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Correcting coherent errors with surface codes
Sergey Bravyi1, Matthias Englbrecht2,3, Robert König2 and Nolan Peard2,4

Surface codes are building blocks of quantum computing platforms based on 2D arrays of qubits responsible for detecting and
correcting errors. The error suppression achieved by the surface code is usually estimated by simulating toy noise models
describing random Pauli errors. However, Pauli noise models fail to capture coherent processes such as systematic unitary errors
caused by imperfect control pulses. Here we report the first large-scale simulation of quantum error correction protocols based on
the surface code in the presence of coherent noise. We observe that the standard Pauli approximation provides an accurate
estimate of the error threshold but underestimates the logical error rate in the sub-threshold regime. We find that for large code
size the logical-level noise is well approximated by random Pauli errors even though the physical-level noise is coherent. Our work
demonstrates that coherent effects do not significantly change the error correcting threshold of surface codes. This gives more
confidence in the viability of the fault-tolerance architecture pursued by several experimental groups.
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INTRODUCTION
Recent years have witnessed major progress towards the
demonstration of quantum error correction and reliable logical
qubits.1–6 Such qubits can be protected from noise by measuring
syndromes of suitable parity check operators and applying
syndrome-dependent recovery operations. Topological quantum
codes such as the surface code7,8 are among the most attractive
candidates for an experimental realization, as they can be
implemented on a two-dimensional grid of qubits with local
check operators.
It is believed that such codes can tolerate a high level of noise9–

11 which is comparable to what can be achieved in the latest
experiments.6 The general confidence in the noise-resilience of
topological codes primarily rests on considerations of Pauli noise
—a simplified noise model where errors are Pauli operators X,Y,Z
drawn at random from some distribution. An example is the case
where each qubit j experiences noise described by the channel

N jðρÞ ¼ ð1� εjÞρþ εxj XρX þ εyj YρY þ εzj ZρZ (1)

with suitable probabilities εxj ; ε
y
j ; ε

z
j and εj ¼ 1� εxj � εyj � εzj . This

kind of noise can be fully described by the stabilizer formalism.12

In pioneering work, Dennis et al.9 exploited this algebraic structure
to establish the first analytical threshold estimates, see also.13 The
effect of Pauli noise also is efficiently simulable thanks to the
Gottesman-Knill theorem, providing numerical evidence for high
error thresholds of topological codes.14 The efficient simulability
property has recently been extended beyond Pauli noise to
random Cliffords and Pauli-type projectors.15

While such algebraically defined noise models are attractive
from a theoretical viewpoint, they often do not correspond to
noise encountered in real-world setups. They are—in a sense—
not quantum enough: they model probabilistic processes where
errors act randomly on subsets of qubits. Rather than being of
such a probabilistic (or incoherent) nature, noise in a realistic
device will often be coherent, i.e., unitary, and can involve small

rotations acting everywhere. A typical situation where this arises is
if e.g., frequencies of oscillator qubits are misaligned: this results in
systematic unitary over- or under-rotations. On a single-qubit
level, this means that (1) should be replaced by noise of the form

N jðρÞ ¼ UjρU
y
j (2)

with a suitable unitary operator Uj∈SU(2). Since such errors
generally cannot be described within the stabilizer formalism,
understanding their effect on a given quantum fault-tolerant
scheme is a challenging problem.
Prior theoretical work indicates that the difference between

coherent and incoherent errors could be significant. In particular,
it was observed16–20 that coherent errors can lead to large
differences between average-case and worst case fidelity mea-
sures suggesting that a critical reassessment of commonly used
benchmarking measures is necessary. This observation motivates
the question of how much coherence is present in the effective
logical-level noise21,22 experienced by encoded qubits. Depending
on whether or not the logical noise is coherent one may choose
different metrics for quantifying performance of a given fault-
tolerant scheme. Significant progress has been made towards
understanding the structure of the logical noise for concatenated
codes.21–23 However, these studies are not directly applicable to
large topological codes such as those considered here.
Brute-force simulations of coherent noise in small codes were

presented in24–27 for Steane codes and surface codes with up to
17 qubits. Simulating coherent errors by brute force clearly
requires time (and memory) exponential in the number of qubits
n. For the surface code, Darmawan and Poulin28,29 proposed an
algorithm with a runtime exponential in n1/2 based on tensor
networks, and simulated systems with up to 153 qubits. This
algorithm can handle arbitrary noise (including, e.g., amplitude
damping). Unfortunately, its formidable complexity prevents
accurate estimation of error thresholds, e.g., for the systematic
rotations considered here. In,30 threshold estimates for the 1D
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repetition code were obtained. To our knowledge, there are no
analogous threshold estimates for topological codes subject to
coherent noise.

