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Abstract

Corrected random walk approximations to continuous-time optimal stopping boundaries
for Brownian motion, first introduced by Chernoff and Petkau, have provided powerful
computational tools in option pricing and sequential analysis. This paper develops the
theory of these second-order approximations and describes some new applications.
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1. Introduction

Chernoff [11] and Chernoff and Petkau [13] introduced a second-order correction for com-
puting the optimal stopping boundary of a Brownian motion via a random walk approximation
and the backward induction algorithm of discrete-time dynamic programming. This correction
is based on the solution to an associated stopping problem in which the stopping time 0 ≥ τ ≥ t

for a Brownian motion {Bt , t ≤ 0} is chosen to maximize E[g(Bτ , τ ) | Bt = y0], wherey0 < 0,

g(y, s) = −s 1{s<0} +y2 1{s=0,y≤0}, (1.1)

and 1{·} denotes the indicator function. Approximating Brownian motion by a zero-mean
random walk so that the discrete-time optimal stopping problem maximizes E[g(y0 + √

δSN,

t + δN)] over integer-valued stopping times N , Hogan [32] generalized the previous work of
Chernoff [11] for normal random walks and Chernoff and Petkau [13] for Bernoulli random
walks, and showed that the (discrete-time) optimal stopping boundary bδ(t) for the approx-
imating random walk is related to the (continuous-time) optimal stopping boundary b(t) (≡ 0)
in the associated problem for Brownian motion by

bδ(t) = b(t)− ρ
√
δ + o(

√
δ), (1.2)
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where ρ = E S2
τ+/2 E Sτ+ , τ+ = inf{n : Sn > 0}, and Sn = ∑n

i=1Xi with EXi = 0 and
EX2

i = 1. Actually, Hogan only proved that limn→∞ b1(−n) = −ρ. However, this result
corresponding to the special case in which δ = 1 can be combined with the scaling property
g(

√
δy, δs) = δg(y, s) of (1.1) to yield (1.2) for all negative t bounded away from 0. Whereas

(1.2) has been derived only for the special payoff function (1.1), Chernoff [12] gave some
heuristic argument based on Taylor expansions around the optimal stopping boundary to justify
the use of (1.2) for more general payoff functions. In this paper, by making use of results from
a canonical optimal stopping problem (see Section 3.2) that generalizes Chernoff’s ‘associated
stopping problem’, we derive (1.2) for general payoff functions that satisfy regularity conditions
of the type given in [48] and [49].

Besides sequential analysis problems that motivated Chernoff [11] and Chernoff and
Petkau [15] to develop corrected random walk approximations to optimal stopping bound-
aries for Brownian motion, we were also motivated by certain computational problems in
singular stochastic control (see Section 5) and option pricing. For an illustration of the
importance of the continuity correction of the binomial approximation of the optimal exercise
boundary of an American option, we refer to the extensive numerical study of AitSahlia
and Lai [1]. In the Black–Scholes theory, the price of a standard American option is V :=
supτ∈T (0,T ∗) E[e−rτ f (Pτ )], where f (P ) = (K − P)+ or (P − K)+ for a put or call option,
with strike price K and expiration date T ∗, T (a, b) is the set of stopping times taking values
between a and b with b > a, and Pt := P0 exp{(r − d − σ 2/2)t + σBt } is the price (under the
risk-neutral measure) of the risky asset at time t , in which r is the risk-free interest rate, d is the
dividend rate, and σ is the volatility. A standard method to compute American option prices,
introduced by Cox et al. [18], is to approximate the geometric Brownian motionPt by a binomial
tree, for which backward induction can be applied to find the value Vn in the corresponding
discrete optimal stopping problem with n evenly spaced time steps. When d = 0 and the
binomial tree approximating Pt corresponds to a symmetric Bernoulli walk approximating Bt ,
Lamberton [39] established the error bounds −c1n

−2/3 ≤ Vn−V ≤ c2n
−3/4 for some positive

constants c1 and c2 (depending on the initial price P0), which was later, in [40], extended to
d ≥ 0 and improved to

|Vn − V | ≤ c

(√
log n

n

)4/5

(1.3)

for some positive constant c (depending on P0). Lamberton also indicated that a major reason
why sharper bounds could not be established is that ∂2V/∂P 2 and the derivative of the optimal
stopping boundary become infinite when approaching the expiration date T ∗. AitSahlia and
Lai [1] circumvented this difficulty by using another method to compute the stopping boundary
and the value function nearT ∗. This method involves numerical solution of the integral equation
defining the optimal stopping boundary b(t) (see (2.11), below), which is reasonably fast when
t is near T ∗ although its computation becomes increasingly expensive as t moves further
from T ∗. Moreover, instead of binomial trees to approximate Pt , AitSahlia and Lai used
symmetric Bernoulli walks to approximate Bt in computing the stopping boundary and value
function on [0, T ∗ − ε] for some small ε > 0, on which both functions are smooth and (1.2)
holds; see Theorem 3.1, below.

In Section 3 we prove (1.2) for general payoff functions by using an induction argument that
proceeds backwards in time, initializing at time T < T ∗ with approximations that are within
O(δ) of the value function v(x, T ) and O(

√
δ) of the optimal stopping boundary b(T ) at T .

The induction argument also establishes that vδ(x, ti)− v(x, ti) = O(δ) uniformly in ti , where
v is the value function of the optimally stopped Brownian motion and vδ is the value function
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of the discrete-time optimal stopping problem in which stopping can only occur at times ti with
ti−1 − ti = δ. Applying these results to American option pricing with δ = 1/n yields Ṽn−V =
O(n−1) as an improvement of (1.3), where Ṽn is the value function for the approximating
Bernoulli random walk suitably initialized at T = T ∗ − ε. (See Remark 3.3, below, for further
discussion.) The proof of the main theorem in Section 3.3 requires renewal theory for random
walks related to excess over the boundary and certain basic properties of the value functions
and stopping boundaries of optimal stopping problems for Brownian motion. Section 2 reviews
some of these properties and proves a basic decomposition formula which we use to derive other
basic properties and computational methods in Sections 3.3 and 3.4. In particular, Section 2.1
reviews the partial differential equation (PDE) literature on the differentiability of the optimal
stopping boundary b(t), which has been implicitly assumed by Chernoff [11], [12] in his
heuristic derivation of (1.2) for general payoff problems.

For standard normal Xi and constant boundary b(t) ≡ b, the boundary correction (1.2) has
also been introduced by Broadie et al. [7] to approximate the value of a discretely monitored
European barrier option by its continuously monitored counterpart whose value, denotedV (H),
is given by an explicit formula that depends on the barrier H , volatility σ , strike price K ,
expiration date T ∗, as well as the type of barrier (up or down) and the type of option (knock-in
or knock-out). When the barrier option is monitored only at times iδ (i = 0, 1, . . . , n), with
δ = T ∗/n, Broadie et al. [7] proposed to use a continuity correction for the barrier, similar to
(1.2), to approximate the price Vn(H) of the discretely monitored option with barrierH by the
explicit formula of the corresponding continuously monitored option price, and showed that

Vn(H) = V

(
H exp

(
±ρσ

√
T ∗
n

))
+ o(n−1/2), (1.4)

where ‘+’ and ‘−’ applies to the up and down barrier, respectively, and ρ(= E S2
τ+/2 E Sτ+) ≈

0.5826 for normal Xi . Note that whereas (1.3) is concerned with approximating the value
of an optimal stopping problem for Brownian motion by that of a zero-mean random walk,
(1.4) considers the reverse approximation that approximates the stopped value of a random
walk by that of Brownian motion. In Section 4 we apply (1.2) in this reverse manner to two
classical optimal stopping problems. In Section 5 we consider another application of (1.2),
namely evaluating the optimal (reflection) boundary in singular stochastic control problems for
Brownian motion via corrected random walk approximations.

2. Value function and optimal stopping boundary

Instead of (1.1), we shall consider more general payoff (reward) functions g(x, t) that satisfy
certain regularity conditions. The corresponding value function is

v(x, t) = sup
τ∈T (t,T ∗)

E[g(Bτ , τ ) | Bt = x], (2.1)

where T̃ ≤ t < T ∗, in which g(x, t) has a left-hand limit g(x, T ∗−) as t ↑ T ∗. Let g∗(x) =
g(x, T ∗)− g(x, T ∗−). Whereas the optimal stopping rule for (1.1) stops sampling as soon as
Bt ≥ 0 (so b(t) ≡ 0 is the optimal stopping boundary), the optimal stopping rule in the general
case has continuation region R := {(x, t) : v(x, t) > g(x, t)}, which need not be a connected
set. To extend (1.2) to the present case, we therefore assume that

R = {(x, t) : x < b(t), T̃ ≤ t < T ∗}, (2.2)
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where the boundary b(t) converges to a limit b(T ∗) as t ↑ T ∗ and satisfies the smoothness
condition (2.4), below. While Theorem 3.1 in Section 3 shows that (1.2) holds for continuation
regions of the form (2.2), a similar correction with −ρ√

δ in (1.2) replaced by ρ
√
δ is also

applicable to continuation regions of the form {(x, t) : x > b(t)}, and we can combine the
corrections for the upper and lower boundaries when the continuation region is of the form
{(x, t) : b1(t) < x < b2(t)}.

Let Rξ = {(x, t) : x < b(t)+ ξ, T̃ ≤ t < T ∗} (R0 = R). Because our derivation of (1.2)
relies on Taylor expansions, we shall assume that g belongs to the class C2,1 on R × [T̃ , T ∗)
and C3,2 on Rξ such that

g, gx, gxx, gxxx, gt , gtt, gxt, g∗, g′∗, g′′∗ , g′′′∗ are bounded by eβ(x) on Rξ , (2.3)

for some ξ > 0, where β(x) satisfies the growth condition β(x) = O(|x|) as x → −∞, which
is somewhat stronger than van Moerbeke’s Tychonov condition [48, p. 115].

