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Abstract

Functional principal components (FPC) analysis is widely used to decompose and express

functional observations. Curve estimates implicitly condition on basis functions and other

quantities derived from FPC decompositions; however these objects are unknown in practice. In

this article, we propose a method for obtaining correct curve estimates by accounting for

uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals

that account for both model- and decomposition-based variability are constructed. Standard mixed

model representations of functional expansions are used to construct curve estimates and variances

conditional on a specific decomposition. Iterated expectation and variance formulas combine

model-based conditional estimates across the distribution of decompositions. A bootstrap

procedure is implemented to understand the uncertainty in principal component decomposition

quantities. Our method compares favorably to competing approaches in simulation studies that

include both densely and sparsely observed functions. We apply our method to sparse

observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses

and simulations is publicly available, and our method is implemented in the R package refund on

CRAN.
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1. Introduction

Functional principal components (FPC) analysis is a key tool in functional data analysis that

has applications in dimension reduction, estimation of curves in the presence of

measurement error, and the expression of traditional longitudinal data as sparsely observed

functional data. Despite the ubiquity of FPC analysis (hereafter FPCA) in the functional data

literature, principal components expansions are poorly understood in terms of their sources

of variability. In this article, we develop a method for the estimation of curves that accounts

for uncertainty in the model-based estimation of curve-specific scores for a particular FPC
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decomposition as well as uncertainty in the FPC decomposition itself. Further, we construct

confidence intervals for the curves that include both model-and decomposition-based

sources of variability.

Using FPCA, individual curves are expressed as a linear combination of population-level

basis functions and curve-specific scores. These scores can be predicted as the best linear

unbiased predictors (BLUPs) in a mixed model framework for a particular FPC

decomposition, which includes the basis functions and score variances. Thus FPCA allows a

parsimonious, nonparametric representation of functional data. Additionally, mixed model

results allow the construction of confidence intervals for estimated curves, again for a

particular decomposition. However, in practice the decomposition is based on the estimated

covariance structure of the population of curves and is subject to variability. This added

variability can be substantial in many settings, including when a small number of curves is

observed and when the curves are observed sparsely at the subject level, yet is often

overlooked. Accurate estimation and inference for functional expansions is important is

many scientific settings, such as understanding CD4 cell count trajectories in HIV positive

individuals based on infrequent measurements or quantifying intracranial white-matter

structure using diffusion tensor imaging (DTI).

Our proposed method explicitly conditions on a particular FPC decomposition when

predicting curve-specific scores and estimating the associated variability. Next, we use

iterated expectation and variance formulas to combine uncertainty in the conditional

estimates across the distribution of FPC decomposition objects (the basis functions, mean

function, measurement error and score variances, and the truncation lag). We use the

bootstrap to derive an empirical distribution of decomposition objects by resampling curves

with replacement and, for each sample, constructing an FPC decomposition. Thus, our

method accounts for two major sources of variability: (1) the model-based uncertainty

conditional on a particular decomposition; and (2) the uncertainty in the estimated FPC

decomposition objects. Moreover, it is applicable when curves are sparsely or densely

sampled, for small and large sample sizes and when the curves are measured with error.

FPCA has a long history in the statistical literature, dating at least to the treatment of growth

curves in Rao (1958). For a modern introduction to the topic, see Ramsay and Silverman

(2005, Chapter 8) or Jolliffe (2002, Section 12.3). Recently, Yao, Müller, and Wang (2005)

proposed the use of BLUPs to predict curve-specific scores for FPC expansions in a mixed

model framework; this approach is related to that of Shi, Weiss, and Taylor (1996) and Rice

and Wu (2001), in which curves are expressed using penalized spline bases in a mixed

model, but can be used when curves are sparsely observed. BLUPs have also been used in

multilevel and longitudinal FPC analysis by Di et al. (2009) and Greven et al. (2010),

respectively, to predict scores in more complex decompositions. The mixed model

framework has allowed the use of Bayesian techniques for FPCA (Crainiceanu and

Goldsmith 2010) and the joint modeling of curves and scalar outcomes in functional

regression models (Goldsmith et al. 2012). Asymptotic consistency and distributions of

scores predicted in the mixed model framework are developed by Yao et al. (2005), and

asymptotic properties of FPC decompositions are considered in Hall and Hosseini-Nasab

(2006). James, Hastie, and Sugar (2000) use a penalized spline approach to estimate FPC

basis functions directly, rather than through decomposing an estimated covariance matrix.

