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Abstract

Although there are many efficient algorithms for calculating the simulation pre-
order on finite Kripke structures, only two have been proposed of which the space
complexity is of the same order as the size of the output of the algorithm. Of these,
the one with the best time complexity exploits the representation of the simulation
problem as a generalised coarsest partition problem. It is based on a fixed-point
operator for obtaining a generalised coarsest partition as the limit of a sequence
of partition pairs. We show that this fixed-point theory is flawed, and that the al-
gorithm is incorrect. Although we do not see how the fixed-point operator can be
repaired, we correct the algorithm without affecting its space and time complexity.

1 Introduction
The simulation preorder [16] is a behavioural refinement relation on concurrent sys-
tems, represented as Kripke structures or labelled transition systems, that plays a cru-
cial rôle in compositional verification and model checking. As shown in [5] and [15],
respectively, the simulation preorder preserves the existential and universal fragments
of CTL∗ [6], as well as the modal µ-calculus [13]. This makes it possible to combat
the state explosion problem in model checking by minimising the state space of a given
system modulo simulation equivalence before checking the validity of relevant prop-
erties within that fragment. Given that the simulation preorder is a precongruence for
parallel composition [10], components in parallel compositions can even be minimised
individually.

Simulation equivalence is also used directly in equivalence checking [14] of finite-
state processes. Often deciding the simulation preorder between processes is the most
appropriate method of showing that two systems are related by another preorder, that
may be appropriate for the task at hand. In applications where deadlock behaviour
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plays a crucial rôle, the ready simulation preorder [1] is widely regarded to be an ap-
propriate behavioural refinement relation for matching an implementation with a spec-
ification. Via a straightforward reduction (the computation of the initial partition ER1

in [2]), finding a ready simulation between two processes is as hard as finding a plain
simulation. In applications where deadlock behaviour plays no rôle, trace inclusion is
often proposed as an appropriate refinement relation. However, deciding trace inclu-
sion on finite-state processes is PSPACE-hard [18], and as the simulation preorder is
the coarsest preorder included in trace inclusion that is known to be decidable in poly-
nomial time [2, 3, 8, 11, 17, 19], establishing a simulation between two processes is a
favourite way of showing that they are related by trace inclusion.

In many crucial applications, space rather than time becomes the bottleneck as the
input graph grows [4, 7, 8, 12]. Hence, simulation algorithms with minimal space
complexity are of particular interest. These are the ones by Bustan and Grumberg [3]
and by Gentilini, Piazza and Policriti [8]. For an input graph with N states, T transi-
tions and S simulation equivalence classes, the space complexity of both algorithms is
O(S2 + N log S). This can be considered minimal: O(S2) space is needed for stor-
ing the simulation preorder as a partial order on simulation equivalence classes and
O(N log S) space is needed to store for every state, the equivalence class to which it
belongs. Of these algorithms, the one by Gentilini et al. has a better time complexity:
O(S2T ). A more time-efficient algorithm is the one by Ranzato and Tapparo [17], but
it is less space efficient.

The approach of Gentilini et al. represents the simulation problem as a generalised
coarsest partition problem (GCPP). According to the authors, this problem can be
solved by approximating the greatest fixed point of a decreasing operator on partition
pairs that they define in their paper. They give a partitioning algorithm to compute this
fixed point for any legal input. We recite this definition and a part of the algorithm in
Section 3. In Section 4 we show that the operator is flawed because it is not uniquely
defined for all partition pairs. We give an instance of the GCPP for which repeated
application of the operator does not lead to a unique fixed point. We also show that on
this example the partitioning algorithm irrevocably allocates two simulation-equivalent
states to different simulation-equivalence classes, and subsequently deadlocks.

In Section 5 we define a simple, yet inefficient fixed-point operator for which we
prove correctness. This operator is not meant to be an improvement over the original
one, but merely serves as an expedient for establishing correctness of the algorithm
that we present in Section 6. This algorithm is obtained from that of Gentilini et al.
by means of a few simple corrections; consequently, it has the same time and space
complexities as the original partitioning algorithm. Yet its correctness proof requires
entirely new techniques and is surprisingly non-trivial. We also show that no fixed-
point operator can be defined that captures the behaviour of this algorithm.

2 Preliminaries

Partitions and relations. For any set S, a partition over S is a set Σ ⊆ P(S) such
that

⋃
Σ = S and ∀α ∈ Σ . α 6= ∅ ∧ ∀β ∈ Σ . α 6= β⇒ α ∩ β = ∅. For any s ∈ S we

denote by [s]Σ the block α ∈ Σ such that s ∈ α. Given two partitions Σ and Π we say
Π is finer than Σ iff for every α ∈ Π there exists an α′ ∈ Σ such that α ⊆ α′. For any
set S, we denote by I(S) the identity relation over S, i.e. I(S) = {(s, s) | s ∈ S}.
For any relation P , we denote by P+ the transitive closure of P .
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Graphs. A (directed) graph is a tuple (N,→) where N is a finite set of nodes and
→ ⊆ N ×N is a set of directed transitions between those nodes. A labelled graph is
a tuple (N,→,Σ) where (N,→) is a graph and Σ is a partition over N . For a graph
(N,→), a ∈ N and β ⊆ N , we write a → β if ∃b ∈ β . a → b. Moreover, we define
the relations →∃ and →∀ over P(N) as follows, for any α, β ⊆ N :

α →∃ β ⇔ ∃a ∈ α . a → β α →∀ β ⇔ ∀a ∈ α . a → β.

Simulations. For any labelled graph (N,→,Σ) a relation R ⊆ N×N is a simulation
iff for any a, b ∈ N , (a, b) ∈ R implies:

• [a]Σ = [b]Σ and

• ∀c ∈ N . a → c ⇒ ∃d ∈ N . b → d ∧ (c, d) ∈ R.

We say that a is simulated by b, denoted a ⊂→ b, iff there exists a simulation R such that
(a, b) ∈ R. It is well known and easy to check that ⊂→ is a preorder, i.e. a reflexive and
transitive relation, on N , and moreover the largest simulation. We say that a and b are
simulation equivalent, denoted a →← b, iff a ⊂→ b and b ⊂→ a.

The simulation problem. Given a labelled graph G = (N,→,Σ), the simulation
problem over G consists in finding the simulation preorder ⊂→ on G.

A variant of the simulation problem asks, given a labelled graph (N,→,Σ) and
two nodes a, b ∈ N , whether a ⊂→ b. In general, no methods to solve this problem
are known that are more efficient than computing the entire relation ⊂→ ⊆ N ×N and
looking up whether (a, b) ∈ ⊂→. Another variant of the simulation problem merely
asks to find the simulation equivalence relation →← rather than the preorder ⊂→. Again,
no methods to solve that problem are known that do not amount to finding ⊂→ as well.