We assume, furthermore, that

b′(t) is continuous at every t ∈ [T̃ , T ∗), (2.4)

so that we can also apply Taylor’s theorem to the stopping boundary. Under these assumptions,
we have the following result due to van Moerbeke [48], [49].

Lemma 2.1. Let G(x, t) = (∂/∂t + 1
2∂

2/∂x2)g(x, t).

(a) If G(x, t) > 0 or G(x, t) = 0 and Gx(x, t) �= 0, then (x, t) is a continuation point.

(b) The functions (∂/∂x)(v − g) and (∂/∂t)(v − g) are continuous across the stopping
boundary b(·) and vanish at x = b(t) for t ∈ [T̃ , T ∗).

(c) The function 1
2 (∂

2/∂x2)(v − g) is continuous in the continuation region R up to the
boundary b(·) and is equal to −G at x = b(t) for t ∈ [T̃ , T ∗).

(d) The function (∂2/∂x∂t)(v − g) is continuous in R up to the boundary b(·) and is
equal to 2b′(t)G(b(t), t) at x = b(t) for t ∈ [T̃ , T ∗); v ∈ C∞(R) and (∂/∂t +
1
2∂

2/∂x2)v(x, t) = 0 for (x, t) ∈ R.

(e) We have (∂2/∂t2)(v − g)(b(t), t) = −2G(b(t), t)(b′(t))2 for t ∈ [T̃ , T ∗).

Making use of [48, Lemma 4], and (2.4) together with Lemma 2.1(e), we next prove the
following important property of ∂5v/∂x5 that will be used in Section 3.

Lemma 2.2. Assume, furthermore, that

gtt ∈ C2,1, gxx ∈ C1,1 on Rξ , for some ξ > 0. (2.5)

Then ∂5v/∂x5 is continuous in the continuation region R up to the boundary b(·).
Proof. Define u(x, t) = vtt (x, t)−gtt (x, t)+2(b′(t))2G(b(t), t) on R. By Lemma 2.1(e),

u(b(t), t) = 0. We shall show that

(b′(t))2G(b(t), t) is continuously differentiable for T̃ ≤ t < T ∗. (2.6)

Combining this result with (2.5) shows that (∂u/∂t)+ 1
2 (∂

2u/∂x2) is continuous in R. Hence,
by [48, Lemma 4], ∂u/∂x is continuous in R up to b(·). In view of (2.5), this implies that
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∂vtt /∂x is continuous in R up to b(·). Since vt = − 1
2vxx implies that vtt = 1

4∂
4v/∂x4, it then

follows that ∂vtt /∂x = 1
4∂

5v/∂x5 is continuous in R up to b(·).
To prove (2.6), we apply the integral equation for f (t) := −(b′(t))2G(b(t), t), similar to

[49, Equation (37)], which is derived by making use of Lemma 2.1(e) to arrive at a free boundary
problem for vtt − gtt and then applying Green’s theorem. Specifically, for T ′ ∈ [T̃ , T ∗) and
T̃ ≤ t ≤ T ′,

f (t) =
∫ T ′−t

0

{∫ b(T ′−τ)

−∞
ψ(b(t); y, τ ) ∂

∂t
G(y, T ′ − τ) dy

}
dτ√

T ′ − t − τ

+
∫ T ′−t

0

ψ(b(t); b(T ′ − τ), τ )√
T ′ − t − τ

f (T ′ − τ) dτ

−
∫ b(T ′)

−∞
ψ(b(t); y, 0)√

T ′ − t

{
1

2
(vtt − gtt)(y, T

′)
}

dy,

where ψ(x; y, τ ) = (∂/∂x)φ((x − y)/
√
T ′ − t − τ) and φ is the standard normal density

function. Since, by (2.4), b(t) is continuously differentiable on [T̃ , T ′], so is f (t).

2.1. Smoothness of the optimal stopping boundary

Condition (2.4) requires that the optimal stopping boundary be continuously differentiable,
but the issue of differentiability of the optimal stopping boundary has been mostly neglected in
the probability literature. In contrast, the PDE literature contains extensive studies of various
free boundary problems involving parabolic PDEs; see, for example, [26] and [29] on the theory
of variational or quasi-variational inequalities and the existence, uniqueness, and regularity of
the solution and smoothness of the free boundary. Friedman [25], [27], [28] has applied the
theory to a number of problems in optimal stopping, sequential analysis, and stochastic control.

For American put options, the issue of differentiability of the optimal stopping (early
exercise) boundary has recently been taken up in the literature. By referring to McKean [42]
and van Moerbeke [49], Myneni [43] stated that the early exercise boundary is C1. However,
Peskir [44] and Peskir and Shiryaev [45] recently pointed out that neither [42] nor [49] contains a
proof of this result. Conversely, using parabolic PDE techniques involving variational inequality
theory, Chen and Chadam [9] have proved the existence and uniqueness of the solution to the
free boundary PDE. Moreover, they have shown that the early exercise boundary, as the unique
solution of an integral equation, is in fact C∞. Further results on convexity properties of the
option price and early exercise boundary can be found in [10], [20], and [21].

2.2. Integral representations and Doob–Meyer decomposition of value functions

The following theorem provides a representation of v in terms of the optimal stopping
boundary and plays an important role in our subsequent development. Let Ex,t denote the
conditional expectation given Bt = x.

Theorem 2.1. For T̃ ≤ t ≤ T < T ∗,

v(x, t) = Ex,t v(BT , T )−
∫ T

t

Ex,t [G(Bs, s) 1{Bs≥b(s)}] ds. (2.7)

The process {v(Bt , t),Ft , T̃ ≤ t ≤ T } is the minimal right-continuous supermartingale
that majorizes {g(Bt , t), T̃ ≤ t ≤ T }, where {Ft , T̃ ≤ t ≤ T } is a filtration to which
{Bt , T̃ ≤ t ≤ T } is adapted; see [23, Theorem 2]. Therefore, the Doob–Meyer decomposition
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yields
v(Bt , t) = Mt − At, (2.8)

where Mt is a martingale and At is a predictable nondecreasing process, and the choice of
Mt −MT̃ andAt −AT̃ in (2.8) is essentially unique. To findM andA, we apply the generalized
Ito formula [36, Theorem 2.10.1] to v(Bt , t). Since v is C1 (in view of Lemma 2.1(b)) and
piecewise C2,1 on R × [T̃ , T ], the generalized Ito formula yields, for T > t ,

v(BT , T )− v(Bt , t) =
∫ T

t

(
vt + vxx

2

)
(Bs, s) ds +

∫ T

t

vx(Bs, s) dBs, (2.9)

which gives the martingale component
∫ T
t
vx(Bs, s) dBs in the Doob–Meyer decomposition

(2.8). Since (vt + vxx/2)(x, t) = 0 if x < b(t), and = G(x, t) if x > b(t), taking expectation
conditional onBt = x in (2.9) gives the conclusion (2.7) of Theorem 2.1. For similar arguments
in the special case of American options, see [33, Section 4] and [35, Section 2.7].

If g(x, T ∗−) ≤ g(x, T ∗) for all x (i.e. g∗(x) ≥ 0 for all x), then limT ↑T ∗ v(x, T ) =
v(x, T ∗) = g(x, T ∗), so letting T ↑ T ∗ in (2.7) yields

v(x, t) = Ex,t g(BT ∗ , T ∗)−
∫ T ∗

t

E[G(x + √
s − tZ, s) 1{x+√

s−tZ≥b(s)}] ds, (2.10)

where Z is a standard normal random variable. In particular, for American options, (2.10)
corresponds to the decomposition formula due to Jacka [33] and Carr et al. [8]

American option price = European option price + Early exercise premium,

in which the integrand in the integral defining the early exercise premium is an explicit function
of the optimal stopping boundary, noting that −G ≥ 0 at stopping points by Lemma 2.1(a).
Setting x = b(t) in (2.10) leads to the following integral equation defining b:

g(b(t), t) = E g(b(t)+√
T ∗ − tZ, T ∗)−

∫ T ∗

t

E[G(b(t)+√
s − tZ, s) 1{√s−tZ≥b(s)−b(t)}] ds.

(2.11)
AitSahlia and Lai [1] showed how (2.10) and (2.11) can be used to develop a relatively fast and
accurate method to compute v(x, t) and b(t) for t near the expiration date T ∗ in the case of
American options, thereby circumventing difficulties in the Bernoulli walk approximation due
to unbounded ∂2v/∂x2 and b′ as t ↑ T ∗. A similar idea was used by Brezzi and Lai [6, p. 92]
to avoid the singularity at T ∗ in initializing the Bernoulli walk method to compute the optimal
stopping boundary for bandit problems. In Section 3.3 we give another application of (2.10)
to bound the fifth derivative of v (with respect to x), which we use to prove (1.2) for general
payoff functions g.

An alternative derivation of (2.11) by Evans et al. [22] for the special case of American
options is to use Green’s function γ (z, s; ξ, u) = (u− s)−1/2φ((z − ξ)/

√
u− s), u > s, and

apply Green’s theorem. In fact, this approach involving Green’s function and Green’s theorem
leads to a variety of integral equations for the optimal stopping boundary; see [9].

3. Theory of corrected random walk approximations

In this section we first present a theorem showing that under suitable conditions discrete-time
random walk approximations to continuous-time optimal stopping problems can approximate
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the value function with an error of the order O(δ) and the stopping boundary with an error
of the order o(

√
δ), where δ is the interval width in discretizing time for the approximating

random walk. The theorem also shows how to correct the discrete-time approximations to
continuous-time stopping boundaries. As shown by Hogan [32] in a prototypical special case,
the boundary correction involves an ‘excess over the boundary’ term. In this connection, we
use renewal theory to derive in, Lemma 3.1, an inequality, which plays an important role in the
proof of the theorem, for the excess over the boundary.