This article also uses the bootstrap to generate pointwise confidence intervals by taking the

empirical quantiles of estimated functions; importantly, this approach accounts for

uncertainty in the FPC decompositions, but not for model-based uncertainty. The bootstrap

is similarly used with functional data by Hall and Hosseini-Nasab (2006) to construct

confidence intervals for FPC basis functions, and by Crainiceanu et al. (2012) for inference

on the mean difference curve between two groups.
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As curves can be viewed as realizations from stochastic processes and thus as random

objects, it may be more appropriate to refer to “prediction intervals” than to “confidence

intervals” when providing bands for predicted curves. However, in keeping with existing

nomenclature (e.g., Yao et al. 2005), we will use the term confidence interval when referring

to bands for the curves without additional white noise error, in contrast to prediction

intervals including this additional variability source. This is also in line with the use of these

terms in the penalized spline literature (e.g., Ruppert, Wand, and Carroll 2003, compare

page 139), where random effects are used as a device in the modeling of curves, and the

term confidence rather than prediction interval is used when predicting curves without

additional noise.

The remainder of the article is organized as follows. In Section 2 we review FPCA and the

estimation of curves in a mixed model framework. Section 3 introduces our method for

including uncertainty in principal component expansions in the estimation of curves and

understanding the associated variability. Simulation results comparing several methods are

presented and discussed in Section 4. Two statistically and scientifically distinct applications

are considered in Section 5. We close with a discussion in Section 6.

2. Mixed Model Framework for FPCA

Given curves Yi(d), d ∈ [0, 1], for 1 ≤ i ≤ I, define the covariance operator ΣY (d, d′) =
Cov[Yi(d), Yi (d′)] so that ΣY (d, d′) is a bivariate function giving the covariance between

two locations on the same curve. Let  be the spectral decomposition

of ΣY (d, d′), where  are orthonormal eigenfunctions and λ1 ≥

λ2 . . . are the corresponding nonincreasing eigenvalues. Based on this decomposition, a

Karhunen–Loève expansion for Yi(d) is , where the

 are uncorrelated random variables with mean 0 and

variance λk , and μ(d) = E[Y (d)].

In practice, we observe the functions Yi(d) with error—that is, we observe Ỹi(d) = Yi(d) +

εi(d) where we assume that εi(d) ~ N[0, σ2]. Moreover, functions Yi(d) are observed on finite

grids  that are often sparse at the subject level. These practical concerns impact the

estimation of the mean function, the FPC decomposition, and the Karhunen–Loève

expansion. First, the mean function is estimated using penalized splines fit to the pooled

observations under working independence; the smoothing parameter is selected via

restricted maximum likelihood (REML). Next, we use a method of moments approach to

construct a raw estimate of the covariance matrix and smooth the off-diagonal elements to

obtain  (Staniswalis and Lee 1998; Yao et al. 2003). Smoothing of the raw

covariance matrix is performed using bivariate penalized splines, again with smoothing

parameters chosen via REML. For both the mean function and the covariance matrix, other

smoothing approaches could be used without modification of the underlying technique. The

retained estimated principal component basis functions 

and score variances  are based on the decomposition of ; the

estimate K̂ of the truncation K lag is the minimum number of components needed to explain

99% of the variability in the observed curves, although other methods for estimating K are

possible. The estimate of the covariance matrix ΣY (d, d′) is given by
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(1)

where  is a diagonal matrix with elements  based on the retained basis functions

and score variances. The measurement error variance σ2 is estimated as the average

difference between the middle 60% of diagonal elements of the raw covariance matrix and

; omitting the extreme diagonal elements provides more stable estimates of the

measurement error variance.

Numeric integration for the estimation of the scores may be inaccurate when the curves are

sparsely observed. With this in mind, Yao et al. (2005) predict scores ξi = {ξik : k ∈ K̂} using

BLUPs, effectively basing inference on the mixed model

(2)

where ξi and εi = {εi(di1), . . . , εi(diJi ) are independent. Notationally, let θ = {φ, μ, Λ, σ2, K}

be the collection of unobserved FPC decomposition objects: the basis functions ϕ evaluated

over the domain of d; the mean function μ evaluated over the domain of d; the matrix of

score variances Λ = diag{λ1, . . . λK}; the measurement error variance σ2; and the truncation

lag K. Similarly, let  be the estimated FPC decomposition objects. Also,

let  and dg be a dense grid on the domain of d, often taken as the union of the di.

In the following, Ỹi(di) will represent the vector of observations for curve i, the vector ϕk
(di) will be the kth basis function evaluated at locations di, and the Ji × K matrix ϕ(di) will

be the collection of basis functions evaluated at locations di. Analogous notation will

represent functions evaluated over the dense grid dg. We emphasize the conditioning on the

FPC decomposition objects notationally by conditioning on .

