
Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore. Restrictions apply.

2402

Correcting and Improving Imitation Models of Humans for Robosoccer Agents
Ricardo Aler, Oscar Garcia, and Jose M. Valls

Universidad Carlos III de Madrid
Avenida Universidad, 30
28911 Leganes (Madrid)

aler@inf.uc3m.es, jvalls@inf.uc3m.es

Abstract- The Robosoccer simulator is a challenging en
vironment, where a human introduces a team of agents
into a football virtual environment. Typically, agents are
programmed by hand, but it would be a great advantage
to transfer human experience into football agents. The
first aim of our paper is to use Machine Learning tech
niques to obtain models of humans playing Robosoccer.
These models can be used later to control a Robosoccer
agent. However, models did not play as smoothly and
optimally as the human. To solve this problem, the sec
ond goal of this paper is to incrementally correct models
by means of evolutionary techniques, and to adapt them
against more difficult opponents than the ones beatable
by the human.

1 Introduction

The Robosoccer simulator is a challenging Artificial Intel
ligence environment where programmers introduce a team
of software agents in a simulated football field, to com
pete against other teams [17, 18] . Machine Learning (ML)
is becoming a promising way of automatically endowing
these agents with complex skills. The main approach that
has been followed so far is to let the agents learn the be
haviors by themselves, totally or partially [22, 36, 4, 14].
However, instead of learning behaviors from scratch, con
trol knowledge can be transferred from humans to agents.
In this paper, we develop an interface so that a person can
play Robosoccer. Every cycle, a pair (situation, action)
is saved, that describes the action the human carried out in
a particular situation. From these instances, models were
learned using PART, a Machine Learning algorithm [15].
Models could then be used to control football agents. They
played well, but the style of play was not as smooth or ef
ficient, as the human play. Therefore, the second goal of
this paper is to correct these problems by using evolution
ary techniques. In particular, we will use the technique of
seeding the initial population with a working (but imper
fect) individual, and letting the system evolve from there.
This technique has been used often with good results (see
for instance [3, 20]). In addition, we have found out that
in order to build the model, the human had to play against
a challenging enough opponent, but beatable. Otherwise,
it would not have been possible to produce useful models.
But it is interesting that the model is able to play against
more difficult opponents. So, in this paper we will also use
the same evolutionary technique (seeding the initial popula
tion) to adapt the model to new, more difficult, opponents.
To summarize, our second goal is to correct and to improve
human models composed of sets of rules.

0-7803-9363-5/05/$20.00 ©2005 IEEE.

Objects are represented by proba-

This paper has been divided into five sections. First, Sec
tion 2 describes our modelling approach in the Robosoccer
domain. Section 3 describes how the agent was trained from
the instances generated by the human playing Robosoccer.
Section 4 improves the model obtained by means of an evo
lutionaryalgorithm. Section 5 comments on some research
related to building models from other agents. Finally, Sec
tion 6 concludes and points towards future work.

2 Our Approach

2.1 The Robosoccer Interface

We have programmed an interface to let a human connect
to a Soccerserver [17, 18] and play the game. Soccerserver
version 6.07 was used for this purpose. The appearance of
our Human-Soccerserver interface is displayed in Figure I.

This interface displays a complete 2D real time view of
the field. Although the whole field is visible, only those
objects within the vision cone of the agent are displayed.
Also, in Robosoccer, perception of far away objects is noisy.
Thus, objects are displayed as probability circles: the radius
of the circle depends on the radius of the object and the
distance to the object. In Figure I , the ball is represented as
a probability circle. Different colors are used to differentiate
the ball, the opponents, and the same team players. Those
objects which are no longer visible are represented at the
last position they were seen.

In order to improve play ability, not all Soccerserver
commands are available to the player. For instance, it is
possible to kick the ball with any strength, but the interface
only allows a standard kick. The commands allowed by the

2402

Cita bibliográfica
Published in: IEEE Congress on Evolutionary Computation (CEC'05), vol. 3, p. 2402 - 2409

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore. Restrictions apply.

2403

interface are:

• turn left/right: the player can turn the agent's body a
discrete amount (10 degrees).

• run slow/fast: only these two kinds of dash are al
lowed. Their power is 60 and 99, respectively.