RESULTS
Coherent noise and quantum memory
We shall consider a particular version of the surface code
proposed in Refs.31,32 A distance-d surface code has one logical
qubit and n= d2 physical qubits located at sites of a square lattice
of size d × d with open boundary conditions, see Fig. 1.
We consider the situation where a logical state ψL initially

encoded by the surface code undergoes a coherent error U=
U1⊗…⊗Un which applies some (unknown) unitary operator Uj to
each qubit j. To diagnose and correct the error without disturbing
the encoded state we assume the standard protocol based on the
syndrome measurement is applied. It works by measuring the
eigenvalue (syndrome) sf= ±1 of each stabilizer Bf on the
corrupted state U|ψL〉 and then applying a Pauli-type correction
operator Cs depending on the measured syndrome s= {sf}f. The
correction Cs is computed by a classical decoding algorithm (for
example, one may choose Cs as a minimum-weight Pauli error
consistent with s). We note that the syndrome s is a random
variable with some probability distribution p(s) since the error U
maps the initial logical state to a coherent superposition of states
with different syndromes. We only consider noiseless syndrome
measurements, and also assume that the correction operations Cs
can be executed noiselessly. These assumptions (which can be
relaxed by adapting our methods) are motivated by our focus on
the effect of coherent errors. They also imply that we can assume
that the correction Cs always returns the system to the logical
subspace resulting in some final logical state |ϕs〉. Thus the process
of (noisy) storage with error U and subsequent error correction
maps an initial encoded state |ψL〉 to a certain final logical state |
ϕs〉 with probability p(s), while also providing the classical
syndrome s.
The main question addressed here is how close the final state |

ϕs〉 and the initial state |ψL〉 are as a function of the noise. Here we
will assume that the error applied to qubit j is of the form Uj= exp
(iηjZ) for some (unknown) angle ηj. The restriction to Z-rotations is
dictated by the limitations of our simulation algorithm for storage.
It provides a paradigmatic example of coherent noise. We also
discuss a related problem—that of state preparation—and
provide analogous results for general SU(2) coherent errors (see
Supplementary Note 2).

Effective coherent logical noise
We show analytically that the syndrome probability distribution p
(s) is independent of the initial logical state ψL whereas the final
logical state has the form

jϕsi ¼ expðiθsZLÞjψLi (3)

for some logical rotation angle θs∈[0, π) depending on the
syndrome s (see Supplementary Note 1). In other words, the error
correction process converts physical-level coherent noise U to
effective coherent noise exp(iθsZL) on the logical qubit, with a
strength θs depending on the (randomly distributed) syndrome s.
The parametrization (3) concisely captures the effect of

coherent noise, providing us with a window into the nature of
this conversion. We use the quantity

PL ¼ 2
X

s

pðsÞ sinθsj j (4)

as a measure of the (average) logical error rate: this is the average
(over syndromes) diamond-norm distance33 Λs � idk k}¼ 2 sinθsj j
between the conditional logical channel

ΛsðρÞ ¼ eiθsZρe�iθsZ (5)

and the identity channel id. While the quantity PL provides a
meaningful measure for how well the initial state is preserved, the
full information of the structure of residual logical errors is given
by the distribution p(s) over logical rotation angles θs.

Polynomial-time classical simulation
We construct a polynomial-time classical algorithm which takes as
input |ψL〉 and the rotation angles η1,…,ηn, samples a syndrome s
from the distribution p(s), and outputs s as well as the associated
final state |ϕs〉 (i.e., the logical rotation angle θs). The runtime of
this algorithm scales as O(n2), where we measure complexity in
terms of the number of additions, multiplications, and divisions of
complex numbers that are required. Strictly speaking, the
simulation time scales as O(n2)+ t(n), where t(n) is the runtime
of the decoding algorithm that computes the correction Cs. In our
simulations the decoding time was negligible compared with the
time required to sample the syndrome and compute the final
logical state. By sampling sufficiently many syndromes, one can
thus learn how frequently and in which ways error correction may
fail in the presence of coherent noise. In particular, we may
estimate the quantity PL. By providing both the syndrome s and
the the logical rotation angle θs conditioned on s, our algorithm
also gives us a unique opportunity to investigate the full structure
of the logical-level noise.