The estimated BLUPs for the loadings are

(3)

A truncated Karhunen–Loève expansion for the ith curve over the dense grid dg, based on

the objects estimated in the FPC decomposition and the predicted scores, is

(4)

Model-based covariances for the predicted scores are used to obtain the covariance operator

for the estimated curve

(5)

the curve-specific covariance in (5) is similar to the estimate of ΣY in (1), but is decreased

according to the term . This covariance focuses on the variability in the
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curve-specific expansion, and does not include uncertainty in the estimated overall mean

function . Next, approximate (1 – α)% level pointwise confidence intervals for the

predicted curves are given by

(6)

where Φ(·) is the standard Gaussian cumulative distribution function. Similarly, approximate

(1 – α)% level simultaneous intervals are given by

(7)

where  is the (1 – α) quantile of a chi-squared distribution with K̂ degrees of

freedom. The intervals in (6) and (7) are justified by asymptotic arguments in Yao et al.

(2005).

3. Correct Expansions and Inference

The mixed model framework developed in Section 2 explicitly conditions on the FPC

decomposition objects θ and, given the basis functions, mean function, score and

measurement error variances, and truncation lag, derives best linear predictors for curve-

specific loadings and variance estimates for functional expansions. When these elements are

fixed at their true values, standard mixed model results support the construction described

(Ruppert et al. 2003). In practice, the elements of the FPC decomposition are unknown and

must be estimated from the data. As noted, asymptotic work in Yao et al. (2005) can be used

to justify the above-mentioned construction for large samples, but this approach can lead to

a substantial understatement of the total variability in the estimated curves when the

uncertainty in the decomposition is high.

Our proposed method accounts for both model- and decomposition-based uncertainty in

estimating curves and in assessing the variability of these estimates. Briefly, the framework

described in Section 2 is used to construct estimates of curves and their associated

variability given a particular decomposition. Iterated expectation and variance formulas

combine model-based curve estimates and variances across the distribution of

decompositions to account for uncertainty in FPC decompositions. We implement a

bootstrap procedure to examine uncertainty in the distribution of decompositions; that is, we

resample curves with replacement and construct FPC decompositions based on the bootstrap

sample. Because we estimate all objects of the FPC decomposition θ = {ϕ, μ, Λ, σ2, K}

within each bootstrap sample, uncertainty in all of these objects is accounted for by our

method. Note that other approaches for assessing uncertainty in θ could be used without

altering the fundamental concept of combining two major sources of uncertainty in FPC

expansions.

More specifically, we draw a sample Ỹb of I functions from the full data Ỹ with

replacement. Based on this sample, we derive an estimate of the covariance operator  by

smoothing the off-diagonal elements of the raw covariance matrix and obtain an estimate of

the FPC decomposition objects . Conditioning on , we proceed as

in Section 2 and estimate the scores , curves , and variances

 for each element of the full data set Ỹ . Thus, resampling is
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used only to assess uncertainty in the decomposition—given each bootstrap decomposition,

estimates and variances are constructed for each curve Yi. Model-based expectations and

variances condition on a particular decomposition, but can be estimated for curves Yi that are

not contained in the bootstrap sample Ỹb.

Next, we combine information across bootstrap samples to estimate curves and construct

variability estimates that account for uncertainty in the FPC decompositions. First, we use

iterated expectations to estimate curves over the dense grid dg:

(8)

Thus, estimated curves are the mean of model-based estimates taken over the distribution of

decomposition objects in θ. This is estimated taking the average of the model-based

estimates across our bootstrap samples. The total covariance operator of the estimated

curves is based on the iterated variance formula:

(9)

We make several remarks regarding (9). We first emphasize that  and Yi(dg) are

expanded using different mean and basis functions: the former is expanded in terms of

estimated objects in  while the latter is expanded using true objects in θ. In practice we

approximate the conditional variance  using the model-based

variance in (5) for each bootstrap sample, understanding that this form incorrectly assumes

the same expansion for both  and Yi(dg). We then average the model-based variances

across bootstrap samples to reflect the outer expectation with respect to . Similarly the

conditional expectation  includes the bias that is induced by

expanding  in terms of the estimated objects . We estimate this bias by taking the

difference of  and , where  and  are the decompositions based on

the bootstrap and full data, respectively, and consider the variance of this bias across

bootstrap samples. Taken together, (9) combines the expected variation in the estimation of

curves given a particular decomposition and the variability of the bias that stems from the

use of estimated decomposition objects.

Pointwise confidence intervals for the predicted curves are given by

(10)

Simultaneous confidence intervals for FPC expansions are constructed similarly to intervals

for penalized splines (Ruppert et al. 2003). Specifically, a 100(1 – α)% simultaneous

confidence interval for Yi(dg ) is given by

(11)

where m(1–α) is the (1 – α) quantile of the random variable

Goldsmith et al. Page 6

Biometrics. Author manuscript; available in PMC 2014 March 23.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(12)

To estimate m(1–α), we note that Ŷi(dg) – Yi(dg) is approximately multivariate normal

centered at 0 and with the total covariance:

(13)

We repeatedly draw functions with the estimated covariance from this distribution, and for

each draw calculate the resulting value of (12); the (1 – α) quantile of these values is used as

an estimate of m(1–α). Because this sampling is done only once after all bootstrap samples

have been used, estimating simultaneous intervals does not add considerably to the total

computation time of this approach.