• kick ball: kicks the ball in the direction of the agent's
view line with a strength of 60

• kick to goal: kicks the ball towards the goal, with a
strength of 99

2.2 Opponent Agents

In the most complex situations, the human player will play
within a team against a complete opposite team. The
first goal of this paper is to detennine whether human in
put/output modelling of persons works in principle in the
Robosoccer domain. To achieve this, we have used a sim
pler situation where a single human-controlled agent plays
against a defensive opposite team [12]. This team is based
on zones, where each of the team members is located.
Among the agents, the player closer to the ball takes the
role of leader. The rest of agents maintain a distance from
the leader so as to maintain the fonnation. Agents deter
mine who is the leader and pass this information to others.
When the agent moves away from its zone, it tries to pass
the ball to other agent, if available. Otherwise, it continues
towards the goal, in order to score. The goalie follows a
similar behavior: it stays within its zone and looks for the
ball. If it is close (15 units), goes for it and kicks it towards
the opposite goal.

The second goal of the paper is to use evolutionary
techniques to correct and improve the human model. We
have chosen CMUnited99, the winner team of Robocup
1999 [25]. This is a tough opponent, and human players
found very difficult to play against it. Therefore, we will be
setting an ambitious goal to the evolutionary technique: be
sides correcting mistakes, it will have to adapt rules learned
with a simpler opponent to the new, tougher, opponent.

2.3 Individuals

In this work, the evolving popUlation is made of individu
als, each one consists of several rules. The rules follow an
if (situation) then action structure, where the
situation checks the values of the agent's sensors and
the action tells which action the agent will carry out. Ac
tually, the whole set of rules follows a if - then - el se
structure, so there is no need to decide what to do when se
varal rules are activated. Figure 2 displays two actual rules
obtained in the course of our research.

With respect to the if part of the rules, it is very impor
tant to select only the infonnation available to the human
player when making decisions. Attributes selected are the
X, Y absolute position of the agent, and the distance and an
gle to the ball, the opponent goal, and the two closest oppo
nent players. There are also attributes to indicate whether
these objects are within the view cone, and therefore can be

2403

Figure 2: Example of individual.
IF (angle-ball> -37) AND

(distance-ball> 1.2) AND
(angle-ball <= 24)

THEN dash99
ELSE IF

(angle-ball> 19) AND
(angle-ball <= 42)

THEN dash99
ELSE turn10

actually seen. The values that the right hand side of rules
(the action part) can take are: kick60 (kick the ball with
medium force), kick99 (kick the ball strongly), dash60 (run
slow), dash99 (run fast), turnl0, and turnminusl0. In order
to create and modify individuals and maintain syntactical
correctedness, the following grammar is used:

• RULE ---+ CONDITIONS ACTION

• CONDITIONS ---+ CONDITION CONDmONS

• CONDITION ---+ ATTRIBUTE OPERATOR REAL
VALUE

• CONDITION ---+ BOOLEAN-ATTRIBUTE
BOOLEAN-OPERATOR BOOLEAN-VALUE

• OPERATOR---+ > I < I >= I <= I == I! =

• BOOLEAN-OPERATOR ---+ == I! =

• ATTRIBUTE ---+ X IY I angle I distance-ball I angle
ball I angle-goal 1 I angle-goal2 I distance-goal 1
I distance-goal2 I distance-opponentl I distance
opponent21 angle-opponent 1 I angle-opponent2

• BOOLEAN-ATTRIBUTE ---+ ball-in-view I goall-in
view I opponentl-in-view I opponent2-in-view

• ACTION ---+ dash99I dash60 I turnlO I turnmenosl0
I kick60 I kick99

2.4 Our Evolutionary Algorithm

Our algorithm has some similarities with Evolution Strate
gies [32] (with respect to the selection method) and Evolu
tionary Programming [1] (with respect to the representation
and absence of crossover operator). It follows a very sim
ple algorithm which is displayed in Table 1. It contains a
popUlation of M individuals. For every individual, N new
individuals are created by means of diverse types of mu
tation from the parent. No crossover exists. Then, all the
individuals are evaluated by means of a fitness function that
involves running a football software agent in diverse situa
tions. Finally, the best M individuals are kept, and so on.
Fitness evaluation is very time consuming, so currently we
consider only quite small populations. Therefore, we use
no policy for allocating more offspring to the best individ
uals: all of them have the same number of children. Se
lection is achieved by keeping the best M individuals. So,

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore. Restrictions apply.