Typically, the simulation problem arises in the context of Kripke structures or la-
belled transition systems. It is trivial to encode a Kripke structure as a labelled graph
in such a way that the simulation preorder on the Kripke structure agrees with the one
on its labelled graph representation. Likewise, it is not hard to reduce the simulation
problem for labelled transition systems to that for labelled graphs. Alternatively one
can enrich the theory in a straightforward way to deal with transition labels as well, so
that it is applicable to labelled transition systems directly.

The generalised coarsest partition problem. Given a graph G = (N,→), a par-
tition pair over G is a pair 〈Σ, P 〉 where Σ is a partition over N and P ⊆ Σ × Σ is
a reflexive, acyclic relation over Σ. A partition pair 〈Σ, P 〉 is called transitive if P is
transitive, and hence a partial order. Given a partition Σ, a partition Π finer than Σ, and
a relation P over Σ, we denote by P (Π) the induced relation of P on Π:

P (Π) = {(α, β) ∈ Π×Π | ∃(α′, β′) ∈ P . α ⊆ α′ ∧ β ⊆ β′}.

We define a partial order ≤ on partition pairs by writing, for any partition pairs 〈Σ, P 〉
and 〈Π, Q〉: 〈Π, Q〉 ≤ 〈Σ, P 〉 iff Π is finer than Σ and Q ⊆ P (Π). Given a graph
G = (N,→), we say a partition pair 〈Σ, P 〉 over G is stable with respect to → [8] iff:

∀α, β, γ ∈ Σ . ((α, β) ∈ P ∧ α →∃ γ) ⇒ ∃δ ∈ Σ . (γ, δ) ∈ P ∧ β →∀ δ.

Given a graph G = (N,→) and a partition pair 〈Σ, P 〉 over G, the generalised coarsest
partition problem (GCPP) [8] consists in finding a ≤-maximal partition pair 〈Ξ,�〉
such that 〈Ξ,�〉 ≤ 〈Σ, P+〉 and 〈Ξ,�〉 is stable with respect to →.
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The simulation problem as a GCPP. Let G = (N,→,Σ) be a labelled graph. Any
preorder v on N can be represented as a partition pair PP(v) := 〈Π,�〉, as follows:
Π is the set of equivalence classes of N w.r.t. the equivalence relation ≡ := v ∩ v−1

induced by v, and � is given by [a]Π � [b]Π iff a v b. Note that � is a partial order.
Moreover, ifv is a simulation then PP(v) is stable w.r.t.→ and PP(v) ≤ 〈Σ, I(Σ)〉.1

Any partition pair 〈Π, Q〉 over the graph (N,→) can be represented as a relation
R〈Π,Q〉 ⊆ N ×N as follows: (a, b) ∈ R〈Π,Q〉 iff ∃(α, β) ∈ Q . a ∈ α ∧ b ∈ β. Note
that if 〈Π, Q〉 is stable w.r.t. → and 〈Π, Q〉 ≤ 〈Σ, I(Σ)〉 then R〈Π,Q〉 is a simulation.
Moreover, 〈Π, Q〉 ≤ 〈Π′, Q′〉 iff R〈Π,Q〉 ⊆ R〈Π′,Q′〉. Also note that RPP(v) = v.

Hence PP(⊂→) is the solution of the GCPP on (N,→) and 〈Σ, I(Σ)〉. In particular,
the GCPP, when applied to partition pairs of the form 〈Σ, I(Σ)〉 (plain partitions),
always has a unique solution 〈Ξ,�〉, in which moreover � is always a partial order.2

3 The GCPP Solution of Gentilini, Piazza and Policriti
To solve the GCPP, Gentilini, Piazza and Policriti [8] introduce the following operator:

Definition 4.11 in [8] (Operator σ). Let G = (N,→) and 〈Σ, P 〉 be a partition pair
over G. The partition pair 〈Π, Q〉 = σ(〈Σ, P 〉) is defined as follows:

(1σ) Π is the coarsest partition finer than Σ such that

(a) ∀α ∈ Π ∀γ ∈ Σ(α →∃ γ ⇒ ∃δ ∈ Σ((γ, δ) ∈ P ∧ α →∀ δ));

(2σ) Q is maximal such that Q ⊆ P (Π) and if (α, β) ∈ Q, then

(b) ∀γ ∈ Σ(α →∀ γ ⇒ ∃γ′ ∈ Σ((γ, γ′) ∈ P ∧ β →∃ γ′)) and

(c) ∀γ ∈ Π(α →∀ γ ⇒ ∃γ′ ∈ Π((γ, γ′) ∈ Q ∧ β →∃ γ′)).

They argue that applying σ iteratively on an initial partition pair 〈Σ0, P0〉 yields a
sequence of partition pairs 〈Σi, Pi〉i≥0 with 〈Σi+1, Pi+1〉 = σ(〈Σi, Pi〉). By construc-
tion, this sequence is decreasing, in the sense that 〈Σi+1, Pi+1〉 ≤ 〈Σi, Pi〉. Hence it
will reach a fixed point 〈Σk, Pk〉 = σ(〈Σk, Pk〉). This is the solution to the GCPP.

Algorithm 1 The partitioning algorithm of [8]: PAGPP((N,→), 〈Σ, P 〉)
1: change := >; i := 0; Σ0 := Σ; P0 := P ;
2: while change do
3: change := ⊥;
4: Σi+1 := REFINEGPP(Σi, Pi, change);
5: Pi+1 := UPDATEGPP(Σi, Pi,Σi+1);
6: i := i + 1;
7: end while

Applying this, they give a partitioning algorithm to solve the GCPP. We have
included it here as Algorithm 1 and call it PAGPP. It takes as input a graph (N,→)
and a transitive partition pair 〈Σ, P 〉 and repeatedly calls the following functions to
compute σ until a fixed point is reached: REFINEGPP which computes the partition Π

1The proof of the stability claim proceeds similarly to footnote 3 in the proof of Proposition 6.
2The same reasoning extends to the GCPP applied to any partition pairs, but this requires considering

simulations on structures of the form (N,→, Σ,�) with (N,→, Σ) a labelled graph, and � a partial order
on Σ; the first clause in the definition of simulation then becomes [a]Σ � [b]Σ.
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Algorithm 2 The refine function of [8]: REFINEGPP(Σi, Pi, change)
1: Σi+1 := Σi;
2: for all α ∈ Σi+1 do Stable(α) := ∅; end for
3: for all γ ∈ Σi do Row(γ) := {γ′ | (γ, γ′) ∈ Pi}; end for
4: Let Sort be a reverse topological sorting of Σi w.r.t. Pi;
5: while Sort 6= ∅ do
6: γ := dequeue(Sort);
7: A := ∅;
8: for all α ∈ Σi+1, α →∃ γ, Stable(α) ∩ Row(γ) = ∅ do
9: α1 := α ∩→−1(γ);

