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This paper experiments with frequency-based corpus similarity measures across 39 languages 

using a register prediction task. The goal is to quantify (i) the distance between different corpora 

from the same language and (ii) the homogeneity of individual corpora. Both of these goals are 

essential for measuring how well corpus-based linguistic analysis generalizes from one dataset 

to another. The problem is that previous work has focused on Indo-European languages, raising 

the question of whether these measures are able to provide robust generalizations across 

diverse languages. This paper uses a register prediction task to evaluate competing measures 

across 39 languages: how well are they able to distinguish between corpora representing 

different contexts of production? Each experiment compares three corpora from a single 

language, with the same three digital registers shared across all languages: social media, web 

pages, and Wikipedia. Results show that measures of corpus similarity retain their validity 

across different language families, writing systems, and types of morphology. Further, the 

measures remain robust when evaluated on out-of-domain corpora, when applied to low-

resource languages, and when applied to different sets of registers. These findings are 

significant given our need to make generalizations across the rapidly increasing number of 

corpora available for analysis. 

Keywords. corpus similarity, homogeneity, register variation, cross-linguistic comparison, corpus 

linguistics, quantitative linguistics 

Word Count: 8,685  

mailto:jonathan.dunn@canterbury.ac.nz


1. Corpus Similarity in a Cross-Linguistic Setting 

The basic problem of corpus similarity is to find the distance between two corpora. This 

conception of distance is not confined to one part of the linguistic signal: differences between 

corpora could include lexical, morphological, syntactic, or even semantic properties. The goal of 

a corpus similarity measure is to provide a broad representation of distance which aggregates 

across specific linguistic features (Kilgarriff, 2001). The challenge is that this broad conception 

of linguistic similarity could be subject to cross-linguistic variation. For example, sequence-

based measures might capture syntactic differences in an analytic language but capture 

morphological differences in an agglutinative language. The question here is whether corpus 

similarity measures remain robust across languages from different families with different types 

of morphology and different writing systems. This question is important because the number of 

corpora available for linguistic analysis has been growing rapidly: depending on the language in 

question, we now have hundreds to thousands of corpora available. Any attempt to generalize a 

corpus-based analysis beyond one specific corpus depends on corpus similarity measures; we 

are otherwise left with a large number of isolated corpus-specific findings. The experiments in 

this paper establish the robustness of the core methods for measuring how well corpus-based 

linguistic analysis generalizes from one dataset to another. 

The main gap in our understanding of corpus similarity comes from the fact that most 

work is focused entirely on English. How much confidence can we have when applying these 

measures to new languages with very different linguistic properties? How much confidence can 

we have when applying measures to new domains or to low-resource languages that have 

limited training data? This is an important question because it could be the case that frequency-

based similarity measures depend on superficial properties, so that they would not generalize 

well across languages. The experiments in this paper show that there are limited variations in 

accuracy across a set of 39 languages, once the best parameters for each language have been 

discovered. The experiments further show that the measures are generally robust to out-of-

domain feature selection and that accuracy remains high when evaluated on different sets of 

corpora. This means that we can have confidence in these measures when they are applied to 

new contexts and new corpora. These are important findings which show that corpus similarity 

measures are not one-off ad hoc representations that depend on specific languages, specific 

corpora, or specific contexts of production. 

This paper makes four contributions: First, we create comparable corpora across 39 

languages that represent three distinct registers (social media, web pages, and Wikipedia). We 



describe the selection and creation of this corpus in Section 3 and ask whether each of these 

data sources represents a single unique register in Section 5. Second, we propose several 

pairwise similarity measures which take as input two subsets of a corpus, each subset 

containing at least 10k words. These measures include and expand upon previous work on 

frequency-based corpus similarity. Third, we provide a rigorous evaluation of these measures 

across all 39 languages to reach robust cross-linguistic generalizations about how well these 

measures work. Fourth, we provide a Python package which implements these measures. The 

larger linguistic contribution of this paper is to show that corpus similarity measures remain 

robust across language families, across types of morphology, and across different writing 

systems. This robustness, in turn, is important because it allows corpus-based linguistic 

analysis to make generalizations across the increasingly large number of corpora that are 

available for analysis. 

Corpus similarity measures are increasingly important for quantitative corpus-based 

linguistics because they allow us to make generalizations across corpora. For example, imagine 

a study of particle placement in news articles drawn from different countries. Such a study 

would likely find significant syntactic differences across geographic locations (c.f., Dunn, 2019). 

But before we generalized these findings we would need to answer two important questions: 

First, would the results have changed if we had observed a different sub-set of news articles? 

Given the enormous number of publications and articles in English, any corpus-based study 

works with a very limited sample. Corpus homogeneity measures can be used to determine how 

much variation there is within the same context (i.e., news articles from the US). Second, how 

much would a corpus of news articles from different countries tell us about the dialect of English 

used in those countries? Given the enormous number of registers that represent each dialect 

(social media, news broadcasts, novels, spoken language, etc), we can use corpus similarity 

measures to estimate how well findings from one corpus (news articles) generalize to a new 

corpus (social media). The measures evaluated in this paper are essential for making 

generalizations in corpus linguistics (c.f., Kilgarriff, 2001). Previous work, by focusing largely on 

English, leaves open the question of how well we can make corpus-based generalizations from 

non-English corpora. 

 

1.1. Defining Digital Registers  

 

We focus on register variation as a test case for corpus similarity because register is a 

significant source of linguistic variation in corpora (Biber, 2012). This paper develops an 



accuracy metric that is based on predicting whether two samples are drawn from the same 

register or from different registers. Because each language is represented using comparable 

corpora from the same three registers, we are able to compare the experimental results across 

languages. The term register here refers to the context of production: for example, the author, 

the audience, and the communicative purpose behind a corpus. Register is related to genre, 

although genre usually refers to more formal properties of a document, such as an opening 

greeting in an email or a location tag in a news article (Biber & Conrad, 2012). We focus on 

register as a test case because register itself is the most common dimension of difference 

between corpora (i.e., news articles vs social media). 

