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Abstract- The Robosoccer simulator is a challenging en­
vironment, where a human introduces a team of agents 
into a football virtual environment. Typically, agents are 
programmed by hand, but it would be a great advantage 
to transfer human experience into football agents. The 
first aim of our paper is to use Machine Learning tech­
niques to obtain models of humans playing Robosoccer. 
These models can be used later to control a Robosoccer 
agent. However, models did not play as smoothly and 
optimally as the human. To solve this problem, the sec­
ond goal of this paper is to incrementally correct models 
by means of evolutionary techniques, and to adapt them 
against more difficult opponents than the ones beatable 
by the human. 

1 Introduction 

The Robosoccer simulator is a challenging Artificial Intel­
ligence environment where programmers introduce a team 
of software agents in a simulated football field, to com­
pete against other teams [17, 18] . Machine Learning (ML) 
is becoming a promising way of automatically endowing 
these agents with complex skills. The main approach that 
has been followed so far is to let the agents learn the be­
haviors by themselves, totally or partially [22, 36, 4, 14]. 
However, instead of learning behaviors from scratch, con­
trol knowledge can be transferred from humans to agents. 
In this paper, we develop an interface so that a person can 
play Robosoccer. Every cycle, a pair (situation, action ) 
is saved, that describes the action the human carried out in 
a particular situation. From these instances, models were 
learned using PART, a Machine Learning algorithm [15]. 
Models could then be used to control football agents. They 
played well, but the style of play was not as smooth or ef­
ficient, as the human play. Therefore, the second goal of 
this paper is to correct these problems by using evolution­
ary techniques. In particular, we will use the technique of 
seeding the initial population with a working (but imper­
fect) individual, and letting the system evolve from there. 
This technique has been used often with good results (see 
for instance [3, 20]). In addition, we have found out that 
in order to build the model, the human had to play against 
a challenging enough opponent, but beatable. Otherwise, 
it would not have been possible to produce useful models. 
But it is interesting that the model is able to play against 
more difficult opponents. So, in this paper we will also use 
the same evolutionary technique (seeding the initial popula­
tion) to adapt the model to new, more difficult, opponents. 
To summarize, our second goal is to correct and to improve 
human models composed of sets of rules. 

0-7803-9363-5/05/$20.00 ©2005 IEEE. 

Objects are represented by proba-

This paper has been divided into five sections. First, Sec­
tion 2 describes our modelling approach in the Robosoccer 
domain. Section 3 describes how the agent was trained from 
the instances generated by the human playing Robosoccer. 
Section 4 improves the model obtained by means of an evo­
lutionaryalgorithm. Section 5 comments on some research 
related to building models from other agents. Finally, Sec­
tion 6 concludes and points towards future work. 

2 Our Approach 

2.1 The Robosoccer Interface 

We have programmed an interface to let a human connect 
to a Soccerserver [17, 18] and play the game. Soccerserver 
version 6.07 was used for this purpose. The appearance of 
our Human-Soccerserver interface is displayed in Figure I. 

This interface displays a complete 2D real time view of 
the field. Although the whole field is visible, only those 
objects within the vision cone of the agent are displayed. 
Also, in Robosoccer, perception of far away objects is noisy. 
Thus, objects are displayed as probability circles: the radius 
of the circle depends on the radius of the object and the 
distance to the object. In Figure I , the ball is represented as 
a probability circle. Different colors are used to differentiate 
the ball, the opponents, and the same team players. Those 
objects which are no longer visible are represented at the 
last position they were seen. 

In order to improve play ability, not all Soccerserver 
commands are available to the player. For instance, it is 
possible to kick the ball with any strength, but the interface 
only allows a standard kick. The commands allowed by the 
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interface are: 

• turn left/right: the player can turn the agent's body a 
discrete amount (10 degrees). 

• run slow/fast: only these two kinds of dash are al­
lowed. Their power is 60 and 99, respectively. 

• kick ball: kicks the ball in the direction of the agent's 
view line with a strength of 60 

• kick to goal: kicks the ball towards the goal, with a 
strength of 99 

2.2 Opponent Agents 

In the most complex situations, the human player will play 
within a team against a complete opposite team. The 
first goal of this paper is to detennine whether human in­
put/output modelling of persons works in principle in the 
Robosoccer domain. To achieve this, we have used a sim­
pler situation where a single human-controlled agent plays 
against a defensive opposite team [12]. This team is based 
on zones, where each of the team members is located. 
Among the agents, the player closer to the ball takes the 
role of leader. The rest of agents maintain a distance from 
the leader so as to maintain the fonnation. Agents deter­
mine who is the leader and pass this information to others. 
When the agent moves away from its zone, it tries to pass 
the ball to other agent, if available. Otherwise, it continues 
towards the goal, in order to score. The goalie follows a 
similar behavior: it stays within its zone and looks for the 
ball. If it is close (15 units), goes for it and kicks it towards 
the opposite goal. 