10: α2 := α \ α1;
11: if α2 6= ∅ then change := >; end if
12: Σi+1 := Σi+1 \ {α};
13: A := A ∪ {α1, α2};
14: Stable(α1) := Stable(α) ∪ {γ};
15: Stable(α2) := Stable(α);
16: end for
17: Σi+1 := Σi+1 ∪A;
18: Sort := Sort \ {γ};
19: end while
20: return Σi+1;

of (1σ) and UPDATEGPP which computes the relation Q of (2σ). The boolean variable
change is set to > by REFINEGPP iff its output partition differs from its input partition.
We have included the REFINEGPP function as Algorithm 2. In line 4 of this algorithm, a
“reverse topological sorting of Σi w.r.t. Pi” indicates an ordered listing of the elements
of Σi such that if (γ, δ) ∈ Pi then δ occurs prior to γ.

4 Incorrectness of the Fixed-Point Operator

Following the definition of σ, the authors claim that for any partition pair 〈Σ, P 〉, if
〈Π, Q〉 = σ(〈Σ, P 〉) then Q is acyclic. We give an example that counters this claim.

Counterexample 1. Consider the graph in Figure 1(a) and the partition pair 〈Σ, P 〉
with Σ = {α, β, γ, δ} as depicted and P = I(Σ) ∪ {(β, δ), (δ, γ)}. Let 〈Π, Q〉 =

α a1 a2

γ

c

β

b

δ

d

(a)

αa1a0 a2

γ

c

β

b

δ

d

(b)

Figure 1: Counterexamples for (a) acyclicity of Q and (b) well-definedness of σ.
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σ(〈Σ, P 〉), then

Π = {α1, α2, β, γ, δ} Q = I(Π) ∪ {(α1, α2), (α2, α1), (β, δ), (δ, γ)}

where α1 = {a1} and α2 = {a2}. Q is not acyclic, which counters the claim.

This counterexample shows that applying σ to a given partition pair does not neces-
sarily yield another partition pair. After all, for that the resulting relation has to be
acyclic.

However, a more fundamental theorem that the authors claim to have proven, turns
out not to hold. Theorem 4.13 states that for every partition pair 〈Σ, P 〉 there exists a
unique≤-maximal partition pair 〈Π, Q〉 ≤ 〈Σ, P 〉 satisfying conditions (a), (b) and (c)
of Definition 4.11, i.e. the σ operator is well-defined, and a function. This theorem is
countered by the following example.

Counterexample 2. Consider the graph in Figure 1(b) and the partition pair 〈Σ, P 〉
with Σ = {α, β, γ, δ} as depicted and P = I(Σ) ∪ {(β, γ), (γ, δ)}. Let 〈Π, Q〉 and
〈Π′, Q′〉 be partition pairs such that:

Π = {α0, α1, β, γ, δ} Q = I(Π) ∪ {(α0, α1), (α1, α0), (β, γ), (γ, δ)}
Π′ = {α′0, α′1, β, γ, δ} Q′ = I(Π′) ∪ {(α′0, α′1), (α′1, α′0), (β, γ), (γ, δ)}

where α0 = {a0, a1}, α1 = {a2}, α′0 = {a0} and α′1 = {a1, a2}. Both 〈Π, Q〉
and 〈Π′, Q′〉 satisfy conditions (a), (b) and (c) of Definition 4.11, but neither is the
≤-largest. The only partition pair greater than both 〈Π, Q〉 and 〈Π′, Q′〉 and at most
as large as 〈Σ, P 〉, is 〈Σ, P 〉 itself, but 〈Σ, P 〉 does not satisfy (a). Hence, this example
counters Theorem 4.13 of [8] and shows that σ is not well-defined.

Following Theorem 4.13, the authors present their main fixed-point theorem which
states that the solution of the GCPP over a graph G and partition pair 〈Σ, P 〉 can be
computed by applying σ to 〈Σ, P 〉 finitely many times until a fixed point is reached
(Theorem 4.14). In this theorem, the authors demand that P be transitive. One might
be inclined to think that Counterexample 2 does not affect this theorem, as we used
a non-transitive P . We now show that this is not the case: the main theorem indeed
loses its meaning due to our counterexample for Theorem 4.13. To do so, we first
give an example in which the application of σ to a transitive partition pair produces a
non-transitive partition pair.

Example 3. Consider the graph in Figure 2(a) and the partition pair 〈Σ, P 〉 with
Σ = {α, β, γ} as depicted and P = I(Σ). Let 〈Π, Q〉 = σ(〈Σ, P 〉), then:

Π = {α1, α2, α3, β, γ} Q = I(Π) ∪ {(α3, α1), (α1, α2)}

where α1 = {a0, a1}, α2 = {a2} and α3 = {a3}.

Our final counterexample shows that σ is not suitable for computing the solution of
the GCPP, and is constructed by embedding Counterexample 2 in Example 3, such
that the first application of σ produces a non-transitive partition pair on which σ is not
well-defined.

Counterexample 4. Consider the graph in Figure 2(b) and the partition pair 〈Σ, P 〉
with Σ = {α, β, γ} as depicted and P = I(Σ). Let 〈Π, Q〉 = σ(〈Σ, P 〉), then:

Π = {α1, α2, α3, β, γ} Q = I(Π) ∪ {(α3, α1), (α1, α2)}
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α a1a0 a2 a3

β

b

γ

c

(a)

α

a4 a5

a1a0 a2 a3

β

b

γ

c

(b)

Figure 2: (a) Example for which σ produces a non-transitive relation Q and (b) coun-
terexample for correctness of σ.

where α1 = {a0, a1}, α2 = {a2} and α3 = {a3, a4, a5}. Now, in 〈Π, Q〉 the block α3

has to be split, because α3 →∃ α3 but ¬∃δ ∈ Π . ((α3, δ) ∈ Q∧α3 →∀ δ)). There are
two candidate partition pairs for σ(〈Π, Q〉): α3 can be split into either α3,0 = {a4}
and α3,1 = {a3, a5} or α′3,0 = {a4, a5} and α′3,1 = {a3}. However, neither of these
is greater than the other, so a unique ≤-maximal partition pair does not exist.