Each register has its own situational properties. For example, the author of a tweet is a 

single known individual while the author of a web page is an unknown individual and a 

Wikipedia article is drawn from many contributors. The communicative purpose of Wikipedia is 

to present information in an objective manner; social media, however, has a number of distinct 

purposes: communicating with friends, making announcements, etc. The main experiments in 

this paper rely on three digital registers: social media, web pages, and Wikipedia articles. Each 

of these registers has its own situational properties. We evaluate, in Section 5.4, whether the 

results of our experiments depend on a this specific mix of registers; the results show that the 

same generalizations remain across a distinct set of six non-digital registers. 

 

2. Measures of Corpus Similarity 

 

This section reviews previous work on corpus similarity and motivates the experimental 

framework taken in this paper. The basic problem was originally outlined by Kilgarriff (2001), 

whose study showed that a frequency-based approach performs best. This type of evaluation 

was extended in later work (Fothergill et al., 2016), which explored much larger corpora. These 

larger corpora allow their experiments to also consider the effect of corpus size on similarity 

measures. Three measures are compared: 𝜒2 similarity, the perplexity of trained language 

models, and topic similarity from trained topic models. Overall, the model-based methods do not 

perform as well as the frequency-based 𝜒2 measure, replicating Kilgarriff’s original finding. The 

expanded experiments involving corpus size further show that the best accuracy is observed 

with 4k features, substantially higher than Kilgarriff’s original 500. 

More recently, frequency-based measures were used (Dunn, 2021) to show that there is 

a consistent agreement between digital corpora (the web and tweets) across nine languages 

and 84 language varieties. In this work, word unigram frequencies and character trigram 



frequencies are used to calculate Spearman’s ρ; the resulting similarity values then measure 

variation within and between registers for different language varieties. Related work has also 

studied the impact on corpus similarity measurements caused by different choices for corpus 

size (Piperski, 2018). The results of these experiments, using the British National Corpus, show 

that Euclidean distance is least influenced by corpus size and thus is best suited for the purpose 

of comparing corpora when it is necessary to compare samples of different sizes. Other work 

uses Jensen-Shannon divergence (JSD) to conduct corpus comparison experiments (Lu et al., 

2020). While this method is based on word frequency, there are no quantitative values produced 

for corpus similarity; therefore, we do not consider JSD in this paper. Other recent work 

proposes the Sum of Minimum Frequencies (SMF) as a new corpus similarity measure 

(Piperski, 2017). This method is based on word frequencies and outperforms perplexity-based 

measures, as expected. However, the results are comparable to Spearman’s ρ and 𝜒2. Thus, 

we do not include it in this study. It is important to note that corpus similarity measures based on 

the 𝜒2 are not interpreted as significance tests, so that we do not need to consider limitations on 

the interpretation of such significance tests (c.f., Mačutek & Wimmer, 2013; Wallis, 2013). 

Another related line of work is the detection of similarity between documents or articles, 

with a focus on topic. For example, in recent work (Nanayakkara & Ranathunga, 2018) cosine 

similarity has been used to group news articles. Individual similarity values are compared with a 

threshold value in order to cluster articles into groups of related topics. In other recent work, 

(Torres-Moreno et al., 2014), corpus similarity is evaluated for the task of paraphrase detection 

in German. This problem is a more specific form of the deduplication problem, in which the goal 

is to find parts of a corpus which are very similar. The difference with corpus similarity, however, 

is that paraphrase detection is focused on relatively short spans of a document while corpus 

similarity is applied to a large number of documents in the aggregate. Recent work has also 

examined the relationship between corpus-based measures and readability (Pires, et al., 2017). 

It remains a open question whether similar corpora have similar readability scores. 

In the current paper, we validate similarity measures using their accuracy for predicting 

whether a pair of samples (two corpora) are from the same register or from different registers. 

Other recent work has approached this problem of finding thresholds for similarity measures 

(Ali, 2011, Leban et al., 2016). We take a similar thresholding approach, as described in Section 

4.1, converting a continuous similarity measure into a binary label for use in a prediction task.  

Given the use of thresholds here, we could also compare corpus similarity to text 

classification. A major distinction between the two is that text classification is a supervised 

problem, with at least some amount of training data required. For corpus similarity measures, 



however, samples are compared using only frequency ranks. This means, for example, that 

there are no feature weights to optimize using training data. Most text classification tasks are 

performed within a single register, rather than across registers. Multi-lingual text classification 

on smaller documents remains a challenge, especially within a single register (c.f., Mutuvi, et 

al., 2020). At the same time, recent work has shown that register-specific word frequency 

distributions are helpful for focusing models in an educational domain (Ehara, 2019). This 

combination of corpus similarity within a larger classification problem shows the importance of 

being able to navigate the relationships between large numbers of corpora. The range of work 

reviewed in this section shows the importance of corpus similarity as a means of understanding 

the relationships between different corpora, a problem that is relevant to corpus linguistics, 

computational linguistics, and experimental linguistics. 

 

 

3. Data and Methodology 

 

The corpora for this study are drawn from three digital registers: social media (TW: from 

Twitter), web pages (CC: from the Corpus of Global Language use: Dunn, 2020), and Wikipedia 

(WK: from the Wikipedia dump of March 2020). For TW and CC, data is sorted by language 

using the idNet language identification package (Dunn, 2020). For WK, the language label is 

derived from the Wikipedia domain. The TW corpora is taken to represent the social media 

register and the WK corpora is taken to represent the non-fiction or encyclopedic article register. 

We know, however, that the CC corpora contains a number of potentially distinct sub-registers 

like forum posts or comments on news articles (Sardinha, 2018). These unlabeled sub-registers 

add an important dimension to these experiments: are the CC corpora more heterogeneous, as 

we would expect given that they contain these potential sub-registers? Is the level of 

heterogeneity consistent across languages, or does the distinctiveness of internet sub-registers 

vary across languages? This question is examined further in Section 5.2. If these sources do 

not constitute unique registers, the overall prediction accuracy will be low. 

The list of languages used is shown in Table 1, along with each language’s family, script 

type, and morphological type. These three classifications for each language are included 

because these are all factors that may influence the performance of corpus similarity measures. 

Because Indo-European is a well-represented family, it is divided into branches (for example, 

IE: Germanic). 



Languages are divided into four types of writing systems. Alphabetic scripts use 

characters to represent individual phonemes. Abjad scripts use characters to represent 

consonants and leave vowels unrepresented. Abugida scripts represent consonant-vowel 

sequences together. Finally, logographic or syllabic scripts use characters that represent an 

entire word, morpheme, or syllable. The type of writing system may have an influence over 

corpus similarity measures because there is variation in both the unit of representation (i.e., 

phoneme vs word) as well as the inventory size (i.e., alphabets have fewer units than 

logographic systems). 