Suppose that in the continuous-time optimal stopping problem (2.1) with horizon T ∗, we
have an approximation vδ(·, T ) to the value function v(·, T ) and an approximation βδ to b(T ),
with T̃ < t < T < T ∗, such that

βδ = b(T )+O(
√
δ), vδ(x, T )− v(x, T ) = O(δeα

′(x−b(T ))−), (3.1)

uniformly in x for some positive constant α′, where x− = max{−x, 0}. (Note that as b(T ) is
approximated byβδ , we have vδ(x, T ) = g(x, T ) for x ≥ βδ , so vδ(x, T ) = v(x, T ) = g(x, T )

for x ≥ max{b(T ), βδ}.) A random walk approximation to the value function and the stopping
boundary of (2.1) for T̃ ≤ t ≤ T can be described as follows. Let t0 = T > t1 > · · · > tKδ = T̃

partition the interval into Kδ subintervals such that

ti−1 − ti = δ for 1 ≤ i < Kδ, tKδ−1 − tKδ ≤ δ.

Let X,X1, X2, . . . be independent and identically distributed (i.i.d.) random variables with

EX = 0 = EX3, EX2 = 1, E eα
′′|X| < ∞ for some α′′ > 0, (3.2)

and let Sn = X1 + · · · + Xn (S0 = 0). Approximating the Brownian motion in the optimal
stopping problem (2.1) by the random walk Sn, we can use backward induction to compute
the value function vδ(x, ti) and stopping boundary bδ(ti) of the discrete-time optimal stopping
problem. Specifically, first initialize by defining bδ(ti) = βδ for 0 ≤ i < |log δ|. Then define
recursively

vδ(x, ti) =

⎧⎪⎨
⎪⎩
g(x, ti) if x ≥ bδ(ti−1)+ √

δ|log δ|,
max[g(x, ti),E vδ(x + √

δX, ti−1)] if |x − bδ(ti−1)| <
√
δ|log δ|,

E vδ(x + √
δX, ti−1) if x ≤ bδ(ti−1)− √

δ|log δ|,
(3.3)

for 1 ≤ i ≤ Kδ , and define bδ(ti) for |log δ| ≤ i ≤ Kδ recursively by

bδ(ti) = inf{x : |x − bδ(ti−1)| <
√
δ|log δ|,

g(x, ti) ≥ E vδ(x + √
δX, ti−1)} (inf ∅ = bδ(ti−1)). (3.4)

Remark 3.1. The assumption (2.2) on the continuous-time optimal stopping boundary b(t)
does not imply the existence of a corresponding discrete-time optimal stopping boundary below
which is the continuation region. For this technical reason, (3.3) is used instead of the simpler
(standard) backward induction algorithm vδ(x, ti) = max[g(x, ti),E vδ(x + √

δX, ti−1)].
(Thus, the resulting vδ is not necessarily the value function of the discrete-time optimal stopping
problem.) However, for specific applications (e.g. American put options and call options
with d > 0), such discrete-time optimal stopping boundaries can be shown to exist so that
Theorem 3.1, below, still applies when (3.3) is replaced by the simpler backward induction
algorithm.
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Theorem 3.1. With the same notation as in Section 2, assume that (2.2)–(2.5) hold, thatg∗(x) ≥
0 for all x, and that

G(b(t), t) < 0 for all T̃ ≤ t ≤ T , (3.5)

sup
x<b(T ∗)

e−α′′′|x−b(T ∗)||g(x, T ∗)| < ∞ for some α′′′ > 0, (3.6)

sup
T̃≤t≤T ∗,x≥b(t)

e−β(x){|g(x, t)| + |G(x, t)|} < ∞, (3.7)

with β(x) = O(x) as x → ∞. Then

sup
1≤i≤Kδ,x∈R

e−α(x−b(ti ))−|vδ(x, ti)− v(x, ti)| = O(δ) with α := max{α′, α′′′}, (3.8)

bδ(ti) = b(ti)− ρ
√
δ + o(

√
δ) uniformly in |log δ| ≤ i ≤ Kδ, (3.9)

where τ+ = inf{n : Sn > 0} and ρ = E S2
τ+/2 E Sτ+ .

Remark 3.2. In order to apply (2.10), we need the condition that g∗(x) ≥ 0 for all x, which
is satisfied in typical applications; see [49, p. 105]. In view of Lemma 2.1(a), G(b(t), t) ≤ 0
and condition (3.5) requires the inequality to be strict for all t ∈ [T̃ , T ]. Conditions (3.6) and
(3.7) are assumed in order to establish bounds on higher-order derivatives of v with respect to
x; see Lemma 3.7. By (3.8), we have vδ(x, ti)− v(x, ti) = O(δ) uniformly in i ∈ {1, . . . , Kδ}
and in x over any bounded subset of R. Along the lines of the proof of Theorem 3.1, it can
be shown that sup1≤i≤Kδ,x∈R |vδ(x, ti) − v(x, ti)| = O(δ), if (3.1) and (3.6) are strengthened
to supx |vδ(x, T ) − v(x, T )| = O(δ) and supx<b(T ∗) |g(x, T ∗)| < ∞. The latter condition
implies that v(x, t) has a bounded fifth derivative with respect to x in the continuation region;
see Lemma 3.7.

Remark 3.3. In many applications, the payoff function may not belong to the class C3,2 in the
continuation region. For example, the payoff function associated with the standard American
call option is given by g(x, t) = e−rt (P0e(r−d−σ 2/2)t+σx −K)+, which is not differentiable
in {(x, t) : P0 e(r−d−σ 2/2)t+σx = K}. It can be readily shown that the value function and the
stopping boundary remain unchanged if the payoff function is replaced in the continuation
region by any function not greater than the value function (cf. [49, p. 143]). Therefore,
this payoff function yields the same value function and stopping boundary as g̃(x, t) =
e−rt (P0e(r−d−σ 2/2)t+σx−K) 1{t<T ∗} +g(x, T ∗) 1{t=T ∗}, to which Theorem 3.1 applies. More-
over, such changes in the payoff function (in the continuation region) have little effect on the
algorithm (3.3) and (3.4) if δ is sufficiently small. Furthermore, as noted in Remark 3.1,
for American call (and put) options, Theorem 3.1 still applies when (3.3) is replaced by the
standard backward induction algorithm. Then the discrete-time value function with respect to
the payoff function g is the same as that with respect to g̃ as long as the initialization vδ(x, T )
is nonnegative for all x. To see this for an American call option with d > 0, note that it is not
optimal for the random walk to stop in the region with Pt < K and t < T . This comment also
applies to an American put option.

Remark 3.4. Although vδ(x, t) only gives an approximation to v(x, t) for t = ti , i = 0, . . . ,
Kδ , we can extend vδ(x, t) by linear interpolation to approximate v(x, t) for ti < t < ti−1,
where we define

vδ(x, t) = ti−1 − t

ti−1 − ti
vδ(x, ti)+ t − ti

ti−1 − ti
vδ(x, ti−1).



Approximations in optimal stopping 761

With this definition of vδ(x, t) at every t ∈ [T̃ , T ], the O(δ) error in (3.8) still holds if we
replace vδ(x, ti) − v(x, ti) by vδ(x, t) − v(x, t) and take the supremum over t ∈ [T̃ , T ]. In
practice, X is usually taken to be lattice-valued to avoid numerical integration in computing
E vδ(x + √

δX, ti−1). In this case, with L denoting the lattice for which P(X ∈ L) = 1,
vδ(x, t) is only given by (3.3) for x ∈ √

δL if (x, t) belongs to the continuation region of the
discrete-time optimal stopping problem. For xj < x < xj+1, where xj and xj+1 are two
adjacent points of the lattice

√
δL such that at least one of (xj , t) and (xj+1, t) is a continuation

point, we can again use linear interpolation to approximate v(x, t) by

v̂δ(x, t) = xj+1 − x

xj+1 − xj
vδ(xj , t)+ x − xj

xj+1 − xj
vδ(xj+1, t);

see Section 3.4 for further details and discussion.

3.1. Overshoots, ladder heights, and a renewal-theoretic lemma

In the nonarithmetic case, as noted by Hogan [32], the constant ρ in Theorem 3.1 is the
limiting expected overshoot of the boundary c at the first passage time τ(c) = inf{n : Sn > c}.
Specifically ρ = limc→∞ ERc in this case, where Rc = Sτ(c) − c. Moreover, in the case
where X is arithmetic with span h, ERc → ρ + h/2 as c → ∞ in L; see [24, p. 300, 371].
Whereas only limc→∞ ERc is involved in approximating the difference between bδ(t) and
b(t), bounds on ERc for all values of c are needed in the proof of Theorem 3.1. Lorden [41]
proved the upper bound supc≥0 ERc ≤ E S2

τ+/E Sτ+(= 2ρ) by making use of Wald’s identity
and certain representations of

∫ c
0 Rt dt . He also obtained similar inequalities for supc≥0 ERpc

for any p > 0; in particular

sup
c≥0

ER2
c ≤ 4 E S3

τ+
3 E Sτ+

, (3.10)

which is also used in the proof of Theorem 3.1. Note that E Spτ+ < ∞ if EX = 0 and
E(X+)p+1 < ∞; see [16, Theorem 1]. Besides (3.10), we also need a different inequality
which bounds ER2

c by ρ and ERc and which is used in the proof of Lemma 3.5.

Lemma 3.1. If EX > 0 and E(X+)2 < ∞, or if EX = 0 and 0 < E(X+)3 < ∞, then
ER2

c ≤ 2ρ(c + ERc) for all c ≥ 0.