When splitting α3 in Counterexample 4, the REFINEGPP function of algorithm PAGPP
splits the block into α3,0 and α3,1. Observe that this is wrong: a4 and a5 should not
end up in different equivalence classes because a4

→← a5. This split also results in
UPDATEGPP’s returning a cyclic relation. In the subsequent iteration of PAGPP, the
execution of REFINEGPP then fails because there is no reverse topological sorting of
the partition w.r.t. the cyclic relation (line 4).

5 An Auxiliary Fixed-Point Operator

In this section we introduce a fixed-point operator ρ to solve the GCPP and prove its
correctness. The definition of ρ is straightforward: it is based directly on the stability
condition of Section 2.

We emphasise that ρ is not intended to be an improvement over the σ operator of
Section 3 in any way: it is a less advanced operator than σ aimed to be. The purpose
of σ was to compute the solution to the GCPP efficiently, while ρ gives rise to an
algorithm that has an inferior time complexity of O(S3T ) where S is the number of
equivalence classes of the GCPP solution and T the number of transitions of the input
graph.

Namely, the complexity analysis of [8] uses that, as long as no fixed point is
reached, in each refinement-update step the refinement of the partition will be non-
trivial, i.e. the number of blocks increases. As a consequence, there will be at most S
refinement-update steps before the algorithm terminates. Such an analysis is not ap-
propriate for ρ: applying ρ repeatedly could involve many steps in which the partition
does not change. Consequently, the number of iterations of the algorithm is bounded
merely by the size of a relation on the eventual partition, i.e. by S2.

The sole purpose of ρ is to serve as an auxiliary operator for establishing the cor-
rectness of the algorithm that we present in Section 6. That algorithm has the same
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time complexity as PAGPP and does not correspond to any fixed-point operator, as we
show in the same section.

Definition 5 (Operator ρ). Let 〈Σ, P 〉 be a transitive partition pair over a graph (N,→).
Then ρ(〈Σ, P 〉) is the ≤-largest partition pair 〈Π, Q〉 ≤ 〈Σ, P 〉 that satisfies

(1) ∀α, β ∈Π . ∀γ ∈Σ . ((α, β)∈Q∧α →∃ γ ⇒ ∃δ ∈Σ . ((γ, δ)∈P ∧β →∀ δ)).

Alternatively, ρ could be defined just like σ of Definition 4.11, but insisting that its
input partition pair is transitive, and omitting clause (c). It is not hard to check that this
definition is equivalent to the one above. The correctness of Definition 5 is ensured by
the following.

Proposition 6. Let 〈Σ, P 〉 be a transitive partition pair over a graph (N,→). Then
there exists a ≤-largest partition pair 〈Π, Q〉 ≤ 〈Σ, P 〉 that satisfies (1). Moreover, Q
is transitive.

Proof. Define the relation v ⊆ N ×N by a v b iff

∃(α, β) ∈ P . a ∈ α ∧ b ∈ β ∧ ∀γ ∈ Σ . (a → γ ⇒ ∃δ ∈ Σ . ((γ, δ) ∈ P ∧ b → δ)).

Using the reflexivity and transitivity of P , this relation is a preorder. Take 〈Π, Q〉 :=
PP(v), as defined in Section 2. So Q is transitive. By construction, 〈Π, Q〉 ≤ 〈Σ, P 〉.
It is not hard to check that Π satisfies (1).3

Now let 〈Π′, Q′〉 be another partition pair with 〈Π′, Q′〉 ≤ 〈Σ, P 〉 that satisfies (1).
Suppose (α, β) ∈ Q′, a ∈ α and b ∈ β. Using (1) we find a v b. Applying this
insight to the case α = β we find that Π′ is finer than Π. Applying it in general yields
Q′ ⊆ Q(Π′). Hence 〈Π′, Q′〉 ≤ 〈Π, Q〉.

Proposition 7. The operator ρ is monotone with respect to ≤: if 〈Σ, P 〉 and 〈Σ′, P ′〉
are transitive partition pairs with 〈Σ, P 〉 ≤ 〈Σ′, P ′〉, then ρ(〈Σ, P 〉) ≤ ρ(〈Σ′, P ′〉).

Proof. As ρ(〈Σ, P 〉) satisfies (1) w.r.t. 〈Σ, P 〉, it certainly satisfies (1) w.r.t. 〈Σ′, P ′〉.
As ρ(〈Σ, P 〉) ≤ 〈Σ, P 〉 ≤ 〈Σ′, P ′〉 and ρ(〈Σ′, P ′〉) is the ≤-largest partition pair with
ρ(〈Σ′, P ′〉) ≤ 〈Σ′, P ′〉 that satisfies (1), it follows that ρ(〈Σ, P 〉) ≤ ρ(〈Σ′, P ′〉).

Since ρ(〈Σ, P 〉) ≤ 〈Σ, P 〉 and ≤ is a partial order on a finite set, we obtain:

Proposition 8. Let 〈Σ, P 〉 be a transitive partition pair over a graph. Then for some
n ≥ 0, ρn+1(〈Σ, P 〉) = ρn(〈Σ, P 〉), i.e. repeated application of ρ leads to a fixed
point.

The solution to the GCPP over an input graph G and an initial partition pair 〈Σ, P 〉 over
G can be obtained by repeatedly applying ρ to 〈Σ, P+〉. The following lemmata say
that as soon as a fixed point is reached, the resulting partition pair is stable. Moreover,
each of the intermediate partition pairs is larger than or equal to the solution of the
GCPP. It then follows that the obtained fixed point is in fact the solution to the GCPP.

3 Suppose (α, β) ∈ Q and α →∃ γ for γ ∈ Σ. Then ∃a ∈ α . a → γ. Take that a, and a b′ ∈ β.
As a v b′, we have ∃δ′ ∈ Σ . ((γ, δ′) ∈ P ∧ b′ → δ′)). Hence β →∃ δ′. As P is a partial order
on a finite set, let δ be a P -maximal element of Σ larger than δ′ such that β →∃ δ, i.e. (δ′, δ) ∈ P and
∀ε ∈ Σ . (δ, ε) ∈ P ∧ β →∃ ε ⇒ ε = δ. Note that (γ, δ) ∈ P . As β →∃ δ, ∃b0 ∈ β . b0 → δ. For any
b ∈ β we have b0 v b, so ∃εb ∈ Σ . ((δ, εb) ∈ P ∧ b → εb)). It must be that εb = δ. Hence β →∀ δ.
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Lemma 9. Let 〈Σ, P 〉 be a transitive partition pair over a graph (N,→). Then
ρ(〈Σ, P 〉) = 〈Σ, P 〉 if and only if 〈Σ, P 〉 is stable with respect to →.