A broad morphological categorization for each language is also included in Table 1. 

There are four categories: Agglutinative languages have a range of different morphemes that 

retain the same form. We might expect character-based features to detect morphemes in 

agglutinative languages, for example. Fusional languages combine multiple functions (like 

person and number) into a single morpheme. A third type, analytic languages, tend to use 

grammatical words instead of morphemes. We might expect, for example, that word-based 

features work better for analytic languages. Finally, we use the term root-and-pattern to 

describe Arabic and Hebrew, which do not fit nicely into the previous typology. The goal for this 

classification is to enable us to see broad patterns in the performance of different corpus 

similarity measures. Many of these languages have been studied in isolation (e.g., Hindi in 

Pande & Dhami, 2013), but not in a systematic cross-linguistic fashion. 

Taken together, the 39 languages chosen for this study represent a broad sample of 

languages: from 15 sub-families, with examples representing all kinds of morphology and writing 

systems. We expect, then, that the experiments in this paper can be reasonably taken to make 

generalizations about corpus similarity measures across all languages. This is an important 

contribution because previous work has been largely confined to English. The final column in 

Table 1 refers to the best feature type for each language; this is described in detail in Section 

4.2. 

Table 1. Languages by Family, Script, and Morphology 

Name Code Family Script Morphology Feature Type 

Vietnamese vie Austroasiatic Alphabet Analytic Word 2-grams 

Indonesian ind Austronesian Alphabet Agglutinative Word 1-grams 

Tagalog tgl Austronesian Alphabet Agglutinative Word 1-grams 

Tamil tam Dravidian Abugida Agglutinative Char 4-grams 

Telugu tel Dravidian Abugida Agglutinative Char 4-grams 



Name Code Family Script Morphology Feature Type 

Bulgarian bul IE:Balto-Slavic Alphabet Fusional Char 4-grams 

Czech ces IE:Balto-Slavic Alphabet Fusional Char 4-grams 

Latvian lav IE:Balto-Slavic Alphabet Fusional Char 4-grams 

Polish pol IE:Balto-Slavic Alphabet Fusional Char 4-grams 

Russian rus IE:Balto-Slavic Alphabet Fusional Char 4-grams 

Slovenian slv IE:Balto-Slavic Alphabet Fusional Char 4-grams 

Ukrainian ukr IE:Balto-Slavic Alphabet Fusional Char 4-grams 

Danish dan IE:Germanic Alphabet Analytic Char 4-grams 

German deu IE:Germanic Alphabet Fusional Char 4-grams 

English eng IE:Germanic Alphabet Analytic Char 4-grams 

Dutch nld IE:Germanic Alphabet Analytic Char 4-grams 

Norwegian nor IE:Germanic Alphabet Analytic Char 4-grams 

Swedish swe IE:Germanic Alphabet Analytic Char 4-grams 

Greek ell IE:Hellenic Alphabet Fusional Char 4-grams 

Farsi fas IE:Indo-Iranian Abjad Analytic Word 1-grams 

Hindi hin IE:Indo-Iranian Abugida Fusional Char 4-grams 

Urdu urd IE:Indo-Iranian Abjad Fusional Char 4-grams 

Catalan cat IE:Romance Alphabet Fusional Char 4-grams 

French fra IE:Romance Alphabet Fusional Word 1-grams 

Galician glg IE:Romance Alphabet Fusional Char 4-grams 

Italian ita IE:Romance Alphabet Fusional Word 1-grams 

Portuguese por IE:Romance Alphabet Fusional Word 1-grams 

Romanian ron IE:Romance Alphabet Fusional Char 4-grams 

Spanish spa IE:Romance Alphabet Fusional Word 1-grams 

Japanese jpn Isolate Logographic Agglutinative Char 3-grams 

Korean kor Isolate Logographic Agglutinative Char 4-grams 

Arabic ara Semitic Abjad Root-and-Pattern Word 1-grams 

Hebrew heb Semitic Abjad Root-and-Pattern Char 4-grams 

Chinese zho Sino-Tibetan Logographic Analytic Char 3-grams 

Thai tha Tai-Kadai Abugida Analytic Char 4-grams 

Turkish tur Turkic Alphabet Agglutinative Char 4-grams 

Estonian est Uralic Alphabet Fusional Word 1-grams 

Finnish fin Uralic Alphabet Agglutinative Char 4-grams 



Name Code Family Script Morphology Feature Type 

Hungarian hun Uralic Alphabet Agglutinative Char 4-grams 

 

There are some low-level differences between these corpora that we are not concerned with: 

the use of uppercase letters or punctuation or emojis, for example. The corpora are therefore 

preprocessed to normalize case, punctuation, numbers, email addresses, URLs, and other non-

linguistic material that would make it easier to superficially distinguish between registers in this 

setting. Note that the corpora do not contain information about sentence segmentation, which 

means we are unable to evaluate sentence-based questions (i.e., Xu & He, 2018). 

Several languages in this dataset have unique word segmentation patterns: Chinese 

(zho), Japanese (jpn), Thai (tha), and Tamil (tam). One side-effect of these word segmentation 

patterns, for example, is that the Tamil corpus from social media has different word boundaries 

than the Tamil corpus from Wikipedia. Rather than include language-specific tools in the 

pipeline, we instead remove all spaces from these corpora, in essence normalizing across 

styles of word segmentation. We then use only character-based features for these languages. 

In order to maintain validity across many experiments, these corpora are divided into 

three subsets: training data, testing data, and validation data. We use the training data for 

feature selection and to determine the threshold for separating registers. Each of the 

parameters in the experiment is then evaluated on the testing data in order to determine, for 

each language, the best measure of corpus similarity. We then take these best measures and 

evaluate them on the held-out validation data. Thus, each language is evaluated on the 

validation corpus only once. This prevents us from over-fitting specific properties of that corpus. 

An additional experiment, described in Section 4, uses an independent out-of-domain corpus for 

feature selection. This allows us to measure the degree to which the corpus similarity measures 

depend on the specific registers being used in these experiments: would the measures continue 

to work if we had trained on Bible translations or movie subtitles? The basic finding is that using 

out-of-domain training data produces only a small decline in overall performance. 