Proof. Under the assumptions on X, τ(c) < ∞ almost surely and E S2
τ(c) < ∞ (cf. [30,

Theorem 2.1], for the case in which EX > 0 and [16, Theorem 1], for the case in which
EX = 0). Note that τ+ = τ(0). Replacing X by the ladder variable Sτ+ , we shall assume,
without loss of generality, that X > 0 and EX2 < ∞. For the positive random variable X, the
desired inequality ER2

c ≤ 2ρ(c + ERc) can be written as

(EX)(ER2
c ) ≤ (EX2)(c + ERc), (3.11)

which we shall prove by using the renewal function U(x) = ∑∞
n=0 P(Sn ≤ x), S0 = 0. Let F

denote the distribution function of X and let

G(t) =
∫ ∞

t

x(1 − F(x)) dx, H(t) =
∫ ∞

t

(1 − F(x)) dx, t ≥ 0.

To prove that (3.11) holds, note that, for y ≥ 0,

P(Rc > y) =
∞∑
n=1

P(Sn−1 ≤ c, Sn > c + y) =
∫

[0,c]
{1 − F(y + c − z)} dU(z),



762 T. L. LAI ET AL.

in which U is interpreted as a measure with U({0}) = 1, and therefore,

ER2
c = 2

∫ ∞

0
y

∫
[0,c]

{1 − F(y + c − z)} dU(z) dy

= 2
∫

[0,c]

∫ ∞

c−z
(x − c + z)(1 − F(x)) dx dU(z)

= 2
∫

[0,c]
G(c − z)dU(z)− 2

∫
[0,c]

(c − z)H(c − z) dU(z),

ERc =
∫ ∞

0

∫
[0,c]

{1 − F(y + c − z)} dU(z) dy

=
∫

[0,c]
H(c − z) dU(z).

Since
∫
[0,c]G(c−z) dU(z) = G(c)+∫

(0,c]G(c−z) dU(z) and sinceU(0) = 1,G(0) = 1
2 EX2

and (d/dz)G(c − z) = (c − z)(1 − F(c − z)) almost everywhere, integration by parts yields

ER2
c = (EX2)U(c)− 2

∫
[0,c]

U(z)(c − z)(1 − F(c − z)) dz

− 2
∫

[0,c]
(c − z)H(c − z) dU(z)

≤ (EX2)U(c). (3.12)

Since H(c − z) = EX − ∫ c−z
0 (1 − F(x)) dx = EX − ∫ c

z
(1 − F(t − z)) dt for 0 ≤ z ≤ c,

ERc = (EX)
∫

[0,c]
dU(z)−

∫
[0,c]

∫ c

z

(1 − F(t − z)) dt dU(z)

= (EX)U(c)−
∫ c

0

∫
[0,t]

(1 − F(t − z)) dU(z) dt.

Noting that
∫
[0,t](1−F(t−z)) dU(z) = U(t)−∫

[0,t] F(t−z) dU(z) and
∫
[0,t] F(t−z) dU(z) =∑∞

n=1 P(Sn ≤ t) = U(t)− 1, we then obtain

c + ERc = c + (EX)U(c)−
∫ c

0
dt = (EX)U(c). (3.13)

From (3.12) and (3.13), the desired conclusion (3.11) follows.

3.2. A canonical optimal stopping problem

We introduce here a canonical optimal stopping problem, depending on δ and 0 < ζ < γ <
1
3 , which is basic to the induction proof of Theorem 3.1. The payoff function is of the form

gδ(y, s) = [−s + rδ(y, s)] 1{s<0} +hδ(y) 1{s=0}, (3.14)

where, for some A > 0,

|rδ(y, s)| ≤ A{δs2 + √
δ|sy| + √

δ|y|3} for |y| ≤ δ−1/6, (3.15)

hδ(y) = y2 1{y≤0} +aδ(y) with |aδ(y)| ≤ A for |y| ≤ δ−1/6. (3.16)
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Furthermore assume that, for the random walk {Sn, n ≥ 1},
sup

|y|≤δ−ζ/2,n≤δ−γ
E |hδ(y + Sn)|p + sup

|y|≤δ−ζ/2,1≤m≤δ−γ ,1≤n≤δ−γ
E |rδ(y + Sn,−m)|p = O(δ−q)

(3.17)
for some p > 1 and q > 0. For −∞ < y < ∞ and t ∈ {0,−1,−2, . . . }, let

Vδ(y, t) = sup
τ∈Tδ,t,y

E gδ(y + Sτ , t + τ), (3.18)

where Tδ,t,y is the class of integer-valued stopping times τ ≤ −t such that, on {−t > τ ≥ n},
y + Sn ≥ |log δ| ⇒ stopping occurs at n,

y + Sn < −|log δ| ⇒ stopping cannot occur at n.

This canonical optimal stopping problem is a modification of Chernoff’s [11] associated
stopping problem with payoff function g defined in (1.1), which is a special case of (3.14).
Note that

Ṽ (y, t) := sup
0≤τ≤−t

E g(y + Sτ , t + τ)+ t = sup
0≤τ≤−t

E[g∗(y + Sτ ) 1{t+τ=0} −τ ], (3.19)

whereg∗(y) = y2 1{y≤0}, and that the associated optimal stopping problem with payoff function
(1.1) has value function Ṽ (y, t)− t .

As pointed out by Hogan [32], Lemmas 3.1 and 3.2 of [11] hold for general zero-mean, finite-
variance random walks. Therefore, Ṽ (y, t) is monotone decreasing in −t and in y. Hogan [32]
has shown that there exists a nondecreasing optimal stopping boundary z(t) < 0 for t < 0 such
that limt→−∞ z(t) = −ρ, Ṽ (y, t) > 0 if y < z(t), and Ṽ (y, t) = 0 if y ≥ z(t). The following
lemma, whose proof is given in Appendix A, considers instead of Ṽ (y, t) the expected reward
u(y, t) of the policy that starts at (y, t), takes an observation, and proceeds optimally thereafter.

Lemma 3.2. For t < 0, let u(y, t) = −1 + E Ṽ (y+X, t + 1). Then u(y, t) < 0 for y > z(t).
Consequently, limt→−∞ u(y, t) < 0 for every y > −ρ.

To analyze the canonical optimal stopping problem (3.18), we use Lemmas 3.1, 3.2, and the
following result.

Lemma 3.3. Let τ(y) = inf{n : Sn > y}, in which Sn = ∑n
i=1Xi and X,X1, . . . are i.i.d.

random variables satisfying (3.2). Then, as m → ∞,

(i) P(τ (y) ≥ m) = O((y2/m)λ) uniformly in 1 ≤ y ≤ √
m for every λ < 1

2 ,

(ii) P(τ (y) ≤ m) ≤ exp{−εmin(y2/m, εy/2)} for some ε > 0 and all y ≥ √
m.

Lemma 3.3(i) follows from [37, Equations (4.6), (4.12), and (4.13)]. Lemma 3.3(ii) follows
from P(τ (y) ≤ m) = P(maxn≤m Sn > y) ≤ e−θy(E eθX)m, by the submartingale inequality
and (3.2), with θ > 0 and ε > 0 chosen suitably to yield the desired conclusion. In Appendix A
we make use of Lemmas 3.1–3.3 to prove the following results on the canonical optimal stopping
problem (3.18) that are used to prove Theorem 3.1.

Lemma 3.4. For every fixed ε > 0 and all sufficiently small δ > 0, if −δ−γ ≤ t ≤ −|log δ|
then, in the optimal stopping problem (3.18), (y, t) is a stopping point for y > −ρ + ε.

Lemma 3.5. For every fixed ε > 0 and all sufficiently small δ > 0, if −δ−γ ≤ t ≤ −|log δ|
then, in the optimal stopping problem (3.18), (y, t) is a continuation point for y < −ρ − ε.
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3.3. Proof of Theorem 3.1

To prove Theorem 3.1 we approximate the underlying optimal stopping problem by a
recursively defined family of optimal stopping problems. The payoff function in each optimal
stopping problem is of the canonical form (3.14), in which gδ is given by the following result.

Lemma 3.6. With the same notation and assumptions as in Theorem 3.1, let t∗ ∈ (T̃ , T ] and
x∗ = b(t∗). Define the quadratic function

πg(x, t) = g(x∗, t∗)+ ∂g

∂x
(x∗, t∗)(x−x∗)+ 1

2

∂2g

∂x2 (x
∗, t∗)(x−x∗)2 − 1

2

∂2g

∂x2 (x
∗, t∗)(t − t∗).

Letting y = δ−1/2(x − x∗) and s = δ−1(t − t∗), define

g̃δ(y, s) = δ−1{g(x, t)−πg(x, t)} 1{t<t∗} +[δ−1{v(x, t)−πg(x, t)}+Cδ(y)] 1{t=t∗}, (3.20)

where exp{−α√
δy−}|Cδ(y)|/|G(x∗, t∗)| is bounded by some positive constantA for all y and

all sufficiently small δ > 0 with α given in (3.8). Then gδ := g̃δ/|G(x∗, t∗)| satisfies (3.14)–
(3.17) for −δ−γ ≤ s ≤ 0, for every choice of 0 < ζ < γ < 1

3 , and q ≥ p > 1. Furthermore,
defining Vδ by (3.18) with this choice of gδ , we have, as δ → 0,

(i) Vδ(y, s) = y2 − s − E(−ρ + R−ρ−y)2 + o(1) uniformly in −δ−γ ≤ s ≤ − 1
2δ

−γ and
−ρ ≥ y ≥ −δ−ζ/2,

(ii) Vδ(y, s) = y2 1{y≤0} −s +O(1) uniformly in −δ−γ ≤ s < 0 and |y| ≤ δ−ζ/2.

