
Correct-by-Construction Transformations across Design Environments for
Model-Based Embedded Software Development

M. Baleani∗, A. Ferrari∗, L. Mangeruca∗, A.L. Sangiovanni-Vincentelli∗,†,
U. Freund‡, E. Schlenker‡, H.-J. Wolff‡

∗ PARADES E.E.I.G., via San Pantaleo, 66, 00186 Roma, Italy
† EECS Dept., University of California at Berkeley, CA 94720, USA

‡ ETAS GmbH, Borsigstraße, 14, 70469 Stuttgart, Germany

Abstract

Embedded software design for real time reactive system
has become the bottleneck in the market introduction of
complex products such as automobiles, airplanes, and in-
dustrial control plants. In particular, functional correctness
and reactive performance are increasingly difficult to ver-
ify. The advent of model-based design methodologies has
alleviated some of the verification-related problems by mak-
ing the code-generation process flow automatically from the
model description. Given the relative infancy of this ap-
proach, several companies rely upon design flows based on
different tools connected together by file transfer. This way
of integrating tools defeats the very purpose of the method-
ology introducing a high potential of errors in the transfor-
mation from one format to another and preventing formal
analysis of the properties of the design. In this paper, we
propose to adopt a formal transformation across different
tools and we give an example of this approach by linking
two tools that are widely used in the automotive domain:
Simulink and ASCET. We believe that this approach can be
applied to any embedded software design flow to leverage
the power of all the tools in the flow.

1 Introduction

Embedded software design for real time reactive system
has become the bottleneck in the market introduction of
complex products such as automobiles, airplanes, and in-
dustrial control plants. Failures are unacceptable for safety-

This work has been partially supported by EC IST-2001-34820
(ARTIST), EC IST-2-004527 (ARTIST-II) and NFS ITR CCR-0225610
(CHESS). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

critical systems, such as transportation systems, and over-
engineering is unacceptable for systems with tight cost and
resource constraints. Embedded software must interact with
physical processes guaranteeing support for hard real-time
operation and concurrency. Due to the increasing complex-
ity and shrinking time-to-market, an effective methodology
must at all stages involve automatic and semi-automatic
support by software tools and favor code re-use.

Model based design is emerging as a solution to em-
bedded software design issues as witnessed by both acca-
demic [6] and industrial efforts [5]. The basic tenet of this
methodology is to move away from manual coding from in-
formal specifications by capturing embedded software func-
tional and non-functional requirements from abstract math-
ematical models. Clearly, a mathematical model offers a
common ground for a systematic and coherent integration
of diverse efforts in system specification, design, synthe-
sis (code generation), analysis (validation), execution (run-
time support), and maintenance (design evolution). To-
day, no single model exists that is agreed upon for embed-
ded software design, and flows are based on different tools
and models (e.g., in the automotive domain, UML-based,
Simulink, and ASCET models are commonly used to repre-
sent designs at different abstraction levels).

Integration is certainly possible at the code level, i.e. us-
ing C as a common language. However, code-level inte-
gration does have severe limitations. In the model-based
methodology, a design is usually represented as a set of
components interacting with each other and with the en-
vironment where a precise model of computation (MoC)
defines the behavior and interaction mechanisms of these
modules. The MoC describes how each component per-
forms internal computation, how components transfer in-
formation between them and how they relate in terms of
concurrency. When integrating executable models, there is
much more to tool inter-operability than just the definition

1530-1591/05 $20.00 © 2005 IEEE

of a common syntax or data exchange format: we cannot
leave aside how the different MoC relates. WhileC code
can be used effectively to represent the functionality of each
component, it can hardly be used to express formally their
composition (i.e. communication and concurrency). As a
consequence, code-level integration require manual integra-
tion to some extent and the need of extensively verifying the
correctness of models composition. Last but not least, code-
level integration actually prevents the use of analysis and/or
optimization techniques that may be applicable to the orig-
inal source model.