For each language, we draw samples from the three registers (TW, CC, WK). To 

evaluate the similarity measures we create 100 pairs of sub-corpora for each of the six possible 

combinations: TW-TW, TW-CC, TW-WK, CC-CC, CC-WK, WK-WK. There are no repeating 

pairs. This provides three populations of same-register pairs and three populations of different-

register pairs, for a total of 600 pairs of sub-corpora per condition. As described below in more 

detail, the notion of accuracy in this setting involves using the similarity measures to predict, for 

each of these 600 pairs, whether the two corpora belong to the same or different registers.  



A frequency-based approach uses bag-of-words features. Given a corpus, we create a 

frequency vector of length n, where n is the number of features being considered. We evaluate 

both word-based features (which use whitespace to divide units) and character-based features 

(which do not depend on whitespace in the same way). For each language for each parameter 

being evaluated we use a single feature space. This type of feature has also been used, for 

example, to identify distinct languages as well as distinct corpora from the same language 

(Seifart & Mundry, 2015). If we are evaluating Spanish with 5k word-based features, we use the 

same vocabulary of 5k words for each pair of corpora. Because the focus is on frequency 

differences within a language, this work is complementary to investigations of cross-linguistic 

word frequency distributions (Bentz, et al., 2017). Taken individually, these n-gram features 

represent a specific linguistic property; taken in the aggregate, they represent a potentially wide 

range of lexical, morphological, and syntactic properties. The focus is on evaluating 

performance in the aggregate rather than attempting to interpret the contribution of individual 

features. 

The selection of features is based on frequency alone: we take the most common words 

in the training corpus. This means, for example, that the measures are not capturing information 

about lexical richness (i.e., Kubát & Milička, 2013; Shi & Lei, 2020) which focus on less common 

vocabulary features. From a different perspective, however, these high frequency features can 

provide an indicator for differences in syntactic patterns (i.e., Wan, et al., 2019). For the out-of-

domain experiment discussed in Section 4.4, we test whether performing feature selection on 

an independent corpus from a different register reduces performance. A summary of the 

experimental conditions is given in Table 2. 

Table 2. Experimental Conditions 

Corpus Size N. Features Feature Type Measure 

10k words 5k Word 1-gram Spearman ρ 

30k words 10k Word 2-gram 𝜒2 

50k words 15k Word 3-gram Euclidean Distance 

100k words 20k Character 2-gram Cosine Distance 

500k words 25k Character 3-gram - 

- - Character 4-gram - 

To summarize, the basic experimental paradigm is to create a large number of unique pairs of 

sub-corpora for each language, where some pairs come from the same register and some from 

different registers. This allows us to evaluate the measures across different register boundaries. 



We further divide the corpora into training data, testing data, and validation data to ensure that 

the large number of comparisons does not lead us to inflate the performance of the measures. A 

final experiment, using data from independent registers, provides an evaluation of out-of-domain 

feature selection in order to offer a further guarantee of robustness. This experimental design 

asks how robust corpus similarity measures remain across languages and across new corpora. 

 

 

4. Analysis 

 

This section presents the performance of corpus similarity measures by language using a held-

out test set to provide a rigorous evaluation. We start by defining the notion of accuracy for a 

continuous measure (4.1). We then evaluate the relationship between corpus size and feature 

type (4.2) and corpus size and measure (4.3). We finish the section by asking whether the 

chosen parameters are specific to these registers by replicating the experiments using out-of-

domain training data (4.4). The overall goal of these experiments is to determine whether 

corpus similarity as it has been defined in the literature extends beyond Indo-European 

languages. 

 

4.1. Threshold Values for Calculating Accuracy 

 

A corpus similarity measure provides a continuous representation of the difference between two 

input corpora. In order to calculate accuracy from this measure, we develop a threshold. Given 

two corpora, A and B, a similarity threshold is used to predict whether both A and B belong to 

the same register: values above the threshold are positive and values below the threshold are 

negative. We then report accuracy using this threshold on the held-out test corpus. 

There are two variant algorithms for setting the threshold. The first, T1 (shown below), is 

the average similarity value across all types of pairs. This approach takes the global population 

of pairwise similarity, finds the mean value, and uses that mean value as the threshold: any pair 

above the average is predicted to be from the same register and any pair below the average is 

predicted to be from different registers. This version does not distinguish between same-register 

and different-register pairs when determining the threshold. 

avgv(T1) =
1

6
∑ similarity value𝑖

6

𝑖=1

 



We contrast this with a variant that distinguishes between same-register and different-

register pairs in the training data. This variant, T2, is shown below. We take the lowest average 

similarity for same-register pairs (for example, maybe CC-CC is the least homogenous register). 

Then we take the highest average similarity for different-register pairs (for example, maybe CC-

WK are the most similar registers). The threshold is set halfway between these values. 

 

avg_v(T2) =
1

2
(min(similarity valueCC_CC, similarity valueTW_TW, similarity valueWK_WK )

+ max(similarity valueCC_TW, similarity valueCC_WK , similarity valueTW_WK)) 

 

Which of these methods for setting the threshold values works best and do they actually 

capture the distinction between same-register and different-register similarity values? We 

survey a few languages in Figure 1 and Figure 2 to visualize the effect of the thresholds. In 

these figures, each column is a different language, with the table below the figure showing both 

the thresholds and their accuracy. The y-axis shows the computed similarity value, ranging from 

0 (no similarity) to 1 (high similarity). Each dot represents a pair of two corpora. Blue dots 

represent corpora from the same register and orange dots represent corpora from different 

registers. These figures are based on Spearman’s ρ with 5k features per language; later 

sections justify this choice. 



 

Figure 1. Selected languages with different thresholds that have better accuracy using T2 

 

We see from Figure 1, first, that the same-register pairs always have a higher similarity (i.e., the 

blue dots are always above the orange dots). Thus, the corpus similarity measure is arranging 

the pairs of corpora as we would expect: data from the same register is the most similar. 

However, the gap between the two conditions varies by language. For example, in Estonian 

(est) and Finnish (fin), there is a clear separation between conditions. But in Swedish (swe) the 

two conditions meet, with some samples not clearly in one condition or another. This lack of 

separation is reflected in the accuracy measure, shown in the table below the figure: Estonian 

reaches 100% accuracy because the different-register pairs are always separated; but Swedish 

reaches only 97% accuracy because a few different-register pairs cross the threshold. 

