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The published manuscripts in the area of gyroscope theory were presented mainly by the simplified approaches in which
mathematical models contain many uncertainties. New research in machine dynamics opened breakthrough directions in
gyroscopic effects of rotating objects that give the correct solutions. The pioneering work meets many problems when solving
the scientific innovations that are accompanied by successes and omissions. New mathematical models for the gyroscopic
inertial torques were derived with incorrect processing of the integral equations that give distorted results. The gyroscopic
devices in engineering manifest gyroscopic effects as the action of the inertial torques which computing is crucial for
mathematical describing of their motions. The corrected mathematical processing of the equations for the inertial torques
acting in a gyroscope is presented in this manuscript.

1. Introduction

The dynamics of rotating objects is the most complex part of
engineering mechanics. Among the problems of the machine
dynamics, the gyroscopic effects stand out long time by their
being unsolved [1–4]. Physicists and mathematicians of the
different generations developed only partial analytical solu-
tions that do not solve the entire problem. The numerical
models for gyroscopic effects do not describe their physics
[5–11]. The unsolved nature of gyroscopic effects attracts
new researchers, which today publish many works of the
study gyroscopic problems [12, 13].

New investigations in the gyroscope theory showed the
physics of the gyroscopic effects and opened a new direction
in the dynamics of the mechanics [14–16]. The mathemati-
cal models for the gyroscopic effects show their complexity
in analytical processing based on several physical principles.
The physical laws of classical mechanics that were discov-
ered at different times formulated the gyroscope theory
and some of them were unknown to the scientist of the past
centuries. The scientists of our time did not use the basic
physical principles and methods for the formulation of the

gyroscope theory. The new study of gyroscopic effects shows
the action of the system of the inertial torques about axes of
rotations. The gyroscopic motions are kinetically interre-
lated by the principle of the energy conservation law. The
published mathematical models for inertial torques gener-
ated by the rotating mass of the spinning disc contain an
error in mathematical processing and an error in the title
[14, 16]. The incorrect expression of the inertial torque gen-
erated by the centrifugal forces of the spinning disc is Tct:x
= ð2π2/9ÞJωωx, that the real value is twice bigger. The title
of “common inertial forces” is not correct because, in reality,
it is the centrifugal forces acting around another axis. The
errors are mechanical and not principle.

All gyroscopic devices and rotating objects in engineer-
ing manifest gyroscopic effects as the action of the inertial
torques, which accurate computing is crucial for mathemat-
ical describing of their motions. The exact mathematical
models for gyroscopic inertial torques enable calculating
the angular velocities of the gyroscope around axes of rota-
tions. The known publications describe the gyroscope
motions by the action only of the precession torque of the
change in the angular momentum Tam:x = Jωωx [1–8]. This
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torque is one component of the system of inertial torque [14,
16] acting on gyroscopic devices and does not explain other
gyroscopic effects.

The manuscript contributions are presented by the cor-
rected inertial torques of the centrifugal forces acting around
two axes. The expression “the common inertial forces and tor-
que” is not correct and is removed from the text. The expres-
sion of the inertial torque generated by the Coriolis forces
remained the same but corrected the limits of the integral
equation for its solution. The corrected centrifugal inertial tor-
ques generated by the spinning rotor are represented practi-
cally in the mathematical modeling of gyroscope motions.

2. Methodology

The action of the external torque activates several inertial
torques on the spinning disc which manifests the gyroscopic
effects. The method of analytical solution for the gyroscopic
inertial torques produced by the centrifugal, Coriolis forces,
and the change in the angular momentum of the spinning
disc is presented in publications [14–16]. The inertial tor-
ques of the centrifugal and the Coriolis forces are generated
by the distributed masses of the disc and defined by the inte-
gral equations. Their mathematical models for the inertial
torques were obtained by the incorrect presentations of the
integral limits. Additionally, the centrifugal forces act
around two axes and one force was called the common iner-
tial force erroneously. The errors in the integral limits yield
the change in the expressions for the inertial torques that
are fundamental in gyroscope theory.

