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Abstract 

 

Dynamic computable general equilibrium (CGE) models, such as the MONASH model developed 
at the Centre of Policy Studies, typically use complex dynamic investment mechanisms to generate 
dynamic growth paths.  Even so, these models don’t account for corporate finance and corporate 
taxation in determining investment outcomes.  This paper provides final results from a work 
program aimed at imposing corporate finance and corporate taxation on investor choices in an inter-
temporal model of investment, and then describes the process of modifying the MONASH model to 
take on-board this new theory.  The paper will proceed in two parts. 

Firstly, we briefly outline the development of an investment model that links corporate taxation and 
corporate finance to investment behaviour.  Firms seek to maximise shareholder wealth, and firm 
and investor optimising-behaviour leads  to a set of rate -of-return expressions that are determined by 
financing and investment policies, both of which, themselves, are the result of optimising decisions.  
Firms in this model optimise across two dimensions – they optimise the present value of 
shareholder distributions across time (i.e. dynamic optimisation), which they achieve by 
determining an optimal choice of inputs (including an investment policy) and an optimal method of 
financing these inputs (involving an optimal financial policy and dividend policy).  The solution to 
the firm’s optimal growth path takes account of: various company and personal income tax regimes; 
various capital-gains taxes regimes (including realisation-basis capital gains taxation); depreciation 
allowances; investment allowances; debt accumulation; transactions costs on external financing; 
and interest rates on debt linked to financial leverage.  The resulting rate-of-return expressions 
highlight the complex nature of the taxation of capital income and the ways in which taxation 
reform can influence investment behaviour. 

Secondly, we explain the implementation of this investment approach in MONASH, and report on a 
series of simulations.  A key feature of the model in application is that firms choose their financial 
and dividend policies endogenously, in every period of the simulation, from eight potential 
alternatives.  The impact of two different tax reforms are simulated using a version of MONASH-
Australia aggregated to 32 industries and 33 commodities.  The two experiments are: (1) a cut to the 
dividend-tax rate, such as that currently under debate in the US; and, (2), a cut in a realisation-basis 
capital gains tax.  Each experiment is run twice, with recursive/backward-looking expectations and 
rational/forward-looking expectations imposed.  The simulations show that a GE approach is 
necessary to gain full insight into the investment behaviour of corporations, as these tax cuts have 
two immediate and contradictory effects - the tax cuts reduce the taxation of capital income, 
increasing the rate of return, while also increasing the cost of finance and the user-cost of capital, 
thereby decreasing the rate of return.  Furthermore, we find that anticipation effects are important in 
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the determination of firm behaviour and investment outcomes.  A comparison of these results 
highlights the ways in which different capital-income tax regimes influence firm behaviour and 
outcomes in a dynamic setting, including the different adjustment paths that result. 

Equation Section (Next) 
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1.  Introduction and Background 

This paper reports on the final stages of a project that has developed a new investment theory for a 
large-scale dynamic CGE model.  Given the large amount of background material involved, this 
paper presents an overview of the theoretical side of the project, while simulation results and some 
additional theoretical notes (relating mostly to implementation issues) are provided as a hand-out.  
Readers are also referred to Winston (2004)1 for further detail. 

2.  An Inter-Temporal Model of Investment with Corporate Finance 

2.1.  Notation 

The notation used throughout this paper is given in the following table .  All variables are expected  
values unless otherwise stated. 

Table 1.  Notation 

j
tD   Unfranked dividend 

j
tDF   Franked dividend 
j

tVN   New equity issues 
j

tm   Personal income tax rate of shareholders in industry j 
j

tυ   Proportion of personal income tax rate applicable to dividend income 
j

tθ   Effective dividend tax rate 
j

tγ   Rate of dividend imputation available to shareholders in industry j 
j

tτ   Company income tax rate 
j

tc   Accrual-equivalent capital gains tax rate 
j
tcgt   Statutory rate of capital gains tax 

j
tψ   Proportion of capital gains that are taxable  
j
tε   Rate of share realisations  

tα   Dummy for capital gains indexing, 1 for real, 0 for nominal 

tπ   Rate of inflation 

tµ  and tη  Parameters determining the own-price elasticity of demand for output 
j

tY   Firm/industry output 

ti   Economy-wide cash rate  
j

th   Proportion of the personal income tax rate applicable to interest income 
j

tς   Effective rate of interest-income tax 

χ   Parameter setting the sensitivity financial leverage to j
tqtot , j

tKTOT  and j
tB  

β   Parameter determining the shape of the debt-interest function 
j

tr   Rate of interest on debt 
j
tqtot   Share-weighted price-index denoting the “price” of composite capital 

,n j
tΓ   Deductible investment allowance on capital of type n 

                                                 
1 Available from the working-paper archive at www.monash.buseco.edu.au\policy. 
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,
,

n j
t t sPC −∆  Prime-cost depreciation allowance on capital of type n , in period t, t-s periods after it 

was acquired 
,
,

n j
t t sDV −∆  Diminishing-value depreciation allowance on capital of type n , in period t, t-s  

periods after it was acquired 
,n j

tϕ   Dummy on depreciation allowances, 1 for prime-cost, 0 for diminishing-value 

tp   Producer or basic price of output 
,m j

tL   Total usage of labour of type m 
m
tw   Price of labour of type m 

j
tLN   Total usage of land 

tpl   Rental price of land 
,n j

tI   Real investment in new capital of type n  
j

tKTOT  Composite capital stock of industry j 
,n j

tδ   Rate of physical depreciation of capital of type n 
,n j

tK   Stock of capita l of type n, where n denotes effective life 
n
tq   Asset price of capital goods of type n  

,g j
tQ   Total intermediate usage of good g  
g

tP   Purchaser’s price of intermediate good g 
,g j

tξ   Rate of sales tax on intermediate good g  
j

tb   Term-to-maturity of debt 
j

tρ   Rate of debt retirement, equals ( )1 j
tb  

j
tB   Total issues of bonds in period t 

j
tTB   Total bonds outstanding in period t 

j
tυ   Rate of payroll tax 

j
tT   Level of the corporate income tax liability 

2.2.  The Objective Function – Shareholder Wealth 

The firm’s objective is to maximise shareholder wealth, measured as the cum-dividend value of the 
firm’s equity, 
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The derivation of this equation is explained in Winston (2004), and is too lengthy to state here.  
Equation (1) defines the cum-dividend value of the firm as the sum of an infinite series of 
appropriately discounted after-tax dividend payments minus new-share issues. 
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2.5.  The Constraints 

2.5.1.  Cash Flow Constraint 

The firm’s cash flow constraint, a function of its sources and uses of funds, is defined by the 
following two functions: 
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 (3) 

The firm’s sources of funds are operating revenue and receipts from selling claims over fixed (debt) 
and variable (new equity) amounts of future cash flows.  The firm’s uses of funds are factor 
payments, purchases of intermediate goods, debt servicing, capital expenditures and the payment of 
company income tax.   The company income tax liability is a function of the level of taxable income 
and the company income tax rate.  Taxable income in period t is equal to operating revenue minus 
variable costs and deductions. 

2.5.2.  Production Technology 

 ( ), , ,
1 , , ,j j n j m j j g j

t t t t t tY f K L LN Q−=  (4) 

Firm output j
tY , is a function of three primary factor inputs and intermediate commodity usage.  

Producers create output according to a multi-level, nested production function; 
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Figure 1.  Input technology, current production in the modified MONASH model 

 

The MONASH model assumes one type of capital in each industry.  The changes discussed in this 
paper add an additional level in the capital creation nest where the composite-input into capital 
creation is first combined into specific types of capital, differentiated by effective life, and then 
combined into a composite capital variable that enters the primary factor nest.  With this greater 
level of detail, the model will have the ability to simulate changes in the different rates of 
depreciation and investment allowance available on different types of capital.  Thus, industries with 
different capital structures will face different consequences from changes in business-taxation 
policy due to changes in the net-of-tax-and-allowances profitability of assets. 
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2.5.3.  Debt Accumulation 

The firm’s total outstanding debt at time t, denoted j
tTB , is given an accumulation relationship of 

the form 

 ( ) 11j j j j
t t t tTB B TBρ −= + − . (5) 

where 1j j
t tbρ =  and j

tb  is the term-to-maturity of the firm’s debt.  This treats the payment of 
principal like a geometric rate of decay in the firm’s total outstanding debt.  The firm’s total 
outstanding debt in period t is equal to the total debt outstanding at the beginning of the previous 
period plus new bond issues in period t minus repayments of principal.  The firm’s pre-tax interest 
bill in any period is the current-period’s interest rate multiplied by total outstanding debt, 

 Interest Bill j j
t tr TB=  (6) 

The interest rate on debt is assumed to be a variable  rate , which allows us to treat total outstanding 
debt of varying maturity like a single outstanding bond. 

2.5.4.  Financial Leverage and the Cost of Debt 

The firm’s financial leverage in period t is 

 
j

j t
t j j

t t

TB
FLV

q K
= , (7) 

where j
tq  is a weighted average of the prices of the various n capital types that combine to create 

the CRESH composite.  This ratio enters a function for the rate of interest on the firm’s debt 2, 

 
{ }1 1

1
j

t

j
t FLV

r
e

β+ −

Λ=
−

. (8) 

The parameter Λ  is set at 0.042 and β  at 1.832681, giving us a function of the right qualities to 
model a rate of interest on debt linked to financial leverage. 