The construction of pointwise intervals in (10) and simultaneous intervals in (11) is based on

the variance Var[Ŷi(dg) – Yi(dg)] of the curve estimate constructed using iterated

expectations in (8). In practice, we approximate this by the total variability of the model-

based estimate . Construction of confidence intervals also assumes

that the estimated curve averaged over the distribution of FPC decompositions is

approximately normally distributed around the true curve. However the distribution of

curves may exhibit skewness, overdispersion, or multimodality; in this case, the expected

value and variance defined in (8) and (9) may not completely specify the distribution.

Alternatively, one might pose more flexible parametric distributions or use empirical

distributions to describe the behavior of curves accounting for variability in FPC

decompositions. However, asymptotic results in Yao et al. (2005) justify the normal

distribution for large sample sizes, and simulation studies in Section 4 indicate that the

normality assumption is reasonable and provides confidence intervals that achieve the

nominal coverage in a variety of situations, including small sample sizes and sparse

observations.

4. Simulations

In this section, we conduct a simulation study to examine the accuracy of the estimated

curves and the coverage probabilities of confidence intervals based on our proposed method.

We construct data sets using the following model

for d observed on the dense equally spaced grid dg = {(t – 0.5)/50, t = 1, . . . , 50}, 

and εi(d) ~ N[0, σ2]; two scenarios for the distribution of scores ξi are given below. The

eigenfunctions are taken to be

and the variances are . Two hundred such data sets are constructed for all

possible combinations of the scenarios below:

1. Sample sizes (a) I = 20; (b) I = 50; (c) I = 100;
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2. Measurement error variances (a) σ2 = 0.0005; (b) σ2 = 0.0025; (c) σ2 = 0.01;

3. Number of points observed per curve (a) Ji = 50; (b) Ji = 20; (c) an unbalanced

design. For the unbalanced design, the number of points observed per curve follow

a Pois[λ = 15] distribution; for sparse designs (b) and (c), the locations of observed

points are uniformly distributed within dg.

4. 4. a) Normally distributed scores: ξik ~ N[0, λk]; b) Non-normally distributed scores

(mixture of normals): ξik drawn with equal probability from either

 or .

This gives a total of 54 possible designs. Additional simulations presented in the

supplementary material use K = 2 and K = 6 to examine the effect of changing the number of

components on the relative performance of several inferential approaches; the results of

these analyses are similar to those given below.

For each data set, we estimate curves and construct 95% pointwise confidence intervals

using the method described in Section 3 with 100 bootstrap samples per data set; additional

unreported simulations indicate that this number of bootstrap samples is sufficient to

understand the uncertainty in the estimation of FPC decomposition objects in the scenarios

we consider. We estimate curves and confidence intervals using three methods: (i) the

iterated expectation and variance method proposed in Section 3, labeled “IV” in Figures,

Tables, and the text below; (ii) the mixed model approach estimating the FPC

decomposition objects θ from the data, labeled “ ”; and (iii) the mixed model

approach fixing the FPC decomposition objects θ at their true values, labeled “MM – θ”. In

addition, when examining pointwise intervals we consider using the 2.5% and 97.5%

quantiles of the curves estimated within each bootstrap sample, labeled “Naive Bootstrap.”

Table 1 provides the average mean squared error

 of the curves estimated from IV, ,

and MM – θ approaches using non-normally distributed scores (results for normally

distributed scores are similar and reported in the online Appendix). For reference on the

values in this table, Figure 1 displays two examples of simulated curves, the observed data

points, and curve estimates with the MSE for each estimate.

The example in the left panel comes from a simulation with I = 20, Ji = 20, and σ2 = 0.01,

while the example in the right comes from a simulation with I = 50, Ji = 50, and σ2 =

0.0025.

For densely observed curves, Table 1 indicates that the IV and  approaches have

similar performances, but that the IV method modestly outperforms the model-based

approach when curves are sparsely observed. For the unbalanced design, some MSE's are

quite large; this stems from estimating the measurement error variance to be zero and

dramatically overfitting the observed data. In practice, these situations would be clear

aberrations and other solutions (such as fixing σ2 to be positive) could be implemented. As

expected, performance improves as sample size increases and when the measurement error

variance is smaller.

Next we consider inference on estimated curves. Table 2 displays the average coverage,

taken across all grid points and all subjects, of pointwise confidence intervals for simulation

scenarios with non-normally distributed scores (again, results for normally distributed scores

are similar and reported in the online Appendix).
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The results in Table 2 demonstrate the reliability of the IV method, with coverages between

92.8 and 98.5 for all simulation scenarios. Lower coverages are observed for both the naive

bootstrap method and the  approach, particularly for smaller sample sizes and

sparser observations.