Numerical results
Using our algorithm, we perform the first numerical study of large
topological codes subject to coherent noise, performing simula-
tions for surface codes with up to n= 2401 physical qubits, see
Table 1 for a timing analysis.
This shows that efficient classical simulation of fault-tolerance

processes under coherent noise is possible, and allows us to

Fig. 1 Surface codes with distance d= 3 and d= 5. Qubits and
stabilizers are located at sites and faces respectively. A stabilizer Bf
located on a face f applies X (black faces) or Z (white faces) to each
qubit on the boundary of f. Logical Pauli operators XL (red) and ZL
(blue) have support on the left and the top boundary

Table 1. Runtime in seconds for a C++ implementation of our
algorithm

Code distance 9 19 29 39 49

Qubits 81 361 841 1521 2401

Runtime 0.001 0.04 0.2 0.7 1.7

Timing analysis was performed on a laptop with a 2.6 GHz Intel i5 Dual
Core CPU
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extract key characteristics of these codes in the limit of large
system size.
In more detail, in our simulations we consider translation-

invariant coherent noise of the form (eiθZ)⊗n, where θ∈[0, π) is the
only noise parameter. The Pauli correction Cs was computed using
the standard minimum weight matching decoder9,34 with
constant weights independent of θ.
Our numerical results for the logical error rate PL are presented

in Fig. 2. Using the symmetries of the surface code one can easily
check that PL is invariant under flipping the sign of θ; accordingly,
it suffices to simulate θ ≥ 0. The data suggests that the quantity PL

decays exponentially in the code distance d for θ<θ0, where

0:08π � θ0 � 0:1π (6)

can be viewed as an error correction threshold. We observe the
exponential decay of PL as a function of the code distance d in the
sub-threshold regime.
Surprisingly, the threshold estimate Eq. (6) agrees very well with

the so-called Pauli twirl approximation35,36 where coherent noise
of the form NðρÞ ¼ eiθZρe�iθZ is replaced by its Pauli-twirled
version, i.e., dephasing noise of the form N twirlðρÞ ¼ ð1� εÞρþ
εZρZ with ε ¼ sin2θ. For the latter the threshold error rate is

around ε0 ≈ 0.11, see Ref.9 Solving the equation ε0 ¼ sin2ðθ0Þ for
θ0 yields θ0 ≈ 0.10π, in agreement with Eq. (6).
Applying the Pauli twirl at the physical level amounts to

ignoring the coherent part of the noise. To assess the validity of
this approximation, let us compare logical error rates PL computed
for coherent physical noise N and its Pauli-twirled version N twirl.
Let PLðN twirlÞ be the logical error rate corresponding to N twirl. The
plot of PLðN twirlÞ and the ratio PL=PLðN twirlÞ are shown on Fig. 3. It
can be seen that applying the Pauli twirl approximation to the
physical noise gives an accurate estimate of the error threshold
but significantly underestimates the logical error probability in the
sub-threshold regime. We conclude that coherence of noise has a
profound effect on the performance of large surface codes in the
sub-threshold regime which is particularly important for quantum
fault-tolerance. This phenomenon was previously observed in,23,28

but has not been studied for large topological codes prior to our
work.
More information about the structure of the effective noise can

be gained from Fig. 4, which shows the empirical probability
distribution of the logical rotation angle θs obtained by sampling
106 syndromes s for the physical Z-rotation angle θ= 0.08π (which
we expect to be slightly below the threshold). We compare the
cases d= 9 and 25. In both cases the distribution has a sharp peak

Fig. 2 (Empirical) logical error rate PL for storage of quantum states. We consider distance-d surface codes subject to coherent errors exp(iθZ)
on each qubit. We consider surface codes with distance 5 ≤ d ≤ 37. The smallest distance d= 3 was skipped because of strong finite-size
effects (note that the considered surface codes are only defined for odd values of d). In all figures, the logical error rate PL was estimated by the
Monte Carlo method with at least 50,000 syndrome samples per data point

(a) (b)