2.5.5 .  Transaction Costs in Obtaining Finance from External Sources 

Share and bond sales incur a per-dollar fee which diminishes with the size of the issue.  Denoting 
the average transaction cost per dollar of finance for equity and debt as j

tTRVN  and j
tTRB  

respectively, we define these fees by 

 1
ln

j
t j j

t t

TRVN
VN

=
+ Θ

 (9) 

for new equity issues, and 

 1
ln

j
t j j

t t

TRB
B

=
+ Χ

 (10) 

                                                 
2 Thanks to Peter Dixon and Maureen Rimmer for suggesting this function. 
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for bond issues.  j
tΘ  and j

tΧ  are parameters determining the maximum rate of the transaction fee.  
In application, we take the natural log of j

tVN  and j
tVB  plus 1 to rule out the chance of asking the 

model to calculate the natural log of 0, giving us a maximum rate of 5% on acquiring finance.  The 
shapes of these functions imply large fixed costs in acquiring external finance, which reflects the 
realities of underwriting and intermediation.  

2.5.6.  Capital Accumulation 

In any period t, the firm’s stock of capital of type n will increase in size by the level of real 
investment in capital of type n in that period, and depreciate at a constant, type-specific geometric 
rate nδ .  The size of the firm’s stock of capital of type n in period t is 

 ( ), , , ,
11n j n j n j n j

t t t tK I Kδ −= + − . (11) 

Equation (11) says that the firm’s stock of capital of type n at the end of period t is equal to the 
depreciated value of the previous period’s capital stock of type n  plus real investment during period 
t. 

2.5.7 .  A Finite Demand Elasticity for the Firm’s Output 

Define the price of the firm’s output as 

 ( )j
t tp Y

η
µ

−
=  (12) 

where η  and µ  are parameters determining the own-price elasticity of demand 1j
tED

η
= − . 

Multiplying output by this price function gives us a revenue function -  

i.e.  Given ( )j
t tp Y

η
µ

−
=  

it follows that ( )1j j j
t t t tR p Y Y

η
µ

−
= =  (13) 

where j
tR  denotes revenue earned by industry j in period t, and j

tY  is a function of inputs and 
technology as described in section 2.5.2. 

2.5.8.  Franking Account Constraint (Dividend Imputation System) 

Firms can pay a dollar of franked dividends for every dollar available in their franking account, and 
it is illegal for a firm to issue franked dividends over and above this balance.  Firms are also 
(generally) required by law to distribute franking credits when they are available.   Following Benge 
(1997 and 1998), we impose an inequality constraint of the form 

 1
0

jt
j js

s sj
s s

T DF
τ

τ=−∞

  − − ≥  
   

∑ . (14) 

This constraint effectively links the firm’s ability to distribute franked dividend to its tax payments. 



 

 

9 

2.6.  The Lagrangian Function 

In order to help make the expressions more manageable, we denote the one -period modified 
discounting term by 

 ( ) ( )1 1 1

1

j j
t t t t tj

t j
t

i c

c

ς α π+ − − +
Φ =

−
. (15) 

j
tΦ  is applied to period t-1’s outcomes, and the cash rate ti  is the interest rate applying to deposits 

during period t-1 and is paid at the beginning of period t. 

A Kuhn-Tucker formulation is used (because of the presence of sign constraints) and the usual first-
order conditions for linear and non-linear programming are replaced by the Kuhn-Tucker conditions 
(discussed below). 
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2.7.1.  The Kuhn-Tucker Conditions 

The Kuhn-Tucker conditions include the usual first-order conditions plus a set of complementary 
slackness conditions to impose the sign restrictions.  We only provide the crucial equations for the 
solution to investment problem here for the purposes of this paper. 
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where 
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and j
tNBF∆  is the change in net bond-financing in period t, a function of new bond issues, net of 

transactions costs. 
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1

j
tTB j

tIB +∆  is the change in the interest bill in period t+1 due to a change in total indebtedness in period 
t, a function of the change in the stock of debt and the change in the interest rate due to a change 
financial leverage. 

The complementary slackness condit ions are 

5, 5, ,0, and 0 if 0j j n j
t t tIλ λ≥ = >   (32) 

6, 6 ,0, and 0 if 0j j j
t t tDλ λ≥ = >   (33) 

7, 7,0, and 0 if 0j j j
t t tDFλ λ≥ = >   (34) 

8, 8,0, and 0 if 0j j j
t t tVNλ λ≥ = >   (35) 

9, 9 ,0, and 0 if 0j j j
t t tBλ λ≥ = >   (36) 

10, 10, 1
0, and 0 if 0

j
j j j jt

t t t tj
t

T DF
τ

λ λ
τ

  − ≥ = − ≥  
   

  (37) 

Equation (19) plays an important role in the solution to the investment problem.  The right-hand-
side of equation (19) defines the present value of a marginal unit of capital.   
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This defines the relationships between the costs and benefits of a unit of capital.  Optimising 
behaviour is imposed by assuming that this present value is zero, when (38) implies 

 ( ) ( )3, ,1, 2, ,
11 1 1 1 3,

1 1
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t tt t t t j

tj j
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MRPK λ δλ λ τ
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Equation (21) also plays a central role.  Assuming the non-negativity constraint on investment, 5, j
tλ ,  

to be slack and solving for 3, j
tλ  we find 

 ( )3, 1, 2 , , ,j n j j j n j n j
t t t t t t tqλ λ λ τ = − Γ + Ξ  , (40) 

the shadow price of one unit of investment.  Dividing through by the asset pr ice we find 

 ( )
3 ,

, 1, 2 , , ,
j

n j j j j n j n jt
t t t t t tn

tq
λ

λ λ τΩ = = − Γ + Ξ . (41) 

, ,n j f
tΩ  is a modified Lagrangian multiplier denoting the shadow price of one dollar’s-worth of asset 

type n.  The solution is found by determining the values of the Lagrangian multipliers at the 
stationary points, and from this solution we take, most importantly, the rate -of-return equations.  
These are discussed in some detail below. 

3.  Corporate Financial Policy, The Cost of Investment and the Rate of Return 

3.1.  Moving from the New Model to MONASH 

There are two approaches to moving from the Lagrangian function to a full solution of the 
investment problem: 

1.  Equations (20), (21), (25), (26), (27), (28) and (30) can be substituted into (19) to create the 
foundation for a single rate -of-return equation.  The resulting equation will contain a number 
of unknown Lagrangian multipliers attached to the slack variables (on the sign constraints) 
in the Lagrangian function  Whether the various sign constraints are slack or binding is a 
numerical issue, and with full information about the values of tax rates, interest rates, 
imputation rates, bond rates etc. we can determine the firm’s optimal financial policy and set 
the slack variables appropriately, in turn generating an expression for the rate -of-return on 
investment under the optimal financing policy.  The equation that is produced under the full 
solution to the Kuhn-Tucker problem is large and difficult to interpret and has little intuitive 
appeal until the values of the slack variables are determined. 

2.  We can derive a set of rate -of-return functions for each potential financial policy and allow 
an expanded MONASH to choose between them according to a set of criteria that ensure 
consistency with the objective of the firm (shareholder wealth-maximisation).  Thus, each 
rate-of-return function presumes a particular financial policy, and MONASH can choose 
between them by choosing the financing policy that (a) maximises the rate-of-return given  
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the level of investment or (b) provides the largest value for investment given  a rate of return 
(which in equilibrium will be zero, discussed below). 

The two approaches are equivalent, but the second method (i.e. separate functions for each financial 
policy) lends itself more readily to both intuitive interpretation and analytical clarity.  The way that 
MONASH chooses the firm’s financial policy is described in Winston (2004) . 

3.1.1 .  Reconciling the Investment Theories –  Rates of Return  

In MONASH year-to-year (short-run) forecast and policy (deviation) simulations, rates of return 
adjust to movements in usable capital stocks.  Usable capital stocks are the result of a process of 
capital accumulation that is serviced by a lagged investment process driven by movements in the 
rate of return (explained below).  Firms face a fixed supply of capital in the current period, and so 
disequilibria between the demand for, and supply of, capital in current production are removed by 
changes in rental rates and asset prices.  These changes in rental rates and asset prices feed into the 
rate-of-return functions and drive investment to create an “optimal” capital stock in the next period 
according to information available today.  The model also makes use of explicit capital supply 
functions in year-to-year simulations. 