Table 1: Evolutionary Algorithm for Improving Control
Rules.
CREATE POP with M individuals
EVALUATE POP
LOOP UNTIL termination criterion

FOREACHIND E POP
OFFSPRING = 0
REPEAT N times

OFFSPRING f- MUTATE(IND)
EVALUATE OFFSPRING
POP +- BEST M individuals from OFFSPRING

on the one hand, our system is very exploratory, as all indi
viduals in the population reproduce. But on the other hand,
small M values put on a lot of selective pressure. This sim
ple approach has produced good results, but in the future,
when larger populations are used, we will use reproduction
schemes based on fitness and also the crossover operator.

Robosoccer is a noisy domain and the same initial con
figuration of objects in the field can produce different re
sults. A simple approach to face this problem is to repeat
the execution of every training case several times. In this
paper, we have usually carried out 2 repetitions. The draw
back is that although the fitness value becomes more accu
rate, the computation time doubles. The reader might want
to check [26, 27] for sophisticated approaches for dealing
with time-consuming and noisy fitness functions.

2.5 Genetic Operators

The genetic operators consist of various types of mutation,
and have been specially tailored to be able to:

• Insert, modify, or remove complete rules. Which rule
is modified or removed is determined randomly

• Insert, modify, or remove rule conditions. Which
condition is modified is decided randomly

• Fine tuning of numerical values (addlsubstract a small
number. The amount depends on the attribute and it
is determined experimentally)

• Gross adjustment of numerical values (addlsubstract
a larger number)

• Modify rule actions

Insertion of new rules, conditions, and actions is done by
randomly creating new structures according to the grammar
displayed in Section 2.3. This technique has been described
in [2]. Modifications also use the grammar to generate new
correct individuals. Rules can be removed, but an individual
must contain at least 5 rules. This was determined experi
mentally, because in some cases, the best that the evolution
ary algorithm could do is to remove imperfect rules.

2404

2.6 The Fitness Function

In order to determine the quality (i.e. fitness) of the agent
controlled by the evolved rules, it has to play one or several
matches, and observe its behavior. Simulated play is done
in Soccerserver version 7.1. 1 We have adapted the standard
Robosoccer Logplayer to store in a file the following data:
number of goals (G), time to score the first goal (T), ball
location (Xb, Yb) at the end of the match, agent location at
the end of the match (Xa, Ya). These values will be used to
compute other factors, which are:

• D g: Distance of the agent to the opponent goal at the
end of the game

• Db: Distance to the ball at the end of the game

• Nr : Number of rules

Equation 1 displays the fitness formula to be maximized.
The aim is to score as many goals as possible, to minimize
the duration to the first score, to minimize the number of
rules, to end as close to the opponent goal as possible, and
to minimize the distance to the ball at the end of game, in
that order.

K G K Tmax - T K 30 - Nr K 52 - Dg 52 - Db 1 + 2 + 3---+ 4---+ K 5---
Tmax 30 52 52

(1)

The weights have been chosen so that Kl >= K2 +
K 3+K4+K5, K2 >= K 3+K4+K5, K3 >= K 4+K5.
Some values that seem to work well are: Kl = 50%, K2 =
30%, K3 = 12%, K4 = 3%, K5 = 5%.

However, fitness evaluation requires more than letting
the agent play for some time. Robosoccer is a noisy do
main, so every training has to be repeated several times to
diminish chance results. More importantly, the controlling
rules are required to be general, so the agent has to play
under different situations.

3 Training the agent

To produce the agent, we have chosen a relatively complex
task where the agent (a striker) must look for the ball, get
close to it, conduct it to the goal, dribble 3 defences and 1
goalie, and score. It would have been desirable to use wor
thy opponents, Robocup champions like CMUnited [25] or
FC-Portugal [28]. However, the human player found im
possible to beat them. This was due to these teams play
ing very well, but also to the interface not being responsive
enough. We have chosen a challenging but beatable Ro
bosoccer team [12], which has the advantage that although
their players have a team behavior, we can use as many play
ers as desired. In this case, only 4 of them were used.

It must be remarked that, although the [12] team is not
a Robocup champion, the human generated agent has many
more difficulties compared to the team:

1 Here. we have used a newer version of the Soccerserver than the one
used for the interface described in Subsection 2.1. No problems were ob
served.

2404

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore. Restrictions apply.

2405

• The opponents outnumber our agent and play cooper
atively

• The opponent can use more actions (turning the neck,
turning left and right, kicking and dashing with any
power and angle, ...).

• The opposite team has a goalie, whereas our agent
must defend and attack

Therefore, it would be a success if the human-generated
agent could score against them and even win some of the
matches.