Fig. 3 Comparison between the logical error rates PL and PL(Ntwirl) computed for coherent noise N(ρ)= eiθZρe−iθZ and its Pauli twirled version
Ntwirl(ρ)= (1− ε)ρ+ εZρZ with ε ¼ sin2ðθÞ. In both cases we used the minimum weight matching decoder. The plot demonstrates that
applying the Pauli twirl approximation to the physical noise significantly underestimates the logical error rate in the sub-threshold regime
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at θs= 0 (equivalent to θs= π). This peak indicates that error
correction almost always succeeds in the considered regime. It can
be seen that increasing the code distance has a dramatic effect on
the distribution of θs. The distance-9 code has a broad distribution
of θs meaning that the logical-level noise retains a strong
coherence. On the other hand, the distance-25 code has a sharply
peaked distribution of θs with a peak at θs= π/2 which
corresponds to the logical Pauli error ZL. Such errors are likely to
be caused by “ambiguous” syndromes s for which the minimum
weight matching decoder makes a wrong choice of the Pauli
correction Cs. We conclude that as the code distance increases, the
logical-level noise can be well approximated by random Pauli
errors even though the physical-level noise is coherent.
To get a deeper insight into this phenomenon, we introduce

and numerically study associated measures of “incoherence”. To
define a metric quantifying the degree of coherence present in
the logical-level noise, let us consider the twirled version of the
logical channel Λs,

Λtwirl
s ðρÞ ¼ ð1� εsÞρþ εsZρZ; εs � sin2ðθsÞ;

and the corresponding logical error rate

PLtwirl ¼
X

s

pðsÞ Λtwirl
s � id

�� ��
}¼ 2

X

s

pðsÞsin2ðθsÞ: (7)

Comparison of Eqs. (4,7) reveals that PL � PLtwirl with equality iff
the distribution of θs has all its weight on {0,π/2}, that is, when the
logical noise is incoherent. It is therefore natural to measure
coherence of the logical noise by the ratio PL=PLtwirl. This
“coherence ratio” is plotted as a function of θ on Fig. 5(a). The
data indicates that the coherence ratio decreases for increasing
system size approaching one for large code distances. This further
supports the conclusion that the logical noise has a negligible
coherence. Finally, in Fig. 5(b), we show the analogous quantity for
the average logical noise channel21 defined as Λ ¼ P

s pðsÞΛs. This
average channel provides an appropriate model for the logical-
level noise if the environment has no access to the measured
syndrome. This may be relevant, for instance, in the quantum
communication settings where noise acts only during transmis-
sion of information. Thus one can alternatively define the

Fig. 4 These histograms show the empirical probability distribution of logical rotation angles θs for the code distance d= 9 (left) and d= 25
(right) obtained by sampling 106 syndromes s. The histograms use the same noise parameter θ= 0.08π. For ease of visualization, we truncated
the main peak at θs= 0

(a) (b)

Fig. 5 Coherence ratio PL=PLtwirl for the conditional logical channel (left) and for the average logical channel (right). In both cases increasing
the code distance makes the logical-level noise less coherent
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coherence ratio as

PL=PLtwirl ¼
Λ� idk k}

Λtwirl � id
�� ��

}
; (8)

where Λtwirl is the Pauli-twirled version of Λ. A straightforward
computation gives PL=PLtwirl ¼

ffiffiffiffiffiffiffiffiffi
ε2þδ2

p
ε where ε ¼ P

s pðsÞsin2ðθsÞ
and δ ¼ P

s pðsÞsinð2θsÞ=2. The coherence ratio of the average
logical channel is plotted as a function θ on Fig. 5(b). It provides
particularly strong evidence that in the limit of large code
distances, coherent physical noise gets converted into incoherent
logical noise.

DISCUSSION
Our work extends the range of noise models efficiently simulable
on a classical computer. It allows—for the first time—to
numerically investigate the effect of coherent errors in the regime
of large code sizes which is important for reliable error threshold
estimates. Our simulation algorithms make no assumptions about
the particular decoder used. Hence the proposed approach should
be universally applicable to benchmarking the performance of
different fault-tolerance strategies in the presence of coherent
noise. Although we simulated only translation-invariant noise
models, all our algorithms apply to more general qubit-dependent
noise. This enables numerical study of recently proposed state
injection protocols,37 e.g., preparation of logical magic states, in
the presence of coherent errors. Another possible application
could be testing the so-called disorder assisted error correction
method38–40 where artificial randomness introduced in the code
parameters suppresses coherent propagation of errors due to the
Anderson localization phenomenon. We leave as an open problem
whether our algorithm can be extended to more general codes,
such as as color and hyperbolic codes, as well as more general
noise models such as those including systematic cross-talk errors.
Our numerical results spell good news for quantum engineers

pursuing surface code realizations: thresholds for state prepara-
tion and storage are reasonably high, suggesting that coherent
noise is not as detrimental as one could expect from the previous
studies. The numerical investigation of the logical-level noise gives
rise to a conceptually appealing conjecture: error correction
converts coherent physical noise to incoherent logical noise (for
large code sizes). Whether this is an artifact of the considered error
correction scheme or manifestation of a more general phenom-
enon is an interesting open question.