The calculation of the rate of return on capital in MONASH begins by defining the present value of 
a unit of physical capital3 as 

 
( ) ( )

( )
1 1 1

1 1

1 1 1

1 1

j j j
t t t tj

t t
t t

R TAX q RALPH TAX
PV q

i TAX

δ+ + +

+ +

 − + − − = −
+ −

. (42) 

where j
tR  is the “rental price” of capital (marginal revenue product) in period t, tTAX  is an 

estimated tax rate on capital income, and tRALPH 4 is the proportion of depreciation that is tax-
deductible.  Notice the similarities between this equation and the first-order condition for capital, 
equation (19), which we restate here, slightly rearranged, 

 
( ) ( )

( ) ( )

, 1, 2, 3, ,
1 1 1 1 1, 3,

1 1 1 1 1

1

1

1 1 1

1

n j j j j j n j
t t t t t tn j j

t tj j
t t t t t

j
t

R
PV

i c

c

λ λ τ λ δ
λ

ς α π
+ + + + +

+ + + + +

+

− + −
= −

 + − − +
 

−  

 (43) 

where , ,
1 1

n j n j
t tR MRPK+ += .  Dividing both sides of (42) by tq , we find the present value of one dollar of 

investment –  the rate-of-return –  in the MONASH model to be  

 

( ) ( )
( )

1 1
1 1

1 1

1 1 1
1

1 1

j
j jt t

t t
t tj

t
t t

R q
TAX RALPH TAX

q q
ROR

i TAX

δ+ +
+ +

+ +

   
 − + − −     

   = −
+ − . (44) 

Doing likewise for equation (43), we find 

                                                 
3 See Dixon and Rimmer (2002). 
4 Named for John Ralph, chairman of the committee that produced Ralph (1999), a government sponsored report 
outlining a set of taxation policy recommendations, for the Review of Business Taxation carried out by the Australian 
Government in the late 1990’s. 
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( ) ( )

( ) ( )

,
1, 2 , , ,1 1

1 1 1 1
, ,

1 1 1 1 1

1

1

1 1 1

1

n j n
j j j n j n jt t

t t t t tn n
t tn j n j

t tj j
t t t t t

j
t

R q
q q

ROR
i c

c

λ λ τ δ

ς α π

+ +
+ + + +

+ + + + +

+

   
− + Ω −   

   = − Ω
 + − − +
 

−  

. (45) 

Comparing equations (44) and (45), firstly we can see that taxes and allowances enter the equations 
in different ways.  In (44), rental income and interest are taxed at the estimated capital tax rate, and 
depreciation allowances are calculated as a proportion of the physical depreciation rate.  These 
points highlight two important issues: equation (44) assumes that the opportunity cost of a dollar of 
investment funds to the firm’s residual claimants is equal to one dollar; and depreciation allowances 
act like a subsidy on real depreciation costs. 

The first point indicates that MONASH takes no account of the multiple sources of funds available 
to investors, and assumes that investment decisions are made after all taxation on capital income has 
been paid.  In a sense, this approach treats the whole capital stock as if it is owned by non-corporate 
entities that never borrow and, although they must therefore finance investment with retained 
earnings, take no account of the way in which earnings are taxed in the calculation of the expected 
rate of return on investment. 

The second point suggests that MONASH effectively allows deductions for real economic 
depreciation.  Like virtually all real-world tax systems, the depreciation rates allowed for tax 
deductions are somewhat notional.  Also, in reality, rates of physical depreciation will vary between 
uses for a given type of capital.  Allowing a deduction for a true, estimated rate of decay on capital 
removes the important link between tax allowances and the actual physical rates of depreciation 
observed.  Perhaps the most important argument supporting a detailed analysis of corporate finance 
in investment is to capture the way the tax system distorts investment decisions. 

Summarising, there are four major additions to the MONASH theory provided by equation (45): 

1.  All issues are analysed with reference to the residual claimant on the corporations stock – 
the shareholder.  This means that the firm’s investment behaviour is now a function of the 
amount of capital used during the period, and the relative costs and benefits of financing the 
respective terminal values (i.e. the beginning and end of period values of the unit of capital) 
from the point of view of an agent who must pay income and capital gains taxes on cash 
flows; 

2.  The method of finance becomes a factor in the rate of return on capital; 

3.  Different types of capital, differentiated by effective life and tax status, are accounted for, 
and; 

4.  More of the detail of the business and personal taxation systems is included, like the 
addition of realisation-basis capital gains taxation and the imputation system. 

3.1.2.  Optimal Financial Policy and the Firm’s Objective 

The firm’s objective is to maximise shareholder wealth, which is achieved when the marginal 
benefit , MBK, and cost, MCK, of one -dollar’s worth of capital, 
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(Old MONASH) ( )
( )

1

1 1

1

1 1

j
t tj

t
t t t

R TAX
MBK

q i TAX
+

+ +

−
=

 + −  
 (46) 

(New MONASH) ( ), 1, 2,
1 1 1 1,

1

n j j j j
t t t tn j

t n j
t t

R
MBK

q

λ λ τ+ + + +

+

−
=

Φ
 (47) 

and 

(Old MONASH) ( )
( )

1 1

1 1

1 1
1

1 1

j j
t tj

t
t t t

q RALPH TAX
MCK

q i TAX

δ+ +

+ +

 − − = −
 + −  

, (48) 

(New MONASH) ( ) ( ) ( )1, 2, , , ,
1 1 1 1 1 1, 1, 2 , , ,

1

1n j j j n j n j n j
t t t t t t tn j j j j n j n j

t t t t t t n j
t t

q
MCK

q

λ λ τ δ
λ λ τ

+ + + + + +

+

 − Γ + Ξ −  = − Γ + Ξ −  Φ
 (49) 

respectively, from equations (44), (45) and (41), are equal.  Thus, the first-order conditions impose 
optimising behaviour on the relationship described in equation (45) by ensuring that the present 
value of the marginal dollar’s -worth of capital is zero.   The optimisation problem has been 
structured to reflect the structure of the MONASH model.  The rate of return equations and the 
relevant “accessory” functions 5 are taken from the model and imbedded in the MONASH equation-
system to replace the existing investment and capital accumulation theory.  In a sense, the 
construction of the model of the firm and the Kuhn-Tucker problem were disposable tools used to 
generate some functions describing the behaviour of investors in a MONASH-style environment 
with added financial complexity. 

Is this “poaching” a valid use of these functions?  To answer this, consider that the different 
financing options and deductions on capital available to the firm will determine the values of the 
Lagrangian multipliers 1,

1
j

tλ + , 2,
1
j

tλ + , 3, j
tλ  and 3,

1
j

tλ + .  Multipliers 1,
1
j

tλ +  and 2,
1
j

tλ +  are the shadow price of 
general cash-flow and tax payments respectively, and serve to adjust gross shareholder income 
streams to create a measure of the after-tax value of distributions to shareholders from a marginal 
unit of capital.  Multipliers 3, j

tλ  and 3,
1
j

tλ +  determine the cost of a marginal unit of capital: the value 
of physical depreciation during the period, a function of the shadow price of cash flow, asset-price 
inflation, physical depreciation, tax allowances and discounting factors.  The 3λ ’s are functions of 
the 1λ ’s and 2λ ’s (see equation (40)) because the cost of funds from any source used for investment 
is a function of the shadow price of cash flow. 

Substituting equation (41) into (45), we obta in 

 
( ) ( )( ) ( )

( ) ( )
( )

,
1, 2, 1, 2, , , ,1 1

1 1 1 1 1 1 1 1
, 1, 2, , ,

1 1 1 1 1

1

1

1 1 1

1

n j n
j j j j j j n j n j n jt t

t t t t t t t t tn n
t tn j j j j n j n j

t t t t t tj j
t t t t t

j
t

R q
q q

ROR
i c

c

λ λ τ λ λ τ δ
λ λ τ

ς α π

+ +
+ + + + + + + +

+ + + + +

+

   
− + − Γ + Ξ −   

   = − + Γ + Ξ
 + − − +
 

−  

. 

  (50) 

                                                 
5 Debt accumulation relationships, financial leverage functions, depreciations allowance present-value calculations, etc.  
See Winston (2004). 
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In standard investment problems, there is implicitly one source of finance, and each dollar is valued 
at one dollar by the firm’s “shareholders”.  As long as the rate of return is positive at the margin, the 
firm will invest.  With four potential sources of finance, the criterion for investing at the margin 
becomes a function of four sources of finance and eight potential financial policies.  There will be a 
distinct value for ,n j

tROR  on a given unit of investment for each potential financial policy, and the 
firm will optimise (i.e. maximise shareholder wealth) by choosing the financial policy that gives the 
highest value of ,n j

tROR .  Facing a set of financing options and financial policies, the firm will 
invest as long as at least one of the financial policies generates a non-negative rate-of-return.  
Equilibrium will be characterised by one financial policy generating a rate-of-return of zero while 
all others generate negative rates-of-return.  Thus, the optimal financial policy is consistent with 
optimal investment, optimal capital accumulation and maximum shareholder wealth.  From the 
point of view of the firm’s financial policy, a number of the variables in ,n j

tROR  above are 
parameters in the following problem: 

Maximise ,n j
tROR  by choosing a financial policy (that is, choose 1, j

tλ , 1,
1
j

tλ + , 2, j
tλ  and 2,

1
j

tλ + ) subject to 
,
1

n j
tR +  (a function of the level of output, the input bundle and the production function – for a given 

unit of investment, we can take this as given), n
tq  and 1

n
tq +  (the asset price – input markets are 

competitive and thus the firm is a price taker), j
tτ , 1

j
tτ + , 1

j
tς + , 1

j
tc + , ,n j

tΓ , ,n j
tΞ , ,

1
n j
t+Γ , ,

1
n j
t+Ξ  (these tax 

rates and allowances are not choice variables for the firm’s managers), ,n j
tδ  (a parameter) and 1tπ +  

(inflation is independent of the firm’s behaviour). 

The actual values of these exogenous variables/parameters are irrelevant to this problem – what is 
important is that we can assume them to be given regardless of the financial policy chosen by the 
firm.  This assumption only requires that the firm’s choice of financial policy has no bearing on the 
values of other variables in (50), which is in fact true – the tax rates and allowances are exogenous 
variables, asset prices are the result of competitive markets, and the gross, before-tax rental price of 
the marginal unit under consideration is given by factor usage and the technical characteristics of 
the production function, and is independent of the firm’s financial policy.   