The human played a match against the opponent team
and 24594 instances were generated. 164 rules were
obtained by using the PART algorithm from the Weka
tool [15]. Classification accuracy from a 10 crossvalida
tion is 92.65%. The agent was able to find the ball on the
field, to conduct it towards the goal, to score, to dribble
opponents, and to steal the ball. The scores in five test
ing matches were: 5-4, 2-4, 3-4, 4-5, 2-4, 3-4. One match
was won and 19 goals were scored, versus 25 scored by
the opponent. The learned rules were then pruned to 69
rules (91.90%). Similar results were observed in five new
matches: 3-4,2-4,3-3,2-5,3-1,4-3. 2 matches were won
and 1 drawn. 17 goals were scored versus 20 goals scored
by the opponent. Although modest, these results show that
the modelling approach is able to construct working agents
able to score against a team. 2

Although the behavior of the agent is not as optimal as
the human, it is quite human-like and manages to dribble
opponents and steal the ball some of the time, just like the
human player did. But the behavior is far from perfect. In
stead of carrying more exhaustive analysis and improving
the modelling approach to get better results, we will em
ploy evolutionary techniques to improve the set of rules and
to adapt them to more powerful opponents,

4 Correcting and Improving the Agent

The goal of this section is to correct and improve control
rules obtained in the previous section. In this case, the
CMUnited99 team was used as opponent. This team is
much more difficult than the team used in the previous sec
tion (it is the winner of Robocup99). It was expected that the
evolutionary technique would be able to improve the agent's
style of play, and score some goals against CMUnited99.
Four experiments of increasing difficulty were carried out.
The main configuration parameters are displayed in Table
2. M and N are the population size and the number of
offspring per individual. In experiments 1 and 2, single in
dividual populations have been used, whereas experiments
3 and 4 tested larger populations to deal with the complex
ity of the task. With larger populations, a small number
of generations (gen) was used to limit the total computa
tion time. Every training case was executed twice to reduce

2In order to draw statistically rigorous conclusions, more matches
should have been played. However, our purpose in this paper is not to use
the modelling approach by itself, but to be used as seed for an evolutionary
algorithm.

2405

chance effects (the fitness value is the average of the two),
except in the last experiment, to limit the computational ef
fort. Every training case was run for 15 seconds. This value
seemed to offer good results experimentally. Total TIme is
the time required by the system from the first to the last
generation. The training cases (positions of objects in the
playing field) were designed and created by hand, bearing
learning in mind.

Table 2: Configuration parameters of the four experiments
carried out

Exp. M N Gen. Training Reps. Training Total
Cases Time Time

I I 200 2 2 IS sec. 3h33'
2 I I 200 3 2 IS sec. Sh40'
3 10 2 50 3 2 25 sec. 41h35'
4 20 I 27 3 15 sec. 21h 30'

A summary of results of the four experiments can be seen
in Table 3. Initial training fitness is the fitness of the initial
set of rules measured with the training cases. Final training
fitness is the fitness of the best individual after evolution.
Testing has been measured by counting the number of goals
scored on 30 cases generated randomly, with different situ
ations for the agent, the ball, and 1 opponent goalie and 1
moving defence. These 30 cases are the same for the four
experiments. The initial set of 69 control rules (the ones
obtained in the previous section) scored no goals against
CMUnited99, out of the 30 opportunities.

From the first experiment, 69 evolved rules are obtained.
Training cases involve a single goalie from the CMUnited99
team. Training fitness increases from 14.89 to 27.70. But
the testing value shows almost no variation (only one goal
is scored, out of 30 trials).

The set of rules obtained in the first experiment are used
as the starting point of experiment 2. Three training cases
were created, where the agent starts at the center of the field,
must get close to the ball which is in its own field, turn and
drive the ball towards the opponent field, dribble the defence
and the goalie, and score. Only 1 goalie and 1 static de
fence were present in the training cases. Although training
fitness improves from 15.40 to 28.61, no large improvement
is observed in testing: only 2 goals were scored, out of 30
chances.

In experiment 3, the size of the population was increased
to 10. We will try to improve the set of rules from exper
iment 2. Again, in the training cases there is I goalie and
1 static defence. Three more training cases were created.
Training fitness improves from 24.44 to 41.96. This time,
learning transfers to the testing cases, and 9 goals are scored
out of 30 opportunities. Compared to experiment 2, results
are statistically significant at the 1 % level. 3

In experiment 4, the size of the popUlation was increased
to 20 and the set of rules obtained from experiment 3 were
used for seeding the initial population. Again, one oppo-

3We have followed the hypothesis testing procedure based on binomial
distributions explained in [23]. Every testing case is considered a trial, with
two possible outcomes: scoring or not. As the number of trials is 30, the
binomial can be approximated by a normal distribution.