Remark 3.5. For the symmetric Bernoulli case, the term E(−ρ + R−ρ−y)2 appearing in
Lemma 3.6(i) plays an important role in Chernoff and Petkau’s numerical algorithm [15, p. 48]
for computing the boundary b(·).
Remark 3.6. Letting y = δ−1/2(x−x∗) and s = δ−1(t − t∗), define V (y, s) = δ−1(v(x, t)−
πg(x, t))/|G(x∗, t∗)|. Recalling that y2 1{y≤0} −s is the (continuous-time) value function for
the optimal stopping problem (1.1), we can make use of Taylor expansions and arguments as
in the proof of Lemma 3.6 (given in Appendix A) to show that V (y, s) = y2 1{y≤0} −s + o(1)
uniformly in −δ−γ ≤ s < 0 and |y| ≤ δ−ζ/2. By Lemma 3.6(ii), there exist C > 0 and δ0 > 0
(depending on the constant A that bounds exp{−α√

δy−}|Cδ(y)|/|G(x∗, t∗)|) such that, for
0 < δ < δ0, we have |V (y, s)−Vδ(y, s)| ≤ C for −δ−γ ≤ s < 0 and |y| ≤ δ−ζ/2. Moreover,
by Lemma 3.6(i), there exists δ1 > 0 (depending on A) such that for 0 < δ < δ1, we have

|V (y, s)− Vδ(y, s)| ≤ 1 + sup
y<−ρ

E(−ρ + R−ρ−y)2, (3.21)

for −δ−γ ≤ s ≤ − 1
2δ

−γ and −ρ ≥ y ≥ −δ−ζ/2. Since, by Lemma 3.4, Vδ(y, s) = −s+o(1)
for −ρ < y ≤ δ−ζ/2 and since ρ2 = E(−ρ + R0)

2 = E(−ρ + Sτ+)
2, the inequality (3.21)

actually holds for −δ−γ ≤ s ≤ − 1
2δ

−γ and |y| ≤ δ−ζ/2.

We next combine Lemma 2.2 with conditions (3.6) and (3.7) of Theorem 3.1 to prove the
following result.

Lemma 3.7. With the same notation and assumptions as in Theorem 3.1,

sup
T̃≤t≤T ,x<b(t)

e−α′′′|x−b(t)|
∣∣∣∣ ∂j∂xj v(x, t)

∣∣∣∣ < ∞ for j = 0, . . . , 5,
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where (∂0/∂x0)v(x, t) := v(x, t). Furthermore, if (3.6) is strengthened to

sup
x<b(T ∗)

|g(x, T ∗)| < ∞,

then we have

sup
T̃≤t≤T ,x<b(t)

∣∣∣∣ ∂j∂xj v(x, t)
∣∣∣∣ < ∞ for j = 0, . . . , 5.

Proof. By Lemma 2.2, supT̃≤t≤T ,L≤x<b(t) |(∂j /∂xj )v(x, t)| < ∞ for j = 0, . . . , 5, where

L := min{b(t) : T̃ ≤ t ≤ T } − 1. Let � = {(x, t) : x ≤ L, T̃ ≤ t ≤ T }. Note that
Ex,t g(BT ∗ , T ∗) can be expressed as

∫ b(T ∗)

−∞
g(u, T ∗)φ

(
u− x√
T ∗ − t

)
du√
T ∗ − t

+
∫ ∞

b(T ∗)
g(u, T ∗)φ

(
u− x√
T ∗ − t

)
du√
T ∗ − t

.

Here, in view of (3.7) and T < T ∗, the second integral has a bounded j th derivative with
respect to x over � (j = 0, . . . , 5), whereas the first integral has its j th derivative bounded
by O(eα

′′′|x|) over � in view of (3.6) (or bounded by O(1) if supx<b(T ∗) |g(x, T ∗)| < ∞).
Similarly, ∫ T ∗

t

{∫ ∞

b(s)

G(u, s)φ

(
u− x√
s − t

)
du√
s − t

}
ds

also has a bounded j th derivative with respect to x over �, j = 0, . . . , 5. Hence, the desired
conclusion follows from (2.10).

Proof of Theorem 3.1. Let ε > 0 and take 0 < ζ < γ < 1
3 . We shall use induction to prove

that, for sufficiently small δ > 0,

|b(ti)− bδ(ti)− ρ
√
δ| ≤ ε

√
δ, i = [|log δ|], . . . , Kδ, (3.22)

max
b(ti−1)−δ(1−ζ )/2≤x≤b(ti−1)+2δ1/2|log δ|

|v(x, ti)− vδ(x, ti)| ≤ C0δ, i = 1, . . . , Kδ, (3.23)

max
x<b(ti−1)−δ(1−ζ )/2

e−α|x−b(ti )||v(x, ti)− vδ(x, ti)| ≤ eαBδi(C0δ + C1δ
2i), i = 1, . . . , Kδ,

(3.24)

where B := max{|b′(t)| : T̃ ≤ t ≤ T } < ∞ and C0 and C1 are positive constants that will be
specified later. Since {πg(x + √

δSn, t + nδ), n ≥ 0} and {πg(x + √
δBu, t + δu), u ≥ 0} are

martingales, Doob’s optional stopping theorem yields πg(x, t) = E πg(x + √
δBτ , t + δτ) =

E πg(x + √
δSκ, t + δκ) for any bounded stopping times κ (adapted to the filtration generated

by {Sn}) and τ . In the induction proof of (3.22)–(3.24), we can therefore replace g and v by
g−πg and v−πg for each time interval [ti , ti−1] with the optimal stopping boundary preserved.
Note also that by (2.4), (3.3), and (3.22), we have, for i = 1, . . . , Kδ ,

b(ti−1)+ 2δ1/2|log δ| > max{b(ti), bδ(ti−1)+ δ1/2|log δ|},

for sufficiently small δ > 0, from which it follows that v(x, ti) = vδ(x, ti) = g(x, ti), for
x > b(ti−1)+ 2δ1/2|log δ|.
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We first apply Lemma 3.6 with t∗ = T (= t0), y = δ−1/2(x − b(T )), and Cδ(y) =
δ−1{vδ(x, T )− v(x, T )}. By (3.1) and noting that α′ ≤ α, we have

A := 1 + lim sup
δ→0

sup
y

exp{−α√
δy−}|Cδ(y)|

|G(b(T ), T )| < ∞.

Then Lemmas 3.4, 3.5, and 3.6(ii) show that (3.22) holds for i = [log δ], . . . , [δ−γ ] and that
(3.23) holds for i = 1, . . . , [δ−γ ] for some constant C0 (see Remark 3.6). We shall choose C0
to satisfy

C0 ≥ sup
T̃≤t≤T

|G(b(t), t)| max
{
A, 1 + sup

y<−ρ
E(−ρ + R−ρ−y)2

}
. (3.25)

We now make use of (3.23) and an induction argument to prove (3.24) for i = 1, . . . , [δ−γ ].
First consider the case in which i = 1. For x ≤ b(T )−δ(1−ζ )/2, vδ(x, t1) = E vδ(x+√

δX, T )

(by (3.3)), and v(x, t1) = E v(x + √
δB1, T ) + O(δp) for every p > 0. It follows that, for

x ≤ b(T )− δ(1−ζ )/2,

vδ(x, t1)− v(x, t1) = E[vδ(x + √
δX, T )− v(x + √

δB1, T )] +O(δ4). (3.26)

By (3.25), supx exp{−α(x − b(T ))−}|vδ(x, T )− v(x, T )| ≤ C0δ for sufficiently small δ > 0.
Since EXr = EBr1 for r = 1, 2, 3 by (3.2), it follows, from Lemma 3.7 and Taylor’s theorem,
that

E[v(x + √
δX, T )− v(x, T )] − E[v(x + √

δB1, T )− v(x, T )]

= 1

4!
∂4v

∂x4 (x, T ){E(
√
δX)4 − E(

√
δB1)

4}

+ 1

5! E

[
∂5v

∂x5
(x + θ ′√δX, T )(√δX)5 − ∂5v

∂x5
(x + θ ′′√δB1, T )(

√
δB1)

5
]
, (3.27)

where θ ′ and θ ′′ are between 0 and 1. (Strictly speaking, as ∂2v(x, T )/∂x2 has a discontinuity
at the boundary, we need to replace v(x, T ) by a fifth polynomial of x in the half line
{(x, T ) : b(T ) ≤ x < ∞} so as to make the fifth derivative continuous in order to apply
Taylor’s theorem. Such replacement yields a negligible error of O(δp) for every p > 0.)
Setting

C1 = 1 + 1

4! | E X4 − EB4
1 | sup
T̃≤t≤T ,x<b(t)

e−α|x−b(t)|
∣∣∣∣∂4v

∂x4 (x, t)

∣∣∣∣,
we have, by (3.26) and (3.27) together with Lemma 3.7,

sup
x<b(T )−δ(1−ζ )/2

e−α|x−b(T )||vδ(x, t1)− v(x, t1)| ≤ C0δ + C1δ
2

for sufficiently small δ > 0, implying that

sup
x<b(T )−δ(1−ζ )/2

e−α|x−b(t1)||vδ(x, t1)− v(x, t1)| ≤ eαBδ(C0δ + C1δ
2).