This calls for the integration of tools and design rep-
resentation using rigorous semantics. An example ofthis
approach is [1], an excellent paper about the model-based
transformation of a Simulink representation into a Lustre
representation. In this paper we present a similar correct-
by-construction approach to transformations across design
environments. To demonstrate this approach we chose two
tools (ASCET and Simulink) that are widely used in the
automotive domain. Our choice is motivated by the com-
plexity of the embedded software design problem in today
cars where premium cars feature up to 5 Giga-Byte of soft-
ware. The approach is based on the use of a common formal
model, namely the synchronous reactive model of computa-
tion, which is used as the common ground to interpret sys-
tem specifications given with different underlying models.
In particular, we build an SR abstraction of any given sys-
tem specifications. This abstraction removes some specific
aspects of the original models and this is the price to pay
to build a rigorous transformation. We made sure that the
behavior of each component is preserved and retain that de-
gree of coordination (i.e. communication and concurrency)
needed to ensure the functionality of the system.

The paper is organized as follows. In Section 2 we
briefly review the basic features of the MATLAB/Simulink
and ASCET design environments. In Section 3 the syn-
chronous reactive model of computation is introduced as
the basis for model transformation between the two envi-
ronments and in Section 4 the SR interpretation of ASCET
and MATLAB/Simulink specification is presented. In Sec-
tion 5 we demonstrate how ASCET models can be ported to
Simulink models andvice versain a consistent way using
the common SR semantics. Section 6 presents some final
considerations.

2 ASCET and Simulink Design Environ-
ments

ASCET [4] supports theTask Programming Model
(TPM) paradigm for single processor implementations of
embedded software controllers. According to TPM, system
specifications are given as a collection of software compo-
nents calledtasksand an appropriate scheduling policy. The

system specification in ASCET is called aprojectand con-
sists of a set ofmodules. Modules instantiateclassesand
defineprocesses. Classes are reusable components consist-
ing of variables and methods. Component state is held by
variables. Component outputs can be computed by calling
methods. Processes are methods defined in modules and can
call the methods defined by the classes instantiated within
the module. Processes communicate viamessages, which
are shared variables protected via local copy: each process
works on a local copy of its input/output messages. The
protection mechanism is guaranteed by the underlying op-
erating system (RTOS), which is assumed to be OSEK com-
pliant. Processes are scheduled within tasks that are sched-
uled by the RTOS on a time or event basis. The scheduling
mechanism is based on static priority with preemption.

MATLAB/Simulink [9] is a system specification, verifi-
cation, simulation and synthesis environment for real-time
systems. Its model of computation is discrete-time [2]. As
often is the case, the results from the “execution” of the
model depend on the scheduling algorithm of the simulator
that executes the model thus making the semantics of the
model not self-contained. This has three disadvantages: the
definition of the Simulink’s MoC is1) complex and difficult
to comprehend as a whole,2) can be significantly dependent
of the tool version and3) unexpected behavior can come up
from hidden implementation details of the simulator.

3 Formal Model

The formal model on which we base the correct-by-
construction transformations presented in this paper is the
synchronous reactive model of computation(SR MoC) [3].
It is a block-diagram formalism devised for specifying syn-
chronous real-time systems, where system specifications
are provided as an interconnection of blocks. The model
of time is discrete and represented as a totally ordered se-
quence of “ticks” (logical time).

Blocks can have state and their outputs can also be com-
binatorial functions of the inputs. Interconnections rep-
resent signals, that are defined as functions over the se-
quence of ticks. Interconnections are regarded as zero-
delay communication channels between blocks, unless one
or morememory elementsare introduced on the intercon-
nection channel, each one specifying a one-tick-delay.

The execution semantics of the SR model is based on
fixed-point computation, which is used to compute the sta-
ble point of the interconnected combinatorial functions at
every tick. When no combinatorial loop exists the fixed-
point computation reduces to causal computation: if some
output of a block is interconnected to some input of another
block, the former is required to execute before the latter.

The set of values that a signal can take up at each tick is
extended with a special symbol⊥ calledbottom. This way,

2

at each tick, all signals are assigned a value even though the
signal is actually undefined for that tick (in this case, we
assign the signal the⊥ value). SR blocks are allowed to
execute only when at least one input is different from⊥.

The choice of the SR MoC is dictated by its expressive-
ness, i.e. on the basis of what the model allows us to rep-
resent and how “economic” is this representation. The SR
MoC is a good match for control intensive systems, exactly
the ones that are specified in ASCET and Simulink (at least
for automotive applications). Particularly, the Simulink
model of computation is based on discrete time simulation
and it is fully compatible with the SR MoC, also discrete
time.