Proof. Because ρ(〈Σ, P 〉) is the ≤-largest partition pair satisfying (1), we have that
ρ(〈Σ, P 〉) = 〈Σ, P 〉 if and only if 〈Σ, P 〉 satisfies (1) w.r.t. itself, which is equivalent
to stability w.r.t. →.

Lemma 10. Let 〈Σ, P 〉 and 〈Π, Q〉 be partition pairs over a graph G, with Q transi-
tive, and let 〈Ξ,�〉 be the solution of the GCPP over G and 〈Σ, P 〉. If 〈Ξ,�〉 ≤ 〈Π, Q〉
then 〈Ξ,�〉 ≤ ρ(〈Π, Q〉).

Proof. By Lemma 9 ρ(〈Ξ,�〉) = 〈Ξ,�〉. Assuming that 〈Ξ,�〉 ≤ 〈Π, Q〉, the state-
ment now follows from Proposition 7.

Theorem 11. Let 〈Σ, P 〉 be a partition pair over a graph G = (N,→) and 〈Ξ,�〉 be
the solution of the GCPP over G and 〈Σ, P 〉. Let n ≥ 0 be such that ρn+1(〈Σ, P+〉) =
ρn(〈Σ, P+〉). Then ρn(〈Σ, P+〉) = 〈Ξ,�〉.

Proof. Note that n exists by Proposition 8. We prove that 〈Ξ,�〉 ≤ ρn(〈Σ, P+〉) and
ρn(〈Σ, P+〉) ≤ 〈Ξ,�〉.
• 〈Ξ,�〉 ≤ ρn(〈Σ, P+〉): By definition 〈Ξ,�〉 ≤ 〈Σ, P+〉. Applying Lemma 10 n

times gives us 〈Ξ,�〉 ≤ ρn(〈Σ, P+〉).
• ρn(〈Σ, P+〉) ≤ 〈Ξ,�〉: Obviously ρn(〈Σ, P+〉) ≤ 〈Σ, P+〉 and by Lemma 9

ρn(〈Σ, P+〉) is stable w.r.t. →. By definition 〈Ξ,�〉 is the ≤-largest partition pair
that has these properties. Hence ρn(〈Σ, P+〉) ≤ 〈Ξ,�〉.

6 A Correct and Efficient Algorithm

Algorithm 3 The repaired partitioning algorithm: PA((N,→), 〈Σ, P 〉)
1: Σ1 := REFINE(Σ, P );
2: P1 := UPDATEGPP(Σ, P, Σ1);
3: change := >; i := 1;
4: while change do
5: change := ⊥;
6: Σi+1 := REFINE(Σi, Pi);
7: Pi+1 := UPDATEGPP(Σi, Pi,Σi+1);
8: i := i + 1;
9: end while

Our repaired partitioning algorithm is called PA, see Algorithm 3. The variable change
and the input graph (N,→) have global scope: they can be accessed from any function.
Note however, that UPDATEGPP does not access change.

Our corrections of the algorithm are two. Firstly, it is ensured that at least two
refinement-update steps are taken before the algorithm terminates (lines 1 and 2). The
necessity of this (minor) correction is explained in Section 6.1. Secondly, the most
important error — the one resulting from the incorrect σ operator — is repaired by
the new REFINE function, Algorithm 4. It contains a few minor improvements over
REFINEGPP: using list notations for variable Sort and preventing empty blocks from
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Algorithm 4 The repaired refine function: REFINE(Σ, P )
1: Π := Σ;
2: for all α ∈ Π do Stable(α) := ∅; end for
3: for all γ ∈ Σ do Row(γ) := {γ′ | (γ, γ′) ∈ P}; end for
4: Let Sort be a reverse topological sorting of Σ w.r.t. P ;
5: while Sort 6= [] do
6: γ := head(Sort);
7: A := ∅;
8: for all α ∈ Π, α →∃ γ do
9: if Stable(α) ∩ Row(γ) = ∅ then

10: α1 := α ∩→−1(γ);
11: α2 := α \ α1;
12: Π := Π \ {α};
13: A := A ∪ {α1};
14: Stable(α1) := Stable(α) ∪ {γ};
15: if α2 6= ∅ then
16: change := >;
17: A := A ∪ {α2};
18: Stable(α2) := Stable(α);
19: end if
20: else
21: Stable(α) := Stable(α) ∪ {γ};
22: end if
23: end for
24: Π := Π ∪A;
25: Sort := tail(Sort);
26: end while
27: return Π;

being added to Π. However, the actual correction is in line 21: if for some γ ∈ Σ and
α ∈ Π with α →∃ γ we have Stable(α) ∩ Row(γ) 6= ∅ then we add γ to Stable(α).

We use the ρ operator of Section 5 to prove correctness of PA in Section 6.2. Its
space and time complexities are the same as for PAGPP: no additional space is needed
and the corrections do not increase the time complexity. Finally, in Section 6.3 we
show that there is no fixed-point operator that captures the refinement performed by
our REFINE function.

6.1 The Correction of a Minor Mistake
Apart from the error in PAGPP that results from the incorrect σ operator, we found
another, minor mistake in the algorithm. We describe it in this section and propose a
solution. The mistake is shown by the following example.

Example 12. Consider the graph G = (N,→) in Figure 3 and the partition pair
〈Σ, P 〉 with Σ = {α, β} as depicted and P = I(Σ) ∪ {(α, β)}. Observe that the
solution to the GCPP over G and 〈Σ, P 〉 is 〈Ξ,�〉 with Ξ = {α0, α1, β} and � =
I(Ξ) ∪ {(α1, α0)} where αi = {ai}. After the first iteration of PAGPP(G, 〈Σ, P 〉),
we have Σ1 = Σ0 = Σ and P1 = I(Σ). The algorithm then terminates because
change = ⊥, and 〈Σ1, P1〉 is its answer to the GCPP over G and 〈Σ, P 〉. Obviously
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Figure 3: Example for which the algorithm PAGPP terminates prematurely.

〈Σ1, P1〉 6= 〈Ξ,�〉, so this answer is wrong.

The correctness of PAGPP hinges on the theory that whenever REFINEGPP(Π,Q,change)
returns its input partition Π, and thus fails to split any block in Π, then also the relation
Q will be unaffected by UPDATEGPP, i.e. UPDATEGPP(Π, Q,Π) returns Q. This theory
is the upshot of Theorem 4.15 in [8] and is essential in the complexity analysis of the
algorithm. However, the above example shows that it does not hold in general.

In the next section we show that this theory does hold under the condition that Q
itself is obtained as output of UPDATEGPP (Proposition 14). Therefore, this error in
PAGPP can be fixed, without violating the complexity analysis, by insisting that at least
two refinement-update steps are performed prior to termination.