Analysis of the inertial torques, described in the manu-
script [14–16], shows their nature are the centrifugal and
Coriolis forces acting about two axes when the spinning disc
rotates about three axes. The action of these forces about one
axis produces the resistance and the precession torques
about two axes. The method for the solution for the inertial
torques generated by the centrifugal and Coriolis forces of a
spinning disc is described in detail in the publications
[14–16]. The corrected symbols of the inertial torques acting
on the spinning disc are presented in Figure 1.

Figure 1 shows the action of the torques and motions of
the spinning disc around axes. Where T is the external tor-
que; Tct . i,Tcr:i, and Tam:i are the inertial torques generated
by the centrifugal, Coriolis forces and the change in the
angular momentum acting about axis i, respectively; ω, ωx,
and ωy are the angular velocity of the disc about axis oz,
ox, and oy, respectively; R is the radius of the disc, and γ is
the angle of the inclination of the disc axle. The action of
the torques and motions of the disc are accepted as positive
in the counterclockwise and negative in the clockwise direc-
tions, respectively. These signs are presented in the subse-
quent analytical expressions.

2.1. The Inertial Torque Generated by Centrifugal Forces of
Rotating Mass Elements. The centrifugal forces generated
by the rotating mass elements m of the spinning disc dis-
posed on its radius ð2/3ÞR (Figure 2). The expression of
the m is m =MΔδ/2π, in which M is the mass of the disc
and Δδ is the sector’s angle of the mass element’s disposi-

tion. The expression of the centrifugal force of the rotating
mass element isf ct =Mð2/3ÞRω2Δδ/2π =MRω2Δδ/3π. The
centrifugal force acting along with axis oz has the following
expressions:

(i) For the axis ox

f ct:x = −
M
3πRω

2 sin αΔδ sin Δγ = −
M
3πRω

2 sin αΔδΔγ: ð1Þ

(ii) For the axis oy

f ct:x = −
M
3πRω

2 cos αΔδ sin Δγ = −
M
3πRω

2 cos αΔδΔγ: ð2Þ

where ω is the constant angular velocity of the disc; α
is the angle of the mass element’s disposition; Δγ is
the angle of turn for the disc’s plane (sin Δγ = Δγ
for the small values of the angle).

The centrifugal forces (Equations (1) and (2)) acting
around axes ox and oy are the same but change by the sine
and cosine laws. The expression of the inertial torque of
the centrifugal force generated by the mass element of the
spinning disc is

ΔTct: = f ct:xym, ð3Þ

where ym = ð2/3ÞR sin α and xm = ð2/3ÞR cos α is the dis-
tance of the mass element’s disposition relative to axes ox
and oy, respectively.

A distributed inertial torques, generated by the rotating
mass element, produce the concentrated load applied at the
centroids that are point A of Figure 2(a) and point B of
Figure 2(b), which is calculated by the known integrated
equation [1–3].

The steps of the mathematical modeling for the inertial
torques of the centrifugal forces are the same as presented
in the publications [14–16]. The comments on the mathe-
matical processing are omitted from consideration but are
given explanations.

The integrated components of the centrifugal forces act
on the centroids which expressions are

(i) For the axis ox

yA =
Ð π
α=0 f ct:zymdαÐ π
α=0 f ct:zdα

=
Ð π
α=0 M/3πð ÞRω2ΔδΔγ sin α 2/3ð ÞR sin αdαÐ π

α=0 M/3πð ÞRω2ΔδΔγ sin αdα

= M/3πð ÞRω2ΔδΔγ
Ð π
α=0 2/3ð ÞR sin2αdα

M/3πð ÞRω2ΔδΔγ
Ð π
α=0 sin αdα

= 2/3ð ÞRÐ πα=0 1/2ð Þ 1 − cos 2αð ÞdαÐ π
α=0 sin αdα

:

ð4Þ
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(ii) For the axis oy

yA =
Ð π
α=0 f ct:zymdαÐ π
α=0 f ct:zdα

=
Ð π
α=0 M/3πð ÞRω2ΔδΔγ cos α 2/3ð ÞR cos αdαÐ π

α=0 M/3πð ÞRω2ΔδΔγ cos αdα

= M/3πð ÞRω2ΔδΔγ
Ð π
α=0 2/3ð ÞR cos2αdα

M/3πð ÞRω2ΔδΔγ
Ð π
α=0 cos αdα

= 2/3ð ÞRÐ πα=0 1/2ð Þ 1 + cos 2αð ÞdαÐ π
α=0 cos αdα

= R/3ð ÞÐ πα=0 1 + cos 2αð ÞdαÐ π
α=0 cos αdα

:

ð5Þ

where the expression f ct:z is accepted as constant
for Equations (4) and (5), the expressionssin2α =
ð1‐cos 2αÞ/2 and cos2α = ð1 + cos 2αÞ/2 trigono-
metric identities that are replaced in the equations.

The differential forms of integral equations for the iner-
tial torque generated by the centrifugal forces (Equation (3))
are presented by the integral forms:

(i) For the axis ox

ðTct

0
dTct = −

MRω2

3π ×
ðπ
0
dδ ×

ðγ
0
dγ ×

ðπ
0
cos αdα

× R
Ð π
0 1 − cos 2αð Þdα
3
Ð π
0 sin αdα

:

ð6Þ
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Figure 2: Schematic of acting centrifugal forces, torques, and motions of the rotating disc about axis ox (a) and axis oy (b).
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Figure 1: External and inertial torques act on the spinning disc.
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(ii) For the axis oy

ðTct

0
dTct = −

MRω2

3π ×
ðπ
0
dδ ×

ðγ
0
dγ ×

ðπ
0

− sin αda
R
Ð π
0 1 + cos 2αð Þdα
3Ð π0 sin αdα

:

ð7Þ

The solutions of integrals Equation (6) and (7) are
as follows:

(iii) For the axis ox

Tct
Tct
0

��� = −
MRω2

3π × δ π
0jð Þ × γ

γ
0
��� �

× 2 sin α π/2
0
��� �R α − 1/2ð Þ sin 2α½ � π0j

−3 cos α π
0j

:

ð8Þ

(iv) For the axis oy

Tct
Tct
0

��� = −
MRω2

3π × δ π
0jð Þ × γ

γ
0
��� �

× cos α π
0jð ÞR α + 1/2ð Þ sin 2α½ � π0j

−3 cos α π
0j

,
ð9Þ

thus giving rise to the following:

(v) For the axis ox

Tct = −
MRω2

3π × π − 0ð Þ × γ − 0ð Þ × 2ð Þ 1 − 0ð Þ

× R π − 0ð Þ
−3 −1 − 1ð Þ = −

MR2ω2π

9 × γ:

ð10Þ

(vi) For the axis oy

Tct = −
MRω2

3π × π − 0ð Þ × γ − 0ð Þ × −1 − 1ð Þ

× R π − 0ð Þ
3 × 2 1 − 0ð Þ = MR2ω2π

9 × γ:

ð11Þ

Equations (10) and (11) are identical and contain the
variable angle γ that depends on the angular velocity ωx.
One expression of the inertial torques Tct with signs (+)
and (-) is used for the subsequent solutions.

The angle γ is variable and should be expressed by the
angular velocity of the disc about axis ox. The rate of change
in torque Tct per time is expressed by the differential equa-
tion.

dTct

dt
= ±MR2ω2π

9
dγ
dt

, ð12Þ

where t = α/ω is the time taken relative to the angular veloc-
ity of the disc, other parameters are as specified above.