In a forward-looking environment, re-state equation (45) as 

 ( ) ( ), 1, 2, , 1, 2 ,
1 1 1

n j j j j n j j j j
t t t t t t t tROR λ λ τ λ λ τ+ + += − ϒ − −  (51) 

where 

 ( ), ,
1 1,

1

1n j n n j
t t tn j

t n j
t t

R q

q

δ+ +

+

 + − ϒ =  
Φ  

. (52) 

All of the components of ,n j
tϒ  are independent of 1,

1
j

tλ + , 2,
1
j

tλ + , 1, j
tλ  and 2, j

tλ .  Therefore, the rate of 
return on a given unit of investment will vary according to the relative advantages of alternative 
financial policies for shareholders.  The difference between two alternative financial policies is 

 ( ) ( ) ( ) ( ) ( ) ( ), , 1, 2 , 1, 2, , 1, 2, 1, 2,
1 1 1 1 1 1

n j n j j j j j j j n j j j j j j j
t t t t t t t t t t t t t t ta b a b a b

ROR ROR λ λ τ λ λ τ λ λ τ λ λ τ+ + + + + +
   − = − − − ϒ − − − −     

  (53) 

The alternative view of the optimal financial policy says that, given a rate of return, the optimal 
financial policy is the one that generates the lar gest investment.  Whether we assume that the firm is 
optimising (that is, the rate of return is zero at the margin) or not, cost-minimisation in financial 
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policy given  the level of investment is equivalent to maximising the level of investment given a 
rate-of-return.  The proof of this is trivial and is not stated here. 

3.1.3.  Capital Supply Functions 

In year-to-year (dynamic) simulations, MONASH uses explicit capital-supply functions to help 
determine actual investment.  However, investment is driven by expected rather than actual rates of 
return.  In MONASH, expected rates of return j

tEROR  are comprised of two parts, 

 j j j
t t tEROR EQEROR DIS= +  (54) 

where 

j
tEQEROR  is the equilibrium expected rate of return (i.e. that return required to sustain the 

period t rate of capital growth indefinitely), an inverse logistic function of the rate of growth in the 
capital stock, and 

j
tDIS   is the disequilibrium in the expected rate of return – put another way, the difference 

between the actual rate of return and investor expectations, or a measure of investor error. 

Expected rates of return, j
tEROR , are generated by equation (44).  The model described above 

enables us to derive a set of equations of the form of (45) to replace (44) in the determination of 
j

tEROR . 

The inverse logistic function determining j
tEQEROR  is 

 

ln

ln1

ln

ln

j j
t t

j j
t tj j j

t t t t j j j
t t t

j j
t t

KGR KGRmin

KGRmax KGR
EQEROR RORN FERORJ FEROR

C TREND KGRmin

KGRmax TREND

  −  
  − −    = + + +     − −  
 

 + −   

 (55) 

where: j
tTREND  is the average, observed rate of capital growth over a historical period; j

tRORN  is 
an estimated, historically-normal rate of return, defined as the average rate of return the industry 
exhibited while its capital stock grew at TREND; j

tKGR  is the simulated rate of capital growth, 
where 

 1 1
j

j t
t j

t

K
KGR

K
+= − ; (56) 

j
tKGRmin  is the minimum allowable rate of growth, set at the negative of the physical depreciation 

rate; j
tKGRmax  is the maximum allowable rate of capital growth, usually set such that 

 ( )0.06 0.10j j
t tKGRmax TREND x= + ≥ ≥ ; (57) 

j
tC  is a positive parameter, determining the responsiveness of capital growth to movements in rates 

of return; and j
tFERORJ  and tFEROR  are vector and scalar shift variables respectively, allowing for 

shifts in the capital supply curves. 
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Assuming that j
tFERORJ , tFEROR  and j

tDIS  are all zero, equation (55) says that for industry j to 
attract to attract sufficient investment funds to achieve a rate of capital growth j

tTREND , it must 
have an expected rate of return on capital of j

tRORN . 

Figure 2.  The Inverse Logistic Function – Capital Supply and Equilibrium Expected Rates 

of Return 

 

Typically, in year t, the year t-1 capital growth data and the expected rate of return (either the 
simulated solution or observed data) will not give a point on the inverse logistic curve, AA’.  
Therefore, j

tDIS  will be non-zero.  This disequilibrium will be gradually eliminated over time by 
reductions in j

tDIS  imposed exogenously during simulations.  Thus, as j
tDIS  approaches zero from 

above (if j j
t tEROR EQEROR> ), or from below (if j j

t tEROR EQEROR< ), j
tEQEROR  must increase or 

decrease, respectively.  With the value of j
tEQEROR  determined in this way via (54), the only free 

variable in (55) is the rate of capital growth, j
tKGR .  Thus, as j

tDIS  falls, j
tKGR  responds by 

increasing at a rate determined by the parameter values in (55) (and vice versa for an increase in 
j

tDIS ).  Thus, capital growth rates (when they are endogenous) are determined by the elimination of 
disequilibria between the simulated expected rates of return and the capital supply function.  

For example, firms/industries that are currently exhibiting capital growth rates below their historical 
trend values given a level of the expected rate of return, will have higher forecast capital growth 
rates, and vice versa.  In figure 5.1, we have a simulated or observed point at x where the expected 
rate of return, ( )1j

tEROR , is higher than that required to sustain the rate of capital growth, ( )1j
tKGR .  

As j
tDIS  falls in value over time, we move up the AA’ curve from point y toward z, thereby 

j
tEQEROR  

j
tKGRmax  j

tKGRmin  

j
tRORN

 

j
tTREND  

0.06 

A 

A’ 

x 
( )1j

tEROR  
j

tDIS  

j
tKGR  

y 

z 

( )1j
tKGR  

( )2j
tKGR  

( )1j
tEQEROR  
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increasing capital growth toward ( )2j
tKGR .  j

tEQEROR  can be thought of as investors’ required rate 

of return – the minimum return required to convince them to provide financial capital to the firm.  
As investors respond to the higher -than-required capital growth rate by providing more capital, they 
become progressively less willing to invest the marginal dollar, until the required rate of return 
increases to the level of the expected rate of return on offer.  By determining the rate of capital 
growth during a period, we are then able to calculate the level of investment undertaken by the firm 
during that period.  Rearranging (56), we have 

 1
j j

j t t
t j

t

K K
KGR

K
+ −

=  (58) 

noting that the numerator implies, in light of our capital stock constraint, that 

 
j n j

j t t t
t j

t

I K
KGR

K
δ−

= . (59) 

With j
tKGR  determined as explained above, j

tK  known and j
tδ  defined as a parameter, investment 

is given by 

 ( )j j j j
t t t tI K KGR δ= + . (60) 

If, instead, under an alternative closure, we know the value for investment from outside the model 
(or, in other words, the value of j

tKGR  is exogenous), we then free-up j
tR  and/or n

tq  to move with 
the expected rate of return as it adjusts to eliminate disequilibria.  In figure 5.1, this would mean 
that, given ( )1j

tKGR , the expected rate of return would fall over time from ( )1j
tEROR  towards 

( )1j
tEQEROR  as j

tDIS  falls over time. 

Equation (45) (and its required accessory equations) replace the MONASH investment theory, 
based on equation (44), and is used to determine the value of j

tEROR , and to determine the way that 
j

tEROR  responds to shocks .  With the new specification of j
tEROR , MONASH is able to directly 

simulate changes in business taxation and corporate finance variables. 

3.2.  Financial Policy and The Cost of Capital 

In this section, we analyse the cost of capital at the margin under each potential financial policy.  
This involves determining a value for the ,n j

tΩ ’s - the shadow-price of one-dollar’s worth of capital 
- in equation (45) for each of the eight potential financial scenarios.  In each case described below, 
assume that period t is the current period (period zero), which (a) defines all the cases we analyse as 
involving immediate/current decisions, and (b) enables us to cancel-out some of the capital gains 
tax terms in the first-order conditions.  The derivation is explained in some detail for the first case. 

3.2.1 .  Financing with Retained Earnings at the Margin 

From this point on, we add a financial-policy superscript to the Lagrangian multipliers ( 1, j
tλ , 2, j

tλ , 
1,

1
j

tλ + , 2,
1
j

tλ + , ,n j
tΩ  and ,

1
n j
t+Ω ), so that (for example) 1, ,j f

tλ  now refers to the value of the general cash-
flow multiplier in period t for industry j using financial policy f. 
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3.2.1.1.  Financing Policy 1: Slack Franking Account Constraint (Classical System) 

The first task is to determine the nature of the various inequality constraints implied by this 
financial policy and set the values of the slack variables appropriately.  This case assumes a slack 
franking-account constraint, and so the firm cannot be paying the maximum amount of franked 
dividends - it must be true, therefore, that the firm is operating in a classical system and has no 
frankable earnings to distribute.  If the firm was operating in a dividend imputation system and had 
no frankable earnings to distribute (very unlikely, as it would the firm has paid no tax), its franking 
account constraint would still be binding – if there are no frankable earnings to distribute, then 
paying none still renders the franking account constraint binding.  Setting the values of the slack 
variables appropriately provides 

 5, ,1 6, ,1 10, ,1 0,  j j j
t t t tλ λ λ= = = ∀ . (61) 

With the assumption that period t is period zero, (25) and (61) imply 

 1, ,1 1j j
t tλ θ= − . (62) 

Equation (62) defines the shadow price of franked dividends.  (62) says that (in equilibrium) a 
relaxation of the cash flow constraint by one dollar is worth the after -tax value of an unfranked 
dividend to shareholders.  Expressions (20), (61) and (62) provide 

 2, ,1 1, ,1 1j j j
t t tλ λ θ= = − , (63) 

the shadow price of tax-related cash flow.  This shows the sensitivity of the objective function to a 
change in tax payments by one unit in the presence of a change in unfranked dividends.  Because no 
franking credits are distributed, there are no franking-account-related constraints on the firm’s 
ability to pay franked dividends due to a change in tax payments, and so the shadow price of one 
dollar’s-worth of dividends and company tax are equal.  Expressions (21), (22), (61), (62), (63) 
imply 

 ( ) ( )3, ,1 , ,1 1j n j j n j n j
t t t t t tqλ θ τ = − − Γ + Ξ  . (64) 

Equation (64) defines the  cost of a unit of capital as equal to its asset price, n
tq , adjusted for the cost 

to shareholders of financing each of those dollars with retained unfrankable earnings, ( )1 j
tθ− , 

minus the value of the depreciation and investment allowances deducted at the company tax level, 

( ), ,1 j n j n j
t t tτ − Γ + Ξ  .  Dividing through by the asset price, we obtain 

 ( ) ( ), ,1 , ,1 1n j j j n j n j
t t t t tθ τ Ω = − − Γ + Ξ  , (65) 

the cost to shareholders of purchasing one dollar’s-worth of capital. 