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore. Restrictions apply.

nent goalie and defence are used in the training cases, but
this time the defence can move. A large increase in train
ing fitness is achieved (from 34.28 to 60.80) and results in
the testing cases improve (17 goals out of 30 are scored).
Compared to experiment 3, results are statistically signifi
cant at the 1 % level. Visually, the agent plays much more
smoothly than the initial set of rules, although this is diffi
cult to quantify. There is also a significant decrease in the
number of rules (from 72 to 31), even though the style of
play has improved.

Table 3: Training fitness before (initial) and after (final) evo
lution. The best individuals were given 30 opportunities to
score, for testing purposes.

Exp. Initial Final Goals Rules
Training Training (Testing)

I 14.89 27.70 01/30 69
2 15.40 28.61 02/30 70
3 24.44 41.96 09/30 72
4 34.28 60.80 17/30 31 .

5 Related Work

One of the first attempts at modelling opponents was that
of [10]. Here, the goal was to learn finite automatons (DFA)
consistent with the behavior of the opponent. The model
was used to improve a mini-max search algorithm. This ap
proach was valid only for discrete, round-based games, and
required complete non-noisy information. Prediction was
the goal, but such models could be used to imitate the op
ponent. Machine Learning has been used extensively since
then in classical and strategic games. [13] contains a good
survey with some discussion of opponent modelling.

Behavioral cloning is an attempt to imitate other agents
behavior [5]. [31] uses this technique to learn from a human
piloting a simulator, from whom input/output traces are ob
tained. It differs with our work because the testing domains
is different and no information about the current goal is sup
plied to the learning system. KNOMIC [39] is an approa~h
that learns to imitate an expert from input/output traces In

dynamic, non-deterministic, and noisy domains. It uses a
rich knowledge representation based on SOAR rules. The
authors claim that KNOMIC can learn from observing a hu
man in difficult domains such as air combat and Quake ll.
It differs from our work in that we do not use annotations to
help learning. [6] presents an overview of imitation in the
field of robotics. However, most work is centered around
the seeing sequences of actions and then replicating them
exactly, which in robotics is a difficult task. Not much gen
eralization is involved.

An area were human behavior ML modelling has been
the focus is that of User Modelling [40]. Early work in this
field was about student modelling, which seeks to model the
internal cognition of a student's cognitive system (as in [9]).
However, [33] casted some doubt on the tractability of the
cognitive approach. Since them, many researchers have fol
lowed a different approach that models an agent in terms of
the relationships between its inputs and outputs [19, 11].The

2406

common testing ground is modelling students learning sub
traction. In contrast with the Robosoccer, this is a discrete
and static domain. Currently, the demands of electronic
commerce and the Web have led to a fast growth in research
in information retrieval, where ML can be used for acquir
ing models of individual users interacting with information
systems [8] or grouping them into communities with com
mon interests [24]. Their domain and purpose is very dif
ferent to ours.

ML techniques have also been applied to the prediction
of user's actions, also called plan recognition. Kautz and
Allen [16] defined it as the problem of identifying a mini
mal set of top-level actions that are sufficient to explain the
observed actions. Most work learns hierarchical plans from
user logs, and associate them with the goal the user was try
ing to achieve [7]. Later, plan libraries can be used to match
actual user actions with a plan in the library and determine
the user intentions. Some research deals with agents mod
elling opponents and using this knowledge to beat them. In
some cases, models are not learned, but predefined and used
to classify opponent teams (not individual agents) by means
of a similarity metric [29]. [21] proposed a ML scheme to
take advantage of prediction of opponents based on visual
observations in the Robosoccer simulator. But these models
cannot be used to imitate opponent behavior. In all these
cases, models are not used for imitation.

[30] uses ML for a coach agent in the Robosoccer do
main. That is, here learning takes place at a more strategic
higher level. The coach can learn from previous games three
kinds of models about teams: team formations and passing
behavior. These models can be used to predict and beat the
opposite team, or more closely related to our research, so
that the team imitates the modeled team. Differences with
our research is that whole teams are modeled, and the coach
agent is used to observe the playing field.