The second goal of the paper is to use evolutionary 
techniques to correct and improve the human model. We 
have chosen CMUnited99, the winner team of Robocup 
1999 [25]. This is a tough opponent, and human players 
found very difficult to play against it. Therefore, we will be 
setting an ambitious goal to the evolutionary technique: be­
sides correcting mistakes, it will have to adapt rules learned 
with a simpler opponent to the new, tougher, opponent. 

2.3 Individuals 

In this work, the evolving popUlation is made of individu­
als, each one consists of several rules. The rules follow an 
if (situation) then action structure, where the 
situation checks the values of the agent's sensors and 
the action tells which action the agent will carry out. Ac­
tually, the whole set of rules follows a if - then - el se 
structure, so there is no need to decide what to do when se­
varal rules are activated. Figure 2 displays two actual rules 
obtained in the course of our research. 

With respect to the if part of the rules, it is very impor­
tant to select only the infonnation available to the human 
player when making decisions. Attributes selected are the 
X, Y absolute position of the agent, and the distance and an­
gle to the ball, the opponent goal, and the two closest oppo­
nent players. There are also attributes to indicate whether 
these objects are within the view cone, and therefore can be 

2403 

Figure 2: Example of individual. 
IF (angle-ball> -37) AND 

(distance-ball> 1.2) AND 
(angle-ball <= 24) 

THEN dash99 
ELSE IF 

(angle-ball> 19) AND 
(angle-ball <= 42) 

THEN dash99 
ELSE turn10 

actually seen. The values that the right hand side of rules 
(the action part) can take are: kick60 (kick the ball with 
medium force), kick99 (kick the ball strongly), dash60 (run 
slow), dash99 (run fast), turnl0, and turnminusl0. In order 
to create and modify individuals and maintain syntactical 
correctedness, the following grammar is used: 

• RULE ---+ CONDITIONS ACTION 

• CONDITIONS ---+ CONDITION CONDmONS 

• CONDITION ---+ ATTRIBUTE OPERATOR REAL­
VALUE 

• CONDITION ---+ BOOLEAN-ATTRIBUTE 
BOOLEAN-OPERATOR BOOLEAN-VALUE 

• OPERATOR---+ > I < I >= I <= I == I! = 

• BOOLEAN-OPERATOR ---+ == I! = 

• ATTRIBUTE ---+ X IY I angle I distance-ball I angle­
ball I angle-goal 1 I angle-goal2 I distance-goal 1 
I distance-goal2 I distance-opponentl I distance­
opponent21 angle-opponent 1 I angle-opponent2 

• BOOLEAN-ATTRIBUTE ---+ ball-in-view I goall-in­
view I opponentl-in-view I opponent2-in-view 

• ACTION ---+ dash99I dash60 I turnlO I turnmenosl0 
I kick60 I kick99 

2.4 Our Evolutionary Algorithm 

Our algorithm has some similarities with Evolution Strate­
gies [32] (with respect to the selection method) and Evolu­
tionary Programming [1] (with respect to the representation 
and absence of crossover operator). It follows a very sim­
ple algorithm which is displayed in Table 1. It contains a 
popUlation of M individuals. For every individual, N new 
individuals are created by means of diverse types of mu­
tation from the parent. No crossover exists. Then, all the 
individuals are evaluated by means of a fitness function that 
involves running a football software agent in diverse situa­
tions. Finally, the best M individuals are kept, and so on. 
Fitness evaluation is very time consuming, so currently we 
consider only quite small populations. Therefore, we use 
no policy for allocating more offspring to the best individ­
uals: all of them have the same number of children. Se­
lection is achieved by keeping the best M individuals. So, 
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Table 1: Evolutionary Algorithm for Improving Control 
Rules. 
CREATE POP with M individuals 
EVALUATE POP 
LOOP UNTIL termination criterion 

FOREACHIND E POP 
OFFSPRING = 0 
REPEAT N times 

OFFSPRING f- MUTATE(IND) 
EVALUATE OFFSPRING 
POP +- BEST M individuals from OFFSPRING 

on the one hand, our system is very exploratory, as all indi­
viduals in the population reproduce. But on the other hand, 
small M values put on a lot of selective pressure. This sim­
ple approach has produced good results, but in the future, 
when larger populations are used, we will use reproduction 
schemes based on fitness and also the crossover operator. 