The next two cases are variations on this retained earnings example.  We state the important 
equations only and leave discussion of their implications until we imbed them in the rate-of-return 
equations. 

3.2.1.2.  Financing Policy 2: Binding Franking Account Constraint (Dividend Imputation System) 

The slack variables set to zero are 
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 5, ,2 6, ,2 7, ,2 0,  j j j
t t t tλ λ λ= = = ∀ . (66) 

(25) and (66) imply  

 1, ,2 1j j
t tλ θ= − , (67) 

By (26), (66) and (67), we have 

 
( )10, ,2
1

1

j j j
t t tj

t j
t

θ γ τ
λ

τ

−
=

−
. (68) 

the shadow price of a franking credit.   If there are no franking credits (i.e. 0j
tγ = ), as would be the 

case in a classical system, expression (68) is equal to zero.  Along with (20), equation (68) provides 

 ( ) ( )2, ,2 1 1j j j
t t tλ θ γ= − − . (69) 

Substituting these values into (41) provides  

 ( ) ( ) ( ), ,2 , ,1 1 1n j j j j n j n j
t t t t t tθ γ τ Ω = − − − Γ + Ξ  . (70) 

3.2.1.3.  Financing Policy 3: Slack Franking Account Constraint (Dividend Imputation System) 

The slack variables set to zero are 

 5, ,3 7, ,3 10, ,3 0,  j j j
t t t tλ λ λ= = = ∀ . (71) 

Equations (26) and (71) imply 

 
( ) ( )

1, ,3
1 1 1

1

j j j
t t tj

t j
t

θ γ τ
λ

τ

 − − − =
−

. (72) 

Along with (20), (72) implies 

 
( ) ( )2, ,3 1, ,3
1 1 1

1

j j j
t t tj j

t t j
t

θ γ τ
λ λ

τ

 − − − = =
−

. (73) 

Equations (41), (71) and (73) provide 

 
( ) ( ) ( ), ,

, ,3
1 1 1 1

1

j j j j n j n j
t t t t t tn j

t j
t

θ γ τ τ

τ

   − − − − Γ + Ξ   Ω =
−

. (74) 

3.2.2.  Financing with New Equity Issues at the Margin 

3.2.2.1.  Financing Policy 4: Slack Franking Account Constraint (Classical or Dividend Imputation 
System) 

Setting the appropriate slack variables to zero provides 
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 5, ,4 8, ,4 10, ,4 0,   j j j
t t t tλ λ λ= = = ∀ . (75) 

1, ,4j
tλ , by (27) and (75), is 

 
( )1, ,4
1 j

tj
t j

t

c

NVNF
λ

−
=

∆
. (76) 

where 
( )
( )2

ln 1
1

ln

j j
t tj

t j j
t t

VN
NVNF

VN

 + Θ − ∆ = −
 + Θ 

. 

Equations (20), (75) and (76) imply that 

 
( )2, ,4 1, ,4
1 j

tj j
t t j

t

c

NVNF
λ λ

−
= =

∆
. (77) 

Taking (41), (75) and (77), we find 

 
( ) ( ), ,

, ,4
1 1j j n j n j

t t t tn j
t j

t

c

NVNF

τ − − Γ + Ξ Ω =
∆

. (78) 

3.2.2.2.  Financing Policy 5: Binding Franking Acco unt Constraint (Dividend Imputation System) 

The appropriate slack variables to set to zero are 

 5, ,5 7, ,5 8, ,5 0,  j j j
t t t tλ λ λ= = = ∀ . (79) 

Equations (27) and (79) imply 

 
( )1, ,5
1 j

tj
t j

t

c

NVNF
λ

−
=

∆
. (80) 

where 
( )
( )2

ln 1
1

ln

j j
t tj

t j j
t t

VN
NVNF

VN

 + Θ − ∆ = −
 + Θ 

. 

These are identical to the equivalent conditions in the previous section.  Expressions (26), (79) and 
(80) provide 

 
( ) ( ) ( )2, ,5 11 1 1 1

j
tj j j j

t t t tj j
t t

c

NVNF
λ θ γ τ

τ

 −  = − − − −  ∆  
, (81) 

and equations (41), (79), (80) and (81) provide 
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( ) ( ) ( ) ( ) ( )

, ,

, ,5 , ,
1 1

1 1 1
j n j n j

t t tn j j j j n j n j
t t t t t tj

t

c

NVNF
θ γ τ

 − − Γ + Ξ   Ω = + − − − Γ + Ξ ∆
. (82) 

3.2.3.  Financing with Debt at the Margin 

The assumptions we make about how the firm’s earnings are distributed to shareholders are 
important for these examples.  The cost of debt is partly a function of the earnings that shareholders 
forego in repaying debt.  This is a function of foregone dividends used to repay debt when earnings 
are being distributed, or the capital loss from issuing equity if no dividends are being paid.  
Therefore, it has something to do with the cost of not paying dividends (equivalent to the cost of 
retained earnings) or the cost of equity issues, appropriately discounted.  

Equations (28) and (30) define the inter-temporal equilibrium that will occur between the present 
values of the new cash flows (between funds received in period t and servicing costs) generated by 
the bonds when financial markets clear.  Solving (30) for 4, j

tλ , substituting the result into (28) and 
rearranging provides6 

 ( ) ( ) ( )1, , 1, , 2, ,
11, ,

1 1
1

1

1
1

j j f j f j f j j js
t z t s t s t s t s t tj f j

t t z s
j js z

t t k
k

r FLV

NBF

ρ λ λ λ τ β
λ ρ

∞
+ + + + + +

+
= =

− +
=

  
  + − −  = −  
  ∆ Φ
    

∑ ∏
∏

. (83) 

The assumptions we make about the firm’s dividend policy will determine the values of the various 
unknown λ ’s in this equation. 

3.2.3.1.  Financing Policy 6: A Firm Paying only Unfranked Dividends – A Slack Franking Account 
Constraint (Classical System) 

The slack variables we set to zero in this case are 

 5, ,6 6 , , 6 9, ,6 10, ,6 0,  j j j j
t t t t tλ λ λ λ= = = = ∀ . (84) 

This says that the firm is investing, paying unfranked dividends, issuing debt and is not constrained 
by a franking account.  When the firm repays debt (starting from the following period), it will need 
to reduce its payments of unfranked dividends.  Therefore, in equation (83), the shadow price of 
cash flow is given by 

 1, ,6 1 ,   j j
t t tλ θ= − ∀ , (85) 

while, by (20), (84) and (85), 

 1, ,6 2, ,6 1 ,   j j j
t t t tλ λ θ= = − ∀ . (86) 

As before, the equality between 1, ,j f
tλ  and 2, ,j f

tλ  is a result of the franking account constraint being 
slack.  Substituting these results into (83), we find 

                                                 
6 See Winston (2004) for background and detail. 
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 ( )( ) ( ) ( )11, ,6 2, ,6

1 1
1

1

1 1
1 1

j j j js
t s t s t tj j j j

t t t z t s s
j js z

t t k
k

r FLV

NBF

ρ τ β
λ λ ρ θ

∞
+ + +

+ +
= =

− +
=

  
  + − −  = = − −  
  ∆ Φ
    

∑ ∏
∏

. (87) 

Assume for now that the rates of the various taxes in (87) are zero, and then  

 ( ) ( )11, ,6 2, ,6

1 1
1

1

1
1 1

j j js
t s t tj j j

t t t z s
j js z

t t k
k

r FLV

NBF

ρ β
λ λ ρ

∞
+ +

+
= =

− +
=

  
  + −  = = = −  
  ∆ Φ
    

∑ ∏
∏

. (88) 

This says: the shadow price of one dollar of cash flow is equal to one dollar when tax rates are zero; 
and the present value of the debt-repayments on a one -dollar bond issue at the margin will be equal 
to one dollar, because of optimising behaviour.  As the firm increases its indebtedness, the 
financial-leverage effects drive the interest rate upwards until the equality in (88) is achieved. 