In [35], a layered learning architecture is proposed. It
is designed to use Machine Learning in complex domains,
where learning a direct mapping from sensors to actuators is
not tractable, and a hierarchical task decomposition is given.
Different Learning mechanisms are used to learn behaviors
from the bottom level (simple behaviors) to the highest level
(more complex, strategic behaviors). The architecture is in
stantiated in the Robosoccer to learn an individual skill (ball
interceptation), a multi-agent behavior (pass evaluation and
selection), and adapting the team behavior (here, a new rein
forcement learning algorithm called TPOT-RL is used [37]).
No imitation experiments have been carried out under this
architecture.

[34] is the first reported work (to our knowledge) where
data collected from players playing a dynamic video-game,
is used to train an agent. In this case, data was collected
from humans playing Tron over the internet and a neural
network was trained. The approach is similar to our work,
but the domain (Tron game) is simpler. Recent research
has shown a lot of interest in First Person Shooter games
(FPS), like Quake. In this kind of games, human players
must react to situations very quickly. So, it is a very suit
able environment for learning reactive behaviors[38] pro-

2406

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore. Restrictions apply.

2407

vides a good summary of how imitation can be used at all
levels (reactive, tactical, strategic, and motion modelling) in
FPS games. Their approach to reactive behavior is similar
to ours, but many of the skills to be learned in Robosoccer
are different to Quake's.

6 Conclusions and Future Work

The aim of this paper was twofold. First, we have applied an
input-output Machine Learning approach to model a human
playing Robosoccer. An interface was built that displayed
to the user the objects in the playing field that could be seen
according to Robosoccer rules. This interface allowed the
user to send low-level commands (dash, turn, and kick) to
the Soccerserver. Input/output instances generated by the
human player were used by a propositional Machine Learn
ing algorithm (PART) to learn a model. This model was
then introduced into a computer agent, that played in a sim
ilar way to the human. The final agent was able to score
against a computer team that the human found challenging,
but beatable. However, the style of play of the final agent
was not as smooth and efficient as that of the human. Also,
the human found almost impossible to beat much tougher
teams, like CMUnited99.

Therefore, our second goal was to correct the style of
play and to adapt the obtained rules to more difficult oppo
nent teams. This way, rules can be obtained for teams which
are too hard for the human player. To achieve this purpose,
a simple evolutionary technique, close to evolution strate
gies and evolutionary programming, was used. The initial
population was seeded with the sets of rules to be improved.
Genetic operators were developed to work on rules. A fit
ness function that confronted the agent controlled by the
rules against the opponent team was programmed. Num
ber of scored goals, time to score, etc were used to measure
the fitness of the individual. After many generations, the
rules were indeed improved. The agent was able to increase
from scoring 0 to 17 goals against a goalie and a defence of
Robocup99 winner CMUnited99. Also, the number of rules
was drastically reduced.

In the future, we will improve our two pieces of work.
First, the modelling approach suffers from some weak
nesses. The user had to be as consistent and reactive in his
style of play as possible. Otherwise, if the human varied too
much his style during a match, or if he used a lot his mem
ory or his forecasting abilities (i.e. being deliberative), the
learning algorithm would not work well. The reason is that
it construct its models based on input-output instances only,
and assumes there is no internal state, no memory of the
past, and no forecasting of the future . Therefore, the agent
should be provided with an internal state (i.e. memory) and
higher level cognitive skills (forecasting, planning, comput
ing trajectories, etc) so that the power of the modelling lan
guage matches that of the human, as far as possible. Also, it
should be easier for the human to play the game, by improv
ing the interface, and by allowing the player to control the
agent via higher level actions, each one made of sequences
of complex lower level actions (like "dribble", "conduct the
ball", or "pass the ball").

2407

It would also be interesting to compare current results
from trying to evolve players from scratch. Initial results are
not good, although other authors have produced competitive
results by means of Genetic Programming [22,4].

With respect to the evolutionary part, so far, we have
used a simple evolutionary algorithm, with small popula
tions and no cross-over operator. Even so, results are pos
itive and very encouraging. We have determined that the
size of the population makes a difference and in the future
we would like to test the approach with larger populations
and evolutionary algorithms closer to Genetic Algorithms
(including the cross-over operator). Also, we would like
to test the whole approach in more challenging football sit
uations, involving several strikers that could pass the ball
between them, more defences, and more difficult teams.