The differential of time is dt = dα/ω ; the expression dγ
/dt = ωx is the angular velocity of the spinning disc about
axis ox. Substituting the defined components into Equation
(12) and transformation yield:

ωdTct

dα
= ±MR2ω2ωxπ

9 : ð13Þ

Separation of the variables of Equation (13), transforma-
tion, and presentation in the integral form with defined
limits yields

ðTct

0
dTct = ±

ðπ
0

MR2ωωxπ

9 dα: ð14Þ

Solving Equation (14) yields

Tct
Tct
0

��� = ±MR2ωωxπ

9 α π
0j , ð15Þ

giving rise to the following:

Tct = ±MR2ωωxπ

9 π − 0ð Þ = ±MR2π2ωωx

9 : ð16Þ

The torque generated by the centrifugal force acts on the
upper and lower and left and right sides of the plane of the
disc; then, the result of Equation (16) is multiplied by two.

Tct = ± 2 × 2 × π2MR2ωωx

9 × 2 = ± 4
9π

2 Jωωx, ð17Þ

where J =MR2/2 is the disc’s moment of inertia, the signs (-)
and (+) are for the resistance and precession torques acting
about axis ox and oy, respectively, other parameters are as
specified above.

The precession inertial torque acting about axing oy is
generated by the centrifugal force that is not the common
inertial force, which title is not correct. The expression of
the inertial torque (Equation (17)) is different from the
known publications [14, 16].

2.2. The Inertial Torque Generated by the Coriolis Forces of
Rotating Mass Elements. The change in the tangential veloc-
ity of the mass elements along the disc rotating about the
axis ox presents the Coriolis acceleration. The mass element
m (Equation (1)) rotates with the constant tangential veloc-
ity V . The change in the tangential velocity V along axis oz is
the acceleration of the mass element az .

ΔV = V sin Δγ, ΔV
Δt

=V
Δγ

Δt
, ΔV
Δt

= az ,
Δγ

Δt

= ωx, V = 2
3R cos α × ω, αz =

2
3Rωωx cos α,

ð18Þ

where az is the Coriolis acceleration of the mass element
along with axis oz, and Δγ is the angle of the turn of the
disc’s plane around axis oy (sin Δγ = Δγ for small values of
the angle).
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The expression for the Coriolis force of the mass element
is

f cr = −
M
2π × Δδ

2
3Rωωx cos α = −

M
3π × Δδ × Rωωx cos α,

ð19Þ

where all parameters are as specified above.
The expression of the inertial torque for the Coriolis

force generated by the mass element of the spinning disc is

ΔTcr: = f cr:zym, ð20Þ

where ym = ð2/3ÞR sin α is the distance of the mass element’s
disposition relative to axes ox.

The centroid for the torque ΔTcr is the point C of
Figure 3, which is defined by Equation (2).

yC =
Ð π
α=0 f cr:ymdαÐ π
α=0 f cr:dα

=
Ð π
α=0 MRωωx/3πð Þ × Δδ 2/3ð ÞR cos α sin αdαÐ π

α=0 MRωωx/3πð Þ × Δδ cos αdα

= MRωωx/3πð Þ × Δδ × 2/3ð ÞRÐ π0 sin αd sin α

MRωωx/3πð Þ × Δδ
Ð π
0 cos αdα

= 2/3ð ÞRÐ π0 sin αd sin αÐ π
0 cos αdα

:

ð21Þ

The differential form of integral equations for the inertial
torque generated by the Coriolis forces (Equation (20)) is
presented by the integral forms:

ðTcr

0
dTcr =

MRωωx

3π ×
ðπ
0
dδ ×

ðπ
0
− sin αdα

× 2/3ð ÞRÐ π0 sin αd sin αÐ π
0 cos αdα

:

ð22Þ

Solving integral Equation (22) yields

Tcr = −
MRωωx

3π × δ π
0jð Þ × cos α π

0jð Þ

× 2/3ð ÞR 2 sin2α/2
� �

π/2
0
��

2 sin α π/2
0
�� ,

ð23Þ

thus giving rise to the following:

Tcr =
MRωωx

3π × π − 0ð Þ × −1 − 1ð Þ

× 2/3ð ÞR × 1 − 0ð Þ
2 1 − 0ð Þ = −

2MR2ωωx

9 ,
ð24Þ

where all parameters are as specified above.
The inertial torque Tcr acts on the upper and lower sides

of the disc and the result of Equation (24) is multiplied by
two.