6.2 Correctness of PA
From here on we will use the correctness of the function UPDATEGPP, as established
by Gentilini et al. [9]. This correctness can be summarised as follows:

Proposition 13. Let 〈Σ, P 〉 be a partition pair over a graph (N,→), and Π be a
partition over N that is finer than Σ. Then there exists a unique relation Q ⊆ P (Π)
satisfying condition (2σ) of Definition 4.11. Moreover, this relation is returned by
UPDATEGPP(Σ, P, Π).

Proof. The union of all relations Q⊆P (Π) such that (b) and (c) hold for all (α, β)∈Q
is itself a relation with these properties. The last claim has been established in [9].

Using this, we obtain the result promised in Section 6.1: the following proposition
implies that if a call to REFINE in the while-loop of PA does not split any blocks, then
the subsequent call to UPDATEGPP will return its input relation. The requirement that
this relation has been computed by a previous call to UPDATEGPP is guaranteed by
line 2.

Proposition 14. Let 〈Σ, P 〉 and 〈Π, Q〉 be partition pairs over a graph such that Π
is finer than Σ and UPDATEGPP(Σ, P, Π) returns Q. Then UPDATEGPP(Π, Q,Π) also
returns Q.

Proof. By Proposition 13, UPDATEGPP(Π, Q,Π) returns the largest relation Q′ ⊆
Q(Π) satisfying conditions (b) and (c) of Definition 4.11 w.r.t. Π, Q and Π (i.e. substi-
tuting Q′, Π, Q and Π for Q, Σ, P and Π in these conditions, respectively). We have
to prove that Q′ = Q. As Q = Q(Π) it suffices to show that Q satisfies (b) and (c)
with Π substituted for Σ and Q for P . Under these substitutions (b) becomes equal to
(c). By Proposition 13 applied to UPDATEGPP(Σ, P, Π), Q satisfies this condition.



12 Rob van Glabbeek & Bas Ploeger

Let 〈Σi, Pi〉1≤i≤k be the sequence of partition pairs produced by PA. The following
proposition says that every Pi is acyclic and that the sequence is decreasing. The former
implies that PA will never deadlock due to the inability to find a reverse topological
sorting (see line 4 of REFINE). The latter implies that the algorithm terminates.

Proposition 15. Let 〈Σ, P 〉 be a partition pair over a graph (N,→), REFINE(Σ, P )
return Π and UPDATEGPP(Σ, P, Π) return Q. Then 〈Π, Q〉 is a partition pair with
〈Π, Q〉 ≤ 〈Σ, P 〉.

Proof. From Algorithm 4 and the fact that Σ is a partition, it is not hard to see that
Π is a partition that is, moreover, finer than Σ. Also, by Proposition 13 we have that
Q ⊆ P (Π). Hence 〈Π, Q〉 ≤ 〈Σ, P 〉. To prove that the pair 〈Π, Q〉 is a partition pair,
we need to prove reflexivity and acyclicity of Q. Using reflexivity of P and P (Π), the
identity relation I(Π) trivially satisfies conditions (b) and (c) of Definition 4.11. Hence
Proposition 13 implies that I(Π) ⊆ Q, i.e. Q is reflexive.

Suppose Q contains a cycle: there are mutually distinct α0, . . . , αn−1 ∈ Π for
n > 1 such that (αi, αi+1 mod n) ∈ Q for 0 ≤ i < n. By acyclicity of P , it must be
that these αi are all subsets of the same block α ∈ Σ. Let γ ∈ Σ and α′ ⊆ α be the first
blocks considered in an iteration of REFINE’s main for-loop (line 8) such that γ splits
α′ into an α′1 and an α′2 such that αi ⊆ α′1 and αj ⊆ α′2 for some 0 ≤ i, j < n. Then
Stable(α′) ∩ Row(γ) = ∅. For any 0 ≤ k < n we have either αk →∀ γ or αk 6→∃ γ,
and both possibilities occur. Take 0 ≤ i < n such that αi−1 mod n →∀ γ and αi 6→∃ γ.
By Proposition 13, Q satisfies (b) of Definition 4.11. Hence ∃γ′ ∈ Σ . ((γ, γ′) ∈ P ∧
αi →∃ γ′)). As (γ, γ′) ∈ P , in REFINE’s while-loop γ′ is considered prior to γ.
Consider the unique iteration of REFINE’s main for-loop (line 8) involving γ′ and an
α′′ with α′ ⊆ α′′ ⊆ α — observe that α′′ →∃ γ′. At the end of that iteration we have
obtained a block α′′′ with α′ ⊆ α′′′ ⊆ α′′ and γ′ ∈ Stable(α′′′). It follows that at
the later iteration involving γ and α′ we have γ′ ∈ Stable(α′) ∩ Row(γ), which is a
contradiction.

Corollary 16. For any graph G and any partition pair 〈Σ, P 〉 over G, the algorithm
PA(G, 〈Σ, P 〉) terminates.

Lemma 17. The following predicate is an invariant for the while-loop of Algorithm 4:

∀β ∈ Π ∪A . ∀ε ∈ Stable(β) . ∃δ ∈ Σ . ((ε, δ) ∈ P+ ∧ β →∀ δ) .

Proof. The predicate holds trivially after the initialisation of the Stable-sets in line 2.
The only points where it could be violated are at lines 14, 18 and 21. For ε 6= γ lines 14
and 18 are harmless because if αi ⊆ α and α →∀ δ then certainly αi →∀ δ. For ε = γ
and β = α1, at line 14 the predicate holds by construction of α1, taking δ := γ. Finally,
line 21 is only executed when there is an ε ∈ Stable(α) ∩Row(γ). As (γ, ε) ∈ P , the
predicate holds for γ and α because it held already for ε and α.

Lemma 18. Let 〈Σ, P 〉 be a partition pair over a graph (N,→) and REFINE(Σ, P )
return Π. Then:

∀α ∈ Π . ∀γ ∈ Σ . (α →∃ γ ⇒ ∃δ ∈ Σ . ((γ, δ) ∈ P+ ∧ α →∀ δ)) .

Proof. Let α ∈ Π and γ ∈ Σ such that α →∃ γ. In the computation of Π, take the
unique iteration of REFINE’s main for-loop (line 8) in which γ and an α′ are considered
with α ⊆ α′. Then α′ →∃ γ and there are two cases:
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• Stable(α′)∩Row(γ) = ∅: Then α′ is split into α1 and α2 such that α1 →∀ γ and
α2 6→∃ γ. It must be that α ⊆ α1. Then α →∀ γ and (γ, γ) ∈ P+.

• Stable(α′) ∩ Row(γ) 6= ∅: Then γ is added to Stable(α′). Lemma 17 gives us
∃δ ∈ Σ . ((γ, δ) ∈ P+ ∧ α′ →∀ δ). As α ⊆ α′ we have α →∀ δ.