METHODS
Our algorithm is based on a fermionic representation of the surface code
proposed by Kitaev41 and Wen,31 see Fig. 6. It works by encoding each
qubit of the surface code into four Majorana fermions in a way that
simplifies the structure of the surface code stabilizers. The Kitaev-Wen
representation has previously been used by Terhal et al.42 to design
fermionic Hamiltonians with topologically ordered ground states. Here we
show that this representation is also well-suited for the design of efficient
simulation algorithms.
The fermionic version of the surface code is described by Majorana

operators c1,…,c4n that obey the standard commutation rules cyp ¼ cp ,
c2p ¼ I, and cpcq=−cqcp for p ≠ q. Each vertex u of the surface code lattice
contains a copy of a simple Majorana fermion code41 with four Majorana
modes, a single logical qubit, and a stabilizer Su= ±cpcqcrcs. It has logical
Pauli operators Xu ¼ icpcq and Zu ¼ icqcr . We call this Majorana code the
C4-encoding of a qubit. Each Pauli operator P has a fermionic counterpart P
obtained by applying the C4-encoding independently to each qubit of P.
The first step towards the construction of our algorithm is to translate

notions from the surface code to the fermionic setting (see Supplementary
Note 1). For example, we find that the fermionic counterpart Bf of a surface
code stabilizer Bf associated with a face f can be expressed as a product

Bf ¼
Y

e2∂f
Le (9)

of link operators (see Fig. 6) associated with edges bordering f. This implies
that the syndrome measurement may effectively be replaced by the
measurement of the commuting link operators by taking the product of
the corresponding measurement outcomes. Similarly, we find that the
logical operators XL and ZL (see Fig. 1) have fermionic counterparts of the
form

XL ¼ ic1c2
Y

e2LEFT
Le; ZL ¼ ic2c3

Y

e2TOP
Le (10)

for suitably chosen subsets LEFT and TOP of edges. Given the eigenvalues
of the link operators, we may thus use these identities to compute final
logical states from expectation values of the unpaired modes. Finally, as
the problem of simulating storage requires considering arbitrary surface
code states, we need to identify fermionic version jψLi of an encoded
(logical) state ψ 2 C2. This takes the form

jψLi �
Y

u2V

1
2
ðI þ SuÞjψi � jϕlinki: (11)

where ψ is a C4-encoded version of ψ on the unpaired modes, and ϕlink is
the unique state of 4n−4 Majoranas stabilized by all link operators. Eq. (11)
implies that we may replace the initial logical state by a simpler state at the
expense of measuring additional stabilizers.
Using these relationships, we show (see Supplementary Notes 2 and 3)

that the error correction protocols considered in this paper can be
decomposed into a sequence of O(n) elementary gates from a gate set
known as a fermionic linear optics (FLO), see Refs.43,44 It includes the
following operations:

1. Initialize a pair of Majorana modes p,q in a basis state |0〉 satisfying
icpcq|0〉= |0〉.

2. Apply the unitary operator U= exp(γcpcq). Here γ∈[0, π) is a rotation
angle.

3. Apply the projector Λ= (I + icpcq)/2. Compute the norm of the
resulting state.

It is well-known that quantum circuits composed of FLO gates can be
efficiently simulated classically.43–46 The simulation runtime scales as O(n)
for gates of type (1,2) and as O(n2) for gates of type (3). By exploiting the
geometrically local structure of the surface code we are able to reduce the
number of modes such that at any given time step the simulator only
needs to keep track of O(n1/2) modes. Accordingly, each FLO gate can be
simulated in time at most O(n). Since the total number of gates is O(n), the
total simulation time scales as O(n2).

Code availability
The code used in this study is available upon request to the corresponding
author.

DATA AVAILABILITY
Data used in this study is available upon request to the corresponding author.

Fig. 6 A fermionic representation of the distance-3 surface code.
Solid circles represent paired (blue) and unpaired (red) Majorana
modes. The pattern extends to larger codes in a translation invariant
fashion. An edge e oriented from cp to cq defines a link operator Le=
icpcq. On a subspace defined by local constraints, stabilizers of the
surface code can be represented as products of link operators
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