The debt issue in period t increases the firm’s cash flow (and therefore its value to shareholders) by 
the value of the bonds issued, while reducing it in periods t+1 onward by the amounts required to 
service the repayments.  The firm will continue to increase its bond issues to finance investment 
until the after-tax income stream from investment is equal to the cost of investment, and the cost of 
investment under this financial policy increases at the margin because of leverage -related interest 
rate effects.  Substituting (87) into (41), we find 

 ( ) ( )( ) ( ) ( )1, ,6 , ,

1 1
1

1

1 1
1 1 1

j j j js
t s t s t tn j j n j n j j j

t t t t t z t s s
j js z

t t k
k

r FLV

NBF

ρ τ β
τ ρ θ

∞
+ + +

+ +
= =

− +
=

  
  + − −   Ω = − Γ + Ξ − −   
  ∆ Φ
    

∑ ∏
∏

. (89) 

Expression (89) says that the cost of one dollar’s-worth of capital is the present value of the infinite 
stream of servicing obligations minus the reduction in the number of dollars required due to tax 
deductions, where the value of cash flow is measured in terms of the shadow price of unfranked 
dividends. 

Notice that the deductibility of interest is captured inside the infinite sum on the right-hand-side of 
(89), because this type of deduction affects the cost of a dollar of finance.  The deductibility of 
capital expenditures and depreciation, on the other hand, enters a multiplier term on this infinite 
sum – this will be less than one and greater than zero for firms not paying maximum franked 
dividends in an imputation system – and captures the reduction in the number of dollars of finance 
required to purchase the asset due to tax allowances.  Thus, here we see the distinction between 
interest and capital allowances in the firm’s cost of capital – the former reduces the cost of a dollar 
of finance while the latter reduces the number of after-tax dollars required.  This stream of 
payments is grossed up for transaction costs on the bond issue by the term 1

j
tNBF −∆ . 

The next two examples are stated briefly. 
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3.2.3.2.  Financing Policy 7: A Firm Paying only Franked Dividends – A Binding Franking Account 
Constraint (Dividend Imputation System) 

The appropriate slack variables to set to zero in this case are 

 5, ,7 7, ,7 9, ,7 0,  j j j
t t t tλ λ λ= = = ∀ . (90) 

Equations (25) and (90) imply 

 1, ,7 1 ,   j j
t t tλ θ= − ∀ , (91) 

while equations (26), (90) and (91) provide 

 
( )10, ,7 1

,   
1

j j j
t t tj

t j
t

t
θ γ τ

λ
τ

−
= ∀

−
. (92) 

Along with (20), this gives us 

 ( ) ( )2, ,7 1 1 ,   j j j
t t t tλ θ γ= − − ∀ . (93) 

Substituting these results into equation (83), we obtain 

 ( ) ( ) ( ) ( ) ( )11, ,7

1 1
1

1

1 1 1
1 1 1

j j j j js t z t s t s t tj j j j
t t t z t s s

j js z
t t k

k

r FLV

NBF

ρ γ τ β
λ θ ρ θ

∞ + + + +

+ +
= =

− +
=

  
   + − − −   = − = − −  
  ∆ Φ
    

∑ ∏
∏

. (94) 

Equation (94) tells us about the present value of the debt -servicing obligations stemming from a 
bond issue.  As implied by (91), (93) and (94), 2, ,7j

tλ  can be defined by 

 ( )( ) ( ) ( ) ( )12, ,7

1 1
1

1

1 1 1
1 1 1

j j j j js t z t s t s t tj j j j
t t z t s ts

j js z
t t k

k

r FLV

NBF

ρ γ τ β
λ ρ θ γ

∞ + + + +

+ +
= =

− +
=

  
   + − − −   = − − −  
  ∆ Φ
    

∑ ∏
∏

. (95) 

Substituting into (41) we have 

( )( ) ( ) ( ) ( ) ( )

, ,7

1 , ,

1 1
1

1

1 1 1
1 1 1 1

n j
t

j j j j js t z t s t s t tj j j j n j n j
t z t s t t t ts

j js z
t t k

k

r FLV

NBF

ρ γ τ β
ρ θ γ τ

∞ + + + +

+ +
= =

− +
=

Ω =

  
   + − − −     − − − − Γ + Ξ   
  ∆ Φ
    

∑ ∏
∏

  (96) 



 

 

26 

3.2.3.3.  Financing Policy 8: A Firm Paying NO Dividends – A Slack Franking Account Constraint 
(Classical or Dividend Imputation System) 

Setting the appropriate slack variables to zero, we have  

 5, ,8 8, ,8 9, ,8 10, ,8 0,  j j j j
t t t t tλ λ λ λ= = = = ∀ . (97) 

Along with equations (27) and (20), this implies 

 1, ,8 2, ,8 1 ,    j j j
t t tc tλ λ= = − ∀ . (98) 

Substituting (98) into (30) we obtain 

 ( ) ( ) ( ) ( ) ( )11, ,8 2, ,8

1 1
1

1

1 1
1 1 1

j j j js
t s t s t tj j j j j

t t t t z t s s
j js z

t t k
k

r FLV
c c

NBF

ρ τ β
λ λ ρ

∞
+ + +

+ +
= =

− +
=

  
  + − −  = = − = − −  
  ∆ Φ
    

∑ ∏
∏

. (99) 

Substituting these results into (41) we find 

 ( )( ) ( ) ( ) ( )1, ,8 , ,

1 1
1

1

1 1
1 1 1

j j j js
t s t s t tn j j j j n j n j

t t z t s t t ts
j js z

t t k
k

r FLV
c

NBF

ρ τ β
ρ τ

∞
+ + +

+ +
= =

− +
=

  
  + − −   Ω = − − − Γ + Ξ   
  ∆ Φ
    

∑ ∏
∏

 (100) 

3.3.  The Rate of Return on Capital 

In this section, we provide a brief description of the derivation of rate -of-return functions. 

3.3.1 .  Aggregating Rentals 

Rental data is available at the industry level but not for individual capital goods.  The model 
developed above assumes that the individual rentals applying to each capital good are known.   

Our ability to aggregate rentals rests on having accurate information about investment shares and 
the ways in which these change over time.  Accurate information about investment shares is 
available from the MONASH database.  On the second issue, the technical composition of an 
industry’s capital stock is constrained primarily by the technological constraints inherent in the 
specific process to which it is applied, and it is likely that price-substitution possibilities between 
inputs to capital creation are small, particularly in the short-run.  The cost-minimisation occurring in 
the capital nests implies a technologically efficient aggregate capital stock, meaning the shares of 
each capital good in the capital stock are at their optimal values given the use to which the capital is 
being put, the technological parameters of production and the relative prices of the different capital 
goods.  Therefore, substitution elasticities between the capital goods in the CRESH nest are likely 
to be low, and sometimes zero.  As the change  in these shares approaches zero, the potential error 
arising from using aggregate rental data also approaches zero.  Modifying (45) to obtain a firm or 
industry level rate-of-return function that utilises aggregate rental data and detailed cost of capital 
data, we find 
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( ) ( )1, , 2, , , , ,

1 1 1 1 1 1, , , ,

11 1

1j f j f j j n n j f n jN
t t t t t t tj f n j n j f

t tn j t n j
nt t t t

R q
ROR ISH

q q

λ λ τ δ+ + + + + +

=+ +

 − Ω − = − Ω − 
Φ Φ  

∑  (101) 

where , ,
1 1

1

N
j n j n j

t t t
n

R ISH R+ +
=

= ∑  (102) 

and ,

1

N
n j n

t t t
n

q ISH q
=

= ∑ . (103) 

A weighted-average asset price is used to calculate an effective rental per dollar from firm or 
industry level rental data, again using investment shares as weights.  From this point on, (101) 
provides the basis for the model’s rate -of-return equations. 

3.3.2.  Expected Rates of Return with Forward-Looking Expectations 

The rates of return under forward-looking expectations, with actual rates of return implicit, are 
listed below.  They are found by substituting the various values of 1, ,j f

tλ , 2 , ,j f
tλ  and , ,n j f

tΩ  for the 
1 to 8f =  financial policies into (104). 

3.3.2.1.  Financing Policy 1: Retained Unfrankable Earnings with a Slack Franking Account 
Constraint (Classical System) 

 ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

, ,

,1 ,1
1 1

, , ,111 1 1 1 1
1

1 1

1 1
1 1 1

j j n j n j
t t t tj N

j j j n jt
nt t tjt j j n j n j n jtnt t t t t t tn j

t t

R
EROR FL ISH qq

q

θ τ

θ τ
θ τ δ

+
+ +

+=+ + + + +
+

  − − Γ + Ξ   = − − −  
Φ  − − − Γ + Ξ −  Φ  

∑  

  (105) 

The rate of return on investment- the net-present-value of one dollar’s-worth of investment –  is 
always a function of the relationship between the income received (the after-tax, present value of 
the rental on a dollar’s-worth of capital) and the costs borne (i.e. the cost of capital used up in 
producing this income, a function of asset prices, tax allowances, physical depreciation rates, and 
financing costs). 

The shareholders in this firm don’t benefit from dividend-imputation, and so rental income is 
subject to double -taxation.  The gross income stream from one dollar of capital at the margin, 
( )1

j
t tR q+ , is taxed twice, once at the company level and once at the personal level, at rates expected 

to exist in period t+1, ( ) ( )1 11 1j j
t tθ τ+ +− − .  This payment occurs in a future period and is therefore 

discounted appropriately by 1
j

t+Φ . 