Lemma 19. Let 〈Σ, P 〉 and 〈Π, Q〉 be partition pairs over a graph (N,→) such that
〈Π, Q〉 ≤ 〈Σ, P 〉 and let P be transitive. If 〈Π, Q〉 satisfies (1) of Definition 5 w.r.t.
〈Σ, P 〉 then so does 〈Π, Q+〉.

Proof. Suppose 〈Π, Q〉 satisfies (1) w.r.t. 〈Σ, P 〉 and take (α, β) ∈ Q+ and γ ∈ Σ
such that α →∃ γ. There are α0, . . . , αn ∈ Π for n ≥ 0 such that α = α0, β = αn and
(αi, αi+1) ∈ Q for 0 ≤ i < n. Applying (1) n times we obtain δ1, . . . , δn ∈ Σ such
that αi →∀ δi (and thus αi →∃ δi) for 1 ≤ i ≤ n, (γ, δ1) ∈ P and (δi, δi+1) ∈ P for
1 ≤ i < n. Hence β →∀ δn and (γ, δn) ∈ P by transitivity of P .

The following lemmata state that REFINE and UPDATEGPP converge towards a fixed
point at least as fast as ρ without ever diverging from the path towards the GCPP solu-
tion. In combination with the monotony of ρ (Proposition 7) this implies the correctness
of our algorithm.

Lemma 20. Let 〈Σ, P 〉 be a partition pair over a graph (N,→), REFINE(Σ, P ) return
Π, and UPDATEGPP(Σ, P, Π) return Q. Then 〈Π, Q+〉 ≤ ρ(〈Σ, P+〉).

Proof. By Proposition 15, 〈Π, Q〉 is a partition pair with 〈Π, Q〉 ≤ 〈Σ, P 〉 ≤ 〈Σ, P+〉.
By Definition 5, ρ(〈Σ, P+〉) is the ≤-largest partition pair smaller than 〈Σ, P+〉 that
satisfies (1) w.r.t. 〈Σ, P+〉. So the statement follows if we prove that 〈Π, Q+〉 satisfies
(1) w.r.t. 〈Σ, P+〉. By Lemma 19 it suffices to show that 〈Π, Q〉 satisfies (1) w.r.t.
〈Σ, P+〉. Let (α, β) ∈ Q and α →∃ γ for γ ∈ Σ. Using Lemma 18, take δ ∈ Σ such
that (γ, δ) ∈ P+ and α →∀ δ. By Proposition 13, ∃δ′ ∈ Σ . (δ, δ′) ∈ P ∧ β →∃ δ′.
For that δ′, by Lemma 18, ∃γ′ ∈ Σ . (δ′, γ′) ∈ P+ ∧ β →∀ γ′. For this γ′ it holds that
(γ, γ′) ∈ P+. Hence 〈Π, Q〉 satisfies (1) w.r.t. 〈Σ, P+〉.

Lemma 21. Let 〈Σ, P 〉 and 〈Π, Q〉 be partition pairs over a graph G = (N,→),
〈Ξ,�〉 be the solution of the GCPP over G and 〈Σ, P 〉, and 〈Ξ,�〉 ≤ 〈Π, Q〉. Let
REFINE(Π,Q) return Π′ and UPDATEGPP(Π,Q,Π′) return Q′. Then 〈Ξ,�〉 ≤ 〈Π′,Q′〉.

Proof. We have to prove that (A) Ξ is finer than Π′ and (B) � ⊆ Q′(Ξ).

Ad (A). Let α ∈ Ξ and αΠ ∈ Π such that α ⊆ αΠ. By contradiction, suppose there is
no α′ ∈ Π′ such that α ⊆ α′. Hence, there are a1, a2 ∈ α such that REFINE at some
point separates a1 ∈ αΠ from a2 ∈ αΠ. Let α′Π ⊆ αΠ be such that a1, a2 ∈ α′Π and
a1 and a2 got separated when α′Π was split by a block γΠ ∈ Π. Hence Stable(α′Π) ∩
Row(γΠ) = ∅.

Consider the case where a1 → γΠ and a2 6→ γΠ. The case with a1 6→ γΠ and
a2 → γΠ is fully symmetrical. Let γ ∈ Ξ be such that γ ⊆ γΠ and a1 → γ. As
α →∃ γ and 〈Ξ,�〉 is stable w.r.t. →, there must be a δ ∈ Ξ with γ � δ and α →∀ δ.
Let δΠ ∈ Π be such that δ ⊆ δΠ. Then (γΠ, δΠ) ∈ Q, using that 〈Ξ,�〉 ≤ 〈Π, Q〉.
So δΠ ∈ Row(γΠ) and δΠ is before γΠ in the reverse topological sorting of Π w.r.t. Q.
As a2 6→ γΠ we have α 6→∀ γΠ, yet α →∀ δΠ, hence γΠ 6= δΠ. Let α′′Π ⊆ αΠ be the
block containing a1 and a2 when blocks were split w.r.t. δΠ by REFINE. Observe that
α′′Π →∃ δΠ, so there were two cases:
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• Stable(α′′Π) ∩ Row(δΠ) = ∅: Then α′′Π may have been split, but this did not
separate a1 and a2. Then α′Π ⊆ (α′′Π ∩→−1(δΠ)) and hence δΠ ∈ Stable(α′Π).

• Stable(α′′Π) ∩ Row(δΠ) 6= ∅: Then δΠ was added to Stable(α′′Π) (line 21) and
because α′Π ⊆ α′′Π we have δΠ ∈ Stable(α′Π).

In both cases we have that δΠ ∈ Stable(α′Π) ∩ Row(γΠ), which contradicts the fact
that Stable(α′Π) ∩ Row(γΠ) = ∅.

Ad (B). Let Q′� := {(α, β) ∈ Π′×Π′ | ∃(αΞ, βΞ) ∈ � . αΞ ⊆ α∧βΞ ⊆ β}. We will
show that Q′� ⊆ Q′, which immediately yields � ⊆ Q′�(Ξ) ⊆ Q′(Ξ).

To this end, using Proposition 13, we establish that Q′� ⊆ Q(Π′) and any pair
(α, β) ∈ Q′� satisfies conditions (b) and (c) of Definition 4.11, reading Π, Q, Π′ and
Q′� for Σ, P , Π and Q, respectively.

• Q′� ⊆ Q(Π′): Let (α, β) ∈ Q′�. Take αΠ, βΠ ∈ Π such that α ⊆ αΠ and
β ⊆ βΠ. Because � ⊆ Q(Ξ) we have (αΠ, βΠ) ∈ Q, and hence (α, β) ∈ Q(Π′).