The naive bootstrap and  approaches each consider only one important source of

variability: the naive bootstrap approach captures uncertainty in the FPC decomposition

objects θ but does not consider the model-based uncertainty in the estimation of the scores,

while the  approach includes the model-based variability in the subject-specific

scores but does not consider uncertainty in the decomposition objects. As the sample size

increases, θ is better estimated, so the coverage of the  approach that conditions on

this estimate improves. For the naive bootstrap interval, coverage decreases as sample size

increases because θ is better estimated within each bootstrap sample, which provides more

stable estimates of individual curves across samples. Thus, the bootstrap estimates

themselves show lower variability, but do not reflect the uncertainty in the predicted curve-

specific scores. Interestingly, coverage for the  method decreases as the

measurement error variance decreases. For scenarios in which the true measurement error

variance σ2 is small, this parameter is often estimated to be zero. When this happens,

confidence intervals estimated using the  approach are degenerate and coverage

probabilities are zero. Finally, the MM – θ method attains the nominal coverage in all

situations, which illustrates that the low coverages in the asymptotic approach are not caused

by the mixed model framework, but by uncertainty in the FPC decomposition objects.

Table 3 provides the average coverage of simultaneous confidence intervals taken over all

grid points and subjects. For the IV approach, these intervals are constructed using the

quantile estimate procedure described in equations (11)–(13) in Section 3. For the 

and MM θ methods, simultaneous intervals are given by equation (7) in Section 2.

The coverage of the IV method is somewhat lower for simultaneous intervals than for

pointwise intervals, with values ranging between 84.9% and 97.3%; in general, however, the

intervals approach nominal coverage. On the other hand, the  approach has

substantially worse performance in many scenarios with coverages as low as 13.2%. The

effect of low measurement error variance on decreasing coverage probabilities using the

mixed model approach is more evident for simultaneous intervals than for pointwise

intervals, particularly for sparse data scenarios. Results for the MM – θ method indicate that

intervals constructed using equation (7) are in fact conservative, with coverages of

approximately 98.2% for all simulation scenarios. In the Web Appendix, we discuss the

adaptation of the quantile estimation procedure used to construct simultaneous intervals for

the IV method to the  and MM – θ methods. Additional simulations indicate that

using the quantile estimation procedure, rather than the χ2 quantile in equation (7), produces

confidence intervals with nominal coverage for the MM – θ approach, although coverages

for the  method drop to as low as 8.8%.

Figure 2 illustrates the results in Tables 2 and 3 by examining a single curve in a data set

with I = 20, Ji = 20, and σ2 = 0.01. Shown in the left panel of this figure is the true curve

Yi(d), the observed points and the estimated curves within each bootstrap sample. This panel

illustrates the amount of variability in the estimated curve based on uncertainty in the FPC

decomposition objects θ. Displayed in the middle panel for the same curve are the 95%

pointwise confidence intervals based on the IV approach, the  method, and the

quantiles of the bootstrapped curve estimates. The naive bootstrap approach does not

consider model-based variance in the estimated scores, while the  approach ignores
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variability in . In the right panel are the simultaneous confidence intervals given by the IV

and  approaches. Pointwise and simultaneous confidence intervals based on the

model-only approach are narrower than those based on the iterated variance approach, and

do not achieve nominal coverage level.

The improvements in average mean-squared errors and coverage probabilities for the IV

approach over the  method incur computational costs. Estimation of decompo sition

objects requires bivariate smoothing of a covariance matrix, which can be computationally

expensive and must be repeated for each bootstrap sample. The time needed to complete this

step will increase with the number of points in dg and with the number of knots used in the

bivariate smoothing. However, in the scenarios we consider estimating the decomposition

objects takes between 4 and 6 seconds for each iteration, making the proposed IV approach

computationally feasible.

5. Applications

In this section we consider two statistically and scientifically distinct applications. First, we

treat longitudinal observations of CD4 cell counts as sparsely observed functional data;

second, we consider densely observed white-matter tract profiles. Both data sets and the

code implementing our analyses are available online.

5.1 CD4 Data

Human immune deficiency virus (HIV) attacks an immune cell called the CD4 cell and

thereby decreases an affected individual's response to infectious agents. Because of this,

CD4 cell count per milliliter of blood is a useful surrogate measure for the progression of

HIV. In this data set from the Multicenter AIDS Cohort Study (MACS), we observe CD4

cell counts for 366 infected individuals in a traditional longitudinal study (Kaslow et al.