Robosoccer is a noisy domain and the same initial con­
figuration of objects in the field can produce different re­
sults. A simple approach to face this problem is to repeat 
the execution of every training case several times. In this 
paper, we have usually carried out 2 repetitions. The draw­
back is that although the fitness value becomes more accu­
rate, the computation time doubles. The reader might want 
to check [26, 27] for sophisticated approaches for dealing 
with time-consuming and noisy fitness functions. 

2.5 Genetic Operators 

The genetic operators consist of various types of mutation, 
and have been specially tailored to be able to: 

• Insert, modify, or remove complete rules. Which rule 
is modified or removed is determined randomly 

• Insert, modify, or remove rule conditions. Which 
condition is modified is decided randomly 

• Fine tuning of numerical values (addlsubstract a small 
number. The amount depends on the attribute and it 
is determined experimentally) 

• Gross adjustment of numerical values (addlsubstract 
a larger number) 

• Modify rule actions 

Insertion of new rules, conditions, and actions is done by 
randomly creating new structures according to the grammar 
displayed in Section 2.3. This technique has been described 
in [2]. Modifications also use the grammar to generate new 
correct individuals. Rules can be removed, but an individual 
must contain at least 5 rules. This was determined experi­
mentally, because in some cases, the best that the evolution­
ary algorithm could do is to remove imperfect rules. 
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2.6 The Fitness Function 

In order to determine the quality (i.e. fitness) of the agent 
controlled by the evolved rules, it has to play one or several 
matches, and observe its behavior. Simulated play is done 
in Soccerserver version 7.1. 1 We have adapted the standard 
Robosoccer Logplayer to store in a file the following data: 
number of goals (G), time to score the first goal (T), ball 
location (Xb, Yb) at the end of the match, agent location at 
the end of the match (Xa, Ya). These values will be used to 
compute other factors, which are: 

• D g: Distance of the agent to the opponent goal at the 
end of the game 

• Db: Distance to the ball at the end of the game 

• Nr : Number of rules 

Equation 1 displays the fitness formula to be maximized. 
The aim is to score as many goals as possible, to minimize 
the duration to the first score, to minimize the number of 
rules, to end as close to the opponent goal as possible, and 
to minimize the distance to the ball at the end of game, in 
that order. 

K G K Tmax - T K 30 - Nr K 52 - Dg 52 - Db 1 + 2 + 3---+ 4---+ K 5---
Tmax 30 52 52 

(1) 

The weights have been chosen so that Kl >= K2 + 
K 3+K4+K5, K2 >= K 3+K4+K5, K3 >= K 4+K5. 
Some values that seem to work well are: Kl = 50%, K2 = 
30%, K3 = 12%, K4 = 3%, K5 = 5%. 

However, fitness evaluation requires more than letting 
the agent play for some time. Robosoccer is a noisy do­
main, so every training has to be repeated several times to 
diminish chance results. More importantly, the controlling 
rules are required to be general, so the agent has to play 
under different situations. 

3 Training the agent 

To produce the agent, we have chosen a relatively complex 
task where the agent (a striker) must look for the ball, get 
close to it, conduct it to the goal, dribble 3 defences and 1 
goalie, and score. It would have been desirable to use wor­
thy opponents, Robocup champions like CMUnited [25] or 
FC-Portugal [28]. However, the human player found im­
possible to beat them. This was due to these teams play­
ing very well, but also to the interface not being responsive 
enough. We have chosen a challenging but beatable Ro­
bosoccer team [12], which has the advantage that although 
their players have a team behavior, we can use as many play­
ers as desired. In this case, only 4 of them were used. 

It must be remarked that, although the [12] team is not 
a Robocup champion, the human generated agent has many 
more difficulties compared to the team: 

1 Here. we have used a newer version of the Soccerserver than the one 
used for the interface described in Subsection 2.1. No problems were ob­
served. 
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• The opponents outnumber our agent and play cooper­
atively 

• The opponent can use more actions (turning the neck, 
turning left and right, kicking and dashing with any 
power and angle, ... ). 

• The opposite team has a goalie, whereas our agent 
must defend and attack 

Therefore, it would be a success if the human-generated 
agent could score against them and even win some of the 
matches. 