To better understand how SR and ASCET MoC relate,
we must dive in some more details into the TPM paradigm.
In general, the TPM can be regarded as an “asynchronous”
paradigm, in the sense that each task (or process) has inter-
nally no notion of synchronization with other tasks (or pro-
cesses). This makes the behavior of the system specifica-
tion dependent on implementation details such as execution
time and preemption. In fact, depending on tasks’ execution
time, the presence of preemption may invert the order of
process executions, which may differ from the causal order.
Moreover, preemption effects may even impair the consis-
tency of shared variables. This contrasts with the SR MoC
where the “atomic” execution of each block prevents inputs
to change during execution, and the behavior of the system
at each tick is determined by the fixed-point semantics.

Nonetheless, well-known techniques can be imple-
mented to enforce data consistency and a deterministic ex-
ecution order of tasks as dictated by causality. Notice that,
since tasks are executed once at each activation reference
no combinatorial loop exists and the causal order ensure the
convergence of the fixed point computation.

Our analysis focuses on single processor implementa-
tions as supported by ASCET. Since every single proces-
sor implementation is endowed with a global scheduler, we
resort to scheduling techniques such as priority assignment
and the priority ceiling protocol [8] for shared resources and
we define the procedure in Figure 1 to check (and possibly
enforce) whether the behavior of the system implementation
is consistent with the SR semantics. In [7] a more conser-
vative check is presented for fixed-priority scheduling with
lock-free data sharing.

The procedure of Figure 1 is based on the analysis of
data dependencies and priority assignment. WhenTEX and
TSEP cannot be measured, we can assume the worst case
given byTEX = ∞ andTSEP = 0. In such a case the al-
gorithm only checks (and possibly enforce) that the priority
assignment complies with the causal order, i.e. ifT1 sends
a message toT2, thenT2 must not be assigned a higher pri-
ority thanT1.

Figure 5 shows the task communication pattern, where

Def.1: let P (A) be the priority assigned to taskA.
Def.2: the duration of taskA is a known upper bound of the execution
time ofA when it completes execution without being preempted.
Def.3: let TEX(A) be an upper bound of the execution time of taskA.
This is a function of the durations of the tasks that can preempt taskA.
Def.4: let TSEP (A, B) be a lower bound of the time separation between
any activation time ofA and any activation time ofB, when the former
precedes the latter.
Step 1: build a dependence graph, where vertices represent tasks. Define
a directed arc from vertexA to vertexB if task A modifies a protected
resource accessed by taskB.
Step 2: label every directed arc fromA to B with LT =
TSEP (A, B) − TEX(A) and withLP = P (A) − P (B).
Proposition 1: If tasks, whose activations can be simultaneous, either
have different priorities (the execution order is fixed) or do not modify any
common shared resources (the execution order does not matter), a suffi-
cient condition for a single processor implementation to be deterministic
is that for every arc at least one ofLT andLP is non-negative.
Step 3: check that for every arc at least one ofLT andLP is non-negative.

Figure 1. Data dependency analysis algorithm

Mi represents a protected shared variable, and the corre-
sponding dependence graph. Since the arc fromT4 to T3
has both a negativeLP = 5−10 and a negativeLT = 5−7,
the implementation is not guaranteed to be deterministic,
because preemption may invert the order of task executions
with respect to the task activation order. After changing the
priority of T4 to 10, LP becomes0 on the loop and deter-
minism is ensured by the algorithm.

4 SR Interpretation of System Specifications

Every ASCET specification that is compliant with the
rules given in Section 3 can be interpreted within the SR
MoC. In fact, ASCET provides all the basic mechanisms,
i.e. variable protection, priority assignment, priority ceiling,
to ensure this compliance.

Let us start by looking at a simple example. An ASCET
specification of a seat-belt alarm controller is divided into5
modules, as shown in Figure 6, each consisting of a single
process. The task specification comprises5 different tasks
to accommodate the5 processes.

In ASCET the state of processes is represented by their
local variables. Communication between processes occurs
in ASCET via messages and shared variables. The AS-
CET interpretation of the seat-belt alarm controller example
within the SR MoC is shown in Figure 7. The interpretation
procedure is summarized by the rules in Figure 2.