The second thing we notice from Figure 1 is that there is variation in the distribution of 

similarity values by language, an issue to which we return in Section 5. For example, Swedish 

(swe) has a dense cluster of pairs of corpora, all with values between 0.6 and 0.7. But Estonian 

(est) shows a much broader range of values, all with a lower tendency, from 0.0 to 0.4. This 

means that we cannot compare absolute similarity values across languages: 0.6 would be a 



very high similarity for Estonian but a very low similarity for Swedish. This is not a problem for 

the measures, however, because all comparisons take place within the same language. For the 

languages in Figure 1, the threshold selection in T2 performs better. 

 

Figure 2. Select languages with similar thresholds that show the same accuracy for both. 

 

There are other cases, however, in which the two methods perform equally well, as shown in 

Figure 2. We notice that in this selection of languages, there is a much clearer gap between 

same-register and different-register similarity values. Languages like Tagalog (tgl) and Turkish 

(tur) show a wide separation and other languages like Arabic (ara) have an intermediate area 

that is sparsely populated, meaning that few pairs fall into the center range. In these cases, the 

choice of a threshold value is much easier and both measures reach the same accuracy. 

The point of this section is to visualize the distribution of similarity values, with a focus on 

the distinction between same-register pairs and different-register pairs. A corpus similarity 

measure is continuous. But we convert this continuous measure into a binary prediction using a 

simple threshold to determine when two corpora represent different registers. 

 



4.2. Corpus Size and Feature Type 

 

Having established a method for measuring the accuracy of different corpus similarity 

measures, we use this accuracy in predicting same-register vs different-register for validation 

purposes. The first question is to establish the relationship between corpus size (how much data 

we need for each sample) and the number of features (how many word or character sequences 

we include in the frequency vector). This relationship is shown in Figure 3 for a selection of four 

languages: Arabic (ara), German (deu), French (fra), and Farsi (fas). This selection includes 

different language families and types of morphology. 

The y-axis represents corpus size, the number of words for each sample being 

compared (all comparisons are made with equal-sized samples). These range from 10k to 500k 

words: 10k (S1), 30k (S2), 50k (S3), 100k (S4), 500k (S5). Thus, the top row represents the 

smallest sample size and the bottom row the largest. The x-axis represents the type of feature: 

character 2-grams (C2) through word 3-grams (W3). 

We notice, first, that each language has at least one type of feature which achieves high 

accuracy at a sample size of 10k words. Arabic has three such features, but other languages 

have only one. Given these results, we see that corpus similarity measures remain robust at 

relatively small sample sizes. In other words, larger samples are not necessary to achieve high 

accuracy. For most features, accuracy increases with more data per sample; this is not true, 

however, for character bigrams in Arabic. 

Given the full experimental results (not shown), we divide languages into four groups 

based on the best type of feature. This was shown in Table 1. If a language (such as Arabic) 

achieves high accuracy across more than one type of feature, we choose the feature type which 

is most common across other languages. Most languages prefer character 4-grams (27). A 

number of other languages prefer word 1-grams (9). Only a few remaining languages prefer 

character 3-grams (2) or word 2-grams (1). For the remaining experiments, we fix the type of 

feature for each language in accordance with the values shown in Table 1 (the best performing 

features). And we report results with corpus size limited to 25k words. The reason for limiting 

these hyper-parameters is that we see high accuracy in these particular configurations. 



 

Figure 3. Accuracy results based on corpus size vs feature type show that every language has its 

own configuration for producing the best performance. 

4.3 Comparing Measures of Similarity 

 

We turn now to a comparison of similarity measures, with the feature type fixed by language 

given the previous experiments. This is shown in Table 4 with samples containing 25k words. 

The first thing we notice is that, as per previous work, only Spearman’s ρ and 𝜒2 perform 

consistently well. For example, Euclidean distance performs poorly on Hindi (hin) and Japanese 

(jpn). And Cosine distance performs poorly on Estonian (est) and Polish (pol). Even though 

these two measures perform well on many languages, they do not outperform the best 

measures in previous work. Therefore, we exclude them from further consideration. 



Should we prefer Spearman’s ρ or 𝜒2? Both measures achieve at least 99% accuracy on 

28 different languages (but not the same 28). There are three languages where Spearman is 

significantly worse (Bulgarian, Swedish, Tagalog); and five languages where Spearman is 

significantly better (Farsi, Hindi, Japanese, Spanish, Urdu). There is only one language 

(Tagalog) which would fall below 95% accuracy if we used Spearman’s ρ. As a result of these 

findings, we use Spearman’s ρ across all 39 languages. The results for smaller samples (10k 

words) are provided in the supplementary material. 

Why not mix-and-match similarity measures in the same way that we mix different types 

of features? There are two reasons to prefer Spearman’s ρ: First, it is not dependent on a fixed 

sample size. On the other hand, 𝜒2 is dependent on the length of each sample and thus cannot 

be used under conditions with uncertain corpus lengths (Kilgarriff, 2001). The second advantage 

of Spearman’s ρ is that it always falls between 0 and 1, making it possible to visualize 

thresholds across languages. Because 𝜒2 produces output values with no maximum, the 

comparison of different languages or different registers is quite difficult. For example, if we used 

𝜒2 only for a few languages like Tagalog, it would not be possible to compare those similarity 

measures to the measures for other languages. For these reasons, we use Spearman’s ρ 

across all languages. 