Tcr = −
2 × 2 × 2MR2ωωx

9 × 2 = −
8
9 Jωωx, ð25Þ

where all parameters are as specified above.
Equation (25) presents the Coriolis torque generated by

the rotating mass elements of the disc. The known publica-
tions [14–16] contain the same expression as Equation (25)
but there are the following differences. The mathematical
processing of the Coriolis torque in the publications
[14–16] does not have the consistency of the limits of the
integral equations. The centroid for the Coriolis torque is
accepted for the quarter of the circle that is not correct ana-
lytically. These two differences present mathematical incor-
rectness in publications [14–16].

The gyroscopic effects of the spinning disc are produced
by the corrected system of inertial torques presented in
Table 1.

2.3. Working Example. The spinning disc (Figure 1) of the
moment of inertial J = 5, 0 × 10−3 kg:m2 is running with
the angular velocity of 10 rad/s and precessing with an angu-
lar velocity of 0,003 rad/s. Determine the values of the
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Figure 3: Schematic of acting the Coriolis forces, torques, and motions of the spinning disc about axis ox.
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torques generated by the centrifugal and Coriolis forces.
Substituting the given data into Equations (17) and (25)
and transformation yield the following results.

(1) The torque Tct generated by the centrifugal forces

Tct =
4
9π

2 Jωωx =
4
9π

2 × 0, 005 × 10 × 0, 003

= 6, 579 × 10−4Nm:

ð26Þ

(2) The torque generated by Coriolis Tcr forces

Tcr =
8
9

� �
Jωωx =

8
9 × × 0, 005 × 10 × 0, 003

= 1, 333 × 10−4Nm:

ð27Þ

2.4. Dependency of the Angular Velocities of the Inning Disc
around Axes of Rotation. The mathematical model for the
gyroscope motion is formulated by the torques acting on it
and by the dependency of the angular velocities for the
motions of the gyroscope about axes of the 3D coordinate
system [16]. The expression of the angular velocities for
the motions of the spinning disc depends on its angle γ of
the inclination (Figure 1). The equality of the kinetic ener-
gies of the spinning disc is planned by the equality of the
inertial torques acting about axes ox and oy [16], which cor-
rected expression is

−
4π2

9 Jωωx −
8
9 Jωωx −

4π2

9 Jωωy − Jωωγ

= 4π2

9 Jωωx cos γ + Jωωx cos γ

−
4π2

9 Jωωy −
8
9 Jωωy:

ð28Þ

The right side of Equation (28) presents the resulting
torque acting about axis oy, which value of precession tor-
ques is less on the cosγ due to the inclination of the spinning
disc [15]. This torque generates the precession torques of the
centrifugal force and the change in the angular momentum
multiplied by cosγ. These precession torques act about axis
ox and are presented on the left side of Equation (28). The
value of Tp:y is less on the cosγ for the same reason because
all torques are projected on axes of the 3D coordinate sys-
tem. Simplification of Equation (28) yields

ωy cos γ = − 4π2 1 + cos γð Þ + 8 + 9 cos γ
� �

ωx, ð29Þ

where the sign (-) relates to the direction of the inertial tor-
que that can be omitted from the following analytical
considerations.

Equation (29) presents the variable dependency of the
angular velocities for the precession of the spinning disc
for the common disposition around two axes. The angular
velocity ωy changes by the cosine law. The angular velocity
ωx depends on the value of the external load T . The disposi-

tion of the disc’s axis on 90° and 270° gives the zero angular
velocity of the spinning disc rotation about axis oy. At these
dispositions, the dependency of Equation (29) does not
maintain.