The cost of capital is some function of the asset’s cost at the time of purchase and its residual value 
after one period’s use.  A firm has two things to consider – how many dollars are required to 
purchase an asset, and the shadow price of each of those dollars in light of the corporate tax and 
financial system.  These equations define the rate of return (the return on one-dollar’s-worth of 
capital) and so the starting point for an answer to the “how-many dollars” question is one dollar at 
the time of purchase, minus some amount at the end of the period adjusted for asset price 
inflation/deflation and physical depreciation.  The cost of one dollar of finance is partly a function 
of the shadow price of the source, and in this case it is retained unfrankable earnings, hence the 
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various coefficients containing ( )1 j
tθ−  or ( )11 j

tθ +− .  Depreciation and investment allowances reduce 

the number of after-tax dollars that are required to purchase an asset, and in the absence of dividend 
imputation, these allowances will have non-zero value to shareholders  –  thus, the term 

( ), ,1 j n j n j
t t tτ − Γ + Ξ   appears in (105). 

Capital gains taxation is always relevant to shareholders, even when the firm is not sourcing finance 
from equity issues or retaining all dividends all of the time.  The capital gains tax terms in the 
discount rate (see equation (1)) serve two purposes; in the numerator of the discount rate, the CGT 
term reduces the size of the discount rate to add  back in the value of initial value of the firm for 
capital gains tax calculations.  This is also the place where CGT base-indexing occurs –  if real gains 
are taxed, the base must be inflated to remove the effects of inflation for calculating capital gains.  
The CGT term in the denominator of the discount rate takes account of the fact that the value of the 
firm to shareholders at any point in time is given by the realisable value of their shares.  The 
realisable value of shares is their after-CGT value.  This term adjusts the entire expression for the 
capital gains tax that would be payable on the shares if they were realised.  In effect, the 
combination of these CGT terms imposes the capital gains tax on the model as if it was a 
discounting factor. 

3.3.2.2.  Financing Policy 2: Retained Unfrankable Earnings with Binding Franking Account 
Constraint (Dividend Imputation System) 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

,2 1
1 1 1

1

, , , , , ,1
1 1 1 1 1

1 1

1 1 1

1 1 1 1 1 1 1

j
j j j jt

t t tjt
t t

nN
n j j j j n j n j j j j n j n j n jt

t t t t t t t t t t t tn j
n t t

R
EROR FL

q

qISH
q

θ γ τ

θ γ τ θ γ τ δ

+
+ + +

+

+
+ + + + +

= +

 = − − − Φ

    − − − − Γ + Ξ − − − − Γ + Ξ −    Φ 
∑

 

  (106) 

The differences between this equation and (105) stem from the effects of dividend-imputation in the 
presence of a binding franking account constraint.  Firstly, the value of tax-deductions approaches 
zero as the rate of dividend imputation approaches one.  This has been discussed in some detail 
earlier.  The crucial factor in this is the payment of maximum franking-credits, imposed by the 
binding franking account constraint.  Secondly, rental income is taxed at more concessional rates as 
the rate of dividend imputation approaches one, causing the company-tax term ( )1 11 1 j j

t tγ τ+ +
 − −   to 

disappear. 

There are some important taxation issues highlighted by a comparison of equations (105) and (106).  
The taxation of rental income under this financial policy occurs according to a tax coefficient that 
includes an imputation rate.  A question arises - given that the firm is paying the maximum amount 
of franked dividends, why would a change in investment influence the payment of franked 
dividends, as suggested by the presence of the imputation rate in the coefficient?  The answer is that 
it doesn’t – it changes the amount of unfranked dividends being paid at the margin.  Because we are 
assuming an imputation system, unfranked dividends are paid out of untaxed  company income, and 
thus the rate company taxation must disappear regardless of which type of dividend is financing 
investment.  This, actually, is the goal of the imputatio n system – to subject all capital income from 
investment to the same rates of taxation.  This is easier to understand if we remember that the 
variable 1

j
tR+  is more closely related to 1

j
tEBT+  than it is to dividends – assuming full imputation, the 

relationship between 1
j

tR + , 1
j

tD +  and 1
j

tDF +  is given by  
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 ( ) 1
1 1

1

       and        
1

j
j j j jt

t t t tj
t

DF
R TD TD D

τ
+

+ +
+

− = =
−

 (107) 

Therefore, we could replace the income term in (106) by substituting for (107), finding 

 ( ) ( )1 11
1 1

1 1 1

1 1

1

j jj
t tj j j t

t t tj j j
t t t t t

DF
MBK R D

q q

θ θ
τ

+ ++
+ +

+ + +

− − 
= = + Φ − Φ 

 (108) 

This would  be double counting, however, because our rate -of-return functions capture the value of 
tax deductions in the cost of capital.  Therefore, we can ignore tax deductions in capital income and 
treat all of this income as if it is franked (i.e. that is hasn’t been quarantined from taxation due to 
deductions), so that (107) can be simplified to  

 1
1

11

j
j t

t j
t

DF
R

τ
+

+
+

=
−

. (109) 

Thus, the rental variable is equivalent to the grossed-up value of the franked dividends paid by the 
firm, regardless of whether the income received is actually a franked or unfranked dividend.  This is 
why there is no grossing-up term explicit in the tax coefficient on 1

j
tR + .  As we reduce the rate of 

imputation, the nature of the tax system approaches a classical system, and (108) becomes 

 ( ) ( ) ( )1 1
1 1 1

1 1

1 1 1
j j

j j j jt t
t t t tj j

t t t t

R D
MBK

q q
θ τ θ+ +

+ + +
+ +

= − − = −
Φ Φ

, (110) 

reflecting that 

 ( )1 1 11j j j
t t tR Dτ+ + +− =  (111) 

in a classical system (ignoring deductions).  This is seen in the rate-of-return function for financial 
policy 1 above. 

3.3.2.3.  Financing Policy 3: Retained Frankable Earnings with a Slack Franking Account 
Constraint (Dividend Imputation System) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

,3 1
1 1 1

1

, ,

,

, ,
1 1 1 1 1 1 ,1

1 1

1 1 1

1 1 1 1

1
                    

1 1 1 1
1

1

j
j j j jt

t t tjt
t t

j j j j n j n j
t t t t t t

j
tn j

t
j j j j n j n jn

t t t t t t n jt
tn j j

t t t

R
EROR FL

q

ISH
q

q

θ γ τ

θ γ τ τ

τ

θ γ τ τ
δ

τ

+
+ + +

+

+ + + + + ++

+ +

 = − − − Φ

    − − − − Γ + Ξ   
−

−
   − − − − Γ + Ξ   − −

Φ −

1

N

n=


 
  
 
 
 
  

∑
 (112) 

For this financing policy, rental income is taxed in the same way as under financial policy 2 because 
of the imputation system – whether the dividends being paid are franked or not, under an imputation 
system they have the same value to shareholders. 
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The cost of a dollar of finance – a retained franked dividend of one dollar –  depends on the rate of 
imputation.  As it approaches one, the term ( )( )1 1 j j

t tγ τ− −  also approaches one, and so the cost of a 

dollar of finance is equal to the fully-grossed up value of a franked dividend worth one dollar. 

The cost of a dollar of finance in this example is partly a function of a grossing-up term ( )1 1 j
tτ− .  

This appears here, and not in the equivalent place in equations (105) or (106) for financial policies 1 
or 2, because the source of finance in this case is a dividend carrying a tax credit.  Why, then, does 
this grossing-up term not appear in the tax coefficient on rental income?  The answer, as discussed 
in  different context above, is that we are measuring the value of rental payments and the costs of 
finance from slightly different perspectives.  In the case of rental income, the variable 1

j
tR +  is the 

before-company-tax value of capital income, while in the case of finance costs, we measure retained 
earnings from the perspective of after-company-tax income (dividends).  When the focus is finance 
costs and the firm is retaining post-company-tax frankable earnings, the grossing-up term appears in 
the denominator of the tax coefficient for retained frankable earnings.  On the other hand, when the 
focus is on rental income, measured by a pre-company-tax variable 1

j
tR + , the company-tax term 

enters as a multiplier. 

The firm is not paying the maximum amount of franking credits, and so a change in its tax bill due 
to capital allowances has a non-zero effect on shareholder wealth.  Hence the term that nets-out 
deductions, ( ), ,1 j n j n j

t t tτ − Γ + Ξ  , is independent of the imputation rate.  In the previous example, 

which assumed the firm was paying the maximum amount of franked dividends, dividend 
imputation rendered tax deductions worthless to shareholders. 

3.3.2.4.  Financing Policy 4: A New Equity Issue with a Slack Franking Account Constraint 
(Classical or Dividend Imputation System) 
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where j
tNVNF∆  is the change in net invest-able equity finance after transactions costs,  

 ( )
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1 ln 1
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j j j j
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and 1
ln

j
t j j

t t
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VN

=
+ Θ

 

is the transaction cost on new equity issues. 

Under this financial policy, firms are paying no dividends at all (in an imputation or classical 
system).  If the firm is paying no dividends, it must be passing on shareholder income only as 
capital gains.  Rental income is therefore taxed first at the company tax rate and then at the capital-
gains tax rate.  This amount is grossed-up by j

tNVNF∆ , the net change in cash flow due to the share 
issue, partly a function of the change in the total transaction costs on all shares due to the sale of the 
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marginal dollar of equity.  The rental reported here is the rental on one-dollar’s-worth of capital, 
and the shadow price of this amount is a function of its source – capital gains.  Because the firm is 
retaining all of its earnings, an extra dollar of retainable earnings reduces its need to acquire it from 
an external source – in this case, an equity issue, which would involve a transactions cost.  It is 
against this opportunity cost that the value of a dollar of cash flow is measured in this example. 