 

Table 4. Accuracy by Similarity Measure with 25k word samples 

 Spearman 𝜒2 Cosine Euclidean 
 

Spearman 𝜒2
 Cosine Euclidean 

ara 100% 100% 100% 99.8% lav 100% 100% 100% 100% 

bul 99.7% 100% 100% 100% nld 100% 100% 100% 100% 

cat 100% 100% 99.3% 98.4% nor 100% 100% 100% 100% 

ces 100% 100% 99.5% 100% pol 100% 100% 100% 100% 

dan 100% 100% 100% 100% por 100% 100% 98.7% 100% 

deu 100% 100% 100% 100% ron 100% 100% 100% 100% 

ell 100% 100% 99.8% 100% rus 100% 100% 100% 100% 

eng 100% 98.7% 97.7% 97.7% slv 100% 100% 80.0% 62.4% 

est 100% 100% 71.7% 100% spa 100% 100% 100% 100% 



 Spearman 𝜒2 Cosine Euclidean 
 

Spearman 𝜒2
 Cosine Euclidean 

fas 99.5% 100% 98.4% 97.9% swe 100% 100% 100% 100% 

fin 100% 100% 100% 100% tam 98.0% 100% 98.2% 100% 

fra 100% 100% 100% 100% tel 100% 100% 100% 100% 

glg 100% 99.8% 95.6% 89.4% tgl 90.2% 100% 100% 100% 

heb 100% 100% 100% 93.5% tha 99.5% 97.7% 97.9% 97.7% 

hin 97.1% 98.9% 86.0% 95.9% tur 100% 100% 98.9% 99.8% 

hun 100% 100% 100% 100% ukr 100% 100% 100% 100% 

ind 100% 100% 100% 100% urd 100% 100% 99.5% 100% 

ita 100% 100% 100% 100% vie 100% 100% 100% 100% 

jpn 100% 100% 98.2% 97.7% zho 100% 100% 96.4% 94.6% 

kor 100% 100% 100% 100%     

 

 

4.4.  In-Domain vs Out-of-Domain Evaluation on the Validation Corpus 

 

The previous experiments have learned both features and thresholds from the training corpora 

and evaluated these settings on the testing corpora. We have now determined the best 

parameters: Spearman’s ρ with 5k features, with feature type varying by language. The feature 

space and threshold for distinguishing between same-register and different-register pairs are 

fixed using the training data. In this section we evaluate these hypothesized best measures on 

the validation corpora, data which has remained unseen until now. This final step ensures the 

robustness of our results. 

A further question that we might ask is whether these corpus similarity measures depend 

on the three registers that we have used for training (social media, web macro-register, non-

fiction encyclopedia articles). If we trained the model with Bible translations or movie subtitles, 

would the measures be comparable? The reason this question matters is because we have 

used the same feature space for each language. In other words, we find the 5k most frequent 

features (words or character sequences) in the training data. Those features form the feature 



vector for each sample, even if some features are missing from both samples. There is a 

possibility that, as we move away from the registers represented in the training data, the 

number of missing features increases so that these measures would fail on new domains. 

To evaluate this possibility, we measure the accuracy for each language in two 

conditions: First, using the previous in-domain training data for feature selection; Second, using 

an independent corpus from different registers for feature selection. These independent corpora 

contain a random mix of Bible translations, news commentary articles, and movie subtitles 

(Tiedemann, 2012; Christodoulopoulos & Steedman, 2015). If the measures are over-fitting the 

training/testing data, then the in-domain performance on the validation data will be significantly 

lower than seen in Table 4. If the measures are applicable only to the registers represented in 

the training data, the out-of-domain performance will be significantly lower. The results, shown 

in Table 5, provide a final evaluation of corpus similarity measures across languages. The 

Difference column shows the change between in-domain and out-of-domain feature selection. 

Changes less than 1% are removed; decreased accuracies of 5% or more are indicated in bold. 

No language falls below 95% accuracy for either in-domain or out-of-domain feature 

selection (with samples of 25k words). This provides a robust baseline for these measures. In 

other words, given corpora of at least 25k words we can have high confidence in these 

measures. Overall, these results show that the best corpus similarity measures are robust 

across all languages, even if a different set of registers is involved. This indicates that the 

measures are not dependent on specific registers but can be taken as generalized measures of 

similarity. 

 

Table 5. In-Domain and Out-of-Domain Performance on the Validation Set, 25k Word Samples 

Language In Domain Out Domain Difference Language In Domain Out Domain Difference 

ara 100% 100%  lav 100% 100%  

bul 99.2% 99.8%  nld 100% 100%  

cat 100% 100%  nor 100% 100%  

ces 100% 100%  pol 100% 100%  

dan 100% 100%  por 100% 99.7%  

deu 100% 100%  ron 100% 100%  

ell 100% 100%  rus 100% 100%  

eng 100% 99.8%  slv 100% 100%  

est 100% 100%  spa 100% 99.8%  



Language In Domain Out Domain Difference Language In Domain Out Domain Difference 

fas 99.8% 100%  swe 100% 96.1% -3.90% 

fin 100% 100%  tam 100% 100%  

fra 99.8% 100%  tel 100% 99.0% -1.00% 

glg 100% 100%  tgl 97.4% 100% +2.60% 

heb 100% 100%  tha 97.4% 99.5% +2.10% 

hin 97.9% 100% +2.10% tur 100% 100%  

hun 100% 100%  ukr 100% 100%  

ind 100% 100%  urd 100% 99.5%  

ita 99.8% 96.3% -3.50% vie 98.7% 99.8% +1.10% 

jpn 100% 100%  zho 100% 100%  

kor 100% 96.3% -3.70%     

 

 

5. Discussion 

 

The previous experiments have shown that corpus similarity measures across 39 languages 

provide highly accurate predictions on held-out validation data with both in-domain and out-of-

domain feature selection. This shows both (i) that corpus similarity measures generalize across 

languages and (ii) that their accuracy is not specific to each data set. In this section we take a 

closer look at three important questions: First, why do some languages have lower performance 

with out-of-domain feature selection? Second, how much variation do we observe both within 

and between specific registers across languages? The question is important for understanding 

what happens when we encounter a macro-register like web pages. Third, we experiment with 

low-resource Austronesian languages to determine whether the behaviour of select languages 

is representative of the larger family they belong to. Fourth, we end by examining a selection of 

non-digital registers in English to ensure that these results also extend to more traditional 

corpora. 

 

5.1. Overlapping Features Between In-Domain and Out-of-Domain Corpora 

 

Why do some languages have reduced performance given out-of-domain feature selection? For 

example, Korean (kor) sees better accuracy with in-domain features than out-of-domain 



features (100% vs 96.3%). One possibility is that there is a low overlap between the features, 

with the out-of-domain features not being present for the in-domain validation data. In this case, 

only 48% of the feature set is shared between in-domain and out-of-domain feature selection 

(c.f., the full table of feature overlap in the supplementary material). In other words, if we choose 

the 5k most frequent features on the out-of-domain corpus, roughly half of those features are 

not in the top 5k features derived from the in-domain corpus. This is contrasted with Chinese 

(zho), which has a similarly low feature overlap (46.5%), but does not show a drop in accuracy 

(both have 100% accuracy). If low overlap were the primary cause of low out-of-domain 

accuracy, then most low overlap languages would have reduced accuracy. Of the 17 languages 

with less than 75% feature overlap, only two have below 99% out-of-domain accuracy (Korean 

and Italian). This implies that feature overlap is not the main factor for reduced out-of-domain 

accuracy. These two languages also are from different families, with different writing systems 

and types of morphology. 