Acknowledgements

This article has been financed by the Spanish founded re
search MCyT project TRACER, Ref:TIC2oo2-04498-C05-
O4M.

Bibliography

[1] Intelligence Through Simulated Evolution:
Years of Evolutionary Programming.
Interscience, 1999.

Forty
Wiley-

[2] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Learn
ing to solve planning problems efficiently by means
of genetic programming. Evolutionary Computation,
9(4):387-420, Winter 2001.

[3] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Us
ing genetic programming to learn and improve con
trol knowledge. Artificial Intelligence, 141(1-2):29-
56, October 2002.

[4] D. Andre and A. Teller. Evolving Team Darwin
United. In M. Asada and H. Kitano, editors, RoboCup-
98: Robot Soccer World Cup 1I, volume 1604 of
LNCS, pages 346-351, Paris, France, July 1998 1999.
Springer Vedag.

[5] M. Bain and C. Sammut. Machine Intelligence Agents,
chapter A Framework for Behavioral Cloning, pages
103-129. Oxford University Press, 1999.

[6] Paul Bakker and Yasuo Kuniyoshi. Robot see, robot
do: An overview of robot imitation. In AISB '96 Work
shop in Robots and Animats, pages 3-11, 1996.

[7] M. Bauer. From interaction data to plan libraries: A
clustering approach. In International Joint Conference
on Artificial Intelligence, pages 962-967, 1999.

[8] E. Bloedorn, I. Mani, and T.R. MacMillan. Ma
chine learning of user profiles: Representational is
sues. In Thirteen National Conference on Artificial
Intelligence, pages 433-438, 1996.

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore. Restrictions apply.

[9] l S. Brown and R. R. Burton. Diagnostic models for
procedural bugs in basic mathematical skills. Cogni
tive Science, 2:155-192, 1978.

[10] David Carmel and Shaul Markovitch. Opponent mod
eling in multi-agent systems. In Adaptation and
Learning in Multiagent Systems. IJCAI'95 Workshop,
volume 1042 of Lecture Notes in Computer Science,
pages 40--52. Springer, 1996.

[11] Bark Cheung Chiu, Geoffrey I. webb, and Mark
Kuzmycz. A comparison of first-order and zeroth
order induction for input-output agent modelling. In
Proceedings of the Sixth International Conference.
Springer, 1997.

[12] Fernando Fernandez, German Gutierrez, and Jose M.
Molina. Coordinacion global basada en controladores
locales reactivos en la robocup. In Workshop Hispano
Luso de Agentes Fisicos, pages 73-85, Tarragona, Es
paa,2000.

[13] J. Frnkranz and M. Kubat, editors. Machines That
Learn to Play Games. Nova Science Publishers, 2001.

[14] S. M. Gustafson and W. H. Hsu. Layered learning in
genetic programming for a cooperative robot soccer
problem. In European Conference on Genetic Pro
gramming, pages 291-301, 2001.

[15] Eibe Frank Ian H. Witten. Data Mining: Practical ma
chine learning tools with Java implementations. Mor
gan Kaufmann, San Francisco, 2000.

[16] H. Kautz and lE Allen. Generalized plan recogni
tion. In Proceeding of the AAAI National Conference
on Artificial Intelligence, pages 32-37, 1986.

[17] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and
E. Osawa. Robocup: The robot world cup initiative.
In W. L. Johnson and B. Hayes-Roth, editors, Pro
ceedings of the First International Conference on Au
tonomous Agents (Agents'97), pages 340--347. ACM
Press, 1997.

[18] H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Corade
schi, E. Osawa, H. Matsubara, I. Noda, and M. Asada.
The robocup synthetic agent challenge. In Interna
tional Joint Conference on Artificial Intelligence (IJ
CAI97), 1997.

[19] M. Kuzmycz. A dynamic vocabulary for student mod
eling. In Proceedingsfo the Fourth International Con
ference on User Modeling, pages 185-190, 1994.

[20J w. B. Langdon and J. P. Nordin. Seeding GP
populations. In Riccardo Poli, Wolf gang Banzhaf,
William B. Langdon, Julian E Miller, Peter Nordin,
and Terence C. Fogarty, editors, Genetic Program
ming, Proceedings of EuroGP'2000, volume 1802 of
INCS, pages 304-315, Edinburgh, 15-16 April 2000.
Springer-Verlag.

2408

[21] Agapito Ledezma, Ricardo Aler, Araceli Sanchis, and
Daniel Borrajo. Predicting opponent actions by ob
servation. In RoboCup International Symposium 2004
(RoboCup2004), Lisbon (Portugal), 2004.