This shows that (3.24) holds for i = 1. Replacing T (= t0) in the preceding argument by t1
then shows that (3.24) holds for i = 2, recalling that (3.23) has already been established for
i = 1. Proceeding inductively in this way proves that (3.24) holds for i = 1, . . . , [δ−γ ].
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To proceed inductively beyond [δ−γ ], suppose that (3.22)–(3.24) have been shown to hold
for all i ≤ j with j ≥ [δ−γ ]. To show that (3.22) and (3.23) also hold for i = j + 1, we apply
Lemma 3.6 with t∗ = tj−J and Cδ(y) = δ−1{vδ(x, tj−J )− v(x, tj−J )}, where J = [δ−γ /2].
By the induction hypothesis, we have

sup
y

e−α√
δy− |Cδ(y)|

|G(b(tj−J ), tj−J )| <
eαB(T−T̃ )(C0 + C1(T − T̃ ))

inf T̃≤t≤T |G(b(t), t)| < ∞

for sufficiently small δ > 0. Thus, we can apply Lemmas 3.4, 3.5, and 3.6(i) to establish (3.22)
and (3.23) for i = j + 1. (In view of Remark 3.6, recall that C0 has been chosen to satisfy
(3.28) and note that the bound exp[αB(T − T̃ )]{C0 + C1(T − T̃ )}/ inf T̃≤t≤T |G(b(t), t)|
does not depend on j so that the same δ1 (referred to in Remark 3.6) can be chosen for
all j .) Finally, making use of Lemma 3.7 and noting, by the induction hypothesis, that
supx e−α(x−b(tj ))−|vδ(x, tj ) − v(x, tj )| ≤ eαBδj (C0δ + C1δ

2j), we can proceed as in (3.26)
and (3.27) with T = t0 and t1 replaced by tj and tj+1 to establish (3.24) for i = j + 1.

3.4. The Chernoff–Petkau method for symmetric Bernoulli walks

In the backward induction scheme (3.3)–(3.4) considered in Theorem 3.1, the search for
the optimal stopping boundary bδ(ti) is carried out over the interval bδ(ti−1) ± √

δ|log δ|, for
i = 1, . . . , Kδ . In practice, however, the backward induction procedure (3.3) to compute
vδ(x, ti) is usually carried out over a fixed grid of points instead of within the entire interval.
Particularly popular is the symmetric Bernoulli walk approximation with the set of grid points
L = {βδ + √

δk : k = 0,±1, . . . }, for which at any time ti every x ∈ L is characterized as
either a stopping point if g(x, ti) ≥ E vδ(x + √

δX, ti−1) or a continuation point if E vδ(x +√
δX, ti−1) > g(x, ti), where X is a symmetric Bernoulli random variable. A simple way to

approximate the optimal stopping boundary bδ(ti) is to let

x1 = inf{x ∈ L : g(x, ti) ≥ E vδ(x + √
δX, ti−1)} (3.28)

and x0 = x1−√
δ, so that bδ(ti) is approximated by the value of x satisfying�(x1, ti)(x−x0)+

�(x0, ti)(x1 − x) = 0, where �(x, ti) = 1
2 [vδ(x + √

δ, ti−1)+ vδ(x − √
δ, ti−1)] − g(x, ti).

Note that �(x1, ti) ≤ 0 ≤ �(x0, ti).
Besides this linear interpolation method, Chernoff and Petkau [14], [15] also introduced

an extrapolation method which does not explicitly estimate bδ(ti). This extrapolation method
uses (3.9) to arrive at a system of equations from which the continuous-time optimal stopping
boundary b(ti) is computed. Specifically, with the (y, s) scale as defined in Lemma 3.6,
Chernoff and Petkau [15] argued that for large negative s and bounded y < −ρ, the Vδ(y, s) in
Lemma 3.6(i) can be expressed asVδ(y, s) = y2−s−E(−ρ+R−ρ−y)2+o(1)withρ = 0.5 and
Rz = 1+[z]− z for the symmetric Bernoulli case. Since y2 −E(−0.5+R−0.5−y)2 = −h1(y)

for y < 0.5, where

h1(y) =
[
−y2 + inf

i
(y + i)2

]
1{y<0.5}, (3.29)

it follows that, for a continuation point (x, ti) in the vicinity of a boundary point (x∗, t∗),
with 0 > x − x∗ = O(

√
δ) and such that (ti − t∗)/δ is negatively large but b(ti) − x∗ =

b(ti)− b(t∗) = o(
√
δ),

D(x, ti) := vδ(x, ti)− g(x, ti) ≈ aδh1

(
x − x∗

√
δ

)
≈ aδh1

(
x − b(ti)√

δ

)
, (3.30)
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where a = G(x∗, t∗) < 0. Recalling that x0 = x1 − √
δ and that x1 is the smallest stopping

point on the grid at time t = ti , let D0 and D1 be the values D(x0, ti) and D(x0 − √
δ, ti),

respectively. Then bδ(ti) is between x0 and x1. Since bδ(t) = b(t) − 0.5
√
δ + o(

√
δ), which

implies that (approximately) b(t)− 0.5
√
δ < x1 < b(t)+ 0.5

√
δ, we use the representation

x0 = x1 − √
δ = b(t)+ v

√
δ, x0 − √

δ = b(t)+ (v − 1)
√
δ,

with −1.5 < v ≤ −0.5, to yield, via (3.30),

D0 ≈ aδh1(v) = aδ(2v + 1), D1 ≈ aδh1(v − 1) = aδ(4v).

The solution to the above linear system is v = D1/(4D0 − 2D1), which then leads to the
following continuity correction for the approximation of b(ti) by the stopping point x1 defined
in (3.28):

b(ti) = x0 +
(

D1

2D1 − 4D0

)√
δ. (3.31)

Chernoff and Petkau [14], [15] found the corrected Bernoulli-walk approximation (3.31) to
work well when applied to a number of well-studied optimal stopping problems. In Section 5
we apply the approximation to a stochastic control problem with an explicit solution and thereby
illustrate its accuracy. The function h1(y) in (3.29) first arose in [13, p. 882] as the limit of
−V1(y,−n)+n as n → ∞, where V1(y,−n) is the value function for the symmetric Bernoulli
case (δ = 1) with payoff (1.1). Since the payoffs (1.1) and (3.14) differ by rδ(y, s) defined in
(3.15) that is vanishingly small (see (A.2)–(A.6) inAppendixA), we can use the same arguments
as those in the proof of Theorem 3.1 to show that the approximation (3.31) still has the o(

√
δ)

error.

4. Applications to optimal stopping for Sn/n and Shepp’s urn

With the payoff function g(x, t) = x/t , the classical Sn/n problem is to find, for a given
initial point (x0, t0), a stopping time τ taking values in {0, 1, . . . } so as to maximize E[(x0 +
Sτ )/(t0 + τ)], where Sn = X1 + · · · + Xn, n = 1, 2, . . . , and X,X1, X2, . . . are i.i.d. with
mean 0 and variance 1; see [17] and [19] which prove that it is optimal to stop at the first n
at which x0 + Sn ≥ β(t0 + n) for some function β(t) (stopping boundary). Shepp [46] and
Walker [50] have independently shown that limn→∞ β(n)/n1/2 = c and that the corresponding
optimal stopping problem for Brownian motion has stopping boundary b(t) = ct1/2, where
c = 0.83992 . . . is the unique root of the equation cφ(c) = (1 − c2)�(c), in which φ and �
are the standard normal density and distribution function, respectively. Theorem 3.1 suggests
the second-order approximation β(n) = cn1/2 −ρ+ o(1) as n → ∞. Lai and Yao [38] proved
this for standard normal X. They also computed β(n) for symmetric Bernoulli X, for which
ρ = 0.5, and showed that cn1/2 − 0.5 approximates β(n) well even for small n.

We next consider a closely related optimal stopping problem introduced by Shepp [46].
Given n ≥ m ≥ 0, consider an urn with n balls, m of which have payoff −1 and n − m of
which have payoff +1. A player draws at random from the urn without replacement until he
stops; stopping can occur at time 0 (with no draw at all). As noted by Shepp [46, p. 1000], the
urn problem is computationally simpler than the infinite-horizon Sn/n problem as we can use
backward induction to compute the optimal stopping rule. Instead of m, it is more convenient
to consider the parameter k = 2m − n = m − (n − m), which is the negative total worth of
the urn; see [47]. It is also more convenient to extend k to a continuous variable w ∈ [−n, n].
For any w ∈ [−n, n], define a (w, n) urn as follows. Let k be the unique integer such that
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k − 2 < w ≤ k and k has the same parity as n, so |k −w − 1| ≤ 1. The (w, n) urn consists of
(n+ k)/2 − 1 balls with payoff −1, (n− k)/2 balls with payoff 1, and the remaining ball with
payoff k − w − 1. The expected return under optimal stopping from a (w, n) urn, which will
be called its ‘maximal expected return’, is continuous and nonincreasing in w.

Let β(n) be the smallest w for which the (w, n) urn has maximal expected return 0. For
a (β(n), n) urn, there are two optimal policies; one does not draw at all and the other draws
one ball and then proceeds optimally. Both policies yield maximal expected return 0. Given a
(w, n) urn, letX(n)1 , X

(n)
2 , . . . denote the payoffs of the successive draws (without replacement)

from the urn and let S(n)j = X
(n)
1 + · · · +X

(n)
j . An optimal policy is to stop at the first j at

which w + S
(n)
j ≥ β(n − j). Let u = n−1/2w (fixed) and Wn(j/n) = n−1/2S

(n)
j , j =

0, 1, . . . . The optimal policy maximizes EWn(τn) over stopping times τn that take values in
{0, 1/n, . . . , 1}. As n → ∞, Wn converges weakly to Brownian bridge {W(t), 0 ≤ t ≤ 1}
with W(1) = −u. Shepp [46] showed that supτ EW(τ) is attained by the stopping time
τ = inf{0 ≤ t ≤ 1 : u +W(t) ≥ b(1 − t)}, where b(t) = ct1/2 is the stopping boundary of
the optimal stopping problem for Brownian motion in the first paragraph of this section. This
in turn yields the approximation β(n(1 − t))/n1/2 ≈ b(1 − t) for t ∈ {0, 1/n, . . . , 1} and, in
particular, β(n) = (c+o(1))n1/2, as pointed out by Shepp [46] for a slightly different sequence
β̄(n), where β̄(n) is the smallest k for which an urn with n balls and total worth −k has maximal
expected return 0. Note that β̄(n)− 2 < β(n) ≤ β̄(n).