• Condition (b): Let (α, β) ∈ Q′� and γ ∈ Π such that α →∀ γ. Take αΞ, βΞ ∈ Ξ
such that αΞ ⊆ α, βΞ ⊆ β and αΞ � βΞ. Also take γΞ ∈ Ξ such that γΞ ⊆ γ
and αΞ →∃ γΞ. Because 〈Ξ,�〉 is stable w.r.t. → we obtain a δΞ ∈ Ξ such that
γΞ � δΞ and βΞ →∀ δΞ. Take δ ∈ Π such that δΞ ⊆ δ. As � ⊆ Q(Ξ) we have
(γ, δ) ∈ Q. We also obtain β →∃ δ.

• Condition (c): Let (α, β) ∈ Q′� and γ ∈Π′ such that α →∀ γ. Take αΞ, βΞ, γΞ ∈
Ξ and obtain δΞ ∈ Ξ exactly as above. Take δ ∈ Π′ such that δΞ ⊆ δ. We have
(γ, δ) ∈ Q′� by construction. Again we obtain β →∃ δ.

Theorem 22. Let 〈Σ, P 〉 be a partition pair over a graph G = (N,→). Let k be the
value of variable i upon termination of PA(G, 〈Σ, P+〉). Then 〈Σk, Pk〉 is the solution
of the GCPP over G and 〈Σ, P 〉.

Proof. Let the sequence of partition pairs 〈Σi, Pi〉1≤i≤k be obtained by running
PA(G, 〈Σ, P+〉) until it terminates, implying that k ≥ 2 and Σk = Σk−1. Propo-
sition 14 yields Pk = Pk−1. Extend this sequence by defining 〈Σ0, P0〉 := 〈Σ, P+〉
and 〈Σi, Pi〉 := 〈Σk, Pk〉 for i > k. Now for all i ≥ 0 we have that REFINE(Σi, Pi)
returns Σi+1 and UPDATEGPP(Σi, Pi,Σi+1) returns Pi+1. Let 〈Ξ,�〉 be the solution
of the GCPP over G and 〈Σ, P 〉. We need to show that 〈Σk, Pk〉 = 〈Ξ,�〉, for which
we require the following properties:

〈Ξ,�〉 ≤ 〈Σi, Pi〉 for all i ≥ 0(P1)

〈Σi, P
+
i 〉 ≤ ρi(〈Σ, P+〉) for all i ≥ 0.(P2)

Proof of (P1): By definition 〈Ξ,�〉 ≤ 〈Σ, P+〉 = 〈Σ0, P0〉, and Lemma 21 yields
〈Ξ,�〉 ≤ 〈Σi, Pi〉 for all i > 0, by induction on i.

Proof of (P2): By induction on i. If i = 0 then 〈Σ0, P
+
0 〉 = 〈Σ, P+〉 = ρ0(〈Σ, P+〉).

For the inductive step, suppose 〈Σi, P
+
i 〉 ≤ ρi(〈Σ, P+〉). Then:

〈Σi+1, P
+
i+1〉

Lemma 20
≤ ρ(〈Σi, P

+
i 〉)

Proposition 7
≤ ρi+1(〈Σ, P+〉) .

Applying (P1) and (P2): By Proposition 8 and Theorem 11 there is an n > 0 such that
ρn(〈Σ, P+〉) = 〈Ξ,�〉, so

〈Ξ,�〉
(P1)
≤ 〈Σn+1, Pn+1〉

Prop. 15
≤ 〈Σn, Pn〉 ≤ 〈Σn, P+

n 〉
(P2)
≤ ρn(〈Σ, P+〉) = 〈Ξ,�〉 .

Thus 〈Σn+1, Pn+1〉 = 〈Σn, Pn〉, so k ≤ n+1, and 〈Σk, Pk〉=〈Σn, Pn〉=〈Ξ,�〉.
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Figure 4: Example on which REFINE does not return a uniquely defined partition

6.3 No Fixed-Point Operator
We now show that there is no fixed-point operator that captures the partition refinement
performed by REFINE, i.e. a function π such that for any partition pairs 〈Σ, P 〉 and
〈Π, Q〉 with 〈Π, Q〉 = π(〈Σ, P 〉), REFINE(Σ, P ) returns Π. More specifically, we
show that the partition returned by REFINE is not uniquely defined, but depends on the
particular reverse topological sorting that is chosen in line 4.

Example 23. Consider the graph G = (N,→) of Figure 4 and the partition pair
〈Σ, P 〉 with Σ = {α, β, γ, δ, ε} as depicted and P = I(Σ) ∪ {(β, δ), (δ, γ)}. Then
S = [ε, γ, δ, β, α] and S′ = [γ, δ, β, ε, α] are reverse topological sortings of Σ with
respect to P . Let Π and Π′ be the partitions returned by REFINE(Σ, P ) on sortings S
and S′ respectively. Then Π = {{a0}, {a1}, {a2}} and Π′ = {{a0, a1}, {a2}}.

Similar to the construction of Counterexample 4, this example can be embedded in
Example 3 to obtain an example with a transitive relation for which the partition after
the second refinement depends on the chosen reverse topological sorting.

7 Conclusions
The correspondence between the simulation problem for finite, labelled graphs and the
generalised coarsest partition problem (GCPP) for unlabelled graphs can be easily es-
tablished. We have shown that the σ operator defined by Gentilini et al. [8] to solve
the GCPP is flawed. In particular, when applied to a partition pair, the result is not
necessarily another partition pair or even well-defined. Moreover, when applied re-
peatedly to a transitive partition pair, convergence towards a unique fixed point is not
guaranteed. Thereby we have shown that σ is not suitable for solving the GCPP. On the
counterexample for the latter property, the algorithm of [8] that computes σ, produces a
wrong result in which two simulation-equivalent states are put in different equivalence
classes.

We have repaired this algorithm such that it correctly computes the solution of the
GCPP. Apart from correcting the error that results from the flaws in the σ operator, we
also corrected a minor mistake that caused premature termination of the algorithm on
certain input. Our algorithm has the same space and time complexities as the original
partitioning algorithm. We have proven its correctness using an auxiliary operator ρ of
which we have shown that it solves the GCPP, though inefficiently. Finally, we have
shown that no operator can be defined that captures the partition refinement performed
in every iteration of our algorithm.

Another way to repair the algorithm of [8] may be to use the relation P+ instead
of P in REFINEGPP. The thusly obtained algorithm would converge to a fixed point
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slightly slower than ours. More importantly, due to the cost of computing the transitive
closure in each iteration, the time complexity would not match that of the original
algorithm.
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