For the angle γ = 0, the ratio ωy/ωx is maximal, as is fol-
lows:

ωy

ωx
= 4π2 1 + cos 0oð Þ + 8 + 9 cos 0o
� �

= 8π2 + 17 = 95, 956835:
ð30Þ

The turn of the spinning disc about axis oy on 90° is
implemented by the turn of the disc about axis ox on the
angle:

γ = 90°
8π2 + 17 = 0, 938°: ð31Þ

Practically, these angular motions are visible in motions
of the gyroscopic gimbals. This gyroscope property is vali-
dated by the test of the gyroscope with the horizontal dispo-
sition of the spinning disc axis and the turn of the outer and
inner gimbals around axes oy and ox. The defined angles of
the gyroscope turn-around axes are validated by the tests on
any gyroscopes. Figure 4 shows the diagram of the change in
the angular disposition (γ) of the inner gimbal versus the
change in the angular disposition (α) of the outer gimbal.
The results have explained the physics of gyroscopic gimbal
motions that was one in the series of unsolved gyroscopic
effects.

3. Results and Discussion

Gyroscopic problems were remaining as sophisticated phys-
ical and mathematical tasks for a long time. The known pub-
lications dedicated to gyroscopic effects are sinned by

Table 1: Equations of the inertial torques acting on the spinning
disc.

Type of the torque generated by Action Equation

Centrifugal forces
Resistance

Tct = 4/9ð Þπ2 JωωxPrecession

Coriolis forces Resistance Tcr = 8/9ð ÞJωωx

Change in angular momentum Precession Tam = Jωωx

0

30

0

60

90

2 4 𝛾°

𝛼°

Figure 4: The angular dispositions of the outer gimbal (α) versus
the angular disposition (γ) of the inner gimbal of the spinning disc.
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imperfectness in mathematical modeling and attracted
inquisitive researchers [1–4]. The known simplified gyro-
scope theories are based on the action only of the precession
torque and do not describe the gyroscopic effects [5–8]. The
recent publications in the area of gyroscopic effects contain
the mathematical models with errors in the processing of
the inertial torques generated by the centrifugal and Coriolis
forces [14, 16]. Incorrect analytical processing of the expres-
sions for the inertial torques yields their distorted expres-
sions. Other mathematical models for the gyroscope
motions have inherited errors and have given wrong results.
The issues had the wrong title of the precession torque gen-
erated by the centrifugal forces of the disc rotating mass.
This work presents the corrected expression for the centrif-
ugal inertial torque acting around two axes and the corrected
title for the precession torque. The obtained results should
be used for mathematical modeling for gyroscopic effects
and enable avoid criticism from the readers.

4. Conclusion

Researchers of all times tried to solve the gyroscopic problems
that were quite complex physical and mathematical tasks. The
known gyroscope theories are met with skepticism due to sim-
plifications and assumptions. Unsolved gyroscope problems
presented a challenge for the researchers. The new analytical
approaches to the gyroscopic inertial torques were published
with mathematical errors that now are corrected. Today, the
theory of gyroscopic effects was formulated by the fundamen-
tal principles of classical mechanics and opens a new direction
for the dynamics of rotating objects. Science and engineering
receive a new physical and analytical method for solving gyro-
scopic effects in engineering. The corrected mathematical
models for the gyroscopic inertial torques can be useful in
practice and present a good example for education processes.

Nomenclature

i: Index for axis ox or oy
J : Moment of inertia of a disc
Ji: Moment of inertia of a disc around axis i
M: Mass of a disc
m: Mass element
R: External radius of a disc
T : Load torque
Tam·i: Torque generated by a change in an angular

momentum acting around axis i
Tct:i, Tcr:i,: Torque generated by centrifugal and Coriolis

forces, respectively, and acting around axis i
Tp: Precession torque
Tr : Resistance torque
Tt·i: Total torque acting around axis i
t: Time
ym,xm: Distance of the mass element’s disposition rel-

ative to axes ox and oy
yA, yC: Centroid distance along with axis oy and ox,

respectively
V : Tangential velocity
α, δ: Computational angles of a disc

γ: Angle of a disc turn
ω: Angular velocity of a disc
ωi: Angular velocity of a disc motion around axis i.
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