Returning to the idea of feature overlap, there is a second question beyond the impact 

on accuracy: whether or not there is a reduction in performance, why do some languages have 

low feature overlap? Here we focus on the 17 languages with below 75% overlap. First, we 

notice that all three logographic script languages are below 50% overlap (Chinese, Japanese, 

Korean). Given the increased inventory of symbols, this low overlap is not surprising. In fact, all 

five languages which use spaceless preprocessing (including also Tamil and Thai) have lower 

overlap. This means that this method for normalizing differences in word segmentation reduces 

feature overlap, although it does not reduce accuracy. We also notice that all abugida 

languages (where consonant-vowel sequences are written together) fall below the 75% overlap 

threshold. This indicates that the main driver of low feature overlap is the type of script, rather 

than, for example, the type of morphology. At a sample size of 25k words, no language falls 

below 95% accuracy with out-of-domain features, however, which indicates that lower feature 

overlap does not cause lower prediction accuracy for corpus similarity measures. 

 

5.2. Similarity Distribution Across Registers 

 

The previous experiments have focused on a distinction between same-register and different-

register pairs, in effect averaging across three distinct registers (social media, web, and non-

fiction encyclopedia articles). In this section, we take a closer look at the distribution of  similarity 

values across registers. This allows us to find further explanations for the accuracy results in 

Table 5. As noted above, the web is actually a macro-register with a number of potentially 



distinct sub-registers. Do these sub-registers create increased heterogeneity that is discovered 

by the similarity measures? A more specific question is whether we see an impact from the 

internal variation caused by web pages representing a macro-register. 

To analyze the distribution of similarity values, we start by extracting 600 pairs of corpora 

from the validation set for each language; as before, this includes 100 pairs for each condition 

(c.f., Table 3). The similarity measures have the same hyper-parameters used for Table 5: 5k 

features of the specified type, either in-domain or out-of-domain, compared using Spearman’s ρ. 

Thus, these experiments correspond to the results in Table 5.  We use violin plots to show the 

distribution for each language in Figures 5 through 7. These figures focus on three 

representative languages:  Italian (ita), Hindi (hin), and English (eng). For each language the 

figures contain two facets: feature type (in-domain and out-of-domain). Within each facet, the 

distribution of same-register pairs is shown on the left (TW, CC, WK) and the distribution of 

different-register pairs is shown on the right (TW-CC, WK-CC, TW-WK). For each violin plot the 

y-axis is the similarity value, with higher pairs being more similar and lower pairs being less 

similar. A wider violin plot shows that more pairs are found at that point of similarity, with the 

mean represented by a white dot in the center of the plot. A horizontal line is added which 

represents the threshold selected using the T2 method described above. 

We notice, first, that the same-register pairs (on the left) have higher similarity than the 

different-register pairs (on the right). This is expected, of course, given the high accuracy for the 

measures, which requires a fixed threshold between the two classes. But we also notice that 

there is variation in the internal similarity (homogeneity) for same-register pairs. Social media 

(TW) is the most homogenous across each language because its average self-similarity is 

higher. 

 



Figure 5. Distribution of Similarity Values, Italian 

We also notice that, for each language, the variation between social media (TW) and 

Wikipedia (WK) is the greatest. In other words, these two registers are the least similar across 

languages. For Hindi (hin), unlike Italian and English, the gap between the web and social 

media is quite similar to the gap between Wikipedia and social media. Thus, the relationships 

between each pair of registers may not be constant across languages in the same way that the 

ordering is relatively constant. 

If we look more closely at Italian, in Figure 5, we see that the difference in accuracy 

between in-domain and out-of-domain feature selection is driven by the same-register similarity 

of Wikipedia. With in-domain features, Wikipedia is clearly distinct from the different-register 

pairs on the right side of the figure. But, with out-of-domain features, the internal homogeneity of 

Wikipedia is much lower. This indicates that those features which do not overlap are specific to 

the Wikipedia register. 

 

Figure 6. Distribution of Similarity Values, Hindi 

 

These violin plots also show the variation in each pair of corpora. For example, looking 

at the English graph in Figure 7, we notice that the values for social media (TW) are both very 

similar (high) but also very centered around the mean (the violin plot is wide). On the other 

hand, the values comparing social media and Wikipedia are both quite dissimilar (low) but also 

stretched across a range of values. This variation in each distribution is another indicator of 

heterogeneity within a particular register. 



 

Figure 7. Distribution of Similarity Values, English 

 

The accuracy evaluation focuses on finding a single threshold (i.e., a horizontal line 

here) that separates same-register and different-register pairs. The practical value of corpus 

similarity measures, however, is in the full range of values. We notice, for example in reference 

to the Italian data in Figure 5, that the accuracy metric is lowered by cases like WK-WK and 

TW-CC, two sets of pairs that have comparable distributions of similarity measures. 

This section has explored the distribution of similarity measures further, with a focus on 

register-by-register results. We have seen that, in addition to making accurate predictions, 

corpus similarity measures provide a great deal of information about register variation itself 

when viewed in their continuous form. A complete set of language-specific figures is provided in 

the supplementary material. We also see that the potential internal variation caused by sub-

registers within the web corpora does not pose a problem for corpus similarity measures. 

 

5.3. Application to Less Common Languages 

 

This section examines a further question: how robust is this framework for corpus similarity 

when it is applied to previously unseen, less common languages? In this case, we look at eight 

Austronesian languages, half of which belong to the Polynesian sub-family. Two of these 

languages are relatively high-resource languages and have appeared in the previous 

experiments (Indonesian and Tagalog). But the rest are relatively low-resource languages that 

have not been included in the previous experiments. The question here is whether the 



performance on the high-resource members of this family actually extends to the low-resource 

members as well.  