1987). That is, subjects were observed at roughly semi-annual visits with varying numbers

of visits per subjects: there are a total of 1888 data points, with between 1 and 11

observations per subject and a median of 5. CD4 counts are plotted against months since

serocon-version (the time at which HIV becomes detectable) in the top-left panel of Figure

3, with a randomly selected subset of patients highlighted in red. Longitudinal data analysis

approaches to this study are presented in Diggle et al. (1994), and the treatment of a related

data set as sparsely observed functional data is given in Yao et al. (2005).

In this application, we wish to estimate the continuous trajectory of CD4 cell counts over

time based on a limited number of observations for each subject. FPCA offers a powerful

tool for estimating population-level trends by using the dense collection of observations

across subjects and predicting subject-specific functions using a mixed model framework.

The predicted functions are subject to model-based variability as well as uncertainty in the

FPC decomposition. This second source of variability can be particularly important when

functions are sparsely observed at the subject level. Here we analyze the CD4 cell count data

using both the IV method developed in Section 3 and the  method. Both approaches

are implemented on the full data set as well as the randomly selected subset of 25

individuals to demonstrate the effect of sample size in the analysis of sparse functional data.

Results of the CD4 cell count application are shown in Figure 3. The top-left panel plots the

CD4 cell counts against months since seroconversion, highlighting the sample used in the

subset analysis. Curve estimates and intervals for a single subject in the subset analysis are

provided in the top-right panel of Figure 3. Simultaneous intervals are constructed using

resampling procedure for the IV approach and using the asymptotic interval given in (7) for

the  method. For this subject, the estimated CD4 cell count trajectory using the IV
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method is lower for months –18 to –10 and higher for months 0 to 12 than the trajectory

estimated using the mixed model approach. In these times, the pointwise and simultaneous

confidence intervals constructed using the IV approach are much wider than those

constructed using the  framework. For example, using the method proposed in

Section 3, at month –18 this subject's CD4 cell count is estimated to be approximately 2600

CD4 cells per milliliter of blood with upper and lower bounds of 3300 and 1900; using the

mixed model approach, the CD4 cell count is estimated to be 2800 with bounds 3100 and

2500. Further, using the upper bound of the simultaneous interval to estimate the month in

which CD4 cell count drops below 1500 per milliliter would yield month 10 under the IV

method and month 4 under the  approach. Thus, inference for a subject's CD4

trajectory can change dramatically depending on the procedure used to construct mean and

variance estimates.

In the bottom-left panel, we compare the widths of point-wise confidence intervals yielded

by the IV and  approaches. For the full data analysis, intervals resulting from the

proposed method have a similar width as those from the mixed model approach, but are up

to 1.18 times as wide for months (36, 42) where there are fewer observations across

subjects. In the analysis of the randomly selected 25 subjects, pointwise confidence intervals

resulting from the IV approach are up to 1.52 times wider than those from the 

method, and are on average 1.21 times wider. Similarly, a comparison of the average widths

of simultaneous confidence intervals given by the two methods is shown in the bottom-right

panel of Figure 3. The relationship between the widths of simultaneous intervals is similar to

that for pointwise intervals for the sampled data. For the full data analysis, the intervals

given by the IV approach are in fact slightly narrower than those for the  method;

recall that simulations indicated that the simultaneous intervals in (7) may in fact be

conservative asymptotically, while the IV simultaneous intervals could attain coverages

slightly under the nominal level. Generally, these results indicate that ignoring the

variability in the FPC decomposition can substantially understate the total variability in

estimated curves for small samples and sparse data.

5.2 White-Matter Tract Data

Next, we consider a neuroimaging study of white matter tracts in multiple sclerosis (MS)

patients and healthy controls. Intracranial white-matter consists of tracts or bundles of

myelinated axons that carry electrical signals between areas of the brain. Major examples of

white matter tracts are the corticospinal tracts, which connect the motor cortex to the spinal

cord, and the corpus callosum, which bridges the left and right hemispheres. MS is an

autoimmune disorder that results in white matter lesions, axonal damage and demyelination,

and can lead to severe patient disability. DTI is an MRI modality able to resolve individual

tracts by tracing the diffusion of water, which tends to be anisotropic within white matter

tracts and isotropic elsewhere in the brain (Basser, Mattiello, and LeBihan 1994; Mori and

Barker 1999; Basser et al. 2000; LeBihan et al. 2001). Fractional anisotropy (FA) is one of

several quantities derived from DTI scans that measures overall anisotropy, and may be

decreased in MS patients.