The human played a match against the opponent team 
and 24594 instances were generated. 164 rules were 
obtained by using the PART algorithm from the Weka 
tool [15]. Classification accuracy from a 10 crossvalida­
tion is 92.65%. The agent was able to find the ball on the 
field, to conduct it towards the goal, to score, to dribble 
opponents, and to steal the ball. The scores in five test­
ing matches were: 5-4, 2-4, 3-4, 4-5, 2-4, 3-4. One match 
was won and 19 goals were scored, versus 25 scored by 
the opponent. The learned rules were then pruned to 69 
rules (91.90%). Similar results were observed in five new 
matches: 3-4,2-4,3-3,2-5,3-1,4-3. 2 matches were won 
and 1 drawn. 17 goals were scored versus 20 goals scored 
by the opponent. Although modest, these results show that 
the modelling approach is able to construct working agents 
able to score against a team. 2 

Although the behavior of the agent is not as optimal as 
the human, it is quite human-like and manages to dribble 
opponents and steal the ball some of the time, just like the 
human player did. But the behavior is far from perfect. In­
stead of carrying more exhaustive analysis and improving 
the modelling approach to get better results, we will em­
ploy evolutionary techniques to improve the set of rules and 
to adapt them to more powerful opponents, 

4 Correcting and Improving the Agent 

The goal of this section is to correct and improve control 
rules obtained in the previous section. In this case, the 
CMUnited99 team was used as opponent. This team is 
much more difficult than the team used in the previous sec­
tion (it is the winner of Robocup99). It was expected that the 
evolutionary technique would be able to improve the agent's 
style of play, and score some goals against CMUnited99. 
Four experiments of increasing difficulty were carried out. 
The main configuration parameters are displayed in Table 
2. M and N are the population size and the number of 
offspring per individual. In experiments 1 and 2, single in­
dividual populations have been used, whereas experiments 
3 and 4 tested larger populations to deal with the complex­
ity of the task. With larger populations, a small number 
of generations (gen) was used to limit the total computa­
tion time. Every training case was executed twice to reduce 

2In order to draw statistically rigorous conclusions, more matches 
should have been played. However, our purpose in this paper is not to use 
the modelling approach by itself, but to be used as seed for an evolutionary 
algorithm. 
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chance effects (the fitness value is the average of the two), 
except in the last experiment, to limit the computational ef­
fort. Every training case was run for 15 seconds. This value 
seemed to offer good results experimentally. Total TIme is 
the time required by the system from the first to the last 
generation. The training cases (positions of objects in the 
playing field) were designed and created by hand, bearing 
learning in mind. 

Table 2: Configuration parameters of the four experiments 
carried out 

Exp. M N Gen. Training Reps. Training Total 
Cases Time Time 

I I 200 2 2 IS sec. 3h33' 
2 I I 200 3 2 IS sec. Sh40' 
3 10 2 50 3 2 25 sec. 41h35' 
4 20 I 27 3 15 sec. 21h 30' 

A summary of results of the four experiments can be seen 
in Table 3. Initial training fitness is the fitness of the initial 
set of rules measured with the training cases. Final training 
fitness is the fitness of the best individual after evolution. 
Testing has been measured by counting the number of goals 
scored on 30 cases generated randomly, with different situ­
ations for the agent, the ball, and 1 opponent goalie and 1 
moving defence. These 30 cases are the same for the four 
experiments. The initial set of 69 control rules (the ones 
obtained in the previous section) scored no goals against 
CMUnited99, out of the 30 opportunities. 

From the first experiment, 69 evolved rules are obtained. 
Training cases involve a single goalie from the CMUnited99 
team. Training fitness increases from 14.89 to 27.70. But 
the testing value shows almost no variation (only one goal 
is scored, out of 30 trials). 

The set of rules obtained in the first experiment are used 
as the starting point of experiment 2. Three training cases 
were created, where the agent starts at the center of the field, 
must get close to the ball which is in its own field, turn and 
drive the ball towards the opponent field, dribble the defence 
and the goalie, and score. Only 1 goalie and 1 static de­
fence were present in the training cases. Although training 
fitness improves from 15.40 to 28.61, no large improvement 
is observed in testing: only 2 goals were scored, out of 30 
chances. 

In experiment 3, the size of the population was increased 
to 10. We will try to improve the set of rules from exper­
iment 2. Again, in the training cases there is I goalie and 
1 static defence. Three more training cases were created. 
Training fitness improves from 24.44 to 41.96. This time, 
learning transfers to the testing cases, and 9 goals are scored 
out of 30 opportunities. Compared to experiment 2, results 
are statistically significant at the 1 % level. 3 

In experiment 4, the size of the popUlation was increased 
to 20 and the set of rules obtained from experiment 3 were 
used for seeding the initial population. Again, one oppo-

3We have followed the hypothesis testing procedure based on binomial 
distributions explained in [23]. Every testing case is considered a trial, with 
two possible outcomes: scoring or not. As the number of trials is 30, the 
binomial can be approximated by a normal distribution. 



Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore.  Restrictions apply. 

nent goalie and defence are used in the training cases, but 
this time the defence can move. A large increase in train­
ing fitness is achieved (from 34.28 to 60.80) and results in 
the testing cases improve (17 goals out of 30 are scored). 
Compared to experiment 3, results are statistically signifi­
cant at the 1 % level. Visually, the agent plays much more 
smoothly than the initial set of rules, although this is diffi­
cult to quantify. There is also a significant decrease in the 
number of rules (from 72 to 31), even though the style of 
play has improved. 

Table 3: Training fitness before (initial) and after (final) evo­
lution. The best individuals were given 30 opportunities to 
score, for testing purposes. 

Exp. Initial Final Goals Rules 
Training Training (Testing) 

I 14.89 27.70 01/30 69 
2 15.40 28.61 02/30 70 
3 24.44 41.96 09/30 72 
4 34.28 60.80 17/30 31 . 

5 Related Work 

One of the first attempts at modelling opponents was that 
of [10]. Here, the goal was to learn finite automatons (DFA) 
consistent with the behavior of the opponent. The model 
was used to improve a mini-max search algorithm. This ap­
proach was valid only for discrete, round-based games, and 
required complete non-noisy information. Prediction was 
the goal, but such models could be used to imitate the op­
ponent. Machine Learning has been used extensively since 
then in classical and strategic games. [13] contains a good 
survey with some discussion of opponent modelling. 

Behavioral cloning is an attempt to imitate other agents 
behavior [5]. [31] uses this technique to learn from a human 
piloting a simulator, from whom input/output traces are ob­
tained. It differs with our work because the testing domains 
is different and no information about the current goal is sup­
plied to the learning system. KNOMIC [39] is an approa~h 
that learns to imitate an expert from input/output traces In 

dynamic, non-deterministic, and noisy domains. It uses a 
rich knowledge representation based on SOAR rules. The 
authors claim that KNOMIC can learn from observing a hu­
man in difficult domains such as air combat and Quake ll. 
It differs from our work in that we do not use annotations to 
help learning. [6] presents an overview of imitation in the 
field of robotics. However, most work is centered around 
the seeing sequences of actions and then replicating them 
exactly, which in robotics is a difficult task. Not much gen­
eralization is involved. 

An area were human behavior ML modelling has been 
the focus is that of User Modelling [40]. Early work in this 
field was about student modelling, which seeks to model the 
internal cognition of a student's cognitive system (as in [9]). 
However, [33] casted some doubt on the tractability of the 
cognitive approach. Since them, many researchers have fol­
lowed a different approach that models an agent in terms of 
the relationships between its inputs and outputs [19, 11].The 
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common testing ground is modelling students learning sub­
traction. In contrast with the Robosoccer, this is a discrete 
and static domain. Currently, the demands of electronic 
commerce and the Web have led to a fast growth in research 
in information retrieval, where ML can be used for acquir­
ing models of individual users interacting with information 
systems [8] or grouping them into communities with com­
mon interests [24]. Their domain and purpose is very dif­
ferent to ours. 

ML techniques have also been applied to the prediction 
of user's actions, also called plan recognition. Kautz and 
Allen [16] defined it as the problem of identifying a mini­
mal set of top-level actions that are sufficient to explain the 
observed actions. Most work learns hierarchical plans from 
user logs, and associate them with the goal the user was try­
ing to achieve [7]. Later, plan libraries can be used to match 
actual user actions with a plan in the library and determine 
the user intentions. Some research deals with agents mod­
elling opponents and using this knowledge to beat them. In 
some cases, models are not learned, but predefined and used 
to classify opponent teams (not individual agents) by means 
of a similarity metric [29]. [21] proposed a ML scheme to 
take advantage of prediction of opponents based on visual 
observations in the Robosoccer simulator. But these models 
cannot be used to imitate opponent behavior. In all these 
cases, models are not used for imitation. 

[30] uses ML for a coach agent in the Robosoccer do­
main. That is, here learning takes place at a more strategic 
higher level. The coach can learn from previous games three 
kinds of models about teams: team formations and passing 
behavior. These models can be used to predict and beat the 
opposite team, or more closely related to our research, so 
that the team imitates the modeled team. Differences with 
our research is that whole teams are modeled, and the coach 
agent is used to observe the playing field. 