For a (w, n) urn with large n andw close to cn1/2 (i.e. (w, n) is near the stopping boundary),
any fixed number of successive payoffs X(n)j sampled from the (w, n) urn are approximately
independent symmetric Bernoulli random variables. The proof of Theorem 3.1 can be modified
to extend the results to X(n)j that are asymptotically independent and uniformly bounded, with

EX(n)j = 0 and var(X(n)j ) = 1. Formal application of Theorem 3.1 then yields β(n)/n1/2 =
c−0.5n−1/2 +o(n−1/2). Simons [47] proposed to use cn1/2 −0.5 as an approximation to β̄(n)
and conjectured, based on an extensive numerical study, that, asN → ∞, #{n ≤ N : β̄(n)−2 <
cn1/2 ≤ β̄(n)}/N and #{n ≤ N : β̄(n) − 2 < cn1/2 − 0.5 ≤ β̄(n)}/N tend to 0.75 and 1,
respectively. Note that this conjecture is a consequence of β(n) = cn1/2 − 0.5 + o(1), since
the sequence {cn1/2, n = 1, 2, . . . } is uniformly distributed modulo 1 by Fejér’s theorem
[31, p. 23]. A technical difficulty in applying Theorem 3.1 to prove this is that the derivative of
b(t) = ct1/2 becomes infinite as t → 0, and we have not been able to provide a rigorous proof
at this point. However, we have carried out an extensive numerical study of the accuracy of
cn1/2 −0.5 as an approximation to β(n). The results show that this second-order approximation
is accurate even for small n. A small subset of these results is given in Table 1.

Table 1: Optimal boundary and its second-order approximation for Shepp’s urn problem.

n 1 2 3 4 6 8 10 12 14 16

β(n) 0.000 0.500 1.000 1.000 1.500 1.894 2.153 2.370 2.586 2.797
cn1/2 − 0.5 0.340 0.688 0.955 1.180 1.557 1.876 2.156 2.410 2.643 2.860
difference −0.340 −0.188 0.045 −0.180 −0.057 0.018 −0.003 −0.040 −0.057 −0.063

n 18 20 22 24 25 26 27 28 29 30

β(n) 2.998 3.206 3.408 3.603 3.655 3.791 3.820 3.973 3.977 4.114
cn1/2 − 0.5 3.063 3.256 3.440 3.615 3.700 3.783 3.864 3.944 4.023 4.100
difference −0.065 −0.050 −0.032 −0.012 −0.045 0.008 −0.044 0.029 −0.046 0.014
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5. Boundary correction in singular stochastic control

In this section we show how the second-order boundary correction of Section 3 can be
extended to compute the optimal boundary in singular stochastic control problems, for which
the process does not stop when it hits the boundary but is brought back to the no-action region
by the control. Specifically, the control problem is to minimize

E

[∫ T

0
h(Xt , t) dt +

∫
[0,T )

f (t)|dξt | + k(XT )

]
, (5.1)

over bounded variation processes {ξt } that are adapted to the filtration generated by a standard
Brownian motion {Bt } such that Xt = x + Bt + ξt ; see [2] and [3]. In (5.1) the functions h,
f , and k respectively represent the deviation of Xt from 0, the unit cost of effort ξt , and the
terminal penalty when the state is away from the target state 0. In addition, h(·, t) and k(·) are
assumed to be even, convex functions and f to be nonnegative. Expressing ξt as the difference
ξ+
t − ξ−

t , where {ξ+
t } and {ξ−

t } are nonnegative, nondecreasing in t , the so-called monotone
follower problem is to minimize (5.1) subject to the constraint ξ+

t ≡ 0, which can be solved
via a related optimal stopping problem of the form

min
τ∈T [0,T ] E

[∫ τ

0
hx(x + Bt , t) dt + f (τ) 1{τ<T } +k′(x + BT ) 1{τ=T }

]
, (5.2)

where T [0, T ] is the class of stopping times taking values in [0, T ]; see [34].
The special case of the monotone follower problem withh(x, t) = x2, f ≡ 0, and k ≡ 0, has

been solved explicitly by Benes et al. [5], who showed that the optimal (nondecreasing) process
{ξ∗
t } is singular with respect to the Lebesgue measure. It is characterized as the local time of the

controlled processX∗
t = x+Bt−ξ∗

t at the boundary ∂D = {(x, t) : 0 ≤ t ≤ T , x = d
√
T − t},

where d = 0.63883 . . . is the solution of a transcendental equation. The optimal control {ξ∗
t }

is applied at the boundary to keep X∗
t within D, which corresponds to the continuation region

of the optimal stopping problem (5.2). If x ∈ Dc at time 0, then ξ∗
0 is such thatX∗

0 is the closest
point on ∂D to which x is moved instantaneously. Let U(x, T ) denote the value function. In
this special case, (5.2) reduces to the optimal stopping problem

V (x, T ) = inf
τ∈T [0,T ] E

[∫ τ

0
2(x + Bt) dt

]
. (5.3)

The optimal boundary for the monotone follower problem with value function U is the same as
the optimal stopping boundary associated with the value function V ; moreover, Ux = V . This
connection dates back to Bather and Chernoff [4] and has led to many generalizations and an
extensive literature; see [2] and [3] and the references therein.

The optimal stopping problem (5.3) is not of the form (2.1) because the payoff has to be
integrated over time up to τ , instead of at the stopping time τ . Conversely, an application
of Ito’s formula can reduce (5.3) to the form (2.1). More generally, consider the optimal
stopping problem (5.2). Let κ(x, t) be a solution to the nonhomogeneous heat equation
∂κ/∂t + 1

2∂
2κ/∂x2 − hx = 0. Then by Ito’s formula we have E[κ(x + Bt , t) − κ(x, 0)] =

E
∫ t

0 hx(x + Bu, u) du. Thus, (5.2) can be expressed in the form (2.1) with −g(z, t) =
f (t) 1{t<T } +k′(z) 1{t=T } +κ(z, t). In particular, we can write the optimal stopping problem
(5.3) as maximizing

− E

[∫ τ

0
(x + Bt) dt

]
= E[(T − τ)(x + Bτ )− Tx].
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Table 2: Uncorrected (U) and corrected (C) random walk approximations against the actual (A) boundary
for the monotone follower problem at different values of τ = T − t .

103τ 2 2.5 3 3.5 4 5 6 8 10 15 20 30

102 U 2.35 2.81 3.01 3.26 3.57 4.03 4.45 5.20 6.01 7.31 8.54 10.58
102 C 2.85 3.31 3.51 3.76 4.07 4.53 4.95 5.70 6.51 7.81 9.04 11.08
102 A 2.86 3.19 3.50 3.78 4.04 4.52 4.95 5.71 6.39 7.82 9.03 11.06

Thus, the optimal stopping problem (5.3) associated with the monotone follower case of the
control problem (5.1) has a payoff of the form (2.1). We can therefore apply the corrected
random walk approximation of Section 3 to compute the optimal reflection boundary. As an
illustration, Table 2 (with δ = 10−4 and correction started at t = T − 0.0020) shows the
dramatic effect of the correction when comparing the corrected Bernoulli walk boundary (b(t)
in (3.31) of Section 3.4) and the uncorrected Bernoulli walk boundary (bδ(t) described in
Section 3.4) against the actual boundary in the monotone follower problem solved explicitly
by Benes et al. [5].

Appendix A

Proof of Lemma 3.2. Note that u(y, t) = E[g∗(y + Sσ(y,t)) 1{σ(y,t)=−t} −σ(y, t)], where
g∗(y) = y2 1{y≤0} and σ(y, t) = inf{n : 1 ≤ n < −t, y + Sn ≥ z(t + n)}, inf ∅ = −t . For
t < 0 and y > z(t), suppose that u(y, t) ≥ 0. Then P(σ (y, t) = −t, y + S−t < 0) > 0.
Moreover, since z(t)+ S−t < y + S−t ,

E[g∗(z(t)+ Sσ(y,t)) 1{σ(y,t)=−t} −σ(y, t)] − u(y, t)

≥
∫

{σ(y,t)=−t,y+S−t<0}
[(z(t)+ S−t )2 − (y + S−t )2] dP

> 0. (A.1)

Conversely, u(z(t), t) ≥ E[g∗(z(t) + Sσ(y,t)) 1{σ(y,t)=−t} −σ(y, t)] since u(z(t), t) is the
optimal expected reward of policies that start at (z(t), t) and take at least one observation.
Moreover, u(z(t), t) ≤ Ṽ (z(t), t) = 0. Combining these with (A.1) yields u(y, t) < 0,
contradicting the assumption u(y, t) ≥ 0.

Since Ṽ (y+X, t+1) is monotone decreasing in −t , it follows that u(y, t) = −1+E Ṽ (y+
X, t + 1) is monotone decreasing in −t . For y > −ρ = lims→−∞ z(s), u(y, t) < 0 for all
sufficiently large negative t , and therefore limt→−∞ u(y, t) < 0.