Our data set consists of 42 healthy controls and 100 MS patients, for whom we observe FA

values sampled densely at 55 locations along the right corticospinal tract. The top-left panel

of Figure 4 displays these FA profiles, separating MS patients and healthy controls. There is

significant variability in tract profiles comparing subjects, as well as apparent measurement

error in the observed FA values. In addition, 35% of subjects are missing observations for at

least one tract location, and 17% of subjects are missing observations for five or more

locations. For all subjects, any missing values are consecutive and begin at tract location 0,

so that missingness is clustered at the beginning of the tract.
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Because tract profiles are affected by disease progression, they are useful biomarkers and

have been related to patient disability (Goldsmith et al. 2011). The goal of this analysis is to

understand the total variability in tract profile estimates using FPCA. We compare the

proposed IV method to the standard  approach to assess the contribution of

decomposition-based uncertainty on overall variability in estimated curves. Additionally, to

examine the effect of sample size when curves are densely sampled, we conduct our

analyses on both the full data set and on the subset of healthy controls.

Figure 4 shows the results from the analysis of the DTI tract data.

A comparison of the relative widths of pointwise confidence intervals constructed using the

IV and  methods is given in the top-right panel of Figure 4. In the full data analysis,

the IV method results in confidence intervals that are on average 1.12 times wider than those

given by the  approach. When considering the 42 healthy controls only, the IV

approach produces intervals that are on average 1.40 times wider than those for the 

approach. The comparison of the intervals yielded by these methods illustrates that, even for

densely sampled observations, the mixed model approach that conditions on a single

decomposition can significantly understate the total variability by neglecting the uncertainty

in the FPC decomposition objects.

A demonstration of the difference between the IV and  approaches is given in the

bottom panels of Figure 4 using the tract profile of a single healthy control. On the left are

the estimated curves and pointwise confidence intervals from the analysis based on the 42

healthy controls only; the interval based on the IV method is substantially wider at several

locations on the tract, particularly near 0.0, 0.6, and 0.8. In addition, the curve estimated

using iterated expectations falls outside the pointwise confidence interval given by the

 approach at several locations between 0.5 and 0.8. On the right are the estimates

and pointwise intervals from the full data analysis, showing that the two approaches provide

more similar intervals when a larger sample size is used. Thus for small sample sizes,

accounting for the uncertainty in the FPC decomposition by using the IV method results in

noticeably wider confidence intervals; as the sample size increases, the decomposition

uncertainty decreases and the IV and  methods yield more similar results.

6. Discussion

FPC analysis is ubiquitous in functional data analysis. FPC decompositions are estimated

from the data, and curves are expressed using a truncated Karhunen–Loève expansion with

curve-specific scores predicted from a mixed model that conditions (often implicitly) on the

estimated decomposition. Previous work on estimation and inference for FPC expansions

has focused on the model-based prediction of scores and the associated variability without

including the uncertainty in the FPC decompositions. In many cases, including small

samples or sparsely observed curves, this second source of uncertainty is non-negligible.

In this article, we propose a method for estimating curves and understanding the variability

of those estimates that accounts for both model- and decomposition-based uncertainty.

Specifically, we use iterated expectations to average model-based estimates that condition

on specific decompositions across the distribution of those decompositions; similarly, the

iterated variance formula provides correct inference by combining both sources of

uncertainty. A bootstrap procedure provides an empirical distribution of the FPC

decompositions. Simulations demonstrate the accuracy of our method, both in terms of the

MSEs of estimated curves and in terms of the coverage of associated confidence intervals.

We apply our method to two statistically and scientifically distinct data sets, one using
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longitudinally observed CD4 cell counts as sparse functional data and the other using

partially unobserved tract profiles from a neuroimaging study. An R implementation of our

method is given in the refund package on CRAN (Crainiceanu et al. 2011).

Future work may proceed in several directions. The proposed method assesses uncertainty in

the FPC decomposition through the bootstrap; alternatively, one could use a probabilistic

model for the unknown objects in the decomposition. Such an approach could be integrated

seamlessly with the methods developed here, but the specification of an appropriate model

for the unknown objects is a difficult challenge. Inference for more complex FPC-based

methods may be improved through the extension of iterated expectation and variance

formulas. For instance, longitudinal functional principal components analysis (LFPCA)

decomposes repeated observations of curves into baseline subject-specific components,

time-varying subject-specific components, and subject-visit-specific components (Greven et

al. 2010); including model-and decomposition-based variability will improve the

understanding of uncertainty in this scientifically useful setting. Additionally, the proposed

method has focused on uncertainty in the Karhunen–Loève expansion arising from both

model-and decomposition-based variability, but it does not address the model-based

uncertainty in the estimation of the mean function. Correctly including this source of

variability may increase the accuracy of the estimated curves and confidence intervals,

particularly in cases where the estimate of the mean function may be poor.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Comparison of three methods for estimating curves: the proposed iterated expectation

method (“IV”), the model-only approach estimating θ from the data “( )”, and the

mixed model approach fixing θ at the truth (“MM – θ”). The left panel displays a curve from

a simulated data set with I = 20, Ji = 20, and σ2 = 0.01; the right panel comes from a

simulation with I = 50, Ji = 50, and σ2 = 0.0025. MSEs are provided for each estimate. This

figure appears in color in the electronic version of this article.
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Figure 2.