The cost of the capital that produces this income stream is partly a function of the cost of a dollar of 
equity finance at the margin, which is an increasing function of the size of the share issue, but with 
a negative second derivative (due to the fall in the average transaction cost at the margin).  To 
acquire one-dollar’s-worth of finance to spend on a capital good, the firm needs to issue j

tNVNF∆  
dollars of shares, and each of these dollars costs existing shareholders ( )1 j

tc− . 

The franking account constraint in this example is slack.  Shareholders will benefit from any 
deductions available on an asset, because no tax credits are transferred to shareholders and, thus, tax 
savings at the company-tax level have value. 

Equation (113) is equivalent to equation (105) for financial policy 1 with the  dividend-tax terms, 

( )1 j
tθ− , replaced by the capital-gains-tax and transaction cost terms ( )1 j j

t tc NVNF− ∆ .  If 

transaction costs were zero and the rates of dividend and capital-gains tax were the same, these 
equations would be identical.  The equivalency is driven mainly by the slack franking account, 
which removes imputation issues form the analysis. 

3.3.2.5.  Financing Policy 5: A New Equity Issue with a Binding Franking Account Constraint 
(Dividend Imputation System) 
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where ( )
( )2
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. 

This is perhaps the most difficult financial policy to intuitively grasp.  The effect on shareholder 
wealth under this policy is a relatively complicated function of the interplay between the dividend 
imputation system and the realisation-basis taxation of capital gains. 

The taxation of rental income is identical to that for financial policies 2 and 3.  This firm is issuing 
equity at the margin with a binding constraint on the franking account, implying that the firm is 
paying the maximum amount of franked dividends.  Permutations of this policy could include the 
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firm retaining all unfrankable earnings infra-marginally, or paying the maximum amount of them – 
empirical evidence suggests that firms are likely to have retained all unfrankable earnings under this 
policy, although it is not crucial to the solution.  The tax coefficient on rental income in this case is  
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. (115) 

This is the tax coefficient applicable to an imputation system when franked dividends are being paid 
(compare it with equations (106) and (112) for financial policies 2 and 3 respectively), and shows 
that the benefits of investment are actually received as franked dividends.  The first instance of 

( )1 11 j j
t tc NVNF+ +− ∆  on the right hand-side captures the shadow price (or in this case, benefit) of a 

dollar of capital gains to shareholders generated by investment, before deductions and company tax 
are accounted for.  Tax is subtracted from this amount by the term inside the large brackets, itself 
comprised of two parts: (a) the reduction in cash flow caused by tax payments minus (b) the 
increase in the franking account balance it creates.  The net result is that shareholders receive a 
distribution as a franked dividend.  

For capital expenditures, the story is more complex.  When a firm issues one dollar of equity while 
paying all tax-credits to shareholders, the net-effect on shareholder wealth is a function of the 
shadow price of new equity, ( )1 j j

t tc NVNF− ∆ , and the effect of deductions on the firm’s tax 

liabilities and, thus, ability to pay franked dividends.  Capital expenditures cause changes in tax 
payments due to the availability of capital allowances, and changes in tax payments influence the 
value of the firm’s equity to shareholders by changing the franked/unfranked dividend payments 
mix and the net value of the firm’s cash flows.  To illustrate the point, assume that the there are no 
transactions costs on an equity issue and a full imputation system, and so equation (114) becomes 
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Making an additional assumption that the rates of dividend- and capital-gains tax are identical, this 
simplifies further to 
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,5 1,5 ,1

1 1
11 1

1
1 1 1

n n jj N
j t tj j n jt j j

t t tn jt t t n j
nt t t t

qR
EROR FL RORact c ISH c c

q q

δ++
+ +

=+ +

 − = = − − − − − 
Φ Φ  

∑ . (117) 

At first glance, setting the rate of dividend imputation at 1 should make any deductions worthless to 
shareholders.  This is clearly not true in equation (116), but certainly is true of equation (117).  
Given that the only difference between (116) and (117) is that the rates of dividend tax and capital-
gains tax are identical in the latter, it is apparent that the difference between the two comes from 
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this divergence.  The reason for this is subtle, and due to two factors: firstly, the deductions reduce 
the number of after-CGT dollars that need to be raised from the equity issue to finance investment, 
reducing the cost of investment; and, secondly, deductions reduce the ability of the firm to 
distribute franked dividends by an amount calculated against the dividend tax rate.  Both of these 
amounts are calculated with reference to the tax rate against which the deduction itself is calculated 
– the company income tax, but some of the company tax terms cancel out in the  derivation. 

3.3.2.6.  Financing Policy 6: A Debt Issue while Paying ONLY Unfranked Dividends and a Slack 
Franking Account Constraint (Classical System) 
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where ,j f
tPVDS  denotes the present value of debt servicing arising from the bonds issued in period t, 

given by 

 ( ) ( ) ( ) ( )1,6

1 1

1

1 1
1 1

j j j js
t s t s t tj j j

t t z t s s
j js z

t t k
k

r FLV
PVDS

NBF

ρ τ β
ρ θ

∞
+ + +

+ +
= =

+
=

  
  + − −  = − −  
  ∆ Φ
    

∑ ∏
∏

 (119) 

where ( )
( )2
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is the change in net bond financing after transaction costs.  If j
tθ , j

tb , j
tτ , j

tc  and j
ti  are constant, we 

can simplify this to obtain 

 
( ) ( ) ( )1,6
1 1 1

1

j j j j j j
t t t t t tj

t j j j
t t t

r FLV
PVDS

NBF

θ ρ τ β

ρ
+

   Φ − + − −   =  Φ − + ∆     
. (121) 

This financial policy is the first rate of return equation we analyse that involves debt issues.  A bond 
issue has three important effects –  it changes the firm’s tax bill via the deductibility of interest, it 
pushes the cost component of investment finance out into future periods, and the firm’s financial 
leverage and bond-rate changes. 

Rental income is taxed in an identical way to financia l policy 1.  This firm is issuing a bond to 
finance investment at the margin, but the rentals it generates are still paid as classical, double-taxed 
dividends.  This highlights the central role of dividend policy in the firm’s rate of return – it is 
important to know both how the investment is financed and how the proceeds are distributed. 

On capital expenditures, it is useful to take the coefficients on asset purchases from financial policy 
1 and compare them with those in equation (118).  In equation (105), the shadow price of finance is 
the after-dividend-and-company-tax value of a dollar of unfrankable earnings, and deductions carry 
full tax benefits for the shareholder because of the absence of dividend imputation.  This is also true 
of equation (118).  The two expressions differ only because of the effect of the bond issue – it 
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imposes an “inflator” on the values discussed above (via the bond interest rate), and moves all of 
the cash flow consequences out into future periods.  The shadow price of a dollar of debt finance in 
the presence of classical dividend payments is the present value (note the different discount rates in 
(105) and (118)) of the reduction in dividend payments over the periods in which the debt and 
interest must be serviced.  In effect, which of (105) and (118) is optimal will depend on the 
relationship between the levels and tax treatments of interest on debt and the rate of interest in the 
investor’s discount rate.  This highlights the importance of the interplay between the rates at which 
different sides of the finance market discount cash flows.  This is true for every debt-related rate of 
return equation and its equivalent in terms of dividend policy - (105) and (118); (106) and (122), 
and (113) and (126).  Readers are referred to a comparison of these equations in light of the 
preceding discussion for an insight into the last two rate-of-return equations. 

3.3.2.7.  Financing Policy 7: A Debt Issue while Paying ONLY Franked Dividends with a Binding 
Franking Account Constraint (Dividend Imputation System) 
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and 
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With constant values for j
tθ , j

tb , j
tτ , j

tc  and j
ti , 
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3.3.2.8.  Financing Policy 8: A debt Issue with NO Dividends Payments and a Slack Franking 
Account Constraint (Classical or Dividend Imputation System) 
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Finally, with constant values of j
tθ , j

tb , j
tτ , j

tc  and j
ti , 
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3.3.3.  Expected Rates of Return with Recursive/Static Expectations  

Expected rates -of-return under recursive/static expectations are denoted by ( ) ,j f

t
EROR SE .  In 

recursive/static mode, agents in MONASH expect that capital rentals and asset prices will grow 
over time at the rate of inflation, and that tax rates and tax allowances are constant.  Thus, they 
expect that 

 ( ), ,
1 1n j n j

t t tq qπ+ = +  (130) 

and 

 ( ), ,
1 1n j n j

t t tR Rπ+ = + . (131) 

All the tax rates and allowances in these expressions are set constant, and the investor’s expectation 
of future asset prices and capital rentals is imposed according to (130) and (131). 

Likewise, if their expectations are truly static, investors will assume that the current rates of interest 
and inflation will continue unchanged.  Under static expectations, the coefficient j

tΦ  is applicable to 
all future periods, i.e. so that we could replace a term like 
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Implicit in this approach is that investors predict the future path of the rate of return on capital based 
on information about the past and present.  With these assumptions in place, the model cannot 
analyse the results of changes in future variables on the investor’s current behaviour.  In other 
words, investors are always “surprised” by changes in taxation policy, and have no ability to 
“prepare” for policy shocks.  An advantage of using static expectations is that it highlights the role 
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of the levels of tax and allowance rates, rather than the interplay between their current values and 
future values when changes are expected.  Other than for that, the main benefit of using backward-
looking-expectations versions of the rate-of-return equations is their relative simplicity and 
transparency.  Deriving these expressions from the forward-looking versions above is trivial and not 
stated here. 
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