Referring to Rule R1 and Figure 8, since processes are
assigned to tasks and the latter are executed on a given ac-
tivation reference, a “trigger” input signal is added to each
block in the SR model. By trigger, we mean a signal that

3

R1: Each ASCET process is mapped to an SR block as shown in Figure 8.
R2: ASCET messages and shared variables become SR channels.
R3: Memory elements are introduced to preserve scheduling order defined
in ASCET whenever a task sends a message to a higher-priority one.

Figure 2. ASCET to SR transformation rules

is defined only on ticks corresponding to the activation in-
stants and takes up the value⊥ otherwise. While the SR
block is executed at each tick, the role of the triggering sig-
nal, is to make the function defined by the ASCET process
be executed only when the trigger value is not⊥ (the func-
tion is not executed when all its inputs are⊥). In all other
cases, the SR blocks preserve the last computed values on
its outputs.

As far as Rule R3 is concerned, the higher-priority task
will be scheduled first using theold value of the message
written by the lower-priority task. This is modeled in the
SR MoC by the memory element that holds theold value
on the channel.

A Simulink 1 specification can be interpreted according
to the SR model in a simple way if at the top hierarchical
level every loop between blocks is broken by at least one
memory element. In this case no combinatorial loop can
exist and the blocks can be considered as SR blocks, while
the Simulink continuous time memory element can be trans-
posed into an SR memory element. To interpret triggered
blocks as SR blocks, the triggering signals must be consid-
ered as triggering inputs of the corresponding SR block.

An example of an SR interpretation of a Simulink speci-
fication is shown in Figures 10 and 11.

5 Model Transformation

5.1 Porting ASCET Projects to Simulink

The SR interpretation of Simulink specifications given
in Section 4 shows that SR specifications that do not have
combinatorial loops can be easily ported in Simulink by ap-
plying the rules in Figure 3.

Hence, any specification that can be interpreted with an
SR model that do not exhibits combinatorial loops can be
easily transformed into a Simulink model by deriving the
SR model of the specification and applying the transforma-
tion rules of Figure 3. In particular, given the ASCET SR
interpretation provided in Section 4, a correct by construc-
tion transformation from ASCET to Simulink is easily ob-
tained by applying the Rules in Figure 2 and Figure 3 in
sequence.

1We refer to Simulink V6.5 R14 version

R1: SR blocks can be introduced as Simulink blocks with the same
next-state and output functions,
R2: SR block interconnections correspond to Simulink interconnections.
R3: triggering inputs, if present, are mapped to triggers,
R4: Memory elements are mapped to Simulink continuous time memories.

Figure 3. SR to Simulink transformation rules

R1: Every SR block is mapped to an ASCET process.
R2: Interconnections between processes are realized in ASCET as
protected messages.
R3: ASCET processes corresponding to SR blocks with the same
triggering input are organized within the same task in a sequence that is
compatible with the causal order in the SR model.
R4: Triggering inputs become task activation references.
R5: Scheduling priorities are assigned so that ifB causally depends onA,
then either 1)A is assigned to a higher priority task thanB, or 2) A and
B have the same triggering input and are assigned to the same task with
A precedingB.

Figure 4. SR to ASCET transformation rules

Figure 9 shows the Simulink specification obtained by
the SR model of Figure 7, which in turn is the SR interpre-
tation of the ASCET project shown in Figure 6.

5.2 Porting Simulink Specifications to ASCET

The SR interpretation of ASCET specifications given in
Section 4 shows that SR specifications in which every block
has one triggering input and no combinatorial loop exists
can be easily ported in ASCET by applying the rules in Fig-
ure 4.

The priority assignment rule (R5) guarantees a suffi-
cient condition for the ASCET specification to comply with
the SR semantics. Observe that the algorithm of Figure 1
provides a less conservative condition for the priority as-
signment, that can be exploited whenTEX andTSEP are
known.

The above rules show that it is straightforward to define
a rigorous transformation of a Simulink specification to AS-
CET when the SR interpretation of the Simulink specifica-
tion is as introduced at the beginning of this section, i.e. at
the top hierarchical level every block is triggered and ev-
ery loop between blocks is broken by at least one memory
element.