In [35], a layered learning architecture is proposed. It 
is designed to use Machine Learning in complex domains, 
where learning a direct mapping from sensors to actuators is 
not tractable, and a hierarchical task decomposition is given. 
Different Learning mechanisms are used to learn behaviors 
from the bottom level (simple behaviors) to the highest level 
(more complex, strategic behaviors). The architecture is in­
stantiated in the Robosoccer to learn an individual skill (ball 
interceptation), a multi-agent behavior (pass evaluation and 
selection), and adapting the team behavior (here, a new rein­
forcement learning algorithm called TPOT-RL is used [37]). 
No imitation experiments have been carried out under this 
architecture. 

[34] is the first reported work (to our knowledge) where 
data collected from players playing a dynamic video-game, 
is used to train an agent. In this case, data was collected 
from humans playing Tron over the internet and a neural 
network was trained. The approach is similar to our work, 
but the domain (Tron game) is simpler. Recent research 
has shown a lot of interest in First Person Shooter games 
(FPS), like Quake. In this kind of games, human players 
must react to situations very quickly. So, it is a very suit­
able environment for learning reactive behaviors[38] pro-

2406 



Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore.  Restrictions apply. 

2407 

vides a good summary of how imitation can be used at all 
levels (reactive, tactical, strategic, and motion modelling) in 
FPS games. Their approach to reactive behavior is similar 
to ours, but many of the skills to be learned in Robosoccer 
are different to Quake's. 

6 Conclusions and Future Work 

The aim of this paper was twofold. First, we have applied an 
input-output Machine Learning approach to model a human 
playing Robosoccer. An interface was built that displayed 
to the user the objects in the playing field that could be seen 
according to Robosoccer rules. This interface allowed the 
user to send low-level commands (dash, turn, and kick) to 
the Soccerserver. Input/output instances generated by the 
human player were used by a propositional Machine Learn­
ing algorithm (PART) to learn a model. This model was 
then introduced into a computer agent, that played in a sim­
ilar way to the human. The final agent was able to score 
against a computer team that the human found challenging, 
but beatable. However, the style of play of the final agent 
was not as smooth and efficient as that of the human. Also, 
the human found almost impossible to beat much tougher 
teams, like CMUnited99. 

Therefore, our second goal was to correct the style of 
play and to adapt the obtained rules to more difficult oppo­
nent teams. This way, rules can be obtained for teams which 
are too hard for the human player. To achieve this purpose, 
a simple evolutionary technique, close to evolution strate­
gies and evolutionary programming, was used. The initial 
population was seeded with the sets of rules to be improved. 
Genetic operators were developed to work on rules. A fit­
ness function that confronted the agent controlled by the 
rules against the opponent team was programmed. Num­
ber of scored goals, time to score, etc were used to measure 
the fitness of the individual. After many generations, the 
rules were indeed improved. The agent was able to increase 
from scoring 0 to 17 goals against a goalie and a defence of 
Robocup99 winner CMUnited99. Also, the number of rules 
was drastically reduced. 

In the future, we will improve our two pieces of work. 
First, the modelling approach suffers from some weak­
nesses. The user had to be as consistent and reactive in his 
style of play as possible. Otherwise, if the human varied too 
much his style during a match, or if he used a lot his mem­
ory or his forecasting abilities (i.e. being deliberative), the 
learning algorithm would not work well. The reason is that 
it construct its models based on input-output instances only, 
and assumes there is no internal state, no memory of the 
past, and no forecasting of the future . Therefore, the agent 
should be provided with an internal state (i.e. memory) and 
higher level cognitive skills (forecasting, planning, comput­
ing trajectories, etc) so that the power of the modelling lan­
guage matches that of the human, as far as possible. Also, it 
should be easier for the human to play the game, by improv­
ing the interface, and by allowing the player to control the 
agent via higher level actions, each one made of sequences 
of complex lower level actions (like "dribble", "conduct the 
ball", or "pass the ball"). 
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It would also be interesting to compare current results 
from trying to evolve players from scratch. Initial results are 
not good, although other authors have produced competitive 
results by means of Genetic Programming [22,4]. 

With respect to the evolutionary part, so far, we have 
used a simple evolutionary algorithm, with small popula­
tions and no cross-over operator. Even so, results are pos­
itive and very encouraging. We have determined that the 
size of the population makes a difference and in the future 
we would like to test the approach with larger populations 
and evolutionary algorithms closer to Genetic Algorithms 
(including the cross-over operator). Also, we would like 
to test the whole approach in more challenging football sit­
uations, involving several strikers that could pass the ball 
between them, more defences, and more difficult teams. 

Acknowledgements 

This article has been financed by the Spanish founded re­
search MCyT project TRACER, Ref:TIC2oo2-04498-C05-
O4M. 

Bibliography 

[1] Intelligence Through Simulated Evolution: 
Years of Evolutionary Programming. 
Interscience, 1999. 