The low-resource languages here do not have the same three comparable corpora used 

above (TW, CC, WK). Instead, there is an idiosyncratic mix of registers for each language. We 

evaluate corpus similarity in these language in a more difficult setting, with 10k word samples 

using character 4-grams. Because there is less data per language, we take a cross-validation 

approach and report the accuracies for each fold in Table 6. The number of registers per 

language is also shown, ranging from a wider prediction task (five registers for Tagalog) to a 

narrower prediction task (two registers for Malagasy). The performance is quite high, so that 

similarity measures are still able to predict register differences even in these low-resource 

languages. 

 

Table 6. Cross-Validation Accuracy for Less Common Austronesian Languages 

Name Family Registers N. Test CV 1 CV 2 CV 3 CV 4 CV 5 

Cebuano Austronesian 3 331 100% 100% 100% 100% 100% 

Malagasy Austronesian 2 243 100% 100% 100% 100% 100% 

Indonesian Austronesian 4 310 100% 100% 100% 100% 100% 

Tagalog Austronesian 5 328 100% 100% 100% 100% 100% 

Hawaiian Polynesian 2 31 100% 100% 100% 100% 100% 

Samoan Polynesian 3 199 100% 100% 100% 100% 100% 

Te Reo Māori Polynesian 2 31 100% 100% 100% 100% 100% 

Tongan Polynesian 3 185 100% 100% 100% 100% 100% 

This experiment is important because it shows that the performance within a language family 

extends from the high-resource languages previously considered to other low-resource 

languages in that family. The experiment also shows that the previous results do not depend on 

the specific three registers being tested. Here a different set of registers is used, still showing a 

high level of accuracy. While the previous comparable corpora were important for establishing 

cross-linguistic patterns, these results show that those patterns are not dependent on these 

specific corpora. 

5.4. Application to Non-Digital Registers 

In this section we conduct an additional experiment to determine whether these results 

generalize beyond the digital registers so far considered. In other words, it is possible although 

unlikely that these results are dependent on the fact that all three registers considered so far are 



drawn from digital sources. To test this, we bring together six corpora from written non-digital 

registers: the European Central Bank Corpus (Bank: Tiedemann, 2012); translations of the Bible 

(Bible: Christodoulopoulos & Steedman, 2015); a corpus of translated books (Books: 

Tiedemann, 2012); the GlobalVoices corpus of news and commentary articles (News: 

Tiedemann, 2012); the EuroParl corpus of parliamentary proceedings (EuroParl: Tiedemann, 

2012); and a corpus of TedTalks (Ted: Reimers & Gurevych, 2020). This experiment thus 

represents a wide variety of non-digital registers in English. 

We compare the similarity for each combination of these six registers using the above 

settings for English: 5k character four-grams (the same inventory) compared using Spearman’s 

ρ. The sample size is 10k words per observation. We create 100 random pairs of sub-corpora 

for each pair of registers, the same experimental design used above. The threshold for 

predicting that two pairs come from different registers is calculated once, using the T2 equation 

described above. We evaluate this threshold in two conditions: one-vs-one (i.e., distinguishing 

samples from Parliament from samples from Bank) and one-vs-all (i.e., distinguishing samples 

from Parliament from all other registers). This experiment thus allows us to evaluate how well 

these results generalize beyond digital registers as well as to a larger inventory of registers. 

Table 7. Corpus Similarity in English Beyond Digital Registers, Accuracy 

 Bank Bible Books News EuroParl Ted 
1-vs-ALL 

(700 pairs) 

Bank   100% 100% 100% 100% 100% 100% 

Bible     100% 100% 100% 100% 100% 

Books       100% 100% 100% 100% 

News         100% 100% 100% 

EuroParl           100% 100% 

Ted             100% 

The results, shown in Table 7, are robustly high across registers. While some pairs of registers 

are more similar (for example, EuroParl and Bank are the most similar), it remains the case that 

a simple threshold and Spearman’s ρ are able to distinguish between a larger inventory of non-

digital registers. These results thus show that the previous experiments generalize beyond 

digital contexts. 

 

 



6. Conclusions 

 

This paper has explored corpus similarity measures across 39 diverse languages. These 

measures have previously been studied almost exclusively in English; the languages in this 

paper, however, represent many language families, morphological systems, and writing 

systems. This is an important contribution because the robust performance across these 

experiments shows that corpus similarity measures are not dependent on ad hoc or non-

linguistic features specific to individuals sets of data. In other words, they generalize within and 

across languages. This is further shown by the robust accuracy obtained even with out-of-

domain features derived from independent registers for each language and when the measures 

are evaluated on previously unseen low-resource languages or on new sets of register-specific 

corpora. 

The experiments in this paper show that high accuracy is possible on a task of predicting 

whether two samples come from the same register or from different registers. The basic 

conclusion, then, is that frequency-based corpus similarity measures remain robust across 

languages. This is true even with out-of-domain feature selection and is verified on a separate 

held-out validation corpus. While the discussion has focused on certain languages, the 

supplementary material contains the full results for further inspection. 

Further, these measures are robust across languages when using a pre-defined feature 

space. We are thus able to release a Python package which contains everything necessary for 

using these measures, from preprocessing steps to the fixed n-gram features. This package is 

publicly available1. The important contribution of these experiments is to show that corpus 

similarity measures depend on properties of natural language data and do not depend on 

particular writing systems, particular types of morphology, or other properties of a single 

language family like Indo-European. In short, the experiments in this paper show that corpus 

similarity measures generalize well across new languages and across new corpora within a 

single language. 

The number of corpora available for linguistic analysis has been rapidly increasing. At 

the same time, the size of individual corpora has also been growing, with many corpora now 

containing billions of words. Given this situation, how do we select which corpus to analyze? 

Does a syntactic analysis of news articles extend to Wikipedia articles? Does a lexical analysis 

of social media data extend to internet forums or text messages? By comparing corpora in the 

 
1 https://github.com/jonathandunn/corpus_similarity  

https://github.com/jonathandunn/corpus_similarity


aggregate (Kilgarriff, 2001), corpus similarity measures allow us to systematically generalize 

corpus-based linguistic analysis. While previous work has been largely restricted to English, the 

experiments in this paper have shown that the same approach can be used on a diverse set of 

languages. This, in turn, is an important step for making corpus linguistics a multi-lingual 

discipline.  
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