The condition above is not restrictive. Indeed, SR blocks
without a triggering signal, as defined in Section 4, are exe-
cuted at every tick, which can be considered as their implicit
triggering input. From the TPM perspective this results in
an inefficient implementation. Nonetheless, in many cases

4

used in practice functional analysis of the SR block allows
to relax the triggering condition. Due to space limitations it
is not possible to discuss exhaustively how functional anal-
ysis can be carried out. As an example, consider a block
without triggering signals whose inputs all come from trig-
gered blocks. If the block modifies its state and outputs only
when its inputs change, then it is not necessary to execute
the block at every tick, because the block can be equiva-
lently executed on the triggering signals of its input blocks.

In Simulink a given triggered block can be activated by
several signals that are multiplexed into a single trigger. If
at a given simulation instant more than one triggering sig-
nal exhibits a triggering event and the block is not a State-
flow block, the triggered block is executed once. Since we
transform Simulink triggering signals into triggering inputs
and in the end into ASCET task activation references, we
need to assume that triggering signals of non-Stateflow trig-
gered blocks are never simultaneous. This is because in the
TPM model, tasks are not aware of simultaneous tasks acti-
vations.

The transformation of Simulink specifications to the
TPM model has been independently discussed in [7], where
the event-based SCADE simulation system is the target en-
vironment. In such work, different techniques are used for
preserving the synchronous semantics, that require a dedi-
cated RTOS support.

6 Conclusions

Using our method, model validation is not required each
time models are transformed across different design envi-
ronments. In fact, analysis and synthesis capabilities of the
tool to which the model is exported can be applied. For
example, a model imported from Simulink can be consis-
tently integrated with other models specified in ASCET to
produce an OSEK compliant application taking advantage
of ASCET automatic integration features.

We believe that future design flows will be based on a
similar approach. We envision that an intermediate format
with formal semantics for embedded software models could
be defined where the semantics of the different tools could
be embedded and manipulated easily. The existence of this
intermediate format with formal semantics does not guaran-
tee that mapping a model from an environment to another
is transparent. It will provide though an important bridge
to map one semantic model into another avoiding theN2

translation problem.

References

[1] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis.
Translating discrete-time simulink to lustre. InProceedings
of the International Conference on Embedded Software, 2003.

Task T1 T2 T3 T4

Period(ms) 1.0 1.0 10.0 10.0

Delay(ms) 0.0 0.5 0.0 5.0

Duration(ms) 0.3 0.3 2.0 1.0

TEX (ms) 0.3 0.3 8.0 7.0

Priority 25 50 10 5

Figure 5. Data dependency analysis example

Figure 6. Top view of ASCET specs

Figure 7. SR interpretation of ASCET specs

5

Figure 8. SR interpretation of ASCET pro-
cesses

Figure 9. Simulink model equivalent to ASCET
specs

Figure 10. Original Simulink specs

Figure 11. SR representation of Simulink
specs

[2] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-
Vincentelli. Design of embedded systems: formal mod-
els, validation, and synthesis.Proceedings of the IEEE,
85(3):366–390, Mar. 1997.

[3] S. A. Edwards and E. A. Lee. The semantics and execution of
a synchronous block-diagram language.Science of Computer
Programming, 48(1):21–42, jul 2003.

[4] ETAS. ASCET. http://www.etas.de.
[5] A. Ferrari, G. Gaviani, G. Gentile, G. Stara, L. Romagnoli,

and T. Thomsen. From conception to implementation: a
model based design approach. InIFAC Symposium on Ad-
vances in Automotive Control (IFAC-AAC’04), apr 2004.

[6] T. Henzinger, C. Kirsch, M. Sanvido, and W. Pree. From
control models to real-time code using giotto.IEEE Control
Systems Magazine, 23(1):50–64, January 2003.

[7] N. Scaife and P. Caspi. Integrating model-based design and
preemptive scheduling in mixed time- and event-triggered
systems. InProceedings of Euromicro Conference on Real-
Time Systems (ECRTS’04), 2004.

[8] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization.IEEE
Transactions on Computers, 39(9):1175–1185, Sept. 1990.

[9] The Mathworks. MATLAB/Simulink.
http://www.mathworks.com.

6