Forty 
Wiley-

[2] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Learn­
ing to solve planning problems efficiently by means 
of genetic programming. Evolutionary Computation, 
9(4):387-420, Winter 2001. 

[3] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Us­
ing genetic programming to learn and improve con­
trol knowledge. Artificial Intelligence, 141(1-2):29-
56, October 2002. 

[4] D. Andre and A. Teller. Evolving Team Darwin 
United. In M. Asada and H. Kitano, editors, RoboCup-
98: Robot Soccer World Cup 1I, volume 1604 of 
LNCS, pages 346-351, Paris, France, July 1998 1999. 
Springer Vedag. 

[5] M. Bain and C. Sammut. Machine Intelligence Agents, 
chapter A Framework for Behavioral Cloning, pages 
103-129. Oxford University Press, 1999. 

[6] Paul Bakker and Yasuo Kuniyoshi. Robot see, robot 
do: An overview of robot imitation. In AISB '96 Work­
shop in Robots and Animats, pages 3-11, 1996. 

[7] M. Bauer. From interaction data to plan libraries: A 
clustering approach. In International Joint Conference 
on Artificial Intelligence, pages 962-967, 1999. 

[8] E. Bloedorn, I. Mani, and T.R. MacMillan. Ma­
chine learning of user profiles: Representational is­
sues. In Thirteen National Conference on Artificial 
Intelligence, pages 433-438, 1996. 



Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore.  Restrictions apply. 

[9] l S. Brown and R. R. Burton. Diagnostic models for 
procedural bugs in basic mathematical skills. Cogni­
tive Science, 2:155-192, 1978. 

[10] David Carmel and Shaul Markovitch. Opponent mod­
eling in multi-agent systems. In Adaptation and 
Learning in Multiagent Systems. IJCAI'95 Workshop, 
volume 1042 of Lecture Notes in Computer Science, 
pages 40--52. Springer, 1996. 

[11] Bark Cheung Chiu, Geoffrey I. webb, and Mark 
Kuzmycz. A comparison of first-order and zeroth­
order induction for input-output agent modelling. In 
Proceedings of the Sixth International Conference. 
Springer, 1997. 

[12] Fernando Fernandez, German Gutierrez, and Jose M. 
Molina. Coordinacion global basada en controladores 
locales reactivos en la robocup. In Workshop Hispano­
Luso de Agentes Fisicos, pages 73-85, Tarragona, Es­
paa,2000. 

[13] J. Frnkranz and M. Kubat, editors. Machines That 
Learn to Play Games. Nova Science Publishers, 2001. 

[14] S. M. Gustafson and W. H. Hsu. Layered learning in 
genetic programming for a cooperative robot soccer 
problem. In European Conference on Genetic Pro­
gramming, pages 291-301, 2001. 

[15] Eibe Frank Ian H. Witten. Data Mining: Practical ma­
chine learning tools with Java implementations. Mor­
gan Kaufmann, San Francisco, 2000. 

[16] H. Kautz and lE Allen. Generalized plan recogni­
tion. In Proceeding of the AAAI National Conference 
on Artificial Intelligence, pages 32-37, 1986. 

[17] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and 
E. Osawa. Robocup: The robot world cup initiative. 
In W. L. Johnson and B. Hayes-Roth, editors, Pro­
ceedings of the First International Conference on Au­
tonomous Agents (Agents'97), pages 340--347. ACM 
Press, 1997. 

[18] H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Corade­
schi, E. Osawa, H. Matsubara, I. Noda, and M. Asada. 
The robocup synthetic agent challenge. In Interna­
tional Joint Conference on Artificial Intelligence (IJ­
CAI97), 1997. 

[19] M. Kuzmycz. A dynamic vocabulary for student mod­
eling. In Proceedingsfo the Fourth International Con­
ference on User Modeling, pages 185-190, 1994. 

[20J w. B. Langdon and J. P. Nordin. Seeding GP 
populations. In Riccardo Poli, Wolf gang Banzhaf, 
William B. Langdon, Julian E Miller, Peter Nordin, 
and Terence C. Fogarty, editors, Genetic Program­
ming, Proceedings of EuroGP'2000, volume 1802 of 
INCS, pages 304-315, Edinburgh, 15-16 April 2000. 
Springer-Verlag. 

2408 

[21] Agapito Ledezma, Ricardo Aler, Araceli Sanchis, and 
Daniel Borrajo. Predicting opponent actions by ob­
servation. In RoboCup International Symposium 2004 
(RoboCup2004), Lisbon (Portugal), 2004. 

