 9,453,376 8,733,976 8,061,004 8,690,128 8,049,736 11,322,109

in
ve
n
to
ry Avg. buy fraction γB 98.0% 96.3% 94.1% 92.6% 91.2% 93.9%

Avg. sell fraction γS 96.9% 94.4% 91.3% 88.3% 86.5% 89.3%
Weighted buy costs 87 87 87 87 89 89
Weighted sell costs 58 60 62 65 68 69
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Table 16: Robustness check ✩100k–✩1mm. Robustness check of the transaction cost im-
putation results for trades between ✩100k and ✩1mm. These transactions are for investment
grade bonds only, where the top 0.5% of costs are deleted per roundtrip type (SDB, SDD or
DDB). In order to make a fair comparison, we do not delete transaction combinations if they
have missing bond characteristics. The sample used in this table is therefore slightly different
from the samples that we use in the regressions. Costs are representative of half of the realised
bid-ask spread and are denoted in dollar cents. We examine imputed costs for windows ranging
from 15 minutes (m), to hours (h), days (d) and a full workweek (w).

round-lot transactions (✩100k–✩1mm)

Detection period 15m 1h 3h 1d 2d 1w

SDB

Mean cost 21 27 31 33 35 35
1st percentile 0 0 0 0 0 0
Median 10 13 15 18 19 19
99th percentile 122 147 161 173 181 189
Std 27 33 36 38 40 41
Skewness 2.0 1.9 1.8 1.8 1.9 2.0
Kurtosis 3.9 3.4 3.0 3.4 3.7 4.5

SDD

Mean cost 38 39 39 40 42 43
1st percentile 1 1 1 1 1 0
Median 25 25 25 25 25 25
99th percentile 188 200 200 209 224 243
Std 40 41 42 45 47 50
Skewness 1.7 1.8 1.9 2.0 2.1 2.2
Kurtosis 3.4 3.8 4.0 4.9 5.3 6.2

DDB

Mean cost 59 58 56 55 55 54
1st percentile 1 1 1 1 1 1
Median 38 36 33 31 30 29
99th percentile 238 241 244 250 253 260
Std 58 58 58 58 59 60
Skewness 1.2 1.3 1.4 1.5 1.5 1.6
Kurtosis 0.7 1.1 1.4 1.8 2.1 2.6

ob
se
rv
ed

or
d
er

ty
p
es SDB 1.0% 1.5% 2.1% 3.0% 3.7% 3.8%

SDD 3.9% 4.4% 4.6% 4.5% 4.5% 3.8%
DDB 8.9% 9.6% 9.6% 8.7% 8.4% 6.7%
SD 26.6% 27.1% 27.2% 26.5% 26.6% 25.0%
DB 35.2% 35.6% 35.5% 35.1% 34.9% 34.5%
DD 24.3% 21.8% 21.0% 22.0% 22.0% 26.1%
Ambiguous 48,231 71,706 98,644 134,210 157,098 164,171
Observations 3,818,196 3,590,066 3,427,003 3,298,275 3,151,754 3,319,430

in
ve
n
to
ry Avg. buy fraction γB 97.7% 96.8% 95.6% 93.5% 92.1% 91.6%

Avg. sell fraction γS 96.7% 95.4% 93.9% 91.1% 89.3% 88.4%
Weighted buy costs 58 57 55 53 54 53
Weighted sell costs 37 38 39 40 41 42
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Table 17: Robustness check ✩1mm+. Robustness check of the transaction cost imputation
results for different window sizes and trades of ✩1mm or larger. These transactions are for
investment grade bonds only, where the top 0.5% of costs are deleted per roundtrip type (SDB,
SDD or DDB). In order to make a fair comparison, we do not delete transaction combinations
if they have missing bond characteristics. The sample used in this table is therefore slightly
different from the samples that we use in the regressions. Costs are representative of half of the
realised bid-ask spread and are denoted in dollar cents. We examine imputed costs for window
sizes ranging from 15 minutes (m), to hours (h), days (d) and a full workweek (w).

block sized transactions (✩1mm+)

Detection period 15m 1h 3h 1d 2d 1w

SDB

Mean cost 12 13 14 16 17 19
1st percentile 0 0 0 0 0 0
Median 9 10 10 11 11 12
99th percentile 51 61 68 83 95 107
Std 12 13 14 17 19 21
Skewness 1.6 1.8 1.9 2.1 2.3 2.4
Kurtosis 2.6 3.7 4.3 5.6 6.5 7.4

SDD

Mean cost 18 20 22 25 28 31
1st percentile 0 0 0 0 0 0
Median 8 10 12 13 15 16
99th percentile 107 117 126 150 170 202
Std 22 24 27 31 35 41
Skewness 2.4 2.3 2.3 2.4 2.5 2.6
Kurtosis 6.7 6.4 6.5 7.0 7.8 8.7

DDB

Mean cost 21 23 24 26 27 29
1st percentile 0 1 1 1 1 1
Median 11 13 13 14 15 15
99th percentile 125 134 141 150 169 185
Std 26 27 29 31 34 37
Skewness 2.4 2.4 2.4 2.4 2.6 2.6
Kurtosis 6.6 6.5 6.8 7.0 8.1 8.5

ob
se
rv
ed

or
d
er

ty
p
es SDB 1.7% 2.7% 3.5% 4.7% 5.2% 5.5%

SDD 1.5% 1.9% 2.2% 2.4% 2.5% 2.4%
DDB 2.5% 3.3% 3.7% 4.0% 4.0% 3.7%
SD 31.3% 32.2% 32.3% 31.6% 31.5% 30.5%
DB 33.9% 34.6% 34.5% 33.7% 33.5% 32.4%
DD 29.0% 25.2% 23.8% 23.7% 23.2% 25.6%
Ambiguous 18,057 29,509 41,096 59,414 71,985 79,696
Observations 2,463,986 2,266,249 2,157,060 2,053,788 1,976,843 2,004,364

in
ve
n
to
ry Avg. buy fraction γB 95.5% 93.4% 91.5% 89.0% 87.8% 86.8%

Avg. sell fraction γS 95.0% 92.7% 90.7% 87.9% 86.7% 85.8%
Weighted buy costs 21 22 23 25 26 28
Weighted sell costs 17 19 21 24 26 29
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