[22] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jack
son, and James Hendler. Co-evolving soccer soft
bot team coordination with genetic programming. In
Proceedings of the First International Workshop on
RoboCup, at the International Joint Conference on Ar
tificial Intelligence, Nagoya, Japan, 1997.

[23] Tom M. Mitchell. Machine Learning. McGraw-Hill,
1997.

[24] G. Paliouras, V. Karkaletsis, C. Papatheodorou, and
C.D. Spyropoulos. Exploiting learning techniques for
the acquisition fo user stereotypes and communities.
In Seventh International Conference on User Mod
elling, pages 169-178, 1999.

[25] Manuela M. Veloso Peter Stone, Patrick Riley. The
cmunited-99 champion simulator team. In RoboCup-
99: Robot Soccer World Cup Ill, pages 35-48, 2000.

[26] A. Di Pietro, L. While, and L. Barone. Learning in
robocup keepaway using evolutionary algorithms. In
GECCO 2002: Proc. of the Genetic and Evolutionary
Computation Conference, pages 1065-1072. Morgan
Kaufmann Publishers, 2002.

[27] A. Di Pietro, L. While, and L. Barone. Applying
evolutionary algorithms to problems with noisy, time
consuming fitness functions. In Proceedings of the
2004 IEEE Congress on Evolutionary Computation,
pages 1254-1261. IEEE Press, 2004.

[28] L. P. Reis and N. Lau. Fc portugal team description:
Robocup 2000 simulation league champion. In Pe
ter Stone, Tucker Balch, and Gerhard Kraetzschmar,
editors, RoboCup-2000: Robot Soccer World Cup IV
(LNAI 2019), pages 29-40. Springer Verlag, 2001.

[29] Patrick Riley and Manuela Veloso. Distributed Au
tonomous Robotic Systems 4, chapter On Behav
ior Classification in Adversarial Environments, pages
371-380. Springer-Verlag, 2000.

[30] Patrick Riley, Manuela Veloso, and Gal Kaminka. An
empirical study of coaching. In Proceedings of DARS-
2002, the Seventh International Symposium on Dis
tributed Autonomous Robotic Systems, 2002.

[31] C. Sammut, S. Hurst, and D. Kedzierand D. Michie.
Learning to fly. In D. Sleeman, editor, Proceed
ings of the Ninth International Conference on Machine
Learning, pages 385-393. Morgan Kaufmann, 1992.

[32] H.P Schwefehm. Numerical Optimization for Com
puter Models. John WilIey, 1981.

[33] J. A. Self. Bypassing the intracLable problem of stu
dent modelling. In Proceedings of the Intelligent Tu
toring Systems Conference, pages 107-123, 1988.

2408

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore. Restrictions apply.

2409

[34] Elizabeth Sklar, AIan D. Blair, Pablo Funes, and Jor
dan Pollack. Training intelligent agents using human
intemet data. In Proceedings of the First Asia-Pacific
Conference on Intelligent Agent Technology (IAT-99),
pages 354-363, 1999.

[35] Peter Stone. Layered Learning in Multiagent Systems:
A Winning Approach to Robotic Soccer. MIT Press,
2000.

[36] Peter Stone and Manuela Veloso. A layered approach
to learning client behaviors in the RoboCup soccer
server. Applied Artificial Intelligence, 12:165-188,
1998.

[37] Peter Stone and Manuela Veloso. Team-partitioned,
opaque-transition reinforcement learning. In Mi
noru Asada and Hiroaki Kitano, editors, RoboCup-98:
Robot Soccer World Cup II. Springer Verlag, Berlin,
1999. Also in Proceedings of the Third International
Conference on Autonomous Agents, 1999.

[38] C. Thurau, C. Bauckbage, and G. Sagerer. Imitation
learning at all levels of game-AI. In Proc. Int. Conf. on
Computer Games, Artificial Intelligence,Design and
Education,pages402-408,2004.

[39] Michael van Lent and John Laird. Learning hier
archical performance knowledge by observation. In
Proceedings of the Sixteenth International Conference
on Machine Learning, pages 229-238. Morgan Kauf
mann Publishers Inc, 1999.

[40] Geoffrey Webb, Michael Pazzani, and Daniel Billsus.
Machine learning for user modeling. User Modeling
and User-Adapted Interaction, 11(19-20),2001.

2409