[22] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jack­
son, and James Hendler. Co-evolving soccer soft­
bot team coordination with genetic programming. In 
Proceedings of the First International Workshop on 
RoboCup, at the International Joint Conference on Ar­
tificial Intelligence, Nagoya, Japan, 1997. 

[23] Tom M. Mitchell. Machine Learning. McGraw-Hill, 
1997. 

[24] G. Paliouras, V. Karkaletsis, C. Papatheodorou, and 
C.D. Spyropoulos. Exploiting learning techniques for 
the acquisition fo user stereotypes and communities. 
In Seventh International Conference on User Mod­
elling, pages 169-178, 1999. 

[25] Manuela M. Veloso Peter Stone, Patrick Riley. The 
cmunited-99 champion simulator team. In RoboCup-
99: Robot Soccer World Cup Ill, pages 35-48, 2000. 

[26] A. Di Pietro, L. While, and L. Barone. Learning in 
robocup keepaway using evolutionary algorithms. In 
GECCO 2002: Proc. of the Genetic and Evolutionary 
Computation Conference, pages 1065-1072. Morgan 
Kaufmann Publishers, 2002. 

[27] A. Di Pietro, L. While, and L. Barone. Applying 
evolutionary algorithms to problems with noisy, time­
consuming fitness functions. In Proceedings of the 
2004 IEEE Congress on Evolutionary Computation, 
pages 1254-1261. IEEE Press, 2004. 

[28] L. P. Reis and N. Lau. Fc portugal team description: 
Robocup 2000 simulation league champion. In Pe­
ter Stone, Tucker Balch, and Gerhard Kraetzschmar, 
editors, RoboCup-2000: Robot Soccer World Cup IV 
(LNAI 2019), pages 29-40. Springer Verlag, 2001. 

[29] Patrick Riley and Manuela Veloso. Distributed Au­
tonomous Robotic Systems 4, chapter On Behav­
ior Classification in Adversarial Environments, pages 
371-380. Springer-Verlag, 2000. 

[30] Patrick Riley, Manuela Veloso, and Gal Kaminka. An 
empirical study of coaching. In Proceedings of DARS-
2002, the Seventh International Symposium on Dis­
tributed Autonomous Robotic Systems, 2002. 

[31] C. Sammut, S. Hurst, and D. Kedzierand D. Michie. 
Learning to fly. In D. Sleeman, editor, Proceed­
ings of the Ninth International Conference on Machine 
Learning, pages 385-393. Morgan Kaufmann, 1992. 

[32] H.P Schwefehm. Numerical Optimization for Com­
puter Models. John WilIey, 1981. 

[33] J. A. Self. Bypassing the intracLable problem of stu­
dent modelling. In Proceedings of the Intelligent Tu­
toring Systems Conference, pages 107-123, 1988. 

2408 



Authorized licensed use limited to: Univ Carlos III. Downloaded on December 22, 2009 at 04:38 from IEEE Xplore.  Restrictions apply. 

2409 

[34] Elizabeth Sklar, AIan D. Blair, Pablo Funes, and Jor­
dan Pollack. Training intelligent agents using human 
intemet data. In Proceedings of the First Asia-Pacific 
Conference on Intelligent Agent Technology (IAT-99), 
pages 354-363, 1999. 

[35] Peter Stone. Layered Learning in Multiagent Systems: 
A Winning Approach to Robotic Soccer. MIT Press, 
2000. 

[36] Peter Stone and Manuela Veloso. A layered approach 
to learning client behaviors in the RoboCup soccer 
server. Applied Artificial Intelligence, 12:165-188, 
1998. 

[37] Peter Stone and Manuela Veloso. Team-partitioned, 
opaque-transition reinforcement learning. In Mi­
noru Asada and Hiroaki Kitano, editors, RoboCup-98: 
Robot Soccer World Cup II. Springer Verlag, Berlin, 
1999. Also in Proceedings of the Third International 
Conference on Autonomous Agents, 1999. 

[38] C. Thurau, C. Bauckbage, and G. Sagerer. Imitation 
learning at all levels of game-AI. In Proc. Int. Conf. on 
Computer Games, Artificial Intelligence,Design and 
Education,pages402-408,2004. 

[39] Michael van Lent and John Laird. Learning hier­
archical performance knowledge by observation. In 
Proceedings of the Sixteenth International Conference 
on Machine Learning, pages 229-238. Morgan Kauf­
mann Publishers Inc, 1999. 

[40] Geoffrey Webb, Michael Pazzani, and Daniel Billsus. 
Machine learning for user modeling. User Modeling 
and User-Adapted Interaction, 11(19-20),2001. 

2409 