Proof of Lemma 3.4. By the definition of Tδ,t,y , y is a stopping point if y ≥ |log δ|. While
we need consider only y < |log δ|, most of the inequalities below hold for |y| ≤ δ−ζ/2 that will
be used in the proofs of Lemmas 3.5 and 3.6. In addition to Lemma 3.2, we shall make use of
the following uniform bounds for all stopping times τ ≤ −t ≤ δ−γ and |y| ≤ δ−ζ/2:

δ E(y + Sτ )
2 ≤ δ(y2 + δ−γ ) ≤ δ(δ−ζ + δ−γ ) → 0, (A.2)√

δ E |y + Sτ |3 ≤ 4
√
δ{|y|3 + δ−(3/2)γ } ≤ 4

√
δ(δ−(3/2)ζ + δ−(3/2)γ ) → 0, (A.3)

δ E |t + τ |2 ≤ δ1−2γ → 0, (A.4)

P(|y + S−t | ≥ δ−1/6) ≤ P
(

max
n≤δ−γ

|Sn| ≥ δ−1/6 − δ−ζ/2
)

= o(δq), (A.5)
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for all q > 0 by Lemma 3.3(ii), recalling (3.2) and that 0 < ζ < γ < 1
3 ; moreover, for

|y| ≤ δ−1/6,
√
δ E[|t + τ ||y + Sτ |] ≤ δ1/2−γ E |y + Sτ | ≤ δ1/2−γ {δ−1/6 + δ−γ /2} → 0. (A.6)

Let uδ(y, t) be the value of the policy that starts at (y, t), takes one observation, and proceeds
optimally thereafter in the optimal stopping problem (3.18). Let g̃(y) = hδ(y) for |y| ≤ δ−1/6,
and g̃(y) = y2 1{y≤0} for |y| > δ−1/6. In view of (3.16), supy |̃g(y) − y2 1{y≤0} | = O(1) as
δ → 0. Therefore, [11, Theorem 4.1], on a modified version of the associated problem holds
for general random walks satisfying (3.2) and can be applied to show that, as t → −∞,

uδ(y, t)+ t ≤ u(y, t)+ o(1)+�(y, t) for δ−ζ/2 ≥ y > −ρ + ε, (A.7)

where u is defined in Lemma 3.2 and

�(y, t) := sup
1≤τ≤−t

E |rδ(y + Sτ , t + τ)| 1{τ<−t}

+ E(|hδ(y + S−t )| 1{|y+S−t |>δ−1/6} +(y + S−t )2 1{y+S−t<−δ−1/6}).

By (3.15), we have

sup
1≤τ≤−t

E |rδ(y + Sτ , t + τ)| 1{τ<−t}

≤ A sup
1≤τ≤−t

E[δ(y + Sτ )
2 + √

δ|y + Sτ |3 + √
δ|t + τ ||y + Sτ |]

+
−t−1∑
n=1

E |rδ(y + Sn, t + n)| 1{|y+Sn|>δ−1/6} .

From (3.15)–(3.17), (A.2)–(A.6), and Hölder’s inequality, it follows that

sup
−ρ+ε<y≤δ−ζ/2,−δ−γ≤t≤−1

�(y, t) → 0 as δ → 0.

It then follows, from Lemma 3.2 and (A.7), that if −δ−γ ≤ t ≤ −|log δ|, then (y, t) is a
stopping point (with payoff −t + o(1) upon stopping in view of (3.14)) for every y > −ρ + ε

and for all sufficiently small δ > 0.

Proof of Lemma 3.5. If y < −|log δ|, then (y, t) is a continuation point, in view of the
definition of Tδ,t,y . For −|log δ| ≤ y < −ρ − ε and −δ−γ ≤ t ≤ −|log δ|, to show that (y, t)
is a continuation point if δ is sufficiently small, we make use of (A.2)–(A.6) and

E |hδ(y + S−t )| 1{|y+S−t |>δ−1/6} +
−t−1∑
n=1

E |rδ(y + Sn, t + n)| 1{|y+Sn|>δ−1/6} → 0,

which follows from (3.17), (A.5), and Hölder’s inequality. It then suffices to show that Ṽ (y) :=
limt→−∞ Ṽ (y, t) > 0 if y < −ρ− ε, recalling that Ṽ (y, t) is monotone decreasing in y and in
−t ; see (3.19) and the paragraph preceding Lemma 3.2. Letting τ(y, t) = (−t) ∧ inf{n : y +
Sn > −ρ}, we can apply Doob’s optional stopping theorem as in (3.4) and (3.5) of [13] to
obtain

E g(y + Sτ(y,t), t + τ(y, t)) = y2 − t − E(y + Sτ(y,t))
2 1{τ(y,t)<−t}

− E(y + Sτ(y,t))
2 1{τ(y,t)=−t,y+Sτ(y,t)≥0} . (A.8)
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Fix y < −ρ − ε and let c = −ρ − y. Note that, as −t → ∞,

E(y + Sτ(y,t))
2 1{τ(y,t)<−t} = E(−ρ + Rc)

2 + o(1) = ρ2 − 2ρ ERc + ER2
c + o(1), (A.9)

E(y + Sτ(y,t))
2 1{τ(y,t)=−t,y+Sτ(y,t)≥0} = E(−ρ + Rc)

2 1{−ρ+Rc≥0,τ (y,t)=−t} → 0, (A.10)

by the uniform integrability of R2
c (cf. [32]). Moreover, y2 = (ρ + c)2 = ρ2 + 2ρc + c2.

Putting this in (A.8) and applying (A.9) and (A.10) then yields

E g(y + Sτ(y,t), t + τ(y, t)) = −t + 2ρ(c + ERc)− ER2
c + c2 + o(1)

as −t → ∞. From this and Lemma 3.1, Ṽ (y, t) ≥ E g(y+Sτ(y,t), t+τ(y, t))+ t ≥ c2 +o(1).
Proof of Lemma 3.6. Taylor expansion of g − πg around (x∗, t∗) yields, for t < t∗,

(g − πg)(x, t) = G(x∗, t∗)(t − t∗)+O(|t − t∗|2 + |x − x∗|3 + |t − t∗||x − x∗|). (A.11)

We can apply Lemma 2.1 to conclude that ∂2v/∂x2 and ∂2v/∂x∂t = − 1
2∂

3v/∂x3 are contin-
uous in the continuation region up to the boundary b(·); moreover, 1

2 (∂
2/∂x2)(v − g) = −G

at x = b(t). Note that v(x, t∗) = g(x, t∗) for x ≥ x∗ and that (∂2/∂x2)v(x, t∗) has a
discontinuity at x = x∗. A Taylor expansion around x∗ yields

(v − πg)(x, t
∗) = −G(x∗, t∗)(x − x∗)2 1{x≤x∗} +O(|x − x∗|3). (A.12)

In view of (3.5), −G(x∗, t∗) = |G(x∗, t∗)| > 0. From (A.11) and (A.12), it follows that gδ
satisfies (3.14)–(3.16) for −δ−γ ≤ s ≤ 0, for every choice of 0 < γ < 1

3 . To prove that (3.17)
holds (with hδ thus defined) for this range of γ and any q ≥ p > 1 and 0 < ζ < γ , it suffices
to show that

sup
|x−x∗|≤δ(1−ζ )/2,t∗−δ1−γ≤t≤t∗,n≤δ−γ

E |g(x + √
δSn, t)|p = O(1), (A.13)

sup
|x−x∗|≤δ(1−ζ )/2,n≤δ−γ

E |v(x + √
δSn, t

∗)|p = O(1). (A.14)

From (2.3), (3.7), and (3.2), (A.13) follows, noting that, for some large constant M > 0,

E |g(x + √
δSn, t)|p ≤ MeMp|x+√

δSn| ≤ MeMp|x|{E eMp
√
δSn + E e−Mp

√
δSn} = O(1).

Similarly, as supx<b(t∗) e−α′′′|x−b(t∗)||v(x, t∗)| < ∞ by Lemma 3.7 and since v(x, t∗) =
g(x, t∗) for x ≥ b(t∗), (A.14) follows from (3.7) and (3.2).

To prove part (i), recall that δ−ζ = o(δ−γ ) and that supT̃≤t≤T ∗,x≥b(t) |g(x, t)|e−β(x) < ∞
by (3.7) with β(x) = O(x) as x → ∞, and apply Lemmas 3.3(i), 3.4, and 3.5 together
with (A.2)–(A.6), (A.8)–(A.10), (3.20), and (3.2). To prove part (ii), let V (c)(y, s) denote
the discrete time optimal value function with respect to the payoff function −s 1{s<0} +(c +
y2 1{y≤0}) 1{s=0}, which reduces to (1.1) when c = 0. By [11, Theorem 4.1], (applicable to
random walks satisfying (3.2)) together with (A.2)–(A.6) and (3.15)–(3.17), it follows that, as
δ → 0, V (−A)(y, s) + o(1) ≤ Vδ(y, s) ≤ V (A)(y, s) + o(1) uniformly in −δ−γ ≤ s < 0
and |y| ≤ δ−ζ/2. Observing that |V (c)(y, s) − V (0)(y, s)| ≤ |c|, part (ii) then follows from
Lemma A.1, below.

Lemma A.1. Let V (0)(y, s) denote the discrete time optimal value function for Chernoff’s
associated stopping problem (1.1). Then we have 0 ≤ y2 1{y≤0} −s − V (0)(y, s) ≤ ρ2 +
4 E S3

τ+/3 E Sτ+ for s = −1,−2, . . . and −∞ < y < ∞.
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Proof. Hogan [32] has shown that there exists a nondecreasing optimal stopping boundary
0 > z(−1) ≥ · · · ≥ −ρ. The lemma holds trivially for (y, s) with y ≥ z(s). For (y, s)
with y < z(s), we have, as in (A.8), V (0)(y, s) = y2 − s − E(y + Sτ )

2 1{τ<−s} − E(y +
Sτ )

2 1{τ=−s,y+Sτ≥0}, where τ = (−s) ∧ inf{n : y + Sn > z(s + n)} is the optimal stopping
time. Letting τ(c) = inf{n : Sn > c} and noting that 0 > z(−1) ≥ z(−2) ≥ · · · ≥ −ρ, we
have (y+ Sτ )2 1{τ<−s} +(y+ Sτ )2 1{τ=−s,y+Sτ≥0} ≤ ρ2 + (y+ Sτ(−y))2, which together with
(3.10) proves the lemma.
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