Illustration of the proposed inference method using a single function. The left panel shows

the true curve, the observed points as dots, and the within-bootstrap sample estimated curves

overlayed. The middle panel shows pointwise confidence intervals based on the iterated

variance (“IV”) approach, the mixed model method (“ ”) and the quantiles of the

bootstrapped estimates (“Bootstrap”). In the right panel are simultaneous confidence

intervals from the IV and  approaches. This figure appears in color in the electronic

version of this article.
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Figure 3.

Results from analysis of CD4 cell count data. The top-left panel shows the observed CD4

counts; a random sample of 25 subjects is highlighted. The top-right panel shows the

estimated curves (“Est”) for a single CD4 trajectory based on the sampled subjects and full

data set using the iterated approach (“IV”) and the mixed model approach (“ ”); also

shown are pointwise (“PW Int”) and simultaneous (“Simul Int”) confidence intervals. The

bottom-left and bottom-right panels compare the width of pointwise and simultaneous

confidence intervals, respectively, for the IV and  approaches averaged over all

subjects; comparisons for the full and sampled data are given. Simultaneous intervals are

constructed using the resampling procedure in Section 3 for the IV method and using the

interval in (7) for the  method. This figure appears in color in the electronic version

of this article.
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Figure 4.

Results from analysis of DTI tract data. The top-left panel shows the observed profiles for

all subjects with healthy controls highlighted. The top-right panel compares the width of

confidence intervals for the  and IV approaches averaged over all subjects; analyses

of the full data and healthy controls only are provided. The bottom-left and bottom-right

panels show the estimated curves and pointwise confidence intervals for a single function

based on the healthy controls and full data set, respectively; estimates are constructed using

both the iterated approach (“IV”) and mixed model (“ ”) approaches. This figure

appears in color in the electronic version of this article.
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Table 1

100 × AMSE, taken over all grid points and subjects, of estimated curves constructed using the proposed

iterated expectation method (“IV”), the mixed model approach estimating θ from the data , and the

mixed model approach with θ fixed at the true value (“MM – θ”). Curves are sampled with Ji = 50, Ji = 20,

and using an unbalanced design (“Unbal”)

IV MM − θ
^

MM – θ

Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal

I = 20; σ2 = 0.0005 0.006 0.200 0.535 0.006 0.222 0.805 0.004 0.013 0.035

σ2 = 0.0025 0.026 0.260 0.971 0.026 0.284 0.886 0.020 0.065 0.136

σ2 = 0.01 0.100 0.478 0.801 0.099 0.485 0.867 0.079 0.242 0.407

I = 50; σ2 = 0.0005 0.005 0.089 1.246 0.005 0.105 3.729 0.004 0.013 0.039

σ2 = 0.0025 0.023 0.144 0.396 0.023 0.162 1.576 0.020 0.063 0.142

σ2 = 0.01 0.087 0.335 1.009 0.088 0.349 0.643 0.079 0.237 0.419

I = 100; σ2 = 0.0005 0.005 0.055 0.280 0.005 0.066 1.161 0.004 0.013 0.040

σ2 = 0.0025 0.021 0.109 0.775 0.021 0.120 1.752 0.020 0.064 0.138

σ2 = 0.01 0.083 0.292 0.515 0.083 0.301 0.530 0.078 0.237 0.415
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Table 3

Average coverage of 95% simultaneous confidence intervals constructed using the proposed iterated variance

method (“IV”), the mixed model approach estimating θ from the data  and the mixed model

approach with θ fixed at its true value (“MM – θ”). Coverages are expressed as percents

IV MM − θ
^

MM – θ

Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal

I = 20; σ2 = 0.0005 93.4 98.2 97.3 81.7 13.2 17.4 98.0 98.1 98.3

σ2 = 0.0025 94.2 94.4 93.6 87.2 26.1 25.7 98.0 98.1 98.3

σ2 = 0.01 94.7 92.0 88.3 89.1 60.0 53.8 98.0 98.2 98.1

I = 50; σ2 = 0.0005 92.4 93.1 95.6 91.7 19.1 25.6 98.2 98.2 98.3

σ2 = 0.0025 94.0 86.6 87.9 94.3 42.7 40.9 98.3 98.2 98.2

σ2 = 0.01 94.4 92.7 90.3 94.9 83.1 77.3 98.3 98.2 98.2

I = 100; σ2 = 0.0005 92.4 85.7 90.0 94.8 20.2 31.5 98.3 98.3 98.3

σ2 = 0.0025 94.1 85.7 84.9 96.4 57.0 52.5 98.3 98.3 98.3

σ2 = 0.01 94.4 94.0 92.4 96.6 91.8 88.9 98.4 98.4 98.3
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